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ABSTRACT

This work is about estimating when a conditional generative model (CGM) can
solve an in-context learning (ICL) problem. An in-context learning (ICL) problem
comprises a CGM, a dataset, and a prediction task. The CGM could be a multi-
modal foundation model; the dataset, a collection of patient histories, test results,
and recorded diagnoses; and the prediction task to communicate a diagnosis to a
new patient. A Bayesian interpretation of ICL assumes that the CGM computes
a posterior predictive distribution over an unknown Bayesian model defining a
joint distribution over latent explanations and observable data. From this perspec-
tive, Bayesian model criticism is a reasonable approach to assess the suitability
of a given CGM for an ICL problem. However, such approaches—like posterior
predictive checks (PPCs)—often assume that we can sample from the likelihood
and posterior defined by the Bayesian model, which are not explicitly given for
contemporary CGMs. To address this, we show when ancestral sampling from
the predictive distribution of a CGM is equivalent to sampling datasets from the
posterior predictive of the assumed Bayesian model. Then we develop the genera-
tive predictive p-value, which enables PPCs and their cousins for contemporary
CGMs. The generative predictive p-value can then be used in a statistical decision
procedure to determine when the model is appropriate for an ICL problem. Our
method only requires generating queries and responses from a CGM and evaluating
its response log probability. We empirically evaluate our method on synthetic
tabular, imaging, and natural language ICL tasks using large language models.

1 INTRODUCTION

An in-context learning (ICL) problem comprises a conditional generative model (CGM), a dataset,
and a prediction task (Brown et al., 2020; Dong et al., 2022). For example, the CGM could be a
pre-trained multi-modal foundation model; the dataset could be a collection of patient histories, test
results, and patient diagnoses; and the prediction task could be to communicate the diagnoses to a new
patient with a given history and test results Nori et al. (2023). This problem is complex, demanding
accuracy in diagnosis and appropriate communication to the patient. This complexity challenges our
ability to assess whether the model is appropriate for the dataset and prediction task.

One interpretation of ICL is that a CGM prompted with in-context examples produces data (either
responses or examples of the prediction problem) from a posterior predictive under a Bayesian model.
A natural question arises when we accept this premise, “Is the Bayesian model a good model for the
prediction problem?” This is the question that the field of Bayesian model criticism tries to answer.
This field has produced many methods; however, they typically assume access to key components
defined by the Bayesian model. Namely, the model likelihood and model posterior. In this work
we show how to do model criticism in ICL using contemporary generative AI, specifically how to
implement posterior predictive checks (PPCs) (Guttman, 1967; Rubin, 1984) and their cousins when
we only have access to the predictive distribution. The result is a practical and interpretable test on
whether the model is appropriate for a given ICL problem.
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Input: proof once again that if the
filmmakers just follow the books

Label: negative
Input: is impressive
Label: positive
Input: the top japanese animations
Label: positive
Input: a spoof comedy
Label: positive

(a) SST2 ICL dataset xn

Input: follows the formula , but throws
in too many conflicts to keep
the story compelling .

(b) query z.

Label: negative, Label: negative,
Label: negative, Label: negative,
Label: negative, Label: negative

(c) CGM responses y

Input: a) Should teens use the diet
plans on tv?

b) Can you help me with a diet
plan?

Label: different
Input: a) What’s a good way to address

back pain?
b) How can I cure my back pain?

Label: similar

(d) MQP ICL dataset xn

Input: a) Can dementia cause ANS dysfunction?
If so how?

b) How can dementia cause ANS dysfunction?

(e) query z.

Label: different, Label: different,
Label: similar, Label: similar,
Label: different, Label: similar

(f) CGM responses y

Figure 1: An example illustrating two ICL problems. One that the model θ (Llama-2 7B Touvron
et al. (2023)) can solve, and one that it cannot. On the left, we have (a) examples from the SST2 task
Socher et al. (2013) comprising part of an ICL dataset xn, (b) a new query z, and (c) some responses
y sampled from the CGM pθ(y | z, xn) when prompted with the dataset and query. The true label
is “negative” and the CGM responds correctly. On the right, we have have the same format but the
dataset (d) and query (e) are taken from the medical question pairs task McCreery et al. (2020). Here,
the true label is “similar,” but the model responds incorrectly with “different” half of the time.

2 WHAT IS AN IN-CONTEXT LEARNING PROBLEM?

We formalize an ICL problem as a tuple (f∗, xn,θ) comprising a prediction task f∗, a dataset xn,
and a conditional generative model (CGM) θ. The prediction task is generalized as providing
a response y to a given query z. The set of valid responses to a user query implies a reference
distribution over responses p(y | z, f∗). The dataset xn = {(zi, yi)}ni=1 comprises n query and
response examples of the prediction task; zi, yi ∼ p(z, y | f∗). A practical data abstraction scheme
sees the decomposition of queries and responses into elements called tokens. As such, queries
and responses—by extension, examples and datasets—are represented as sequences of tokens. For
example, (z, y) ≡ (tz1, t

z
2, . . . , t

y
1, t

y
2, . . . ) ≡ (tx1, t

x
2, . . . ). A conditional generative model θ defines

a predictive distribution over the next token in an example txj given previous example tokens and
tx<j , and a tokenized dataset; pθ(txj | tx<j , x

n). By ancestral sampling, the CGM effectively defines
additional predictive distributions over responses pθ(y | z, xn), examples pθ(z, y | xn), and datasets
pθ(x | xn). Figure 1 illustrates examples from two different ICL tasks. Figures 1a to 1c gives an
example from the SST2 sentiment prediction task for which Llama-2 7B frequently yields accurate
answers. Figures 1d to 1f gives an example from the medical questions pairs (MQP) prediction task
for which Llama-2 7B yields random answers on average. As we illustrate next, there are several
reasons why model generated responses or examples may be inappropriate for the ICL task f∗.

3 WHAT IS A MODEL?

As above, we let θ denote a model, but now the model could be Bayesian linear regression, a
Gaussian process, perhaps a large language model (LLM), or something else. A model in general
defines a joint distribution pθ(x, f) over observable data x = {x1, x2, . . . } = {(z1, y1), (z2, y2), . . . }
and latent explanations f . The notation f will denote both tasks and explanations, but we will
clearly distinguish between them. The model joint distribution factorizes in terms of the model
prior pθ(f) over explanations and the model likelihood pθ(x | f) over observable datasets given
an explanation; pθ(x, f) = pθ(x | f)pθ(f). From a frequentist perspective, the prior distribution
over f would be ignored and a model would define a set of distributions over datasets indexed by
f; {pθ(x | f) : f ∈ F}. A model θ alongside data xn further define the posterior pθ(f | xn) and
posterior predictive pθ(x | xn) =

∫
pθ(x | f) dPθ(f | xn) distributions, which specify the conditional

distributions of explanations and new observations given the observed data.
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Are CGMs Models? Modern CGMs often lend access to only the marginal pθ(x) or posterior
predictive pθ(x | xn) rather than an explicit representation of f . So why do we discuss latent variables
like f? We justify this with two key assumptions: First, if the model θ is exchangeable (i.e., pθ(x) is
invariant to permutations of the data), de Finetti’s theorem Hewitt & Savage (1955) guarantees the
existence of such a latent variable f . Therefore, assuming we adopt a unique representation of f , there
is no issue in writing pθ(x, f). Alternatively, if pθ(x) approximates an exchangeable distribution
p(x), as is the case with ICL problems, then we can treat the statement pθ(x, f) as a convenient abuse
of notation, meant to represent p(x, f). Throughout, we assume that either of these conditions hold.

4 A MODEL IS A CHOICE TO BE CRITICISED

A model θ defined over an observation space X is used make inferences informed by observations
from that space xn. Inferences about the probability of the the next word given a sequence of
words, model uncertainty, and countless other quantities of interest. But a model is fundamentally a
choice—the practitioner makes a modelling decision—and so there is no guarantee that the inferences
derived from observations under a model are grounded in reality.

(a) linear model, linear data (b) polynomial model, polynomial data

(c) polynomial model, linear data (d) linear model, polynomial data

Figure 2: Examples of misaligned model and data combinations. Transformer models (pink) are fit to
either linear or polynomial noisy data defined by reference Bayesian models (blue).

Figure 2 illustrates several examples where inferences about the predictive distribution are made
by different models given different datasets. The data and model are well aligned in Figures 2a
and 2b, so model inferences (pink regions) overlap with those made by the reference data generating
model (blue regions) and appear purple. However, in Figure 2c we see that the inferences made by a
misaligned polynomial model are much wider that those made by the reference linear model. And in
Figure 2d, we see that inferences made by a misaligned linear model are much more narrow than
those made by the reference polynomial model, which results in the model being confident and wrong.
More contemporarily, a randomly initialized LLM is a model that can be used to make inferences
about next word probabilities, but those inferences are meaningless for modelling natural language.
These examples illustrate that while models are used to quantify empirical facts—like the frequency
of an event occurring—they also carry a subjective aspect that needs to be considered when using
model inferences in practice. This consideration guides our question of when a model will provide
reliable inferences for a given ICL problem.

Much of the discussion around the reliability of CGMs has focused on “hallucination” detection,
prediction, and mitigation (Dziri et al., 2021; Su et al., 2022; Lee et al., 2022; Mielke et al., 2022;
Gao et al., 2023; Li et al., 2023; Varshney et al., 2023; Feldman et al., 2023; Zhang et al., 2023;
Peng et al., 2023; Lin et al., 2023; Azaria & Mitchell, 2023; Chuang et al., 2024; Burns et al., 2023;
Rimsky et al., 2023; Luo et al., 2023; Shi et al., 2024; Band et al., 2024; Li et al., 2024; Mündler
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et al., 2024; Dhuliawala et al., 2024; Farquhar et al., 2024; Kossen et al., 2024; Jesson et al., 2024).
An interesting subset is based on uncertainty quantification where inferences about the variability of
responses from the [posterior] predictive distribution (Kadavath et al., 2022; Manakul et al., 2023;
Cole et al., 2023; Chen & Mueller, 2024), or about the variability of explanations (Kuhn et al., 2023;
Elaraby et al., 2023; Lin et al., 2024; Farquhar et al., 2024; Jesson et al., 2024) are used to predict
model hallucinations. However, none of these methods address the question of when those inferences
are to be trusted, and so each are susceptible to failure if the model is not appropriate for the task.

A growing body of work is formalizing the connection between ICL with pre-trained CGMs and
Bayesian inference (Xie et al., 2021; Müller et al., 2021; Fong et al., 2023; Lee et al., 2023; Jesson
et al., 2024; Falck et al., 2024; Ye et al., 2024). Notably, the works of Fong et al. (2023); Lee et al.
(2023); Jesson et al. (2024); Falck et al. (2024); Ye et al. (2024) show how to transform Bayesian
functionals of the model likelihood pθ(x | f) and model posterior pθ(f | xn) into functionals of the
model predictive distribution pθ(x | xn), which can be computed by contemporary CGMs. These
works pave the way for using Bayesian model criticism techniques such as posterior predictive checks
as a response to our ressearch question. In the following we formalize how this is done.

5 POSTERIOR PREDICTIVE CHECKS ARE MODEL CRITICS FOR ICL PROBLEMS.

Posterior predictive checks (Rubin, 1984; Meng, 1994; Gelman et al., 1996; Moran et al., 2023) are
Bayesian model criticism methods that use the model posterior predictive to assess the suitability of a
model to make inferences informed by a set of observations. A model’s ability to explain observed
data is quantified by the posterior predictive p-value, which is derived from a test of the hypothesis
that the data are generated according to the model θ. Following Moran et al. (2023), we assume
access to main xn and holdout xtest sets of observations, both distributed according to the reference
likelihood p(x | f∗) for a specific task f∗. The class of PPCs pertinent to our discussion assess
“goodness-of-fit” by asking how well a model fit to a set of observations xn explains the holdout
observations xtest. To measure the goodness-of-fit, a PPC defines a discrepancy function, like the
negative log marginal model likelihood gθ(x, x

n) := −
∑

zi,yi∈x log pθ(zi, yi | xn), or the negative
log model likelihood gθ(x, f) := −

∑
zi,yi∈x log pθ(zi, yi | f). Both of these measures will be lower

for observations that are well explained by the model, and higher for those that are not.

Defining the goodness-of-fit measures is only half of the story. A PPC needs a way to assess what
makes a relatively high or relatively low value of the discrepancy function. To do this, a reference
distribution of values is defined by measuring the discrepancy function over datasets sampled from
the model posterior predictive distribution. The posterior predictive p-value is then evaluated as

pppc :=

∫∫
1
{
gθ(x, ·) ≥ gθ(x

test, ·)
}
dPθ(x | f)dPθ(f | xn). (1)

The PPC locates the value of the discrepancy function for the holdout data gθ(xtest, ·) in the distribution
of the discrepancy function under the model gθ(X, ·). The more often the discrepancy (intuitively, the
loss) of the data generated under the model is greater than or equal to the discrepancy of the holdout
data, the more confident we can be that the model explains the holdout data well. Conversely, if the
discrepancy of the holdout data is commonly greater than that of the data generated under the model,
then we should be less confident that the model explains the holdout data, and thus be skeptical about
the models capacity to solve the ICL problem. Algorithm 2 in Appendix C describes a pppc estimator.

6 THE GENERATIVE PREDICTIVE p-VALUE AND HOW TO ESTIMATE IT

Modern CGMs—such as LLMs—do not explicitly provide the joint distribution over observations and
explanations. In the best case, we may only have access to the model posterior predictive distribution
pθ(x | xn) as a black box rather than an integral of the model likelihood pθ(x | f) over the model
posterior pθ(f | xn). For discrepancy functions that depend on f this is a problem.

Our solution to not having the component distributions relies on the intuition that a sufficiently large
dataset xN := {zi, yi}Ni=1 generated according to the model likelihood xN ∼ pθ(x | f) given an
explanation f contains roughly the same information as the explanation itself. For an identifiable
Bayesian model, the model posterior pθ(f | xN ) concentrates around the unique generating explana-
tion f as N →∞. Therefore, it makes sense to express functions of explanations f , like the model
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likelihood pθ(x | f), that are not defined under a typical CGM, as functions of large datasets, like the
predictive distribution pθ(x | xN ), that are defined.

But, if we are only given the n examples comprising xn, where do the additional N − n examples
come from? The generation of sufficiently large datasets is done by ancestrally sampling from
the model predictive distribution pθ(z, y | xn) to generate hypothetical completions xn+1:N of the
observed ICL dataset xn (also called predictive resampling by Fong et al. (2023)):

zn+1, yn+1 ∼ pθ(z, y | xn), zn+2, yn+2 ∼ pθ(z, y | xn, zn+1, yn+1), . . .

As generated examples are added to the conditional of the predictive distribution after each step, this
process can be thought of as reasoning toward one explanation by imagining a sequence of sets of
observations that are consistent with a smaller and smaller set of explanations as the sequence length
increases. As a stochastic process, it is encouraged to reason toward a different explanation each time
it is run to complete xn with N − n imagined examples.

Building off this intuition, we define martingale and generative predictive p-values below. We prove
that under general conditions the martingale predictive p-value is equal to the posterior predictive
p-value. We then show how to estimate the generative predictive p-value for a given ICL problem.

6.1 THE MARTINGALE PREDICTIVE P-VALUE

Our method is built on Doob’s theorem for estimators (Theorem 2). This theorem helps us transform
statements about the random variable h(F)—a function of explanations F—to statements about the
random variable E[h(F) | X1,X2, . . . ,Xn], which is a function of observations (X1,X2, . . . ,Xn).
Thus, we can proceed without direct access to pθ(z, y | f)and pθ(f | xn) and define a p-value that
depends on infinite datasets x∞ := (xi, yi)

∞
i=1 rather than f

pmpc :=

∫∫
1
{
gθ(x, x

∞) ≥ gθ(x
test, x∞)

}
dPθ(x | x∞)dPθ(x

n:∞ | xn). (2)

Doob’s Theorem is an application of martingales, so—in line with the current literature (Fong et al.,
2023; Lee et al., 2023; Falck et al., 2024)—we call this formulation the martingale predictive p-value.

The main theoretical result of this paper establishes the equality of the posterior and martingale
predictive p-values; Equations (1) and (2). We formalize this statement in the following theorem.
Theorem 1. Let F ∼ Pθ, and X1,X2, . . . i.i.d ∼ Pf

θ. Assume Conditions 1 to 3 and let,∫
| log pθ(xm | f)|dPθ(f) <∞ : ∀xm ∈ Xm.

Then, pppc = pmpc.

Proof. The proof makes use of Doob’s Theorem and is presented in Appendix B.

6.2 THE GENERATIVE PREDICTIVE P-VALUE

The martingale predictive p-value cannot be exactly computed because it is impossible to generate
infinite datasets. Thus, we define the generative predictive p-value that clips the limits to infinity by
some feasibly large number N to estimate Equation (2) as

pgpc :=

∫∫
1
{
gθ(x, x

N ) ≥ gθ(x
test, xN )

}
dPθ(x | xN )dPθ(x

n:N | xn). (3)

The generative predictive p-value enables us to replace distributions that depend on latent mechanisms
f or infinite datasets x∞ with ones that depends on finite sequences. The cost of using finite N is
estimation error between pgpc and pppc. A formal analysis of this error is left to future work.

6.3 CGM ESTIMATORS FOR THE GENERATIVE PREDICTIVE P-VALUE

We derive an estimator for the generative predictive p-value in Equation (3) that uses Monte Carlo
estimates to approximate the integrals. Algorithm 1 describes the estimation procedure. The key stage
that differentiates the generative predictive p-value algorithm from the standard posterior predictive

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 p̂gpc

Require: data {xn, xtest}, discrepancy function gθ(x, x
N ), # replicates M, # approx. samples N

1: for i← 1 to M do
2: xNi ← xn ▷ initialize f sample data
3: for j ← n+ 1 to N do
4: zj , yj ∼ pθ(z, y|xN ) ▷ sample example from model
5: xNi ← (xNi , zj , yj) ▷ update approximation context
6: xi ← () ▷ initialize replicant data
7: for j ← 1 to n do
8: zj , yj ∼ pθ(z, y|xNi ) ▷ sample example from model
9: xi ← (xi, zj , yj) ▷ update replicant data

10: return 1
M

∑M
i=1 1

{
gθ(xi, x

N
i ) ≥ gθ(x

test, xNi )
}

▷ estimate p-value

p-value algorithm is described in Lines 2 to 5. Here dataset completions xNi of length N are sampled
from the CGM predictive distribution to approximate sampling a mechanism fi. This is in contrast
to sampling an explanation directly from the model posterior as shown in Algorithm 2 Line 2 of
Appendix C. When sampling replication data xi in Lines 6 to 9, the CGM predictive distribution is
conditioned on xNi and n new samples are independently generated. This procedure is repeated M
times, and the p-value is empirically estimated as before.

7 EMPIRICAL EVALUATION

This section reports the following empirical findings: (1) The generative predictive p-value is an
accurate predictor of model capability in tabular, natural language, and imaging ICL problems. (2)
The p-value computed under the NLL discrepancy is also an indicator of whether there are enough
in-context examples n. (3) The number of generated examples N − n interpolates the p-value
between the posterior predictive p-value under the NLML discrepancy and the NLL discrepancy
using the model posterior pθ(f | xn) and likelihood pθ(x | f). These findings show that the p-value
computed under either discrepancy yields an accurate predictor of whether generative AI can solve
your in-context learning problem. If you also need to know whether there are enough in-context
examples, we suggest using the NLL discrepancy function. If computational efficiency is a primary
concern, we suggest using the NLML discrepancy as dataset completion generation is not required.

Models. We evaluate our methods using two model types. For tabular and imaging tasks, we use a
Llama-2 regression model for sequences of continuous variables (Jesson et al., 2024). The model
is optimized from scratch for next token (variable or pixel) prediction following the procedure of
Touvron et al. (2023). For natural language tasks, we use pre-trained Llama-2 7B (Touvron et al.,
2023) and Gemma-2 9B (Team, 2024) LLMs (Gemma-2 9B results are reported in Appendix G).

(a) in-distribution tabular task (b) OOD tabular task

Figure 3: Tabular data tasks.

Data. For tabular tasks, queries z are sampled uniformly from the interval [−2, 2]. Responses y are
drawn from a normal distribution with a mean µ(z), parameterized by either a random 3rd-degree
polynomial (in-distribution), a random ReLU neural network (in-distribution or OOD), or a radial
basis function (RBF) kernel Gaussian process with a length scale of 0.3 (OOD). The training data
comprise 8000 unique in-distribution datasets with 2000 z − y examples each. An in-distribution

6
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ReLU-NN task is illustrated in Figure 3a. The mean function µ(z) is plotted by the blue line, and the
blue shaded region outlines the 95% CI of pθ(y | z, f∗). An OOD GP task is illustrated in Figure 3b.
In-distribution test data comprise a set of 200 new random datasets with 500 z− y examples each.
The OOD test data comprise 200 random datasets with 500 z− y examples each.

(a) In-capability (b) Out-of-capability

Figure 4: Natural language in-capability vs. out-of-capability tasks. Green solid line is the ICL error
rate for Llama-2 7B. Gray dashed line is the random guessing error rate.

For pre-trained LLM experiments, the delineation between in- and out-of-distribution is opaque.
Instead, we use in-capability or out-of-capability to differentiate between tasks a model can or
cannot perform well. Figure 4a illustrates in-capability tasks where the error rate of Llama-2 7B
is considerably better than random guessing. The in-capability data are the SST2 (Socher et al.,
2013) sentiment analysis (positive vs. negative) and AG News Zhang et al. (2015) topic classification
(World, Sports, Business, Sci/Tech) datasets. Figure 4b illustrates out-of-capability tasks where the
error rate is only marginally better than random. The out-of-capability data are the Medical Questions
Pairs (MQP) (McCreery et al., 2020) differentiation (similar vs. different) and RTE (Dagan et al.,
2006) natural language inference (entailment vs. not entailment) datasets.

(a) SVHN (in-distribution) (b) MNIST (near OOD) (c) CIFAR-10 (far OOD)

Figure 5: Generative fill tasks using the test sets of SVHN, MNIST, and CIFAR-10.

For imaging ICL experiments, we use SVHN for in-distribution data (Netzer et al., 2011), MNIST as
“near” OOD data (LeCun et al., 1998), and CIFAR-10 as “far” OOD data (Krizhevsky et al., 2009).
Our Llama-2 regression model takes a sequence of flattened, grayscale, 8x8 images as input. It is
fit to random sequences of 16 images from the SVHN "extra" split, which has over 500k examples.
A series of in-distribution generative fill tasks is shown in Figure 5a. In each row, the model is
prompted with three in-context examples and asked to complete the missing half of the 4th example.
Each completion in the “fill” column is sensible, even when the completed number differs from the
“real” number. Figure 5b illustrates completions for near-OOD MNIST tasks. We see in rows 1, 2,
3, and 6 that the fills are often sensible, but the model is prone to hallucinating odd completions
(row 4) and artifacts (row 5). Figure 5c illustrates completions for far-OOD CIFAR-10 tasks. The
completions are surprisingly consistent at this resolution, but as the result in row 4 demonstrates, the
model hallucinates completions from its domain.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Discrepancy functions. We evaluate the p-value using discrepancy functions defined as

gθ(x, x
(·)) := − 1

|x|
∑

zi,yi∈x

1

|(zi, yi)|
∑

tj∈(zi,yi)

log pθ(tj | t<j , x
(·)),

where |(zi, yi)| is the number of tokens in the evaluated example. Following this template, the per-
token negative log marginal likelihood (NLML) is written gθ(x, x

n) and an estimate of the per-token
the negative log-likelihood (NLL) is written gθ(x, x

N ), where xN is generated as in Algorithm 1.

Predicting model capability. The p-values are calculated using either Algorithm 1 or Algorithm 3
and a significance level α is selected to yield a binary predictor of model capability 1{pgpc <
α}; a model is predicted as incapable of solving the ICL problem if the estimated generative
predictive p-value is less than the significance level. We report results for significance levels
α ∈ [0.01, 0.05, 0.1, 0.2, 0.5]. For the NLL discrepancy function, replication data x is independently
sampled from the likelihood under a hypothetical dataset completion pθ(z, y | xN ). For the NLML
discrepancy function, replication data is independently sampled from the predictive distribution
pθ(z, y | xn).

Figure 6: Evaluation metrics for GPC performance.

Metric Equation

False Positive Rate (FPR) False Positives
False Positives+True Negatives

Precision True Positives
True Positives+False Positives

Recall True Positives
True Positives+False Negatives

F1 Score 2·Precision·Recall
Precision+Recall

Accuracy True Positives+True Negatives
Total Number of Predictions

Evaluation metrics. We evaluate the capa-
bility predictor using standard metrics: FPR
measures in-capability tasks misclassified as
out-of-capability, Precision reflects correctly
identified out-of-capability tasks, and Recall
measures correctly detected out-of-capability
tasks. F1 Score and Accuracy assess overall
performance (see Figure 6 for definitions).

We also provide the distribution of p-values
across tasks to assess how confidently the
model distinguishes between the different
ICL problems. Lower p-values indicate stronger confidence that a model cannot solve a problem.

7.1 THE GENERATIVE PREDICTIVE p-VALUE ACCURATELY PREDICTS MODEL CAPABILITY

Tabular data. We first evaluate whether the generative predictive p-value effectively predicts
OOD tabular data tasks. The parameters for Algorithm 1 are M = 40 replications and N − n =
200 generated examples. The ICL dataset xn size is varied from n = 2 to n = 200. Figure 7
plots precision, recall, F1, and accuracy curves and shows that the p-value estimates under either
discrepancy function provide non-trivial OOD predictors for all α settings.

Figure 7: Tabular OOD detection. Metric values vs. context length. In-distribution functions are from
unseen random ReLU-NNs. OOD functions are from an RBF kernel GP.

Natural language ICL. Next, we evaluate whether the generative predictive p-value effectively
predicts out-of-capacity natural language tasks. The parameters for Algorithm 1 are M = 20
replications and N − n = 10 generated examples. The ICL dataset xn size is varied from n = 4 to
n = 64. Figure 8 plots precision, recall, F1, and accuracy curves and shows that the p-value estimates
under the NLL discrepancy provide non-trivial (accuracy > 0.5) out-of-capability predictors in the
domain of natural language for all α settings. The NLML discrepancy gθ(x, x

n) is also generally
robust outside of the small n and small α setting.

8
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Figure 8: Llama-2-7B out-of-capability detection. Metric values vs. context length. In-capability
tasks are from SST2 and AG News datasets. Out-of-capability tasks are from RTE and MQP datasets.

Generative fill. Finally, we evaluate whether the generative predictive p-value effectively predicts
OOD generative fill tasks. The parameters for Algorithm 1 are M = 100 replications and N − n = 8
generated examples The ICL dataset xn size is varied from n = 2 to n = 8. Figure 9 plots the
OOD prediction metric curves and shows that the p-value estimates under either discrepancy function
provide non-trivial (accuracy > 0.666̄) OOD predictors for all α settings.

Figure 9: Generative fill OOD detection. Metric values vs. context length. In-distribution tasks are
from the SVHN test set. Near and far OOD tasks are from the MNIST and CIFAR-10 test sets.

Discussion. Figures 7 to 9 reveal several trends. First, the NLML discrepancy (blue) yields better
precision, indicating that it is less likely to misclassify an in-capability ICL problem as unsolvable.
Second, the NLL discrepancy (purple) yields higher recall, indicating that it is less likely to misclassify
an out-of-capability ICL problem as solvable. Third, the NLL discrepancy with significance level
α = 0.05 yields a generally more accurate predictor than the NLML discrepancy function for any
significance level in the set evaluated. Finally, the recall of a predictor under the NLML discrepancy
is sensitive to the number of in-context examples n. Next, we look deeper into the relationship
between dataset size and the discrepancy functions.

7.2 THE NLL DISCREPANCY ALSO INDICATES WHETHER YOU HAVE ENOUGH DATA

(a) NLL (b) NLML (c) Risk (d) Accuracy

Figure 10: (a) and (b) Scatter plots of response RMSE vs. p-values for the NLL and NLML
discrepancies. Points are style-coded by ICL dataset size n. (c) Risk vs. n. (d) Accuracy vs. n

Both discrepancy functions yield accurate predictors of model capability, but the NLL discrepancy
also provides information about whether there are enough in-context examples to reliably solve a

9
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task. We use prediction RMSE over task responses to measure reliability. Figures 10a and 10b plot
the RMSE against the p-values computed under the NLL and NLML discrepancies for in-distribution
polynomial tabular tasks. We see that lower p-values correlate with higher RMSE for the NLL
discrepancy, but not for the NLML discrepancy. This added information is useful for reducing risk in
recommendation systems that autonomously respond if the p-value is greater than the significance
level α. For example, at α = 0.1, the NLL discrepancy reduces the generation of responses with
higher error because it accounts for the number of examples provided. Taking the risk as the sum of
task RMSEs for tasks predicted as in-capability, Figures 10c and 10d show that the NLL discrepancy
results in substantially reduced risk, even when we closely match the accuracies of each predictor.
Figure 13 in the appendix gives further insight into how the distributions of p-values evolve with
dataset size for each discrepancy function.

7.3 THE NUMBER OF GENERATED EXAMPLES N − n INTERPOLATES THE p− value ESTIMATE
BETWEEN THE NLML AND THE IDEAL NLL DISCREPANCIES

Figure 11: The dataset completion size N − n interpolates the pgpc under gθ(x, xN ) between the pppc
under gθ(x, xn) (NLML) and the pppc under gθ(x, f) (NLL).

Inspection of Equations (1) to (3) makes clear that the dataset completion size N − n should closely
interpolate p-value estimates between pppc computed with the NLML discrepancy and with the NLL
discrepancy using the likelihood and posterior of a Bayesian model. To verify this, we use a reference
Bayesian polynomial regression model to compute the pppc. We use our Llama-2 regression model fit
to datasets generated from the reference model likelihood under different explanations to compute the
pgpc. We let datasets generated by random ReLU-NNs serve as OOD tasks. Figure 11 demonstrates
that our expectation is true. Specifically, the p-value estimates at N −n = 2 are distributionally close
to those calculated under the NLML, and they more closely approximate those calculated under the
reference NLL discrepancy as we increase N − n to 100. The latter observation is also illustrated in
Figure 12.

Since the p-values computed under either discrepancy yield accurate predictors of model capability,
the choice between discrepancy functions ultimately comes down to a decision on whether the added
computational cost of generating dataset completions is justified. If you need to know whether
there are enough in-context examples to generate an accurate response—a necessity in risk-sensitive
applications—then we recommend using the NLL discrepancy function. If computational efficiency
or the cost of response deferral are primary concerns—practical user experience concerns—we
suggest using the NLML discrepancy.

8 CONCLUSION

This work introduces the generative predictive p-value, a metric for determining whether a Conditional
Generative Model can solve an In-Context Learning problem. It extends Bayesian model criticism
techniques like PPCs to generative models by sampling dataset completions from the model’s
predictive distribution to approximate sampling latent explanations from a Bayesian model posterior.
Empirical evaluations on tabular, natural language, and imaging tasks show that the generative
predictive p-value can effectively identify the limits of model capability, distinguishing between
in-capability and out-of-capability tasks for models like Llama-2 7B and Gemma-2 9B. This approach
is a practical method to assess model suitability that advances Bayesian model criticism for CGMs.
While we have focused on model capability prediction, the p-value estimates could also be used
for model selection or as a general measure of task uncertainty. We are eager to explore extensions
beyond ICL tasks to improve the reliability of generative AI systems.
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A MODEL INTUITION

In this section we give an interpretation of the component parts of a Bayesian model, how they
are used to make inferences about uncertainty, and how to relate inferences in classical domains to
inferences in more complex domains like language.

The model prior pθ(f) can be thought of as a library over all possible explanations that a model
could ascribe to observations. However, it is a special kind of library, where the probability of
finding an explanation in the library at random is also defined. In a sense, the model prior encodes
everything “known” to a model; all the latent patterns available as explanations for—or an index of
all the probability distributions ascribable to—any set of observations. The model prior may or may
not assign non-zero probability to an explanation f equivalent to a given ICL problem task f∗. If no
such explanation has coverage under the prior, then the model may not be able to provide an accurate
solution to the ICL problem.

For example, a Bayesian linear regression model with fixed noise, defines the part of the prior over
explanations pθ(f) related to the outcome y as a set of coefficient vectors; a set of hyperplanes. If the
ICL dataset and prediction task are characterized by a linear relationship between continuous valued
queries and responses, then the prior would be suitable for the ICL problem. However, if they were
instead characterized by a polynomial relationship, then the relationship would not have coverage
under the prior and the precision of responses under the model would be limited by the capacity of
a hyperplane to fit a polynomial surface. By analogy, a LLM that is pre-trained or fine-tuned on a
large set of integrals expressed in natural language may have the functional capacity to integrate;
generalize to unseen functions and domains of the classes and spaces covered in the training set.
So if the ICL dataset and task are related to the integration of polynomials, the learned library of
mappings from text to token distributions may be appropriate for that ICL problem. However, if the
LLM training corpus were devoid of content related to calculus, then that learned library of mappings
may not include the functional capacity to solve the ICL problem.

The model likelihood pθ(x | f) encodes the variety of observations x that could be generated
according to a given explanation f . The variability encoded by this distribution is often called
aleatoric uncertainty—aleatory is a pretentious word for random—which refers to the inherent
randomness over generated datasets when sampling according to the likelihood under a given
explanation f . For example, given the explanation implied by a fair coin, we will still be uncertain
whether the outcome of a single coin flip will be heads or tails. As a more contemporary example,
if you were already familiar with this concept and I was to say, “I would like to share the idea of
aleatoric uncertainty with you,” you would know which idea I want to share, but, before reading this
paragraph, you would be uncertain about how I would share it with you. When the model likelihood
pθ(x | f) is indexed by an explanation that is equivalent to the task f ≡ f∗, then pθ(x | f) is equal to
the reference likelihood p(x | f∗). So even though we may be uncertain about which dataset would
be generated according to the model likelihood, we could still be certain that the generated dataset
would correspond to the task. However, if there is a discrepancy between the model and reference
likelihood then the model may not be suitable for the in-context learning problem.

The model posterior pθ(f | xn) = pθ(x
n | f)pθ(f)/

∫
pθ(x

n | f)dPθ(f), which is derived from
the model joint pθ(x, f) via Bayes’s theorem, encodes the variety over plausible explanations that
could have generated a specific set of observations xn. This variability is often called epistemic
uncertainty—epistemic is a pretentious term referring to knowledge—which conveys that we may
not yet know which explanation f among subset of reasonable explanations from the model prior best
explains any possible dataset x under the ICL problem.

For example, given only four outcome observations—say, two heads and two tails—the sample mean
estimate for the probability of observing heads is 0.5, but we may still be uncertain about whether
the coin generating the outcomes was fair or biased towards heads or tails because the variance of
that estimate is a still non-negligible 0.0625 when we assume the coin is actually fair. Related to our
contemporary example, if I only said, "I would like to share an idea with you," you can probably
imagine an abundance of ideas that I could be referring to and thus be uncertain about which one I
have chosen to share.

A relevant feature of epistemic uncertainty is that it is reducible as we observe more context. In
the coin flip example, as we observe more outcomes, our certainty about the probability of heads
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increases. In the second example, you may have a better idea about the class of ideas I may share
based on what has been presented thus far.

As a function of both the model likelihood and prior, the model posterior inherits the limitations of
both. But it also provides information about whether an in-context learning problem can be solved
reliably. Namely, variability over explanations is indicative of being uncertain about which task the
ICL dataset corresponds to. This variability can lead to the model generating responses corresponding
to tasks other than f∗. But it may also be indicative of when more examples (larger n) can improve
the quality of solutions to an in-context learning problem.

The model posterior predictive pθ(x | xn) =
∫
pθ(x | f)dPθ(f | xn), is a distribution defined

by the model that can be used to generate new observations x given the current observations xn.
Poetically, the model posterior predictive gives the model a voice to respond to observations with
new observations. The model posterior predictive convolves the model likelihood of the observations
given an explanation with the model posterior over explanations. This process entangles variety over
explanations after observing a dataset xn and variety over observations x for each specific explanation
f; the model posterior predictive entangles aleatoric and epistemic uncertainty.

B PROOFS FOR THEORETICAL RESULTS

We restate our formalization and assumptions for convenience. Observable examples (z, y) ∈ X
are modeled by the (X ,A)-random variable Xi and explanations f ∈ F are modeled by the (F ,B)-
random variable F, where A and B are the relevant sigma algebras. For each f ∈ F , let the model θ
define a probability measure Pf

θ on (X ,A). Let the model θ further define a probability measure
Pθ on (F ,B). And let Pθ and Pf

θ define the joint measure Mθ over ((X1,X2, . . . ),F). Finally,
we overload the notation “∼.” It means “sampled according to” when referring to the relationship
between a random variable instance and a density or distribution; e.g., x ∼ pθ(x). And it means
“distributed as” when referring to the relationship between a random variable and a probability
measure; e.g., X ∼ Pf

θ. Our method rests on Doob’s theorem for estimators (Doob, 1949), which
assumes the following three conditions.
Condition 1. The observation X and explanation F spaces are complete and separable metric
spaces.
Condition 2. The set of probability measures {Pf

θ : f ∈ F} defined by the model θ is a measurable
family; the mapping f 7→ Pf

θ(A) is measurable for every A ∈ A.
Condition 3. The model θ is identifiable;

f ̸= f ′ ⇒ Pf
θ ̸= Pf′

θ . (4)

Given these conditions we can state Doob’s theorem.
Theorem 2. Doob’s Theorem for estimators. Let F ∼ Pθ and X1,X2, . . . i.i.d ∼ Pf

θ. Assume
Conditions 1 to 3 and a measurable function h : F → R such that

∫
|h(f)|dPθ(f) <∞, then

lim
n→∞

E[h(F) | X1,X2, . . . ,Xn] = h(F) a.s. [Mθ]. (5)

Proof. Miller (2018) provides a detailed proof of this theorem.

Lemma 3. Let F ∼ Pθ, and X1,X2, . . . i.i.d ∼ Pf
θ. Assume Conditions 1 to 3 and let

{
∫
| log pθ(xm | f)|dPθ(f) <∞ : ∀xm ∈ Xm}. Then,

gθ(x,F) = −
1

|x|
log pθ(x | F) = −

1

|x|
log pθ(x | X∞) = gθ(x,X

∞).

Proof.

pθ(x | F) = lim
n→∞

∫
pθ(x | f)dPθ(f | X1, . . . ,Xn)

= lim
n→∞

∫
pθ(x | f,X1, . . . ,Xn)dPθ(f | X1, . . . ,Xn)

= lim
n→∞

pθ(x | X1, . . . ,Xn)
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g(x,F) = − 1

|x|
log pθ(x | F)

= − 1

|x|
log lim

n→∞
pθ(x | X1, . . . ,Xn)

= lim
n→∞

− 1

|x|
log pθ(x | X1, . . . ,Xn)

= − 1

|x|
log pθ(x | X∞)

= g(x,X∞)

Theorem 2. Under the conditions of Lemma 3,

pppc = pmpc

Proof. Define an alternative probability model such that F ∼ Pxn

θ and X1,X2, . . . i.i.d ∼ Pf,xn

θ . Let
pa, Pb, and ga denote the relevant quantities respecting this model. For example, pa(y | x) = pθ(y |
x, xn) and Pa(f) = Pθ(f | xn). Note that pθ(x | f) = pθ(x | f, xn) = pa(x | f) since X and Xn are
independent when f is known.

pppc =

∫∫
1
{
gθ(x, f) ≥ gθ(x

test, f)
}
dPθ(x | f)dPθ(f | xn)

=

∫
1
{
ga(x, f) ≥ ga(x

test, f)
}
dPa(x, f)

=

∫
1
{
ga(x, f) ≥ ga(x

test, f)
}
dPa(x, f, x

n+1:∞)

=

∫∫
1
{
ga(x, f) ≥ ga(x

test, f)
}
dPa(x, | f, xn+1:∞)dPa(f, x

n+1:∞)

=

∫∫
1
{
ga(x, x

n+1:∞) ≥ ga(x
test, xn+1:∞)

}
dPa(x | f, xn+1:∞)dPa(f, x

n+1:∞) Lemma 3

=

∫∫
1
{
ga(x, x

n+1:∞) ≥ ga(x
test, xn+1:∞)

}
dPa(x | xn+1:∞)dPa(x

n+1:∞)

=

∫∫
1
{
gθ(x, x

∞) ≥ gθ(x
test, x∞)

}
dPθ(x | x∞)dPθ(x

n+1:∞ | xn)

= pmpc

C POSTERIOR PREDICTIVE P-VALUE ALGORITHM

Algorithm 2 details the procedure for calculating the posterior predictive p-value in Equation (1) given
train data xn, test data xtest, a discrepancy function gθ(x, f), and the nuber of replication datasets to
generate M .

D LITE GENERATIVE PREDICTIVE P-VALUE ALGORITHM

Algorithm 3 summarizes a “lite” version of the estimator that forgoes approximate sampling from the
model posterior and likelihood. Instead, it samples replication data directly from the model predictive
distribution and calculates the discrepancy functions with respect to the observed data xn rather than
a dataset completion xN .
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Algorithm 2 p̂ppc

Require: data {xn, xtest}, discrepancy function gθ(x, f), # replicates M
1: for i← 1 to M do
2: fi ∼ pθ(f | xn) ▷ sample explanation f
3: xi ← () ▷ initialize replicant data
4: for j ← 1 to n do
5: zj , yj ∼ pθ(z, y|fi) ▷ sample example from model likelihood
6: xi ← (xi, zj , yj) ▷ update replicant data
7: return 1

M

∑M
i=1 1

{
gθ(xi, fi) ≥ gθ(x

test, fi)
}

▷ estimate p-value

Algorithm 3 p̂lite
gpc

Require: data {xn, xtest}, a discrepancy function gθ(x, x
n), # replicates M

1: for i← 1 to M do
2: xi ← () ▷ initialize replicant data
3: for j ← 1 to n do
4: zj , yj ∼ pθ(z, y | xi, xn) ▷ sample example from model
5: xi ← (xi, zj , yj) ▷ update replicant data
6: return 1

M

∑M
i=1 1

{
gθ(xi, x

n) ≥ gθ(x
test, xn)

}
▷ estimate p-value

E ADDITIONAL FIGURES

Figure 14a shows p-values as a function of the ICL dataset xn size n (context length). We see
that there is clear separation between the estimated generative predictive p-values p̂gpc for the in-
distribution test set (solid lines) and the OOD dataset (dashed lines). The separation is robust across
different ICL dataset sizes and the two discrepancy functions we test.

Figure 14b plots the FPR for the capability detector defined by p̂gpc the with NLML discrepancy. We
see that the FPR is stable across ICL dataset size n and that the FPR aligns well with the significance
level α. Figure 14c plots the FPR for the capability detector defined by p̂gpc the with NLL discrepancy.
In contrast, the FPR decreases with increasing ICL dataset size.

Figure 15a shows p-values under the Llama-2 7B model as a function of the ICL dataset xn size
n (context length). Again, we see a clear separation between the estimated generative predictive
p-values p̂gpc for the in-capability (solid lines) and the out-of-capability (dashed lines) tasks. The
separation is robust across different ICL dataset sizes and the two discrepancy functions we test.

Figure 15b plots the FPR for the capability detector defined by p̂gpc the with NLML discrepancy. We
see that the FPR trends up with increasing ICL dataset size n and approaches the significance level α.
Figure 15c plots the FPR for the capability detector defined by p̂gpc the with NLL discrepancy. As for
the simulated regression data, the FPR starts to decrease with increasing ICL dataset size, but for
lower α values the trend begins to reverse.

F CHOICE OF DISCREPANCY FUNCTION

It might not be immediately clear when to use one discrepancy function over another. In this section
we argue that in general one should prefer to use g(x, f) when possible as it can identify when the
model has high uncertainty about the value of f .

To illustrate this difference, imagine two models. The first model has posterior p1(f | xn) =
N(0, 1) and likelihood p1(x | f) = N(f, 0.0001). The second model has posterior p2(f | xn) =
N(0, 0.0001) and likelihood p2(x | f) = N(f, 1). In both models, the posterior predictive is
essentially the same standard normal, p(x | xn) = N(0, 1). However, in the first model, the posterior
predictive variance is due to epistemic uncertainty (we are unsure about the correct f ), while in the
second model, it is due to aleatoric uncertainty (we are confident about f , but the task is inherently
stochastic). Figure Figure 16 illustrates this scenario.
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Figure 12: Scatter plots demonstrating that pgpc becomes a better approximation of pppc with increas-
ing dataset completion size N − n.

(a) Polynomial Tabular (b) ReLU-NN Tabluar (c) Natural language (d) Generative fill near

Figure 13: The generative predictive p-value against dataset size n

Now assume that we have a test point xtest = 0.5. Ideally, we want to say that the second model does
a good job of predicting this data point because the task is well specified, while the first one does not
because we are still uncertain about the task. That is, the first model assigns high probability to many
values of f where xtest is unlikely.

Depending on the discrepancy we choose, we may or may not be able to distinguish between the two
scenarios and reject the correct model. For example, if we use

g(x, xn) := −
∑

zi,yi∈x

log p(zi, yi | xn),

log p(zi, yi | xn) is the same for both models and we will have identical p-values, which will indicate
that both models are suitable—an undesirable outcome.

On the other hand, if we use

g(x, f) := −
∑

zi,yi∈x

log p(zi, yi | f),

the p-values will be quite different. For the first model, many values of f will fall far away from xtest

when computing

pppc :=

∫ ∫
1{g(x, f) ≥ g(xtest, f)} dP (x | f) dP (f | xn).

As a result, g(xtest, f) will be much lower than g(x, f), and the PPC will be quite low. However,
in the second model, this will not happen, as all values of f will be sampled around 0, and xtest

is a reasonable observation for a normal distribution centered at f ≈ 0 with standard deviation 1.
Therefore, using the f -dependent PPC provides the desired behavior because it informs us when the
model is confused about the task. Although we have used an example for illustrative purposes, the
same behavior holds generally.
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(a) Generative predictive p-values (b) False Positive Rate (NLML) (c) False Positive Rate (NLL)

Figure 14: Simulated regression task. The generative predictive p-value against dataset size n and
it’s relationship to the false positive rate. The first figure shows the generative predictive p-values,
and the second and third figures show the false positive rate with the NLML and NLL discrepancy
functions, respectively.

(a) Generative predictive p-values (b) False Positive Rate (NLML) (c) False Positive Rate (NLL)

Figure 15: Natural language task. The generative predictive p-value against dataset size n and it’s
relationship to the false positive rate. The first figure shows the generative predictive p-values, and the
second and third figures show the false positive rate with the NLML and NLL discrepancy functions,
respectively.

G GEMMA-2 9B RESULTS

Figure 17b shows that the in-capability vs. out-of-capability distinction is also sensible for the
Gemma-2 9B model. So we conduct the same analysis for Gemma-2 9B that we did for Llama-2 7B
in Section 7.
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Figure 16: Comparison of two models: Model 1 exhibits high epistemic uncertainty, while Model 2
exhibits high aleatoric uncertainty. The posterior predictive distribution is shown alongside samples
of f and the test point xtest. Note that the numerical values in the plot differ from the example in the
text for visual clarity. The discrepancy function g(x, f) helps distinguish these cases by evaluating
how likely xtest is under different values of f .
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(a) Llama 2 7B (b) Gemma 2 9B

Figure 17: Natural language in-capability vs. out-of-capability tasks.

Figure 18a shows p-values under the Gemma-2 9B model as a function of the ICL dataset xn size n
(context length). We see a clear separation between the estimated generative predictive p-values p̂gpc
for the in-capacity SST2 data (solid lines) and the out-of-capacity MQP dataset (dashed lines), but
only for the NLML discrepency. The separation is robust across different ICL dataset sizes.

(a) Generative predictive p-values (b) False Positive Rate (NLML) (c) False Positive Rate (NLL)

Figure 18: Natural language task with Gemma-2 9B. The generative predictive p-value against dataset
size n and it’s relationship to the false positive rate. The first figure shows the generative predictive
p-values, and the second and third figures show the false positive rate with the NLML and NLL
discrepancy functions, respectively.

Figure 18b plots the FPR for the capability detector defined by p̂gpc the with NLML discrepancy. We
do not see the same stability of the FPR across ICL dataset size n that we saw for the Llama-2 7B
model. Instead the FPR decreases with increasing n for all significance level α. Figure 18c plots
the FPR for the capability detector defined by p̂gpc the with NLL discrepancy. We see that the false
positive rate is high for all values. These findings are reflected in the Precision curves on the left
hand side of Figure 19. We again see in the Recall curve that the NLL discrepancy leads to a more
sensitive predictor than the NLML discrepancy. The F1 and Accuracy curves show that the NLML
based p-value leads to a much more effective predictor for Gemma-2 9B.

Figure 19: Natural language model suitability detection ablation. Precision, recall, F1, and accuracy
metrics vs. number of in-context examples. SST2 ICL datasets are taken to be in-capability for
Gemma-2 9b. MQP ICL datasets are taken to be out-of-capability for Gemma-2 9b.

20


	Introduction
	What is an in-context learning problem?
	What is a model?
	A model is a choice to be criticised
	Posterior predictive checks are model critics for ICL problems.
	The generative predictive p-value and how to estimate it
	The martingale predictive p-value
	The generative predictive p-value
	CGM estimators for the generative predictive p-value

	Empirical evaluation
	The generative predictive p-value accurately predicts model capability
	The NLL discrepancy also indicates whether you have enough data
	The number of generated examples N-n interpolates the p-value estimate between the NLML and the ideal NLL discrepancies

	Conclusion
	Model intuition
	Proofs for theoretical results
	Posterior predictive p-value algorithm
	Lite generative predictive p-value algorithm
	Additional figures
	Choice of discrepancy function
	Gemma-2 9B results

