
Predicting Stable Configurations for
Semantic Placement of Novel Objects

Chris Paxton1, Chris Xie2, Tucker Hermans1,3, Dieter Fox1,2

1NVIDIA, 2University of Washington, 3University of Utah

Abstract: Human environments contain numerous objects configured in a variety
of arrangements. Our goal is to enable robots to repose previously unseen objects
according to learned semantic relationships in novel environments. We break this
problem down into two parts: (1) finding physically valid locations for the objects
and (2) determining if those poses satisfy learned, high-level semantic relation-
ships. We build our models and training from the ground up to be tightly inte-
grated with our proposed planning algorithm for semantic placement of unknown
objects. We train our models purely in simulation, with no fine-tuning needed for
use in the real world. Our approach enables motion planning for semantic rear-
rangement of unknown objects in scenes with varying geometry from only RGB-
D sensing. Our experiments through a set of simulated ablations demonstrate that
using a relational classifier alone is not sufficient for reliable planning. We further
demonstrate the ability of our planner to generate and execute diverse manipula-
tion plans through a set of real-world experiments with a variety of objects.

Keywords: Deep learning for manipulation, learning for motion plan-
ning, semantic manipulation

“Place the mug in front of the blue pitcher.” “Place the pitcher to the left of the mustard.”

“Place the mustard behind the cookie box.” “Place the mug on top of the box.”

Figure 1: Planning to achieve different predicate relationships in the real world, given only segmented point
clouds of the scene. The planner computes final placement positions and associated kinematic poses, which lets
the robot generate a motion plan to place these objects at different locations in the real world.

1 Introduction & Motivation

Many robotics tasks in human environments involve reasoning about the relationships between dif-
ferent objects and their locations in a particular environment. Imagine a robot tasked with pouring
a cup of coffee, it must reason about the relative position of the cup to the coffee pot, such that it
pours the coffee into the cup and not onto the counter or floor. For a robot attempting to brew the
coffee prior to pouring, many more multi-object relations must be reasoned about for the tasks of
retrieving the necessary equipment from storage, scooping and pouring beans or grounds, and filling
any required water vessels.

Classically, researchers investigating these sorts of multi-object planning and manipulation prob-
lems assume full knowledge of the objects and their poses in the scene [1]. However, for robots
acting in homes and other open-world environments, it is unreasonable to assume that a deployed
robot will have knowledge and accurate pose estimation of all objects in the environment. Further-
more, simple hand-engineered classifiers for determining logical predicates often exhibit unintended

5th Conference on Robot Learning (CoRL 2021), London, UK.



behavior when deployed on real-world systems [2]. For these reasons, rearrangement has recently
been identified as a major challenge for robotics [3].

Given these challenges, its natural to examine the use of learning to improve task and motion plan-
ning with real sensing [4, 5, 6, 7, 8, 9]. However, previous methods fail to solve the full problem
of unknown object rearrangement with physical robots. Some only operate on known objects [6, 9],
others ignore or significantly restrict the space of robot control [4, 5] or relations [7, 8], while still
others make assume an explicit goal configuration is given [5]. An alternative approach to solve com-
plex manipulation tasks relies on learning model-free neural net policies instead of explicit models
of conditions and effects [10, 11]. Such methods have so far failed to show the level of generalization
across objects and environments capable by modern task and motion planners.

In this paper, we focus on a critical subtask of rearrangement planning–semantic placement–where
the robot must perform a pick and place operation to move an object into a stable configuration that
satisfies a desired set of semantic relations. This allows us to focus on three specific objectives not
addressed in previous work on learning for task and motion planning. First, we examine the problem
of planning and controlling manipulation behaviors to change inter-object relations of potentially
previously unseen objects using RGB-D sensing. Second, we aim to learn the necessary relations
from data to avoid the bias introduced from hand-engineered classifiers. Finally, we must learn what
realistic scenes look like–so that the robot can ensure that it places objects in reasonable locations
which are stable and free of undesired collisions.

Our work relies on the ability to infer inter-object relational predicates between objects pro-
posed from an RGB-D instance segmentation, e.g. [12]. Semantic relations serve an important role
in instructing robots [13]. As such, researchers have examined visual prediction of spatial rela-
tions [14, 15, 16, 17] including inference of support relations [18, 19]. While these methods can
be sophisticated incorporating language [20, 21, 16] or scene graph information [22, 23, 17]; none
have demonstrated the ability to integrate prediction with robot planning and control to satisfy new
relations between unknown objects. Indeed, we show semantic prediction alone is insufficient for
reliably planning successful semantic rearrangement.

In addition to this semantic prediction, we need to identify physically realistic poses where these
objects can be placed. Stable placement prediction has also received attention from robotics re-
searchers [24, 25, 26, 27]; however, learning-based approaches [24, 27] train directly to maximize
stability of object placement. In contrast our approach simply distinguishes realistic configurations
from invalid ones, which allows us to learn a general-purpose scene-realism discriminator which
can capture wide distributions over realistic poses in 3D space. This provides the benefit of a more
general model for use in arrangement planning, while giving up somewhat the level of precision
seen in some placement-specific methods [24, 26]. In addition, it means we can use simulation-
based data to train both our relational prediction and scene discriminator directly on raw point cloud
and associated segmentation masks, and transfer to the real world.

We embedded our learned relational predictor and scene discriminator within a sampling-based
planning framework to change relations in the scene in a goal directed way. By planning directly
over changes in segment pose in a point cloud, we can decouple the goal generation problem from
the robot control problem, allowing us to leverage model-based, state-of-the-art motion planning and
grasp prediction algorithms [28, 29] to perform the necessary manipulation. We further accelerate
our planner by learning an object pose sampler conditioned on desired relations to initialize the
optimization, similar to the grasp planning approach in [28]. Production of these goal states can then
be used for semantically-defined placement tasks.

We highlight the advantages of our approach over a variety of baselines and ablations of our full
method. Critically, we demonstrate that both the relational classifier and scene discriminator are nec-
essary for reliably generating successful plans. We then demonstrate our approach in the real world
using a Franka robot (Fig. 1). Our experiments constitute the first physical-robot demonstration that
combine learned models for inter-object relations and stability estimation enabling rearrangement of
novel objects. Crucially, we show that the combination of relationship classifier and scene discrimi-
nator allows us to plan placements for a variety of relationships in cluttered scenes. In addition, our
models are trained entirely in simulation with no need for real-world fine tuning.

2



2 Methods

Given a single view of a scene containing objects for which our robot potentially has no previous
experience, we wish for the robot to rearrange the scene to satisfy some new set of logical constraints.
For example the robot may be tasked to move the query object i to be on the far right side of anchor
object j or to be stacked on top of object k. Each individual relationship between i and j is referred
to as a predicate ρij ; we can describe multiple logical relationships as the vector ~ρij .

We assume we are given a partial-view point cloud Z with segment labels for each point to identify
the different objects. Given this point cloud and a set of logical predicates describing the desired
relationships ~ρij , the robot must find a pose offset δ (3D translation and planar rotation) for object i
that satisfies ~ρij and is additionally a stable, physically valid placement pose in the environment.

Thus there are two key components in our rearrangement and placement planning approach: pre-
dicting which poses objects can be physically placed and predicting which poses satisfy the given
high-level instructions. We formalize predicate planning as the following problem:

argmin
δ

c(δ) = λf‖1− f(xi ⊕ δ, Z ′)‖2+λρ‖pρ(xi ⊕ δ, xj)− ~ρij‖2 (1)

subject to T (Z, xi ⊕ δ) = Z ′ (2)

f(xi ⊕ δ, Z ′) > εf (3)
pρ(xi ⊕ δ, xj) [~ρij ] > ερ (4)
Π(xi ⊕ δ) = 1 (5)

where xi and xj are the object point clouds for objects i and j, respectively, and ⊕ denotes the
application of the 3D translation and planar rotation. At the heart of our planning cost, Eq. 1, are
two models. The first f(xi ⊕ δ, Z ′) is a neural net trained to determine if the resulting scene is
physically realistic and stable. The second term defines the cost associated with matching the set
of target predicates, where pρ(xi ⊕ δ, xj) estimates the set of predicate relationships between the
transformed point cloud xi⊕δ and xj . This cost implies maximizing the likelihood that the resulting
scene is both realistic and satisfies the desired predicates.

In addition to the cost function, we put minimum bound constraints on the physical feasibility (Eq. 3)
and predicate probabilities (Eq. 4). We use ~ρij as an index in Eq. 4 to extract the subset of predicted
relations that must be satisfied. This ensures we never attempt to plan to a scene configuration with
low probability of success, even if it defines a local optimum of the objective. Eq. 2 models the
transition of applying offset δ to xi in the observed scene Z to generate the resulting scene Z ′,
which we evaluate in the cost and other constraints. Finally Eq. 5 ensures that sampled object offsets
are visible in the camera view of the robot, since our cost and constraint evaluations would be ill-
defined otherwise. We describe the details of these models and their construction in Sec. 2.1 and
give a detailed description of our data generation process for training in Section 2.3.

We use a variant of the cross-entropy method (CEM) [30] to solve this constrained optimization
problem. CEM has previously been applied to robot motion planning [30], including semantic mo-
tion planning from learned models [31]. We provide further details of our planner in Section 2.2.

2.1 Rearrangement Planner Models and Training

We train multiple neural networks to compute the values needed to instantiate our planning problem
defined by Equation 1: the current set of predicates, and the discriminator score which describes
whether or not a particular set of object points x defines a realistic configuration in the scene.

Object and scene encoders The core piece of the model is a PointNet++ [32] encoder which extracts
a lower-dimensional object representation h. Each network takes two objects i and j represented as
point clouds xi and xj , as well as the scene point cloud Z, as input. Given an observation point
cloud x, we learn a mapping e(x) → h for the objects, in order to get two latent representations hi
and hj for the query and anchor objects. The object encoder is a Pointnet++ model with three set
abstraction layers; see the supplemental material for further details.

We train a separate scene encoder eZ(xZ) to capture the objects’ relation to other scene geometry
when predicting where it can be placed. This outputs hZ encoding scene-specific information, where
xZ is centered around the anchor point oj – the centroid of xj . Points are sampled in a radius of

3



𝝅

𝒑ρ

𝝆

ෝ𝝆

𝒉𝒊

𝒉𝒋

𝒉𝒁

Scene Discriminator 𝒇

Placement Planner

Motion Planner

Pointnet Encoders

Goal specification

𝒊

𝒋

𝒁

Figure 2: System for rearrangement of unknown objects according to spatial relations, where we wish to move
a query object i (in this case a red mug). We encode objects with Pointnet++ to predict predicates, based on the
region around an “anchoring” object, j (the macaroni box) to which the query is relative. Query locations are
sampled based on a learned prior π, and are classified by the scene discriminator network f as either realistic
or unrealistic. This is used as a part of an optimization algorithm to find a stable, kinematically feasible query
pose so that we can place the query object i in a new location.

r = 0.5m around oj . We choose this representation to define features from the fixed perspective of
the anchoring object j.

Relation predictor The predicate classifier network pρ(xi, xj) → ρ̂ij estimates which predicates
are true for a pair of object point clouds. It uses the representations from the object encoder, e(xi) =
hi and e(xj) = hj , for the query and anchor objects i and j, respectively. These are passed into an
MLP which predicts a vector of length Npredicates. When used as part of the planning algorithm,
we ignore predicted predicates that are not part of the goal specification.

Pose prior In addition, we learn a prior distribution over possible poses where the object might
satisfy the predicates, relative to the anchoring object. We implement this prior π(xi, xj , Z, ~ρij) →
{αk, µk, σk}k=1:K as a Mixture Density Network (MDN) [33], which predicts the parameters of
a Gaussian mixture model with K components. This GMM distribution defines the probability of
a specific pose offsets δ with respect to the anchor point oj . The relationships are assumed to be
spatially defined relative to this object, so that the predicted center of the query object i is ôi = oj⊕δ.
Once trained we can produce samples from the MDN by evaluating it for the current observations
and then applying standard GMM sampling using the output parameters.

As with the relation predictor pρ, the pose prior uses the object encoder to get lower-dimensional
representations hi and hj for each object as well as the scene encoder to predict hZ .

Scene discriminator The relation predictor and prior on their own are not enough to find stable
placement poses. As such, we define a discriminator network f(x, Z) trained to predict if a given
configuration results in a placement that is physically realistic w.r.t. the training data, i.e. it is stable.

This model uses a slightly different architecture from the above models, and unlike them we first
center the scene on ôi, the query point and potential new pose for object i. We look at the local region
around ôi with a fixed radius r = 0.5m to classify whether a particular δ would result in a realistic
placement pose. We use a single PointNet++ model to encode points from both objects together,
given a label indicating which points belong to the query object (the object whose placement we
are attempting to find). In practice, the sphere-query necessary to extract the local context around a
particular pose is the same as that used in PointNet++, so this operation can be performed quickly
at inference time.

Transform operator We require one additional operator to plan on point clouds: the transformation
operator T (Z, xi ⊕ δ). We assume a deterministic transition function and rigidly transform points
associated with the query object according to the relative pose offset δ constructing a new scene Z ′.

Model Training We jointly train the object and scene encoders e and eZ , relationship predictor
pρ, and the pose prior π. The relationships can be directly supervised from our training data, given

4



knowledge of the ground truth predicates, and are trained with a binary cross entropy loss. The prior
π is trained to predict the offset δ from the anchor point oj to the observed pose of the query object,
oi, in the training data; i.e. δ = oj 	 oi.
To train the scene discriminator, we first note that all of our training data consists of stable object
placements, thus there is no negative data nor stability supervision available. Instead, we create
negative data online by applying random δ offsets to the pose of the query object i. We simply
sample a random δ and apply our transform operator to create a new scene Z− = T (Z, xi ⊕ δ).
These δ were sampled to be between 2 and 15 centimeters in a random direction. The resulting
scenes are highly likely to not be physically realistic nor stable (e.g. object i is floating or is in
collision).

Algorithm 1 Placement planning algorithm pseudocode.

1: function FINDPLACEMENT(object point cloud xi, object point cloud xj , scene Z, goal ~ρij)
2: for s ∈ range(1, N) do
3: ~δs = ∅
4: while length(~δs) < B do . Rejection Sampling
5: if s = 0 then
6: δ ∼ π (xi, xj , Z, ~ρij) . Sample initial poses from learned prior
7: else
8: δ ∼ N (µ′,Σ′) . Sample subsequent poses from surrogate distribution
9: Z ′ ← T (Z, xi ⊕ δ) . Shift object point clouds by δ

10: realistic← f(xi ⊕ δ, Z ′) > εf . Determine if pose is realistic
11: goal← pρ(xi ⊕ δ, xj) [~ρij ] > ερ . Classify if goal predicates are true
12: in view← Π(xi ⊕ δ) . Ensure it will be visible
13: if realistic and goal and in view then
14: ~δs ← ~δ ∪ δ . Add new δ to batch of samples
15: Compute cost c(δ) for each δ ∈ ~δs
16: Sort ~δs and take top Nelite

17: Fit surrogate distribution parameters (µ′,Σ′)

18: return lowest-cost δ seen so far, or ∅

2.2 Manipulation Planning with Relationship Models

We now describe how we solve the optimization problem for Equation 1 using the components
defined above. Alg. 1 describes how we can place an object so as to satisfy a particular relationship.
We take as given a set of desired relationships ~ρij in scene Z, and target objects i and j, where i is
the query object that we will be moving and j is the anchor object that will be kept stationary.

Initially, we perform rejection sampling to draw a batch of B candidate pose offsets from our MDN
prior π(xi, xj , Z, ~ρij) (line 6) keeping only those that satisfy the full set of constraints (lines 10–14).
We sample until either a time budget has been reached or B samples have been successfully drawn.

1 2 3

4 5 End

Figure 3: Depiction of the planning sequence. Initial
samples are drawn from an MDN prior δ ∼ π(Z, ~ρij).
Final poses satisfy both realism and predicate con-
straints finding a reasonable placement pose.

For each sample δ we compute a new query
point cloud using the transform function Z ′ =
T (Z, xi ⊕ δ) (line 9) and thus satisfy the con-
straint in Eq. 2 by construction. We then eval-
uate the remaining constraints in Eq. 3–5 (lines
10–12) accepting only feasible samples (lines
13–14). Next, as per the cross-entropy method,
we evaluate the cost of the valid samples (line
15) and fit a surrogate distribution to the best
scoring Nelite samples with mean µ′ and vari-
ance Σ′ (lines 16–17). At each subsequent step,
we draw B samples δ ∼ N (µ′,Σ′) from
our current surrogate distribution, compute the
scores again, and re-sample, until we have per-
formed N sampling iterations.

5



Fig. 3 gives an example for how the planning algorithm works in practice to achieve the goal that the
yellow object be aligned to the right of the cyan object. In both Fig. 2 and Fig. 3, yellow objects are
predicted positions of the query object; cyan represents the anchor object, and red points represent
downsampled scene geometry. This is an accurate depiction of the inputs into our model. The final
frame of Fig. 3 has been rotated to show the precise alignment with the table surface.

2.3 Dataset Creation

We generated a large-scale dataset in simulation of RGB-D images with associated segmentation
masks and relational predicates. We provide binary labels between all visible pairs of objects for all
predicates listed in Table 2. Each scene consists of 3 to 7 random Shapenet [34] objects in stable
configurations on various surfaces, including in stacks. We include mugs, bowls, and bottles, as well
as boxes and cylinders of random sizes. Examples of generated scenes are shown in the supplemental
material. Objects were placed in random configurations, and we ran physics forward to find stable
arrangements. We then rendered images both with and without each object. In order to train the
rotation model, we render each object on its own and apply a random rotation. Directional predicates
(left of, right of, etc.) are computed based on bounding box overlap; others are computed based on
distance between meshes or ground-truth position and orientation. See the supplementary materials
for further details.

3 Experiments

We first performed a set of simulation experiments on scenes that resembled our real world objects
examining different versions of our model. First, we show an ablation test of our method on held-
out YCB objects [35], with a set of known grasps from Eppner et al. [36], in order to show that our
algorithm with discriminator is better able to find stable positions for objects and scenes that did not
appear in our training data. Second, we show a break-down of the predicate results, showing that
our learned model is comparable or better at capturing a wide range of difficult relationships even in
partially-occluded scenes.

We sampled 100 random scenes in the kitchen environment from Fig. 4, with objects either posi-
tioned on top of the counter or in the top drawer. These objects did not appear in the training set.
Table 1 shows a breakdown of several different versions of the planner after running experiments
on 100 random scenes, each with a random predicate goal chosen from (in front, behind, left, right).
Due to the random placements of the objects, not all scenes are feasible, and in many cases the goal
pose would be occluded or off of the table to the front, resulting in challenging planning problems.

Variant Found Predicates Found Realistic Successful Stable Pose

Full model, λf = 100 93 87 84 71
Full model, λf = 1 94 81 78 67
No Discriminator (λf = 0) 100 3 3 25
Mean only 96 27 27 39
MDN Prior 99 6 6 42

Table 1: Comparison between different versions of the planner, when tested on 100 random multi-object scenes
in a kitchen environment. “Stable pose” is when the object center moved less than 5 cm after placement.

The different baselines look at the effects of the discriminator model, which determines whether or
not a scene is realistic and whether or not an object can be placed at a particular pose. For example,
the “no discriminator” case does not use the discriminator at all, and is very good at finding poses
matching the predicate goal but not finding stable poses. We also vary the weight of the discriminator
λf in several examples. For these experiments we use a batch size, B, of 100.

We ran two experiments that do not use the discriminator in our “full” planning approach. Mean only
draws samples only from the mean of the MDN prior π. This looks at what performance is like with
a learned policy. MDN Prior uses the learned mixture density function as a cost function in place of
using the discriminator, since presumably this might capture much of the same information. We can
see that it actually does a fairly good job at matching the predicates, but is not very discriminative
when it comes to finding stable poses for placement. Both of these perform notably worse at finding
stable poses in our test environments.

6



Left of Right of In Front Behind Above Below Near Touching Centered

Learned 0.92 0.93 0.74 0.65 0.90 0.92 0.88 0.90 0.70
Baseline 0.95 0.95 0.67 0.87 0.91 0.94 0.90 0.31 0.01

%True 13.9% 14.0% 4.6% 5.0% 4.3% 4.3% 29.0% 12.7% 5.6%
%False 86.1% 86.0% 95.4% 95.0% 95.7% 95.7% 71.0% 96.3% 84.4%

Table 2: F1-score of the predicate predictor pρ in held-out randomly-generated simulated test scenes. Some
predicates in our scenes can be very difficult due to clutter and occlusions, but our learned models are either on
par with or better than most all baselines. Bottom two rows show prevalence in the evaluation data set.

3.1 Scene Discriminator Performance

Here, we examine the performance of our scene discriminator. To do this, we compare placement
poses sampled from the MDN prior distribution in randomly-generated kitchen scenarios to place-
ment scores after optimization. We place the object at the new pose and then run 500 simulation
steps to allow the object to settle into its final pose. We then compare the discriminator’s confidence
score with how much the object moved. For these experiments we generated 100 random scenes,
each with a random predicate goal so as not to bias it to a particular subset of the problem space. We
ignore scenes if no feasible pose was found according to the discriminator.

We found that in 95% of these scenarios, the discriminator was able to find a stable pose to place
a particular object, and in 90% of all scenarios the planner was also able to match the specified
predicates. This shows that not only can we find realistic positions, but that the discriminator does
not preclude achieving specified goals. Note the higher perceived success rates than in the planner
comparison in Table 1: this is because we only test scenes where the planner was initially confident
that it could find a solution.

“BELOW” “IN FRONT” “RIGHT”

“ABOVE” EXAMPLE FAILURES

Realism vs. Observed Stability

Figure 4: Sim experiment results. Left: correlation between predicted realism (y axis) and distance moved
after placement (x axis). The blue dots show randomly sampled poses, while the red stars indicate poses after
running the placement planner. More realistic poses are much more stable than less realistic ones, although in
some cases unrealistic poses do not move much either. Right: selected successful and unsuccessful simulation
results. Images show point clouds from the robot’s point of view, after planning.

Fig. 4 (left) shows the relationship between the distance the object moved once placed and the
output of the scene discriminator model, after rejecting a small number of outliers (distance ≥ 0.5
meters). When we compute Pearson’s correlation coefficient r, we see that for a single random
sample s, rs = −0.147 with ps = 0.161, and for the final predicted placement P , rP = −0.278
with pP = 0.006. Individual initial samples s are shown in blue and optimized placements in red.
These results indicate that our scene discriminator learns a metric which correlates with stability,
even in challenging, cluttered scenes. Failures of the discriminator are driven by oddly perceived
object or environment geometry. When parts of the object geometry are missing, the model is prone
to making mistakes, such as placing an object so that it intersects with another object, or placing an
object so that it is not properly supported, as in shown in Fig. 4 (right).

3.2 Predicate Performance

Table 2 shows the F1 score by predicate on a held-out portion of the dataset containing 3000 exam-
ples. Our model correctly predicts every predicate in 69.4% of scenes, vs. 58.5% for the baseline. In
addition, we can learn predicates for which we have no baseline, such as aligned, on which we have

7



a true positive rate of 83% (f1 = 0.43). Generally, our model classifies different relationships well,
matching or exceeding the baseline in every case but one. In particular, our learned model has con-
sistently good sensitivity, meaning that we can find valid positions for the object when attempting
to plan. Finally, the rule-based approach requires implementing and hand-tuning a range of differ-
ent predicates; by learning from data, we could in principle scale to a larger number of symbolic
relationships. Our results show that even with very unbalanced, “natural” data, we can learn useful
classifiers for a range of relationships.

Baseline implementation: First, we compute bounding boxes and means from each object point
cloud. For the centered predicate, we compute xy distance on the table and use a larger threshold
that appears in our dataset (2 mm instead of 1 mm). For touching, we compute minimum distance
between point clouds and threshold it with 2.5mm. For near, the threshold is a 5 cm distance. For di-
rectional predicates, we apply the exact same rules used in data generation to the computed bounding
boxes, as seen in the supplementary materials.

3.3 Real World Experiments

Finally, we deployed our system on a Franka Panda robot with an arm-mounted RGB-D camera.
We used objects from the YCB object set [35] augmented with toy kitchen objects. We also used
various cardboard boxes to force the robot to adapt to changes in scene geometry. We generate
grasps using [29] and use RRT-Connect [37] for motion planning. We used unseen object instance
segmentation from [12] to determine segmentation masks for different objects, and use a prompt to
choose which object to move when performing experiments. We compute standoff poses for each
object 10cm above the predicted goal position, and release it 2cm above the predicted pose in order
to ensure that we do not press into the table. Figure 1 shows example pairs of before-after images.

To quantify our results in the real world, we conducted a set of experiments with eight different
objects. We report results in Table 3. Our placement planner was highly successful at finding ma-
nipulation plans with a range of different objects and predicates, including both grasps and place-
ments for the various held-out objects. Crucially, our method is able to find multiple valid solutions
for each scene; some examples appear in the supplementary materials. We saw a high rate of grasp
execution failures on the real world, which could easily be improved in future work by re-grasping.

Table Only Table with Large Box
Success Rate Plan Grasp Placement Plan Grasp Placement

Sauce Bottle 3 2 2 2 1 1
Cookie Box 3 3 3 3 1 0
Red Mug 3 3 3 3 2 1
Juice Carton 3 0 - 1 1 1
Macaroni Box 3 2 2 3 0 -
Parmesan Can 3 0 - 1 0 -
Mustard Bottle 3 3 3 2 2 2
Large Pitcher 2 2 2 3 2 0

Overall (%) 95% 75% 100% 75% 56% 60%

Table 3: Generalization experiments with different objects. All numbers out of three trials. Placement successes
conditioned on successful grasps. We see that the largest cause of failures was grasping issues. Planning failed
in a few situations with challenging objects that were either very large (YCB pitcher) or very small and hard to
grasp (Parmesan can). Placement fails when an object falls off of the box after the planner attempts placement.

4 Conclusions and Future Work

We demonstrated the ability for a robot to learn to accurately infer inter-object relations from point
clouds of real-world, unstructured environments, which can be used to perform manipulation plan-
ning for previously unseen objects. Our results show that a model trained purely in simulation,
effectively predicts relations on real-world point clouds of objects not seen during training. Further-
more, our incorporation of a scene-realism discriminator significantly improves performance over
the predicate goal predictor alone. In the future, we will add semantic understanding about which
objects the robot is interacting with using learned object class and attribute classifiers. We will also
expand our method to handle multi-object relations and explore long-horizon manipulation tasks by
formally extending our method into a task and motion planner.

8



Acknowledgements

Chris Xie was funded by NSF NRI grant IIS-2024057.

References
[1] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.

Integrated task and motion planning. Annual Review of Control, Robotics, and Autonomous
Systems, 2021.

[2] S. Srinivasa, A. M. Johnson, G. Lee, M. Koval, S. Choudhury, J. King, C. Dellin, M. Harding,
D. Butterworth, P. Velagapudi, and A. Thackston. A system for multi-step mobile manipula-
tion. In Int. Symp. on Experimental Robotics, 2016.

[3] D. Batra, A. X. Chang, S. Chernova, A. J. Davison, J. Deng, V. Koltun, S. Levine, J. Ma-
lik, I. Mordatch, R. Mottaghi, et al. Rearrangement: A challenge for embodied AI.
arXiv:2011.01975, 2020.

[4] D. Xu, R. Martı́n-Martı́n, D.-A. Huang, Y. Zhu, S. Savarese, and L. F. Fei-Fei. Regression
planning networks. In Neural Info. Proc. Sys., 2019.

[5] A. H. Qureshi, A. Mousavian, C. Paxton, M. C. Yip, and D. Fox. NeRP: Neural Rearrangement
Planning for Unknown Objects. In Robotics: Science & Systems, 2021.

[6] D.-A. Huang, D. Xu, Y. Zhu, A. Garg, S. Savarese, L. Fei-Fei, and J. C. Niebles. Continuous
relaxation of symbolic planner for one-shot imitation learning. Intl. Conf. on Intelligent Robots
and Systems, 2019.

[7] C. Paxton, Y. Barnoy, K. Katyal, R. Arora, and G. D. Hager. Visual robot task planning. In
Intl. Conf. on Robotics and Automation, 2019.

[8] K. Kase, C. Paxton, H. Mazhar, T. Ogata, and D. Fox. Transferable task execution from pixels
through deep planning domain learning. Intl. Conf. on Robotics and Automation, 2020.

[9] Y. Zhu, J. Tremblay, S. Birchfield, and Y. Zhu. Hierarchical Planning for Long-Horizon Ma-
nipulation with Geometric and Symbolic Scene Graphs. In Intl. Conf. on Robotics and Au-
tomation, 2021.

[10] D. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese, and J. C. Niebles. Neural
task graphs: Generalizing to unseen tasks from a single video demonstration. In Conference
on Computer Vision and Pattern Recognition, 2019.

[11] D. Xu, A. Mandlekar, R. Martı́n-Martı́n, Y. Zhu, S. Savarese, and L. Fei-Fei. Deep affor-
dance foresight: Planning through what can be done in the future. Intl. Conf. on Robotics and
Automation, 2021.

[12] Y. Xiang, C. Xie, A. Mousavian, and D. Fox. Learning rgb-d feature embeddings for unseen
object instance segmentation. In Conf. on Robot Learning, 2020.

[13] M. Forbes, R. P. Rao, L. Zettlemoyer, and M. Cakmak. Robot programming by demonstration
with situated spatial language understanding. In Intl. Conf. on Robotics and Automation, 2015.

[14] B. Rosman and S. Ramamoorthy. Learning spatial relationships between objects. Intl. Journal
of Robotics Research, 2011.

[15] M. Clement, C. Kurtz, and L. Wendling. Learning spatial relations and shapes for structural
object description and scene recognition. Pattern Recognition, 2018.

[16] O. Mees, A. Emek, J. Vertens, and W. Burgard. Learning object placements for relational
instructions by hallucinating scene representations. Intl. Conf. on Robotics and Automation,
2020.

9



[17] D. M. Bear, C. Fan, D. Mrowca, Y. Li, S. Alter, A. Nayebi, J. Schwartz, L. Fei-Fei, J. Wu, J. B.
Tenenbaum, et al. Learning physical graph representations from visual scenes. Neural Info.
Proc. Sys., 2020.

[18] S. Panda, A. A. Hafez, and C. Jawahar. Learning support order for manipulation in clutter. In
Intl. Conf. on Intelligent Robots and Systems, 2013.

[19] H. Zhang, X. Lan, S. Bai, L. Wan, C. Yang, and N. Zheng. A Multi-task Convolutional Neu-
ral Network for Autonomous Robotic Grasping in Object Stacking Scenes. In Intl. Conf. on
Intelligent Robots and Systems, 2019.

[20] R. Paul, J. Arkin, N. Roy, and T. M Howard. Efficient grounding of abstract spatial concepts for
natural language interaction with robot manipulators. In Robotics: Science & Systems, 2016.

[21] S. G. Venkatesh, A. Biswas, R. Upadrashta, V. Srinivasan, P. Talukdar, and B. Amrutur. Spatial
reasoning from natural language instructions for robot manipulation. In Intl. Conf. on Robotics
and Automation, 2021.

[22] M. Sharma and O. Kroemer. Relational learning for skill preconditions. Conf. on Robot
Learning, 2020.

[23] M. Wilson and T. Hermans. Learning to Manipulate Object Collections Using Grounded State
Representations. In Conf. on Robot Learning, 2019.

[24] Y. Jiang, M. Lim, C. Zheng, and A. Saxena. Learning to place new objects in a scene. Intl.
Journal of Robotics Research, 2012.

[25] J. Baumgartl, T. Werner, P. Kaminsky, and D. Henrich. A fast, gpu-based geometrical place-
ment planner for unknown sensor-modelled objects and placement areas. In Intl. Conf. on
Robotics and Automation, 2014.

[26] F. Furrer, M. Wermelinger, H. Yoshida, F. Gramazio, M. Kohler, R. Siegwart, and M. Hutter.
Autonomous robotic stone stacking with online next best object target pose planning. In Intl.
Conf. on Robotics and Automation, 2017.

[27] R. Newbury, K. He, A. Cosgun, and T. Drummond. Learning to place objects onto flat surfaces
in upright orientations. IEEE Robotics and Automation Letters, 2021.

[28] Q. Lu, M. Van der Merwe, B. Sundaralingam, and T. Hermans. Multi-fingered grasp planning
via inference in deep neural networks. IEEE Robotics & Automation Magazine, 2020.

[29] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox. Contact-GraspNet: Efficient 6-DoF
Grasp Generation in Cluttered Scenes. In Intl. Conf. on Robotics and Automation, 2021.

[30] M. Kobilarov. Cross-entropy motion planning. Intl. Journal of Robotics Research, 31(7), 2012.

[31] C. Paxton, F. Jonathan, M. Kobilarov, and G. D. Hager. Do what i want, not what i did:
Imitation of skills by planning sequences of actions. In Intl. Conf. on Intelligent Robots and
Systems, 2016.

[32] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Neural Info. Proc. Sys., 2017.

[33] C. M. Bishop. Mixture density networks. Tech Report, Aston University, 1994.

[34] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-Rich 3D Model Reposi-
tory. arXiv:1512.03012, 2015.

[35] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar. The ycb object
and model set: Towards common benchmarks for manipulation research. In Intl. Conf. on
Advanced Robotics, 2015.

[36] C. Eppner, A. Mousavian, and D. Fox. A billion ways to grasp: An evaluation of grasp sampling
schemes on a dense, physics-based grasp data set. arXiv:1912.05604, 2019.

[37] J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach to single-query path plan-
ning. In Intl. Conf. on Robotics and Automation, 2000.

10


	Introduction & Motivation
	Methods
	Rearrangement Planner Models and Training
	Manipulation Planning with Relationship Models
	Dataset Creation

	Experiments
	Scene Discriminator Performance
	Predicate Performance
	Real World Experiments

	Conclusions and Future Work

