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Abstract

A fascinating aspect of nature lies in its ability to produce a large and diverse1

collection of organisms that are all high-performing in their niche. By contrast,2

most AI algorithms focus on finding a single efficient solution to a given problem.3

Aiming for diversity in addition to performance is a convenient way to deal with the4

exploration-exploitation trade-off that plays a central role in learning. It also allows5

for increased robustness when the returned collection contains several working6

solutions to the considered problem, making it well-suited for real applications such7

as robotics. Quality-Diversity (QD) methods are evolutionary algorithms designed8

for this purpose. This paper proposes a novel algorithm, QD-PG, which combines9

the strength of Policy Gradient algorithms and Quality Diversity approaches to10

produce a collection of diverse and high-performing neural policies in continuous11

control environments. The main contribution of this work is the introduction of a12

Diversity Policy Gradient (DPG) that exploits information at the time-step level to13

thrive policies towards more diversity in a sample-efficient manner. Specifically,14

QD-PG selects neural controllers from a MAP-Elites grid and uses two gradient-15

based mutation operators to improve both quality and diversity, resulting in stable16

population updates. Our results demonstrate that QD-PG generates collections of di-17

verse solutions that solve challenging exploration and control problems while being18

two orders of magnitude more sample-efficient than its evolutionary competitors.19

1 Introduction20

Natural evolution has the fascinating ability to produce diverse organisms that are all well adapted to21

their respective niche. Inspired by this ability to produce a tremendous diversity of living systems,22

Quality-Diversity (QD) is a new family of optimization algorithms that aims at searching for a23

collection of both diverse and high-performing solutions (Pugh et al., 2016; Cully & Demiris, 2017).24

While classic optimization methods focus on finding a single efficient solution, QD optimization aims25

to cover the range of possible solution types and to return the best solution for each type. This process26

is sometimes referred to as “illumination" in opposition to optimization, as it reveals (or illuminates)27

a search space of interest often called the behavior descriptor space (Mouret & Clune, 2015).28

The principal advantage of QD approaches resides in their intrinsic capacity to deliver a large and29

diverse set of working alternatives when a single solution fails (Cully et al., 2015). By producing a30

collection of solutions instead of a unique one, QD algorithms allow to obtain different ways to solve31

a single problem, leading to greater robustness, which can help to reduce the reality gap when applied32

to robotics (Koos et al., 2012). Diversity seeking is the core component that allows QD algorithms to33

generate large collections of diverse solutions. By encouraging the emergence of novel behaviors in34

the population without focusing on performance alone, diversity seeking algorithms explore regions35

of the behavior descriptor space that are unreachable for conventional algorithms (Doncieux et al.,36
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Figure 1: The agent robot is rewarded for running forward as fast as possible. Following the reward
signal without further exploration leads the agent into the trap, which corresponds to a poor local
minimum. QD-PG produces a collection of solutions that are diverse and high-performing, allowing
to find several working alternatives to solve a deceptive control problem.

2019). Another benefit of QD is its ability to solve hard exploration problems where the reward signal37

is sparse or deceptive, and on which standard optimization techniques are ineffective (Colas et al.,38

2020). This ability can be interpreted as a direct consequence of the structured search for diversity in39

the behavior descriptor space.40

Quality-Diversity algorithms build on black-box optimization methods such as evolutionary algo-41

rithms to evolve a population of solutions (Cully & Demiris, 2017). Historically, they rely on random42

mutations to explore small search spaces but struggle when facing higher-dimensional problems. As43

a result, they often scale poorly to problems where neural networks with many parameters provide44

state-of-the-art results (Colas et al., 2020).45

Building large and efficient controllers that work with continuous actions has been a long-standing46

goal in Artificial Intelligence and in particular in robotics. Deep reinforcement learning (RL), and47

especially Policy Gradient (PG) methods have proven efficient at training such large controllers48

(Schulman et al., 2017; Lillicrap et al., 2015; Fujimoto et al., 2018; Haarnoja et al., 2018). One of the49

keys to this success lies in the fact that PG methods exploit the structure of the objective function50

when the problem can be formalized as a Markov Decision Process (MDP), leading to substantial51

gains in sample efficiency. Moreover, they also exploit the analytical structure of the controller when52

known, which allows the sample complexity of these methods to be independent of parameter space53

dimensionality (Vemula et al., 2019). In real-world applications, these gains turn out to be critical54

when interacting with the environment is expensive. PG methods usually rely on simple exploration55

mechanisms, like adding Gaussian noise (Fujimoto et al., 2018) or maximizing entropy (Haarnoja56

et al., 2018) to explore the action space, which happens to be insufficient in hard exploration tasks57

where the reward signal is sparse or deceptive (Colas et al., 2018; Nasiriany et al., 2019).58

Successful attempts have been made to combine evolutionary methods and reinforcement learning59

(Khadka et al., 2019; Khadka & Tumer, 2018; Pourchot & Sigaud, 2018; Shi et al., 2020). However,60

all these techniques only focus on building high-performing solutions and do not explicitly encourage61

diversity within the population. In this regard, they fail when confronted with hard exploration62

problems. To address these problems, one needs to seek both high-performing solutions and diversity63

within them.64

Contributions65

In this work, we introduce the idea of a diversity policy gradient (DPG) that thrives solutions towards66

more diversity. We show that the DPG can be used in combination with the standard policy gradient,67

dubbed quality policy gradient (QPG), to produce high-performing and diverse solutions. Our68

algorithm, called QD-PG, builds on MAP-Elites (Mouret & Clune, 2015), demonstrates remarkable69

sample efficiency brought by off-policy PG methods, and produces collections of good solutions70

in a single run (see Figure 1). We compare QD-PG to state-of-the-art RL algorithms and to several71

evolutionary methods known as Evolution Strategies (ESs) augmented with a diversity objective,72
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namely the NS-ES family (Conti et al., 2018) and the ME-ES algorithm (Colas et al., 2020). We73

show that QD-PG generates collections of robust solutions in hard exploration problems while RL74

algorithms struggle to produce a single one, and that QD-PG is two orders of magnitude more sample75

efficient than the best of its evolutionary competitors.76

2 Background77

Problem statement78

We consider an MDP (S,A,R, T , γ) where S is the state space,A the action space,R : S ×A → R79

the reward function, T : S × A → S the dynamics transition function and γ a discount factor.80

We assume that both S and A are continuous and consider a controller, or policy, πθ : S → A81

parameterized by θ ∈ Θ, which is called a solution to the problem. We say that a solution θ is82

highy-performing if the expectation over the sum of rewards is high when using πθ. The fitness of a83

solution measures its performance F : Θ→ R where F (θ) = Eπθ
∑
t
γtrt.84

To characterize the novelty of a solution w.r.t. J other solutions, as in QD methods, we introduce a85

behavior descriptor (BD) space B, a behavior descriptor extraction function ξ : Θ→ B, and define a86

distance metric ||.||B over B. The novelty n : Θ×ΘJ → R+ of a solution θ w.r.t. a list of solutions87

(θj)j=1,...,J is defined as n
(
θ, (θj)j=1,...,J

)
=
∑
j ||ξ(θ), ξ(θj)||B. In other words, we quantify the88

novelty of a solution w.r.t. a list of J solutions as the sum of distances between its behavior descriptor89

and the behavior descriptors of all solutions of the list. We also use the distance ||.||B to characterize90

the diversity of a set of K solutions {θk}k=1,...,K . We formally define diversity d : ΘK → R+ as91

d ({θk}k=1,...,K) =

K∑
i=1

min
k 6=i
||ξ(θi), ξ(θk)||B, (1)

meaning that a set of solutions is diverse if the solutions are distant with respect to each other in the92

sense of ||.||B.93

The MAP-Elites algorithm94

MAP-Elites (Mouret & Clune, 2015) is a simple yet state-of-the-art QD algorithm that has been95

successfully applied to a wide range of challenging problems such as robot damage recovery (Cully96

et al., 2015), molecular robotic control (Cazenille et al., 2019) and game design (Alvarez et al., 2019).97

In MAP-Elites, the behavior descriptor space B is discretized into a grid of cells, also called niches,98

with the aim of filling each cell with a high-performing solution. The algorithm starts with an empty99

grid and an initial random set of K solutions that are evaluated and added to the grid by following100

simple insertion rules. If the cell corresponding to the behavior descriptors of a solution is empty, then101

the solution is added to this cell. If there is already a solution in the cell, the new solution replaces it102

only if it has greater fitness. At each iteration, P existing solutions are sampled uniformly from the103

grid and randomly mutated to create P new solutions. These new solutions are then evaluated and104

added to the grid following the same insertion rules. This cycle is repeated until convergence or for a105

given budget of iterations.106

Though MAP-Elites is a compelling and efficient method, it suffers from a low sample efficiency107

as it relies on random mutations. Recently, Colas et al. (2020) tackled this problem by updating108

the solutions through an Evolution Strategy known as the Cross-Entropy method. Notably, they109

showed that MAP-Elites could be scaled with their method to address complex MUJOCO control110

environments at the cost of very large computational resources. In this study, we propose to harness111

policy gradients (QPG and DPG) to build a more sample-efficient MAP-Elites approach.112

3 Key Principle: Diversity Policy Gradient113

Let us assume that we have a MAP-Elites grid containing K solutions (θ1, . . . , θK). To increase114

diversity in the grid using the DPG, we need to update one sampled solution θ from the grid using115

gradient ascent. To do so, we aim to compute the gradient of the population diversity w.r.t. θ, where116

diversity is defined in Equation (1). As the K solutions are independent, order does not matter and117
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we can consider optimizing arbitrarily θ = θ1. To compute the gradient of d w.r.t. θ1, we need118

to separate the terms that depend on θ1 from the others. The terms that depend on θ1 correspond119

to the distance of θ1 to its nearest neighbor, which we define as θ2, and to the distances of θ1 to120

the θs for which θ1 is the nearest neighbor. We can arbitrarily index them from 3 to J1, thus:121

d({θk}k=1,...,K) =
∑J
j=2 ||ξ(θ1), ξ(θj)||B + M , where M =

∑
i 6∈{1,...,J}min

k 6=i
||ξ(θi), ξ(θk)||B.122

Only the first term of the sum depends on θ = θ1. Furthermore, we observe that this term equals the123

novelty of solution θ1 w.r.t. the list (θj)2≤j≤J . Therefore, the gradient of diversity w.r.t. θ1 is124

∇θ1d({θk}k=1,...,K) = ∇θ1n(θ1, (θj)2≤j≤J). That is, we can increase the diversity of the population125

by increasing the novelty of θ1 w.r.t. the list (θj)2≤j≤J . In practice, we replace this list by a list of126

nearest neighbors of θ1, as this is easier to compute and the elements of (θj)2≤j≤J tend to be among127

the nearest neighbors of θ1.128

Under this form, the diversity gradient cannot benefit from the variance reduction methods in the RL129

literature to efficiently compute policy gradients Sutton et al. (1999). To this end, we need to express130

it as a gradient over the expectation of a sum of scalar quantities obtained by policy πθ1 at each step131

when interacting with the environment. Therefore, to build a DPG, we need information about the132

novelty of a solution at the time step level. To do so, we introduce a novel space D, dubbed state133

descriptor space and a state descriptor extraction function ψ : S → D. We assume D and B have the134

same dimension. Similarly to the novelty of a solution, we now define the novelty of a state s w.r.t. J135

other states (sj)j=1,...,J as n : S × SJ → R such that n(s, (sj)j=1,...,J) =
∑J
j=1 ||ψ(s), ψ(sj)||D,136

where ||.||D is a distance metric over D.137

Now, we need to link novelty defined at the time step level to novelty defined at the solution level. We138

define the novelty of a state w.r.t. a set of solutions. We say that a state is novel w.r.t. some solutions139

if the state is novel w.r.t. to the states visited by these solutions. More formally:140

n(s, (θj)j=1,...,J) =

J∑
j=1

Eπθj
∑
t

||ψ(s), ψ(st)||D. (2)

While we adopt this definition in this paper, one might as well consider other definitions where, for141

instance, a state is compared to states that have been visited at the same time step during another142

episode. In this context, if the following relation is satisfied:143

Eπθ1
∑
t

n(st, (θj)2≤j≤J) = n(θ1, (θj)2≤j≤J), (3)

then we can compute the DPG of d w.r.t. θ1 as144

∇DPGθ1 = ∇θ1Eπθ1
∑
t

n(st, (θj)2≤j≤J). (4)

This expression corresponds to the classical policy gradient setting where γ = 1 and where the145

corresponding reward signal, here dubbed diversity reward, is computed as rDt = n(st, (θj) 2≤j≤J).146

Therefore, this gradient can be computed using any PG estimation technique replacing the environ-147

ment reward by the diversity reward rDt .148

Equation (3) enforces a relation between B and D and between extraction functions ψ and ξ. In149

practice, it may be hard to define the behavior descriptor and state descriptor of a solution that satisfy150

this relation while being meaningful to the problem at hand and tractable. But a strict equality is not151

necessary. It suffices that an increase on the left-hand side implies an increase on the right-hand side152

so that we can still update θ1 using (4). Furthermore, when this is not the case, the diversity gradient153

update might not result in an increase of diversity in the behavior descriptor space, but in that case the154

MAP-Elites insertion rule will remove the corresponding solution. We show in Section 6 that we can155

define descriptors that do not satisfy the above relation all the time, but still give satisfactory results.156

1Remark: θ2 can appear twice in the list (θj)2≤j≤J
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4 Related Work157

A distinguishing feature of our approach is that we combine diversity seeking at the level of trajectories158

using behavior descriptors and diversity seeking in the state space using state descriptors. The former159

is used by MAP-Elites to select solutions from the grid and contributes structural bias towards diversity,160

whereas the latter is used during policy gradient steps in the RL part, see Figure 2b. We organize the161

literature review below according to this split between two types of diversity seeking mechanisms.162

QD search in the solution space163

Simultaneously maximizing diversity and performance is the central goal of QD methods (Pugh164

et al., 2016; Cully & Demiris, 2017). Among the various possible combinations offered by the165

QD framework, Novelty Search with Local Competition (NSLC) (Lehman & Stanley, 2011b) and166

MAP-Elites (Mouret & Clune, 2015) are the two most popular algorithms. NSLC builds on the Novelty167

Search (NS) algorithm (Lehman & Stanley, 2011a) and maintains an unstructured archive of solutions168

selected for their local performance while MAP-Elites uniformly samples individuals from a structured169

grid that discretizes the BD space. Not clear in its current form. I suggest: "QD-PG uses the standard170

grid of MAP-Elites. However, we also show in Appendix F that QD-PG can be used with alternative171

archive structures.172

With the objective of improving their data-efficiency, QD-ES algorithms that combine QD and ESs,173

such as NSR-ES and NSRA-ES, have been applied to challenging continuous control environments in174

Conti et al. (2018). But, as outlined in Colas et al. (2020), they suffer from poor sample efficiency175

and the diversity and environment reward functions could be mixed in a more efficient way. In that176

respect, the most closely related work w.r.t. ours is ME-ES (Colas et al., 2020). The ME-ES algorithm177

also optimizes quality and diversity using MAP-Elites and two ES populations. Using these methods178

was shown to be critically more efficient than population-based GA algorithms (Salimans et al., 2017),179

but our results show that they are still less sample efficient than off-policy deep RL methods, as they180

do not leverage the analytical computation of the policy gradient at the time step level. To the best181

of our knowledge, no QD or ES algorithm use an explicit critic for both performance and diversity,182

resulting in even higher data-efficiency.183

QD search in the state or action spaces184

Seeking for diversity in the space of states or actions is generally framed into the RL framework. This185

is the case of algorithms maintaining a population of RL agents for exploration without an explicit186

diversity criterion (Jaderberg et al., 2017) or algorithms explicitly looking for diversity but in the187

action space rather than in the state space like ARAC (Doan et al., 2019), P3S-TD3 (Jung et al., 2020)188

and DvD (Parker-Holder et al., 2020).189

An exception is Stanton & Clune (2016) who define a notion of intra-life novelty that is similar to190

our state novelty defined in Section 3. However, their novelty relies on skills rather than states. Our191

work is also related to algorithms using RL mechanisms to search for diversity only (Eysenbach et al.,192

2018; Pong et al., 2019; Lee et al., 2019; Islam et al., 2019). These methods have proven useful in193

sparse reward situations, but they are inherently limited when the reward signal can orient exploration,194

as they ignore it. Other works sequentially combine diversity seeking and RL. The GEP-PG algorithm195

Colas et al. (2018) combines a diversity seeking component, namely Goal Exploration Processes196

(Forestier et al., 2017) and the DDPG deep RL algorithm (Lillicrap et al., 2015). This sequential197

combination of exploration-then-exploitation is also present in GO-EXPLORE (Ecoffet et al., 2019).198

Again, this approach is limited when the reward signal can help driving the exploration process to199

efficient solutions. These sequential approaches first look for diversity in the behavior descriptor200

space, then optimize performance in the state action space, whereas we do so simultaneously in the201

behavior descriptor space and in the state space.202

To the best of our knowledge, QD-PG is the first algorithm optimizing both diversity and performance203

in the solution and in the state space, using a sample-efficient policy gradient computation method204

for the latter.205

5 Methods206

Our full algorithm is called QD-PG, its pseudo code is given in Appendix A and its architecture is207

depicted in Figure 2. QD-PG is an iterative algorithm based on MAP-Elites that replaces random208
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mutations with policy gradient updates. As we consider a continuous action space and want to209

improve sample efficiency by using an off-policy policy gradient method, we rely on the Twin210

Delayed Deterministic Policy Gradient (TD3) algorithm (Fujimoto et al., 2018). See Appendix B for211

a detailed description of TD3.212

(a) (b)

Figure 2: (a): The RL part of QD-PG operates at the time step level while the QD part operates at
the controller level, considering the MDP as a black box. (b) One QD-PG iteration consists of three
phases: 1) A new population of solutions is sampled from the MAP-Elites grid. 2) These solutions are
updated by an off-policy RL agent: half of the solutions are optimized for quality and the other half
for diversity. The RL agent leverages one shared critic for each objective. 3) The newly obtained
solutions are evaluated in the environment. Transitions are stored in a replay buffer while the updated
solutions, their final scores and behavior descriptors are stored in the MAP-Elites grid.

QD-PG maintains three permanent structures. In the QD part, a MAP-Elites grid stores the most novel213

and performing solutions. In the RL part, a replay buffer contains all transitions collected when214

evaluating solutions and an archive A stores all state descriptors obtained so far. QD-PG starts with an215

initial population of random solutions, evaluates them and inserts them into the MAP-Elites grid. At216

each iteration, solutions are sampled from the grid, copied, and updated. The updated solutions are217

then evaluated through one rollout in the environment and inserted into the grid according to insertion218

rules. Transitions collected during evaluation are stored in the replay buffer, and state descriptors219

are stored in the archive A. Note that these state descriptors are first filtered to avoid insertion in the220

archive of multiple state descriptors that are too close to each other.221

During the update step, half the population is updated with QPG ascent and the other half with DPG222

ascent. The choice of whether an agent is updated for quality or diversity is random, meaning that it223

can be updated for quality and later for diversity if selected again. To justify this design, we show in224

Section 6 that updating consecutively for quality and diversity outperforms updating based on joint225

criteria. Both gradients are computed from batches of transitions sampled from the replay buffer. The226

QPG is computed as usual from rewards whereas for DPG, we get fresh novelty rewards as227

rDt =

J∑
j=1

||ψ(st), ψ(sj)||D, (5)

where (sj)j=1,...,J are the J nearest neighbors of state st in the archive A. Diversity rewards228

must be recomputed at each update because A changes during training. Following Equation (2),229

diversity rewards should be computed as the sum of the distances between the descriptor of st and230

the descriptors of all the states visited by a list of J solutions. In practice, we consider the J nearest231

neighbors of st. This choice simplifies the algorithm and is faster and works well in practice.232

TD3 relies on a parameterized critic to reduce the variance of its policy gradient estimate. In QD-PG,233

we maintain two parameterized critics QDw and QQv , respectively dubbed diversity and quality critics,234

every time a policy gradient is computed, QD-PG also updates the corresponding critic. In fact, as235

in TD3, we use pairs of critics and target critics to fight the overestimation bias. We share the critic236

parameters among the population as in Pourchot & Sigaud (2018). Reasons for doing so come from237
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the fact that diversity is not stationary, as it depends on the current population. If each agent had238

its own diversity critic, since an agent may not be selected for a large number of generations before239

being selected again, its critic would convey an outdated picture of the evolving diversity. We tried240

this solution, and it failed. A side benefit of critic sharing is that both critics become accurate faster as241

they combine experience from all agents. Additional details on QD-PG implementation are available242

in Appendix C.243

6 Experiments244

In this section, we intend to answer the following matters: 1. Can QD-PG produce collections of245

diverse and high-performing neural policies and what are the advantages to do so? 2. Is QD-PG more246

sample efficient than its QD competitors? 3. To what extent are the considered benchmarks difficult247

for classical policy gradients methods? 4. What is the usefulness of the different components of248

QD-PG?249

Environments250

We asses QD-PG capabilities in continuous control environments that exhibit high dimensional251

observation and action spaces as well as strong exploration difficulties. Two types of reward signals,252

dubbed sparse and deceptive, are known to be particularly difficult for classical RL methods. These253

rewards appear in many applications such as robotics or combinatorial optimization. Sparse rewards254

are obtained if a given condition is specified, leading to a majority of null rewards and to credit255

assignment difficulties. Deceptive rewards are dense signals, i.e., they are non-zero at each time step256

but can mislead the search process to some local optimum. In such problems, a good approach to the257

exploration-exploitation trade-off is essential. The agent should learn when to ignore the reward signal258

and explore to avoid local minima and when to follow it to increase its return. Deceptive environments259

constitute a natural choice to highlight QD efficiency to balance exploration and exploitation. In this260

study, we consider three OpenAI Gym environments based on the MUJOCO physics engine that all261

exhibit strong deceptive rewards (illustrated in Appendix 5). Such environments have been widely262

used in previous works (Parker-Holder et al., 2020; Colas et al., 2020; Frans et al., 2018; Shi et al.,263

2020) for their deceptive nature, a characteristic that is absent of more widespread continuous control264

environments like HALFCHEETAH-V2, HOPPER-V2 or still ANT-V2.265

In the POINT-MAZE environment, an agent represented as a green sphere must find the exit of the266

maze depicted in Figure 4a, represented as a red sphere. An observation contains the agent position267

at time t, and an action corresponds to position increments along the x and y axes. The reward is268

expressed as the negative Euclidean distance between the center of gravity of the agent and the exit269

center. The trajectory length cannot exceed 200 steps.270

The ANT-MAZE environment is modified from OpenAI Gym ANT-V2 (Brockman et al., 2016) and271

also used in (Colas et al., 2020; Frans et al., 2018). In ANT-MAZE, a four-legged ant has to reach272

a goal zone located in the lower right part of the maze (colored in green in Figure 4b). Its initial273

position is sampled in a small circle located in the maze’s extreme bottom left. As in POINT-MAZE,274

the reward is expressed as the negative Euclidean distance between the ant and the center of the goal275

zone. Maze walls are organized so that following the gradient of the reward function drives the ant276

into a dead-end. In ANT-MAZE, the final performance is defined as the maximum reward received277

during an episode. The environment is considered solved when an agent obtains a score superior to278

−10, corresponding to reaching the goal zone. An episode consists of 3000 time steps, this horizon279

is three times larger than in usual MUJOCO environments, making this environment particularly280

challenging for RL based methods (Vemula et al., 2019).281

Finally, the ANT-TRAP environment also derives from ANT-V2 and is inspired from (Colas et al.,282

2020; Parker-Holder et al., 2020). In ANT-TRAP, the four-legged ant initially appears in front of a trap283

and must bypass it to run as fast as possible in the forward direction (see Figure 4c), as in ANT-V2,284

the reward is computed as the ant velocity on the x-axis. The trap consists of three walls forming a285

dead-end directly in front of the ant, leading to a strong deceptive reward. In this environment, the286

trajectory length cannot exceed 1000 steps. As opposed to POINT-MAZE and ANT-MAZE, where the287

objective is to reach the exit area, there is no unique way to solve ANT-TRAP and we expect a QD288

algorithm to generate various effective solutions as depicted in Figure 1.289
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Baselines and Ablations290

QD-PG is compared to three types of methods. First, to answer question 2, we compare QD-PG to a291

family of QD baselines, namely ME-ES, NSR-ES, and NSRA-ES (Colas et al., 2020). Appendix E.1292

recaps the properties of all these methods. Second, to answer question 3, we compare QD-PG to a293

family of policy gradient baselines. Soft Actor Critic (SAC) (Haarnoja et al., 2018) and the Twin294

Delayed Deep Deterministic policy gradient (TD3) (Fujimoto et al., 2018) are continuous control295

algorithms achieving state-of-the-art results on MUJOCO benchmarks. Random Network Distillation296

(RND) (Burda et al., 2018) is a curiosity-driven RL agent (Schulman et al., 2017) which was shown to297

perform well in hard exploration settings. CEM-RL (Pourchot & Sigaud, 2018) mixes Cross-Entropy298

Methods (CEM) and RL to evolve a population of agents to maximize quality and obtains state-299

of-the-art results MUJOCO benchmarks. Finally, to answer question 4, we propose to investigate300

the following matters: Can we replace alternating quality and diversity updates by a single update301

that optimizes for the sum of both criteria? Are quality gradients updates alone enough to fill the302

MAP-Elites grid? Are diversity gradients updates alone enough to do so? Consequently, we consider303

the following ablations of QD-PG: QD-PG SUM computes a gradient to optimize the sum of the quality304

and diversity rewards, D-PG applies only diversity gradients to the solutions, and Q-PG applies only305

quality gradients, but both D-PG and Q-PG still use QD selection (see Appendix E.1).306

We compare QD-PG to its ablations and RL competitors in all environments and show results in307

Table 1a. Detailed results including graphic charts and coverage maps are given in Appendix E and308

more details about the evaluation procedure are given in Appendix E.1.309

7 Results310

1. Can QD-PG produce collections of neural policies and what are the advantages to do so?311

Table 1a presents QD-PG performances. In all environments, our algorithm manages to find working312

solutions that avoid local minima and reach the overall objective. In addition to its exploration313

capabilities, QD-PG generates collections of high performing solutions in a single run. During the314

ANT-TRAP experiment, the final collection of solutions returned by QD-PG contained, among others,315

5 solutions that were within a 10% performance margin from the best one. As illustrated in Figure 1,316

these agents typically differ in their gaits and preferred trajectories to circumvent the trap.317

Figure 3: QD-PG produces a collection
of diverse solutions. In ANT-MAZE,
even after setting new randomly located
goals, the MAP-Elites grid still contains
solutions that are suited for the new ob-
jectives.

Generating a collection of diverse solutions comes with318

the benefit of having a repertoire of diverse solutions that319

can be used as alternatives when the MDP changes (Cully320

et al., 2015). We show that QD-PG is more robust than321

conventional policy gradient methods by changing the re-322

ward signal of the ANT-MAZE environment. We replace323

the original goal in the bottom right part of the maze (see324

Figure 3) with a new randomly located goal in the maze.325

Instead of running QD-PG to optimize for this new objec-326

tive, we run a Bayesian optimization process to quickly327

find a good solution among the ones already stored in the328

grid. With a budget of only 20 solutions to be tested during329

the Bayesian optimization process, we are able to quickly330

recover a good solution for the new objective. We repeat331

this experiment 100 times, each time with a different ran-332

dom goal, and obtain an average performance of −10 with333

a standard deviation of 9. In other words, 20 interaction episodes (corresponding to 60.000 time334

steps) suffice for the adaptation process to find a solution that performs well for the new objective335

without the need to re-train agents. More detailed results can be found in Appendix E.3. 2336

2. Is it more sample efficient than its QD competitors?337

Table 1b compares QD-PG to Deep Neuroevolution algorithms with a diversity seeking component in338

terms of sample efficiency. QD-PG runs on 10 CPU cores for 2 days while its competitors used 1000339

CPU cores for the same duration. Nonetheless, QD-PG matches the asymptotic performance of ME-ES340

using two orders of magnitude fewer samples, explaining the lower resource requirements.341

2Videos of QD-PG agents are available at: https://sites.google.com/view/qd-pg
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Table 1: Results for all environments. Final Perf. is the minimum distance to the goal in ANT-MAZE
and the episode return in POINT-MAZE and ANT-TRAP. The Ratio to ours column compares the
sample efficiency of a method to QD-PG.

(a) Comparison to ablations and PG baselines.

Final Perf. (± std)
Algorithm POINT-MAZE ANT-MAZE ANT-TRAP
QD-PG − 24(±0) −7(±7) 1541(±86)
QD-PG SUM −25(±1) −5(±3) 1018(±6)
D-PG −37(±3) −2(±0) 1016(±8)
Q-PG −128(±0) −26(±0) 1175(±79)
CEM-RL −312(±1) −26(±0) 934(±22)
SAC −127(±1) −59(±1) 1049(±21)
TD3 −130(±2) −26(±0) 1131(±7)
RND −35(±10) −27(±1) 978(±61)

(b) Comparison to evolutionary competitors.

ANT-MAZE
Algorithm Final Perf. Steps to goal Ratio to ours
QD-PG −7(±7) 1.15e8 1
CEM-RL −26(±0) ∞ ∞
ME-ES −5(±1) 2.4e10 209
NSR-ES −26(±0) ∞ ∞
NSRA-ES −2(±1) 2.1e10 182

We see three reasons for the improved sample efficiency of QD-PG: 1) QD-PG leverages a replay342

buffer and can re-use each sample several times. 2) QD-PG leverages novelty at the state level and343

can exploit all collected transitions to maximize quality and diversity. For instance, in ANT-MAZE,344

a trajectory brings 3000 samples to QD-PG while standard QD methods would consider it a unique345

sample. 3) PG exploits the analytical gradient between the neural network weights and the resulting346

policy action distribution and estimates only the impact of the distribution on the return. By contrast,347

standard QD methods directly estimate the impact on the return of randomly modifying the weights.348

3. To what extent the considered benchmarks are difficult for policy gradients methods?349

Table 1a compares QD-PG to state-of-the-art policy gradient algorithms and validates that classical350

policy gradient methods fail to find optimal solutions in deceptive environments. TD3 quickly351

converges to local minima of performance resulting from being attracted in dead-ends by the deceptive352

gradients. While we may expect SAC to better explore due to entropy regularization, it also converges353

to that same local minima in ANT-TRAP and POINT-MAZE. Besides, despite its exploration mechanism354

based on CEM, CEM-RL also quickly converges to local optima in all benchmarks, confirming the355

need for a dedicated diversity seeking component. RND, which adds an exploration bonus used as356

an intrinsic reward (see Appendix G for more details), also demonstrates performances inferior to357

QD-PG in all environments but manages to solve POINT-MAZE. In ANT-MAZE and ANT-TRAP, as358

shown in Appendix G.2, RND extensively explores the BD space but fails to obtain high returns.359

4. What is the usefulness of the different components of QD-PG ?360

The ablation study in Table 1a shows that when maximising quality only, Q-PG fails due to the361

deceptive nature of the reward and when maximizing diversity only, D-PG sufficiently explores to362

solve the problem in both POINT-MAZE and ANT-MAZE but requires more steps and finds lower-363

performing solutions. When optimizing simultaneously for quality and diversity, QD-PG SUM fails364

to learn in ANT-TRAP and manages to solve the task in ANT-MAZE but requires more samples than365

QD-PG. We hypothesize that quality and diversity rewards may give rise to conflicting gradients. For366

instance, at the beginning of training in ANT-TRAP, the quality reward drives the ant forward whereas367

the diversity reward drives it back to escape the trap and explore the environment. Therefore, both368

rewards cancel each other, preventing any learning. This study validates the usefulness of QD-PG369

components: 1) optimizing for diversity is required to overcome the deceptive nature of the reward;370

2) adding quality optimization provides better asymptotic performance; 3) it is better to disentangle371

quality and diversity updates.372

8 Conclusion373

This paper is the first to introduce a diversity gradient to explore diversity both at the state and374

skill levels. Based on this component we proposed a novel algorithm, QD-PG, inspired from the375

Quality-Diversity literature, that produces collections of diverse and high-performing neural policies376

in a sample-efficient manner. We showed experimentally that QD-PG generates several solutions377

that achieve high returns in challenging exploration problems. Finally, we demonstrated that in378

a few interactions with the environment, QD-PG finds alternative solutions that still obtain good379

performance when the MDP changes.380

9



References381

Alvarez, A., Dahlskog, S., Font, J., and Togelius, J. Empowering quality diversity in dungeon design382

with interactive constrained map-elites. In 2019 IEEE Conference on Games (CoG), pp. 1–8. IEEE,383

2019.384

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.385

Openai gym. arXiv preprint arXiv:1606.01540, 2016.386

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Exploration by random network distillation.387

arXiv preprint arXiv:1810.12894, 2018.388

Cazenille, L., Bredeche, N., and Aubert-Kato, N. Exploring self-assembling behaviors in a swarm of389

bio-micro-robots using surrogate-assisted map-elites. arXiv preprint arXiv:1910.00230, 2019.390

Colas, C., Sigaud, O., and Oudeyer, P.-Y. GEP-PG: Decoupling exploration and exploitation in deep391

reinforcement learning algorithms. arXiv preprint arXiv:1802.05054, 2018.392

Colas, C., Madhavan, V., Huizinga, J., and Clune, J. Scaling map-elites to deep neuroevolution. In393

Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 67–75, 2020.394

Conti, E., Madhavan, V., Such, F. P., Lehman, J., Stanley, K., and Clune, J. Improving exploration in395

evolution strategies for deep reinforcement learning via a population of novelty-seeking agents. In396

Advances in neural information processing systems, pp. 5027–5038, 2018.397

Cully, A. and Demiris, Y. Quality and diversity optimization: A unifying modular framework. IEEE398

Transactions on Evolutionary Computation, 22(2):245–259, 2017.399

Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. Robots that can adapt like animals. Nature, 521400

(7553):503–507, 2015.401

Doan, T., Mazoure, B., Durand, A., Pineau, J., and Hjelm, R. D. Attraction-repulsion actor-critic for402

continuous control reinforcement learning. arXiv preprint arXiv:1909.07543, 2019.403

Doncieux, S., Laflaquière, A., and Coninx, A. Novelty search: a theoretical perspective. In404

Proceedings of the Genetic and Evolutionary Computation Conference, pp. 99–106, 2019.405

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. Go-explore: a new approach for406

hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.407

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity is all you need: Learning skills without408

a reward function. arXiv preprint arXiv:1802.06070, 2018.409

Forestier, S., Mollard, Y., and Oudeyer, P.-Y. Intrinsically motivated goal exploration processes with410

automatic curriculum learning. arXiv preprint arXiv:1708.02190, 2017.411

Frans, K., Ho, J., Chen, X., Abbeel, P., and Schulman, J. Meta learning shared hierarchies. Proc. of412

ICLR, 2018.413

Fujimoto, S., Van Hoof, H., and Meger, D. Addressing function approximation error in actor-critic414

methods. arXiv preprint arXiv:1802.09477, 2018.415

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A.,416

Abbeel, P., et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,417

2018.418

Islam, R., Ahmed, Z., and Precup, D. Marginalized state distribution entropy regularization in policy419

optimization. arXiv preprint arXiv:1912.05128, 2019.420

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M., Donahue, J., Razavi, A., Vinyals, O.,421

Green, T., Dunning, I., Simonyan, K., et al. Population-based training of neural networks. arXiv422

preprint arXiv:1711.09846, 2017.423

Jung, W., Park, G., and Sung, Y. Population-guided parallel policy search for reinforcement learning.424

In International Conference on Learning Representations, 2020.425

10



Khadka, S. and Tumer, K. Evolution-guided policy gradient in reinforcement learning. In Neural426

Information Processing Systems, 2018.427

Khadka, S., Majumdar, S., Miret, S., Tumer, E., Nassar, T., Dwiel, Z., Liu, Y., and Tumer, K.428

Collaborative evolutionary reinforcement learning. arXiv preprint arXiv:1905.00976, 2019.429

Koos, S., Mouret, J.-B., and Doncieux, S. The transferability approach: Crossing the reality gap in430

evolutionary robotics. IEEE Transactions on Evolutionary Computation, 17(1):122–145, 2012.431

Lee, L., Eysenbach, B., Parisotto, E., Xing, E., Levine, S., and Salakhutdinov, R. Efficient exploration432

via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.433

Lehman, J. and Stanley, K. O. Abandoning objectives: Evolution through the search for novelty434

alone. Evolutionary computation, 19(2):189–223, 2011a.435

Lehman, J. and Stanley, K. O. Evolving a diversity of virtual creatures through novelty search and436

local competition. In Proceedings of the 13th annual conference on Genetic and evolutionary437

computation, pp. 211–218, 2011b.438

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.439

Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.440

Mouret, J.-B. and Clune, J. Illuminating search spaces by mapping elites. arXiv preprint441

arXiv:1504.04909, 2015.442

Nasiriany, S., Pong, V. H., Lin, S., and Levine, S. Planning with goal-conditioned policies. arXiv443

preprint arXiv:1911.08453, 2019.444

Parker-Holder, J., Pacchiano, A., Choromanski, K., and Roberts, S. Effective diversity in population-445

based reinforcement learning. In Neural Information Processing Systems, 2020.446

Pong, V. H., Dalal, M., Lin, S., Nair, A., Bahl, S., and Levine, S. Skew-fit: State-covering self-447

supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019.448

Pourchot, A. and Sigaud, O. Cem-rl: Combining evolutionary and gradient-based methods for policy449

search. arXiv preprint arXiv:1810.01222, 2018.450

Pugh, J. K., Soros, L. B., and Stanley, K. O. Quality diversity: A new frontier for evolutionary451

computation. Frontiers in Robotics and AI, 3:40, 2016.452

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I. Evolution strategies as a scalable alternative453

to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.454

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. High-dimensional continuous control455

using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.456

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization457

algorithms. arXiv preprint arXiv:1707.06347, 2017.458

Shi, L., Li, S., Zheng, Q., Yao, M., and Pan, G. Efficient novelty search through deep reinforcement459

learning. IEEE Access, 8:128809–128818, 2020.460

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. Deterministic policy461

gradient algorithms. In Proceedings of the 30th International Conference in Machine Learning,462

2014.463

Stanton, C. and Clune, J. Curiosity search: producing generalists by encouraging individuals to464

continually explore and acquire skills throughout their lifetime. PloS one, 11(9):e0162235, 2016.465

Sutton, R. S., McAllester, D. A., Singh, S. P., Mansour, Y., et al. Policy gradient methods for466

reinforcement learning with function approximation. In NIPs, volume 99, pp. 1057–1063. Citeseer,467

1999.468

Vemula, A., Sun, W., and Bagnell, J. Contrasting exploration in parameter and action space: A zeroth-469

order optimization perspective. In The 22nd International Conference on Artificial Intelligence470

and Statistics, pp. 2926–2935. PMLR, 2019.471

11



Checklist472

1. For all authors...473

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s474

contributions and scope? [Yes]475

(b) Did you describe the limitations of your work? [Yes]476

(c) Did you discuss any potential negative societal impacts of your work? [No] We believe477

that this work, in itself, is not prone to have any negative societal impact.478

(d) Have you read the ethics review guidelines and ensured that your paper conforms to479

them? [Yes]480

2. If you are including theoretical results...481

(a) Did you state the full set of assumptions of all theoretical results? [N/A]482

(b) Did you include complete proofs of all theoretical results? [N/A]483

3. If you ran experiments...484

(a) Did you include the code, data, and instructions needed to reproduce the main experi-485

mental results (either in the supplemental material or as a URL)? [Yes] The code and486

instructions to run it are available in the supplementary materials.487

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were488

chosen)? [Yes] Implementation details, hardware details and hyperparameters489

are presented in Appendix C.490

(c) Did you report error bars (e.g., with respect to the random seed after running experi-491

ments multiple times)? [Yes] Yes, we report mean and variance for all experiments,492

both graphically and in result tables.493

(d) Did you include the total amount of compute and the type of resources used (e.g.,494

type of GPUs, internal cluster, or cloud provider)? [Yes] Computational details are495

provided in Appedix C.496

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...497

(a) If your work uses existing assets, did you cite the creators? [Yes] We use open498

sourced RL environments.499

(b) Did you mention the license of the assets? [Yes] We cite the Mujoco physics engine,500

for which we have licenses.501

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]502

We provide appendices, source code and a demonstration website.503

(d) Did you discuss whether and how consent was obtained from people whose data you’re504

using/curating? [N/A]505

(e) Did you discuss whether the data you are using/curating contains personally identifiable506

information or offensive content? [N/A]507

5. If you used crowdsourcing or conducted research with human subjects...508

(a) Did you include the full text of instructions given to participants and screenshots, if509

applicable? [N/A] We did not used crowdsourcing or conducted research with510

human subjects.511

(b) Did you describe any potential participant risks, with links to Institutional Review512

Board (IRB) approvals, if applicable? [N/A] This work did not involve research513

with human subjects514

(c) Did you include the estimated hourly wage paid to participants and the total amount515

spent on participant compensation? [N/A] This work did not involve research with516

human subjects517

12


	Introduction
	Background
	Key Principle: Diversity Policy Gradient
	Related Work
	Methods
	Experiments
	Results
	Conclusion

