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ABSTRACT

In some medical imaging tasks and other settings where only small parts of the
image are informative for the classification task, traditional CNNs can sometimes
struggle to generalise. Manually annotated Regions of Interest (ROI) are some-
times used to isolate the most informative parts of the image. However, these are
expensive to collect and may vary significantly across annotators. To overcome
these issues, we propose a method to generate ROIs via saliency maps, obtained
from adversarially generated counterfactual images. With this method, we are able
to isolate the area of interest in brain and lung CT scans without using any manual
annotations. Our saliency maps, in the task of localising the lesion location out of 6
possible regions, obtain a score of 65.05% on brain CT scans, improving the score
of 61.29% obtained with the best competing method. We then employ the saliency
maps in a framework that refines a classifier pipeline; in particular, the saliency
maps are used to obtain soft spatial attention masks that modulate the image fea-
tures at different scales. We refer to our method as Adversarial Counterfactual
Attention (ACAT). ACAT increases the baseline classification accuracy of lesions
in brain CT scans from 71.39% to 72.55% and of COVID-19 related findings in
lung CT scans from 67.71% to 70.84% and exceeds the performance of competing
methods.

1 INTRODUCTION

In computer vision classification problems, it is often assumed that an object that represents a class
occupies a large part of an image. However, in other image domains, such as medical imaging
or histopathology, only a small fraction of the image contains information that is relevant for the
classification task (Kimeswenger et al., 2019). With object-centric images, using wider contextual
information (e.g. planes fly in the sky) and global features can aid the classification decision. In
medical images, variations in parts of the image away from the local pathology are often normal,
and using any apparent signal from such regions is usually spurious and unhelpful in building robust
classifiers. Convolutional Neural Networks (CNNs) (Krizhevsky et al., 2012; He et al., 2016; Szegedy
et al., 2017; Huang et al., 2017a) can struggle to generalise well in such settings, especially when
training cannot be performed on a very large amount of data (Pawlowski et al., 2019). This is at least
partly because the convolutional structure necessitates some additional ‘noisy’ statistical response to
filters away from the informative ‘signal’ regions. Because the ‘signal’ response region is small, and
the noise region is potentially large, this can result in low signal to noise in convolutional networks,
impacting performance.

To help localisation of the most informative parts of the image in medical imaging applications,
Region Of Interest (ROI) annotations are often collected (Cheng et al., 2011; Papanastasopoulos
et al., 2020). However, these annotations require expert knowledge, are expensive to collect, and
opinions on ROI of a particular case may vary significantly across annotators (Grünberg et al., 2017).
Alternatively, attention systems could be applied to locate the critical regions and aid classification.
Previous work has explored the application of attention mechanisms over image features, either
aiming to capture the spatial relationship between features (Bell et al., 2016; Newell et al., 2016;
Santoro et al., 2017), the channel relationship (Hu et al., 2018) or both (Woo et al., 2018; Wang
et al., 2017). Other authors employed self-attention to model non-local properties of images (Wang
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Figure 1: Architecture of the framework proposed for 3D volumes. The slices of each volume are
first processed separately and then combined by applying an attention module over the slices. For
each volume we also consider as input the corresponding saliency map. From the saliency branch, we
obtain soft spatial attention masks that are used to modulate the image features. The salient attention
modules capture information at different scales of the network and are combined through an attention
fusion layer to better inform the final classification.

et al., 2018; Zhang et al., 2019). However, in our experiments, attention methods applied on the
image features failed to improve the baseline accuracy in brain and lung CT scans classification.
Other authors employed saliency maps to promote the isolation of the most informative regions
during training of a classification network. They sometimes employed target ground-truth maps
to generate these saliency maps (Murabito et al., 2018). Moreover, by fusing salient information
with the image branch at a single point of the network (Murabito et al., 2018; Flores et al., 2019;
Figueroa-Flores et al., 2020), these approaches may miss important data. Indeed, when the signal is
low, key information could be captured by local features at a particular stage of the network, but not
by features at a different scale.

We propose to use counterfactual images, acquired with a technique similar to adversarial attacks
(Huang et al., 2017b), as a means to acquire saliency maps which highlight useful information about
a particular patient’s case. In general, counterfactual examples display the change that has to be
applied to the input image for the decision of a black-box model to change. Our method achieves
good isolation of the area of interest, without requiring any annotation masks. In particular, for
generating counterfactual examples, we employ an autoencoder and a trained classifier to find the
minimal movement in latent space that shifts the input image towards the target class, according
to the output of the classifier. These saliency maps can also be used in a classification pipeline,
as shown in Figure 1, to obtain soft spatial attention masks that modulate the image features. To
capture information at different scales, the attention masks are computed from the saliency features at
different stages of the network and also combined through an attention fusion layer in order to better
inform the final decision of the network.

The main contributions of this paper are the following: 1) we introduce a method to generate
counterfactual examples, from which we obtain saliency maps that outperform competing methods in
isolating small areas of interest in large images, achieving a score of 65.05% in the task of localising
the lesion location out of 6 possible regions on brain CT scans (vs. 61.29% obtained with the best
competing method), 2) we propose ACAT, a framework that employs these saliency maps as attention
mechanisms at different scales and show that it improves the baseline classification accuracy in two
medical imaging tasks (from 71.39% to 72.55% on brain CT scans and from 67.71% to 70.84% in
lung CT scans), 3) we show how ACAT can also be used to evaluate saliency generation methods.
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2 RELATED WORK

While a complete overview of the methods used to generate saliency maps, counterfactual examples
and adversarial attacks is out of the scope of this work, we briefly summarise some of the approaches
most commonly used in medical imaging.

Saliency maps Saliency maps are a tool often employed by researchers for post-hoc interpretability
of neural networks. They help to interpret CNN predictions by highlighting pixels that are important
for model predictions. Simonyan et al. (2013) compute the gradient of the score of the class of interest
with respect to the input image. The Guided Backpropagation method (Springenberg et al., 2014) only
backpropagates positive gradients, while the Integrated Gradient method (Sundararajan et al., 2017)
integrates gradients between the input image and a baseline black image. In SmoothGrad (Smilkov
et al., 2017), the authors propose to smooth the gradients through a Gaussian kernel. Grad-CAM
(Selvaraju et al., 2017) builds on the Class Activation Mapping (CAM) (Zhou et al., 2016) approach
and uses the gradients of the score of a certain class with respect to the feature activations of the last
convolutional layer to calculate the importance of the spatial locations.

Counterfactuals for visual explanation Methods that generate saliency maps using the gradients of
the predictions of a neural network have some limitations. Some of these methods have been shown to
be independent of the model parameters and the training data (Adebayo et al., 2018; Arun et al., 2021)
and not reliable in detecting the key regions in medical imaging (Eitel et al., 2019; Arun et al., 2021).
For this reason, alternative methods based on the generation of counterfactuals for visual explanation
have been developed. They are usually based on a mapping that is learned between images of multiple
classes to highlight the areas more relevant for the class of each image. The map is modeled as a CNN
and is trained using a Wasserstein GAN (Baumgartner et al., 2018) or a Conditional GAN (Singla
et al., 2021). Most close to our proposed approach to generate counterfactuals, is the latent shift
method by Cohen et al. (2021). An autoencoder and classifier are trained separately to reconstruct
and classify images respectively. Then, the input images are perturbed to create λ-shifted versions
of the original image that increase or decrease the probability of a class of interest according to the
output of the classifier.

Saliency maps to improve classification and object detection Previous work has tried to incorporate
saliency maps to improve classification or object detection performance in neural networks. Ren
et al. (2013) used saliency maps to weigh features. Murabito et al. (2018) introduced SalClassNet, a
framework consisting of two CNNs jointly trained to compute saliency maps from input images and
using the learned saliency maps together with the RGB images for classification tasks. In particular,
the saliency map generated by the first CNN is concatenated with the input image across the channel
dimension and fed to the second network that is trained on a classification task. Flores et al. (2019)
proposed to use a network with two branches: one to process the input image and the other to process
the corresponding saliency map, which is pre-computed and given as input. The two branches are
fused through a modulation layer which performs an element-wise product between saliency and
image features. They observe that the gradients which are back-propagated are concentrated on
the regions which have high attention. In (Figueroa-Flores et al., 2020) the authors use the same
modulation layer, but replace the saliency branch that was trained with pre-computed saliency images
with a branch that is used to learn the saliency maps, given the RGB image as input.

Adversarial examples and adversarial training Machine learning models have been shown to be
vulnerable to adversarial examples (Papernot et al., 2016). These are created by adding perturbations
to the inputs to fool a learned classifier. They resemble the original data but are misclassified by the
classifier (Szegedy et al., 2013; Goodfellow et al., 2014). Approaches proposed for the generation of
adversarial examples include gradient methods (Kurakin et al., 2018; Moosavi-Dezfooli et al., 2016)
and generative methods (Zhao et al., 2017). In Qi et al. (2021), the authors propose an adversarial
attack method to produce adversarial perturbations on medical images employing a loss deviation
term and a loss stabilization term. In general, adversarial examples and counterfactual explanations
can be created with similar methods. Adversarial training, in which each minibatch of training data is
augmented with adversarial examples, promotes adversarial robustness in classifiers (Madry et al.,
2017). Tsipras et al. (2018) observe that gradients for adversarially trained networks are well aligned
with perceptually relevant features. However, adversarial training usually also decreases the accuracy
of the classifier (Raghunathan et al., 2019; Etmann et al., 2019).
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3 METHODS

We wish to automatically generate and make use of RoI information in the absence of hand-labelled
annotations. The approach we take can be considered similar to adversarial training, in the sense
that we obtain saliency maps from adversarially generated counterfactual images and use them to
train a classifier. However, given f classification network and xi input image, directly modifying the
image using ∂f(xi)

∂xi , as in common adversarial attack approaches, would distort the image through
imperceptible modifications that fool the network. Instead, the use of an autoencoder keeps the image
on the data manifold and leads to pixel changes that are semantically meaningful. Moreover, we are
able to employ these adversarially generated saliency maps in a framework that improves, rather than
reduces, the classification accuracy.

3.1 GENERATION OF COUNTERFACTUAL EXAMPLES

In order to detect regions of interest in medical images, we generate counterfactual examples for each
datum and use the difference with the original image to generate a saliency map highlighting important
information. In particular, given a dataset D = (xi; i = 1, 2, . . . , ND) of size ND consisting of
input images xi, along with corresponding class labels T = (yi; i = 1, 2, . . . , ND), counterfactual
explanations describe the change that has to be applied to an input for the decision of a black-box
model to flip. Let f be a neural network that outputs a probability distribution over classes, and let ŷi
be the class designated maximum probability by f . A counterfactual explanation displays how xi

should be modified in order to be classified by the network as belonging to a different class of interest
ȳi (counterfactual class). In order to generate saliency maps, we can consider the difference between
the original image and the counterfactual image of the opposite class. For example, to compute the
saliency map of a brain scan with a stroke lesion, we could generate a counterfactual example that
is classified by f as not having a stroke lesion. In this way, we are able to visualise the pixels with
the biggest variation between the two samples, which are the most important for the classification
outcome. However, when using saliency maps to improve the classification capability of our network,
at test time we don’t have access to class labels. For this reason, to compute saliency maps in a
class-agnostic way, we consider the counterfactual examples of both classes (positive and negative)
and then compute the absolute difference between the original image and each counterfactual image
to get two attribution maps. These are then normalised in [0, 1] and averaged to obtain the final
saliency map that can be used in the classification pipeline.

As discussed, gradient-based counterfactual changes to image pixels can just produce adversarial
attacks. We alleviate this by targeting gradients of a latent autoencoder. Therefore, in addition to the
network f , trained to classify images in D, we exploit an autoencoder, trained to reconstruct the same
inputs. xj ∈ D can be mapped to latent space through the encoder E: E(xj) = zj . This can then be
mapped back to image space via decoder D: x′j = D(zj). Suppose without loss of generality that
the counterfactual example we are interested in belongs to a single target class. The neural network
can be applied to this decoder space, we denote the output of f(D(zj)) as a normalised probability
vector d(zj) = (d1(z

j), . . . , dk(z
j)) ∈ RK , where K is the number of classes. Suppose that f(xj)

outputs maximum probability for class l and we want to shift the prediction of f towards a desired
class m, with l,m ∈ N : l,m ∈ [1,K]. To do so, we can take gradient steps in the latent space
of the autoencoder from initial position zj to shift the class distribution towards the desired target
vector t = (t1, . . . , tk) ∈ RK , where ti = 1i=m, for i = 1, . . . ,K . In order to do so, we would like
to minimise the cross-entropy loss between the output of our model, given D(zj) as input, and the
target vector. I.e. we target

L(d(zj), t) = −
K∑

k=1

tk log(dk(z
j)). (1)

Moreover, we aim to keep the counterfactual image as close as possible to the original image in
latent space, so that the transformation only captures changes that are relevant for the class shift.
Otherwise, simply optimising Eq. (1) could lead to substantial changes in the image that compromise
its individual characteristics. Therefore, we also include, as part of the objective, the L1 norm
between the latent spaces of the original image xj and the counterfactual image: ||z − E(xj)||L1 .
Putting things together, we wish to find the minimum of the function:

g(z) = L(d(z), t) + α||z − E(xj)||L1 (2)

4



Under review as a conference paper at ICLR 2023

where α is a hyperparameter that was set to 100 in our experiments. We can minimise this function by
running gradient descent for a fixed number of steps (20 in our experiments). Then, for the minimizer
of Eq. (2), denoted by z′, the counterfactual example is given by D(z′).

By defining an optimisation procedure over the latent space that progressively optimises the target
classification probability of the reconstructed image, we are able to explain the predictions of
the classifier and obtain adequate counterfactuals. A bound on the distance between original and
counterfactual images in latent space is also important to keep the generated samples within the data
manifold.

3.1.1 DIFFERENCE FROM THE LATENT SHIFT METHOD

Following the same notation as before, given an input image xk, with latent space zk = E(xk), Cohen
et al. (2021) propose a method to generate counterfactuals by creating perturbations of the latent
space in the following way: zkλ = zk + λ∂f(D(zk))

∂zk , where λ is a sample-specific hyperparameter
that needs to be found by grid search. These representations can be used to create λ-shifted versions
of the original image: xk

λ = D
(
zkλ

)
. For positive values of λ, the new image xk

λ will produce a
higher prediction, while for negative values of λ, it will produce a lower prediction. Depending
on the landscape of the loss, the latent shift approach may be unsuitable to reach areas close to a
local minimum and fail to correctly generate counterfactuals. The reason is that this method can
be interpreted as a one-step gradient-based approach, trying to minimise the loss of f(D(zk)) with
respect to the target probability for the class of interest, with one single step of size λ in latent space.
To solve this issue, we propose an optimisation procedure employing small progressive shifts in
latent space, rather than a single step of size λ from the input image. In this way, the probability of
the class of interest converges smoothly to the target value. We show examples of the failure modes
of the latent shift method, where the probability of the class of interest does not converge to the
target value, that are fixed by our progressive optimisation in Appendix E. Another issue of the latent
shift method is that it doesn’t introduce a bound on the distance between original and counterfactual
images. Therefore, the generated samples are not always kept on the data manifold and may differ
considerably from the original image. To solve this issue, we add a regularisation term that, limiting
the move in latent space, ensures that the changes that we observe can be attributed to the class shift
and the image doesn’t lose important characteristics.

3.2 SALIENCY BASED ATTENTION

Once we obtain a counterfactual example with our method, we then use it to obtain a saliency
map, which we can inject into a classification network to learn better local features and improve
the classification accuracy. We do so through a saliency branch, which has attention modules that
learn how to handle the salient information coming into the system and use it to obtain soft spatial
attention masks that modulate the image features. In particular, with reference to Figure 1, we
consider a network with two branches, one for the original input images and the other for the
corresponding saliency maps, which are pre-computed and fixed during training of the network.
Given Si ∈ RC×H×W features of the saliency branch at layer i, we first pool the features over
the channel dimension to obtain Si

p ∈ R1×H×W . Both average or max-pooling can be applied.
However, in preliminary experiments we found max-pooling to obtain a slightly better performance.
A convolution with 3 × 3 filters is applied on Si

p, followed by a sigmoid activation, to obtain soft
spatial attention masks based on salient features Si

s ∈ R1×H×W . Finally, the features of the image
branch at layer i: F i ∈ RC×H×W are softly modulated by Si

s in the following way:

F i
o = F i ⊙ Si

s (3)

where ⊙ is the Hadamard product, in which the spatial attention values are broadcasted along the
channel dimension, and F i

o are the modulated features for the i − th layer of the image branch.
We also introduce skip connections between F i and F i

o to prevent gradient degradation and distill
information from the attention features, while also giving the network the ability to bypass spurious
signal coming from the attention mask.Therefore, the output of the image branch at layer i, is given
by: Gi = F i + F i

o

5



Under review as a conference paper at ICLR 2023

(a) Attention mask Se
s (b) Attention mask Sm

s (c) Attention mask Sl
s

Figure 2: Spatial attention masks obtained after early (a), middle (b) and late (c) convolutional layers
that focus on different parts of the image. They are weighted by the attention fusion layer depending
on their importance for the classification outcome.

The attention mask not only modulates the image features during a forward pass of the network, but
can also cancel noisy signal coming from the image features during backpropagation. Indeed, if we
compute the gradient of Gi with respect to the image parameters θ, we obtain:

∂Gi(θ; η)

∂θ
=

∂[F i(θ) + F i(θ)⊙ Si
s(η)]

∂θ
=

∂F i(θ)

∂θ
Si
s(η) (4)

where η are the saliency parameters.

3.2.1 FUSION OF ATTENTION MASKS

Previous work attempting to exploit saliency maps in classification tasks, has fused salient information
with the image branch at a single point of the network, either directly concatenting attribution maps
with the input images (Murabito et al., 2018) or after a few layers of pre-processing (Flores et al.,
2019; Figueroa-Flores et al., 2020). On the other hand, we position our salient attention modules at
different stages of the network, in order to capture information at different scales. This is particularly
important in low signal-to-noise tasks, where the key information could be captured by local features
at a particular stage of the network, but not by features at a different scale. For this reason, we
use three attention modules, after early, middle and late layers of the network. Given Se

s , Sm
s and

Sl
s the corresponding spatial attention masks, we also reduce their height and width to H ′ and W ′

through average pooling, obtaining Se
s,p, Sm

s,p and Sl
s,p respectively. Then, we concatenate them

along the channel dimension, obtaining Ss,p ∈ R3×H′×W ′
. An attention fusion layer Lf takes Ss,p

as input and generates a fused spatial mask Sf ∈ R1×H′×W ′
by weighting the three attention masks

depending on their relative importance. This final attention mask is applied before the fully-connected
classification layers, so that if critical information was captured in early layers of the network, it can
better inform the final decision of the network. In practice, Lf is implemented as a 1× 1 convolution.

4 EXPERIMENTS

4.1 DATA

We performed our experiments on two datasets: IST-3 (Sandercock et al., 2011) and MosMed
(Morozov et al., 2020). Both datasets were divided into training, validation and test sets with a
70-15-15 split and three runs with different random seeds were performed. More details about the
data are provided in Appendix A.

4.2 EXPERIMENTAL SETUP

The baseline model for the classification of stroke lesions in CT scans of the brain employs the
same base multi-task learning (MTL) architecture of Anonymous Author (s), while for classification
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of lung CT scans, we employed a ResNet-50 architecture (with 4 convolutional blocks). Further
details about the architectures are provided in Appendix B. In our framework, the attention branches
follow the same architecture of the baseline architectures (removing the classification layers). In the
MTL model, the attention layers are added after the first, third and fifth convolutional layer. For the
ResNet architecture, attention modules are added after each one of the first three convolutional blocks.
The attention fusion layer is always placed after the last convolutional layer of each architecture.
Moreover, instead of averaging the slices of each scan, in our framework we consider an attention
mask over slices. This is obtained from image features by considering an MLP with one hidden layer.
The hidden layer is followed by a leaky ReLU activation and dropout with p = 0.1. After the output
layer of the MLP, we apply a sigmoid function to get the attention mask. Further training details are
provided in Appendix C.

4.3 EVALUATION OF SALIENCY MAPS

(a) Image (b) Ours (c) Latent shift (d) Gradient (e) Grad-CAM

Figure 3: (a) Ischaemic stroke lesion appears darker than normal brain. Sample saliency maps
averaged over slices obtained with our approach (b), the latent shift method (c), the Gradient method
(d) and Grad-Cam (e).

We evaluate quantitatively how the saliency maps generated with our approach described in Sec-
tion 3.1, the latent shift method (Cohen et al., 2021), the gradient method (Simonyan et al., 2013)
and Grad-CAM (Selvaraju et al., 2017) are able to detect the areas related to the stroke lesion. The
maps were created employing the baseline model and positive scans which were not used during
training. In particular, we generated negative counterfactuals with our approach and the latent shift
method and computed the difference between the original image and the generated images to obtain
the saliency maps. Grad-CAM is applied using the last convolutional layer of the network. The lesion
location, which is used for evaluation, but is not known to the network, is one of the 6 classes: MCA
left, MCA right, ACA left, ACA right, PCA left, PCA right. The attribution maps are evaluated as
in Zhang et al. (2018), with the formula: S = Hits

Hits+Misses . A hit is counted if the pixel with the
greatest value in each CT scan lies in the correct region, a miss is counted otherwise. The saliency
maps generated with our approach obtain the highest average score of 65.05% (with 2.03 standard
error), improving the scores of 58.39% (2.00) and 61.29% (2.06) obtained with the latent shift and
the gradient methods respectively. Grad-CAM has the worst score, with 11.67% (1.28). Sample
saliency maps are showed in Figure 3 with a red color map. The red arrows indicate the lesion regions,
which appear as a ‘shaded’ area in the scans.

Furthermore, ACAT improves the lesion detection capabilities of saliency maps further. Indeed,
if we re-compute the saliency maps with our approach and using ACAT as classifier to generate
the counterfactuals, we obtain a score of 68.55% (1.94), without using the class labels. In fact, the
saliency maps are generated by averaging the absolute differences between the original image and
the counterfactual examples of both classes (positive and negative).
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4.4 CLASSIFICATION RESULTS

(a) Image with mask (b) Ours (c) Latent shift (d) Gradient (e) Grad-CAM

Figure 4: Input image with masks depicting regions of interests (a) and saliency maps averaged
over slices obtained with our approach (b), the latent shift method(c), the Gradient method (d) and
Grad-Cam (e)

We compare the proposed framework with competing methods incorporating saliency maps into the
classification pipeline, methods employing attention from the input images and the baseline model
trained without saliency maps on the classification of brain and lung CT scans. In the former case, the
possible classes are: no lesion, lesion in the left half of the brain, lesion in the right half of the brain or
lesion in both sides. In the latter case, we perform binary classification between scans with or without
COVID-19 related findings. In methods where saliency maps are needed, for a fair comparison of
the different frameworks, we always compute them with our approach. We compare our method
with saliency-modulated image classification (SMIC) (Flores et al., 2019), SalClassNet (Murabito
et al., 2018), hallucination of saliency maps (HSM) (Figueroa-Flores et al., 2020), spatial attention
from the image features (SpAtt) and self-attention (SeAtt). Implementation details are provided in
Appendix D.

As we can observe in Table 1, our approach improves the average classification accuracy of the
baseline from 71.39% to 72.55% on IST-3 and from 67.71% to 70.84% on MosMed. Our framework
is also the best performing in both cases. SMIC performs slightly worse than the baseline on IST-3
(with 70.85% accuracy) and better on MosMed (with 69.27% accuracy). HSM is close to the baseline
results on IST-3 but worse than the baseline on MosMed, while SalClassNet is worse than the baseline
on both tasks. The methods incorporating attention from the image features have also similar or
worse performance than the baseline, highlighting how the use of attention from the saliency maps is
key for the method to work. While it is easier to detect large stroke lesions, these can also be detected
easily by humans. For this reason, we aim to test the capabilities of these models to flag scans with
very subtle lesions. In order to do so, we evaluate their classification accuracy by infarct size (IS). As

Table 1: Average test accuracy (and standard error) over 3 runs on the classification of brain (IST-3)
and lung (MosMed) CT scans. Our framework, ACAT, outperforms competing methods that employ
saliency maps to aid classification. Methods using attention from the image features have performance
similar or worse than the baseline

IST-3 MosMed
Baseline 71.39% (0.23) 67.71% (3.48)
SMIC 70.85% (0.63) 69.27% (1.13)

SalClassNet 69.43% (1.81) 62.50% (2.66)
HSM 71.38% (0.94) 65.63% (1.28)
SpAtt 70.96% (0.10) 66.67% (2.98)
SeAtt 71.23% (0.10) 67.71% (1.70)

ACAT (Ours) 72.55% (0.82) 70.84% (1.53)
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Table 2: Test accuracy by infarct size. Our framework, ACAT, improves the performance of competing
methods in the detection of scans with no infarct lesion, small and medium lesions (size 1-2)

No Lesion IS-1 IS-2 IS-3 IS-4
Baseline 81.41% 23.66% 54.16% 72.09% 87.74%
SMIC 79.24% 25.55% 54.82% 65.71% 88.36%

SalClassNet 76.71% 29.24% 54.48% 64.95% 82.71%
HSM 80.37% 27.28% 53.86% 71.60% 89.10%
SpAtt 82.56% 21.33% 51.58% 67.86% 86.77%
SeAtt 83.49% 27.03% 52.05% 65.54% 84.42%

ACAT (Ours) 84.30% 30.23% 55.02% 68.67% 84.93%

we can observe in Table 2 our approach obtains the best classification performance on the scans with
no infarct lesion, as well as small and medium lesions (size 1-2). This confirms how our saliency
based attention mechanism promotes the learning of local features that better detect subtle areas of
interest.

4.5 ABLATION STUDIES

We compare the performance of ACAT when saliency maps obtained with different approaches are
employed. When using saliency maps obtained with our approach we obtain the highest accuracy
of 72.55% (0.72). The relative ranking of the saliency generation approaches is the same that
was obtained with the evaluation of saliency maps with the score presented in Section 4.3, with
the gradient method obtaining 72.16% (0.88) accuracy, the latent shift method 72.04% (1.07) and
Grad-CAM 69.42% (1.19).

4.6 ACAT IS NOT RANDOM REGULARISATION

We employed dropout to test if the improvements obtained with ACAT are only due to regularization
effects that can be replicated by dropping random parts of the image features. In particular, we
employed dropout with different values of p on the image features at the same layers where the
attention masks are applied in ACAT. The accuracy obtained was lower than in the baseline models.
In particular, we obtained 68.71%, 68.36% average accuracy on IST-3 for p = 0.2, 0.6 respectively
(vs 71.39% of the baseline) and 53.13%, 58.86% accuracy on MosMed for the same values of p
(vs 67.71% of the baseline). The results suggests that spatial attention masks obtained from salient
features in ACAT are informative and the results obtained with ACAT cannot be replicated by random
dropping of features.

5 CONCLUSION

In this work, we proposed a way to generate saliency maps from adversarially generated counterfactual
images that capture small areas of interest in low signal-to-noise samples. We employed these
attention maps to improve classification accuracy in two medical imaging tasks (IST-3 and MosMed)
by obtaining soft attention masks from salient features at different scales. These attention masks
modulate the image features and can cancel noisy signal coming from the image features. They are
also weighted by an attention fusion layer in order to better inform the classification outcome. Next,
we showed how our framework could also be used to rank saliency maps. A possible limitation
of our approach is that a baseline model is needed to compute the attribution masks that are later
employed during the training of our framework. However, we believe that this approach could still fit
in a normal research pipeline, as simple models are often implemented as a starting point and for
comparison with newly designed approaches. While our approach has been tested only on brain and
lung CT scans, we believe that it can generalise to many other medical imaging tasks and we leave
further testing for future work.

9
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6 ETHICS STATEMENT

Several countries are experiencing a lack of radiologists (Dall, 2018) compared to the amount of
patients that need care. This can lead to several undesirable consequences, such as delays in diagnosis
and subsequent treatment. Machine learning tools that automate some clinically relevant tasks and
provide assistance to doctors, can lower the workload of physicians and improve the standard of care.
However, many of these are black-box models and require ROI masks, which have to be annotated by
specialists, to be trained. On the other hand, our framework can be trained without ROI annotations,
while still being able to localise the most informative parts of the images. Moreover, the creation of
saliency maps is an integral part of our pipeline. By explaning the inner workings of a neural network,
saliency maps can increase trust in the model’s predictions and support the decisions of clinicians.

7 REPRODUCIBILITY STATEMENT

Code to reproduce the experiments will be shared with the reviewers and area chairs during the
discussion phase. Training details, such as hyperparameters chosen and data splits are included in
Appendix C, together with information related to the computing resources. The architectures of the
models employed are presented in Appendix B and additional details about the experimental setup
are provided in Section 4.2. Information about the datasets used in the experiments can be found in
Appendix A.
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A DATA

IST-3 or the Third International Stroke Trial is a randomised-controlled trial that collected brain
imaging (predominantly CT scans) from 3035 patients with stroke symptoms at two time points,
immediately after hospital presentation and 24-48 hours later. Among other things, radiologists
registered the presence or absence of early ischemic signs. For positive scans, they also coded the
lesion location. In our experiments, we only employed the labels for the following classes: no lesion,
lesion in the left side, lesion in the right side, lesion in both sides of the brain. 46.31% of the scans
we considered are negative and the remaining are positive. In particular, 28.80% have left lesion,
24.03% right lesion and 0.86% lesion in both sides of the brain. The information related to the more
specific location of the lesion was only employed to test the score of the saliency maps presented
in Section 3.1 and never used at training time. Further information about the trial protocol, data
collection and the data use agreement can be found at the following url: IST-3 information.

MosMed contains anonymised lung CT scans showing signs of viral pneumonia or without such
findings, collected from 1110 patients. In particular, 40.4% of the images we conisdered are positive
and 59.6% are negative. In a small subset of the scans, experts from the Research and Practical Clinical
Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department have
annotated the regions of interest with a binary mask. However, in our experiments we didn’t employ
these masks. Further information about the dataset can be found in Morozov et al. (2020).

B ARCHITECTURES

The MTL model classifies whether a brain scan has a lesion (is positive) or not. If the scan is positive,
it also predicts the side of the lesion (left, right or both). In order to do so, a MTL CNN with 7
convolutional layers and two classification heads is employed. In the first stage, the CNN considers
only half scans (left or right) and processes one slice of each scan at a time. Then, the extracted
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features from each side are concatenated and averaged across the slices of each scan, before reaching
the two classification heads. The classification accuracy is computed considering whether the final
classification output identifies the correct class out of the four possible or not. In the ResNet-50
architecture used for the classification of lung CT scans, we still process one slice at a time and
average the slices before the classification layer. In particular, we performed a binary classification
task between scans with with moderate to severe COVID-19 related findings (CT-2, CT-3, CT-4)
and scans without such findings (CT-0). The autoencoder used to reconstruct images has 3 ResNet
convolutional blocks both in the encoder and in the decoder parts, with 3× 3 filters and no bottleneck.

C TRAINING DETAILS

The baseline models were trained for 200 epochs and then employed, together with an autoencoder
trained to reconstruct the images, to obtain the saliency maps that are needed for our framework. Our
framework and the competing methods were fine-tuned for 100 epochs, starting from the weights of
the baseline models. The training procedure of ACAT is summarised in Algorithm 1.

Algorithm 1: ACAT training

Data: D = (xi; i = 1, 2, . . . , ND)
1 Train baseline classification network f and autoencoder D(E) on D
2 Given E(xj) = zj , minimise: g(z) = L(d(z), t) + α||z − E(xj)||L1

3 Decode the obtained latent vector to compute the counterfactual D(z′)

4 Obtain saliency maps Sj from positive and negative counterfactuals
5 Train ACAT on D using xj and Sj as input

In the case of IST-3 data, we uniformly sampled 11 slices from each scan and resized each slice to
400 × 500, while for MosMed data we sampled 11 slices per scan and then resized each slice to
128 × 128. All the networks were trained using 8 NVIDIA GeForce RTX 2080 GPUs. For each
model, we performed three runs with different dataset splits, in order to report average accuracy and
standard error.

D COMPETING METHODS FOR SALIENCY-AIDED CLASSIFICATION

In the saliency-modulated image classification (SMIC) (Flores et al., 2019), the branch that is used to
pre-process the saliency maps has two convolutional layers. For the other implementation details, we
follow Flores et al. (2019). For SalClassNet (Murabito et al., 2018), we tried to follow the original
implementation by using the saliency maps generated with our approach as targets for the saliency
branch, since we don’t have the ground-truth saliency maps available, but this led to poor results. For
this reason, rather than generating the saliency maps with the saliency branch, we compute them
with our approach. Then, as in Murabito et al. (2018) we concatenate them with the input images
along the channel dimension. For the hallucination of saliency maps (HSM) approach, following
Figueroa-Flores et al. (2020), the saliency detector has four convolutional layers. In SpAtt we
consider a network with only one branch and compute the soft spatial attention masks directly from
the image features, at the same stage of the network where saliency attention masks are computed in
our framework. SeAtt employes self-attention modules from Zhang et al. (2019), which are placed
after the third and fifth convolutional layer in the MTL architecture and after the third and fourth
convolutional block in the ResNet-50.

E FAILURE MODES OF COMPETING METHODS FOR THE GENERATION OF
COUNTERFACTUALS

We observed that in several cases, when generating counterfactual examples, the latent shift method is
not able to achieve low values for the probability of the class of interest p. We show here two examples
of positive brain scans, for which we attempt to generate counterfactuals with low probability of
lesion according to the classifer f , starting from a probability close to 1 . We apply one-step gradient
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(a) (b)

(c)

Latent shift

(d)

Ours

Figure 5: Probability of lesion obtained with one step-gradient updates in the latent space (Cohen
et al., 2021) for different values of the step size λ for two samples ((a) and (c)) and with gradient
descent minimising Eq. (2) ((b) and (d))

(a) h = −10 (b) h = −3 (c) h = −1 (d) h = −0.1 (e) h = −0.01

Figure 6: In the top panel are shown the probability of lesion obtained with progressive gradient
updates in the latent space, with the step size value fixed to -10 (a), -3 (b), -1 (c), -0.1 (d), -0.01 (e)
and no bound on the latent move. In the bottom panel are displayed the counterfactual examples
obtained at the gradient step where p is minimal

updates as in Cohen et al. (2021), starting with the step size value λ = 1e − 5 and multiplying λ
by two at each successive attempt. In Figure 6(a) and (c), we show the probability of lesion as a
function of λ for these two samples. We can observe that the minimum value obtained for p is 0.51
for the first sample and 0.46 for the second one. On the other hand, by following our approach and
minimising Eq. (2) by gradient descent, with target class ‘no lesion’, p reaches a value lower than 0.2
with 20 gradient updates in both cases and then converges to 0 (Figure 5(b) and (d)). In these runs
we employed a step size of 1. However, different step sizes yield similar results for the probability
functions.

For the first sample, we also test a method where we perform small progressive updates of size h
in latent space, but without a bound on the distance between original and counterfactual images. P
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(a) Image (b) Counterfactual (c) Regions of change

Figure 7: Counterfactual example with p = 0.08 generated with our approach (b) and regions of
change (c), with respect to the original image (a), highlighted with a red color map. The regions of
change have a good overlap with the area of the lesion indicated with the red arrow in (a).

of the resulting images is shown in Figure 6 for values of h in {−10,−3,−1,−0.1,−0.01}. With
h = −10, h = −3 and partially with h = −1, we are able to reach low values of p , but the
probability function has an unstable behaviour and later starts increasing, rather then converging to
0. With the other values of h, we are never able to achieve low values of p. The graphs are shown
in the top panel of Figure 6. The counterfactual images obtained at the gradient update steps where
p is minimal in these optimisation runs, are showed in the bottom panel of the same Figure. In all
cases, the images largely differ from the original brain scan, displayed in Figure 7(a) and are not
semantically meaningful. On the other hand, with our approach we are able to obtain a credible
counterfactual, displayed in Figure 7(b) , together with its regions of change with respect to the
original image 7(c). We can observe that the regions of change largely overlap with the area of the
lesion highlighted with the red arrow in Figure 7(a), suggesting that the counterfactuals generated
with our approach are semantically meaningful.

F FURTHER EVALUATION OF SALIENCY MAPS

In Section 4.3 we observed how the saliency maps generated with Grad-CAM obtain a poor score. We
test if more recent improvements of the method can have a significant impact on the score obtained.
In particular, we considered Grad-CAM++ (Chattopadhay et al., 2018) and Score-CAM (Wang et al.,
2020). The former, in order to provide a measure of importance of each pixel in a fetaure map for the
classification decision, introduces pixel-wise weighting of the gradients of the output with respect to
a particular spatial position in the final convolutional layer. On the other hand, the latter removes the
dependence on gradients by obtaining the weights of each activation map through a forward passing
score for the target class. We observed that Grad-CAM++ very marginally improves the performance
of Grad-CAM (from 11.67% (1.28) to 11.78% (0.46)), while Score-CAM obtains the worst score
with 9.90% (0.78). Finally, we also tested the Integrated Gradient method (Sundararajan et al., 2017),
in which the gradients are integrated between the input image and a baseline image, achieving a
score of 37.52%(4.11). These methods obtain scores that are considerably lower than the ones of
adversarial approaches.

G VISUALISATION OF COUNTERFACTUAL EXAMPLES

In Figure 8, we display the counterfactual examples of the images displayed in Fig. 3, obtained with
our approach and the latent shift method. Saliency maps of the change are displayed in Figure 3.
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(a) Image (b) Ours (c) Latent shift

Figure 8: (a) Ischaemic stroke lesion appears darker than normal brain. Counterfactual examples for
the negative class obtained with our approach (b) and the latent shift method (c)

H IOU AND DICE SCORE OF SALIENCY MAPS

We compared the proposed method against competing saliency generation approaches, including
the latent shift method and progressive gradient descent updates but with no reconstruction loss or
limitation of the move in the latent space (NoRec). In particular, we considered 50 test samples in
the MosMed dataset for which annotation masks are available and evaluated the IoU score (Jaccard
Index) and the Dice coefficient (F1 score). Following Cohen et al. (2021) and Viviano et al. (2019),
we binarized the saliency maps by setting the pixels in the top p percentile to 1, where p is chosen
dynamically depending on the number of pixels in the ground truth it is being compared to. The
results are shown in Table 3. Out of the methods considered, our approach achieves both the best IoU
and Dice coefficient (0.5203 and 0.5372 respectively). NoRec slightly improves the scores obtained
with the latent shift method.

Table 3: Dice coefficient and IoU score computed on 50 test scans on MosMed to compare different
saliency generation approaches. Our approach achieved the best score in both evaluation metrics

IoU Dice
Gradient 0.5022 (0.0005) 0.5071 (0.0009)

Grad-CAM 0.4998 (0.0003) 0.5024 (0.0006)
Latent shift 0.5116 (0.0005) 0.5241 (0.001)

NoRec 0.5138 (0.0022) 0.5260 (0.0008)
Ours 0.5203 (0.001) 0.5372 (0.0012)

I ABLATION STUDIES ON ACAT ARCHITECTURE

We have performed further ablation studies to test our architecture. In the proposed approach,
attention masks are obtained from the saliency branch at three different stages of the network (early,
middle and late) and finally an attention fusion layer weighs the three masks and is applied before the
classification layers. Therefore, we progressively removed the fusion layer, the late attention mask
and the middle attention mask to test the contribution of each component. While the classification
accuracy of the full ACAT architecture on MosMed was 70.84%(1.53), by removing the attention
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fusion layer it decreased to 69.79%(2.78). Moreover, by also removing the late attention layer it
further decreased to 68.75%(1.48), reaching 68.23%(0.85) when the middle attention layer was
eliminated as well.
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