Under review as a conference paper at ICLR 2026

THE RANK AND GRADIENT LOST

IN NON-

STATIONARITY: SAMPLE WEIGHT DECAY FOR MIT-

ing robotics (Akkaya et al., 2019), game

IGATING PLASTICITY LOSS IN REINFORCEMENT
LEARNING
Anonymous authors
Paper under double-blind review
ABSTRACT

Deep reinforcement learning (RL) suffers from plasticity loss severely due to the
nature of non-stationarity, which impairs the ability to adapt to new data and learn
continually. Unfortunately, our understanding of how plasticity loss arises, dis-
sipates, and can be dissolved remains limited to empirical findings, leaving the
theoretical end underexplored. To address this gap, we study the plasticity loss
problem from the theoretical perspective of network optimization. By formally
characterizing the two culprit factors in online RL process: the non-stationarity of
data distributions and the non-stationarity of targets induced by bootstrapping, our
theory attributes the loss of plasticity to two mechanisms: the rank collapse of the
Neural Tangent Kernel (NTK) Gram matrix and the ©(3) decay of gradient mag-
nitude. The first mechanism echoes prior empirical findings from the theoretical
perspective and sheds light on the effects of existing methods, e.g., network reset,
neuron recycle, and noise injection. Against this backdrop, we focus primarily on
the second mechanism and aim to alleviate plasticity loss by addressing the gradi-
ent attenuation issue, which is orthogonal to existing methods. We propose Sam-
ple Weight Decay (SWD) — a lightweight method to restore gradient magnitude,
as a general remedy to plasticity loss for deep RL methods based on experience
replay. In experiments, we evaluate the efficacy of SWD upon TD3,

and SAC with SimBa architecture in MuJoCo, and DeepMind Control Suite
tasks. The results demonstrate that SWD effectively alleviates plasticity loss and
consistently improves learning performance across various configurations of deep
RL algorithms, UTD, network architectures, and environments, achieving SOTA
performance on challenging DMC Humanoid tasks.

INTRODUCTION
reinforcement learning (RL)
1 Median [e1Y] Mean Optimality Gap
achlequ remaxkab1.e SuCCess oo e e e
across a variety of domains, includ- sac - -

600 640 680 720 600 640 680 720 600 625 650

135 150 165

playing (Berner et al., 2019) and LLM
post-training that endows language
models with the ability to generate
human-like replies for breaking the Turing
test (Biever, 2023). The core driver
behind these advancements of deep RL
lies in the combination of RL and deep
neural networks. With the powerful
expressive capacity and adaptive learning
ability, the neural networks can effectively
approximate and optimize value functions
and policies under the RL training regime.
However, recent studies have identified a

(a) SWD for SimBa-SAC in DMC tasks

Median QM
TD3+SWD [] []

o3 [I — .

3500 4000 4500 3600 4000 4400

Mean Optimality Gap
|

4800 5200 5600 1500 1800 2100 2400

(b) SWD for TD3 in MuJoCo tasks

Median QM Mean Optimality Gap
| I

Double DQN+SWD []

Double DN [N o | [N E—

4000 4500 5000 5500 4000 4500 5000 5500 4000 4500 5000 5500 2680 2720 2760 2800

©
Figure 1: Aggregate Reliable metrics (Agarwal et al.,
2021) with 95% Stratified Bootstrap CIS.

1

Under review as a conference paper at ICLR 2026

critical yet often overlooked challenge — Plasticity Loss: as training progresses, the learning ability
of neural networks gradually diminishes (Elsayed & Mahmood, 2024; Nikishin et al., 2022). To
address this phenomenon, researchers in the RL. community have proposed different metrics and
remedies mainly from empirical perspectives, such as Network Reset (Nikishin et al., 2022), Neuron
Recycling (Sokar et al., 2023), Noise Injection (Nikishin et al., 2023a). However, these existing
works all rely on empirical intuitions and lack clear theoretical grounding, leaving a significant gap
between empiricism and theory. Despite the significance of this issue, explaining plasticity from
the theoretical perspective and developing principled algorithms remain highly challenging due to
the complexity of the underlying mechanisms of plasticity loss in the context of deep RL.

To analyze the optimization dynamics of Reinforcement Learning (RL) agents, we develop a struc-
tured theoretical framework rooted in a core insight: due to the dynamic nature of the optimization
process in RL, the loss function evolves with each optimization iteration—effectively initiating a
new optimization “task” in each round. Critically, the initial optimization point for the updated loss
function in the current round is exactly the terminal point from optimizing the previous round’s loss
function. This sequential initialization mechanism raises fundamental questions about its potential
adverse impacts on optimization performance, and this line of inquiry underpins the entire logic of
our theoretical analysis. Based on this insight, we arrive at a key conclusion: RL agents inherently
confront two critical challenges that exert profound adverse effects on loss function optimization.The
first is the potential rank deficiency of the Neural Tangent Kernel (NTK) (Jacot et al., 2018)—a core
factor that governs the network’s fitting capacity, specifically its ability to approximate the optimal
value function in RL.The second is a gradient magnitude decay , which directly regulates the neural
network’s fitting rate and dictates the time required to escape saddle points.

Our theoretical results reveal two causal mechanisms for the occurrence of plasticity loss. The first
mechanism echoes prior empirical findings from the theoretical perspective and sheds light on the
effects of existing methods. Differently, we focus primarily on the second mechanism, which has
not been well explored, and aim to alleviate plasticity loss by addressing the gradient attenuation
issue from an orthogonal angle to existing methods. In this paper, we design an anti-decay sampling
strategy as a compensation measure. We observe that gradient decay is governed by the linearly de-
caying term +, where k represents the number of learning iteration. In response to this, we construct
a set of linearly weighted coefficients, where the sampling probability decreases linearly with the
age of the samples. Specifically, we propose Sample Weight Decay (SWD) — a lightweight method
tailored to mitigate plasticity loss in deep Reinforcement Learning (RL) algorithms. SWD effectively
maintains the gradient magnitude at a appropriate scale, ensuring stable learning dynamics.

Building on the SimBa-SAC (Lee et al., 2025a; Haarnoja et al., 2018) , TD3 (Fujimoto et al., 2018)
and (Hasselt et al., 2016) algorithms as base algorithm, SWD significantly enhances
learning stability and performance in continuous control tasks and . To validate its
effectiveness, we evaluated SWD across three well-established online reinforcement learning (RL)
benchmarks: the MuJoCo (Brockman, 2016) , (Bellemare et al.,
2013) and the DeepMind Control (DMC) Suite (Tassa et al., 2018). For our evaluation protocol, we
adopted the Interquartile Mean (IQM) as the core performance metric, while leveraging GraMa (Liu
et al., 2025) as the key indicator to quantify plasticity. As illustrated in Figure 1, SWD consistently
delivers state-of-the-art (SOTA) performance.

The contributions of this paper are summarized as follows:

* We have developed a unified theory to account for plasticity in deep reinforcement learn-
ing (RL), thereby shedding clear light on the origins of such plasticity, bridging the gap
between empirical practice and theoretical research.

* We propose SWD, a theoretically grounded plug-and-play method to different RL algo-
rithms for mitigating plasticity loss and improving learning performance.

» The experiments demonstrate the efficacy of SWD in improving learning stability and per-
formance. Additionally, SWD achieves state-of-the-art (SOTA) performance in challenging
DMC Humanoid tasks.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Plasticity loss refers to the phenomenon in neural network training where the model gradually loses
its ability to adapt to new data, objectives, or tasks during the learning process (Dohare et al., 2024).
This usually reflects that the network becomes overly specialized to the early stages of training,
resulting in reduced learning capacity, slower convergence, or even a collapse in later stages of
training (Nikishin et al., 2022; 2023a). To gain a better understanding of plasticity loss and address
it effectively, many efforts have been made to conduct various empirical investigations and propose
different solutions (Ash & Adams, 2020; Lewandowski et al., 2023; Kumar et al., 2023; Ceron et al.,
2023; Asadi et al., 2023; Ellis et al., 2024; Chung et al., 2024; Tang & Berseth, 2024; Frati et al.,
2024; Ceron et al., 2024).

Sokar et al. (2023) first identified the dormant neuron phenomenon in deep reinforcement learning
(RL) networks, where neurons progressively fall into an inactive state and their expressive capacity
diminishes over the course of training. To address this issue, they proposed Recycle Dormant neu-
rons (ReDo) — a strategy that continuously detects and recycles dormant neurons throughout the
training process. In a separate line of work, Nikishin et al. (2023a) proposed Plasticity Injection,
a minimal-intervention technique that boosts network plasticity without altering trainable parame-
ters or introducing biases into predictive outputs. More recently, Liu et al. (2025) introduced Reset
guided by Gradient Magnitude (ReGraMa), which addresses neuronal activity loss in deep RL agents
by transitioning from activation statistics to gradient-based neuron reset strategies, maintaining net-
work plasticity through GraMa metrics. While these approaches have empirically validated their
effectiveness in combating plasticity loss, they predominantly operate at the model level — modify-
ing network architectures without addressing the fundamental theoretical questions: why plasticity
loss occurs and how different underlying mechanisms contribute to this phenomenon. This presents
a significant gap between empiricism and theory.

This theoretical gap motivates our work, which targets the fundamental gradient decay mechanism
identified through our theoretical analysis. Our proposed Sample Weight Decay (SWD) approach
operates at the strategic level — focused on weighting in experience replay — and provides a prin-
cipled means of compensating for the ©(1/k) gradient attenuation, a challenge unaddressed by
recent techniques. A key distinguishing feature of SWD is its orthogonality to existing methods:
whereas prior approaches modify network structures or plasticity injection patterns, SWD acts at the
data distribution level via intelligent experience reweighting, ensuring compatibility with existing
plasticity-preserving techniques and enabling synergistic performance improvements.

3 PRELIMINARIES

We consider an episodic Markov Decision Process (MDP) (S, A, H, { P, }/__,, {rs,}}__,) with hori-
zon H € Z* (Puterman, 2014). Here, S, A are measurable state, action spaces; P, (- | s, a) is the
transition kernel at step h ; 7, : S X A — [0, 1] is the reward at step h. At each episode, an initial
state 1 is drawn. At step h € [H], the agent observes 5, € S, chooses ap, € A, receives r(zp, ap),
and transits to z541 ~ Py(-| zp,an). A policy is m = {mp, } 2L | with 7, (- | @).

For policy m, the value and action-value functions are defined as:

H
Vir(z) =E Zrt(xt,at) xp =, ag ~ (| ze) |, Yz €S, h € [H|,
t=h
Qr(z,a) =rp(z,a) + Epop, (fz,0)[Vi1 (2], V(z,a) €S x A, h € [H],

with terminal condition V7, = 0. It is convenient to write the transition expectation operator Pp,
and policy expectation operator J7

(PrV)(2,0) = Eprap, (o) [V (&), J7Q)(@) = Eanr, (o) [Q(z; a)].

Then the policy Bellman equations compactly read,

Qp(x,a) = ri(z,a) + (PrVyly1)(2, a),
Vi(z) = JRQp)(@), Vi =0.

Under review as a conference paper at ICLR 2026

For any function g : S x A — R, define the value maximization operator V and the step-h optimality
Bellman operator 7}, by

Vq(z) = méxxg(x, a)

(Thg) (2, a) = ra(z,a) + (PrVy)(z, a).

4 THEORY ANALYSIS: THE RANK LOSS AND GRADIENT ATTENUATION

In this section, our primary objective is to establish a rigorous connection between the optimization
process and plasticity loss. To this end, we first utilize Equation 3 to derive a formal bound on
the model’s performance. We then simplify the dynamic optimization process by reducing it to an
initialization problem—a key step that streamlines subsequent analyses. Finally, we elaborate on
the derivation of our core results, with the full details presented in Section 4.1 and Section 4.2.

For the sake of clarity and analytical tractability, we focus our discussion on the simplest variant
of Fitted Q-Iteration (FQI) (Ernst et al., 2005). Importantly, the theoretical framework proposed
herein is not limited to this specific algorithm; it can be readily extended to accommodate a wider
class of value-based reinforcement learning methods. Of note, analogous analytical findings hold
for entropy-regularized Markov Decision Processes (MDPs). A comprehensive treatment of this
extension, including detailed proofs and supplementary analyses, is provided in Appendix B.4.

Let Dﬁ denote the replay buffer at step h following k episodes, and let f,’f 1 represent the estimated
Q-value at step h + 1 after k episodes. The loss function is then defined as follows:

ﬁﬂﬂﬁﬂwzu%| > [G@m%)-@@mmJ+%ﬁﬁH@Hud»f}

(S}Laalz7slz+1)NDlﬁ

fr = arg?ggﬁ’ﬁ(f, i), faa=0

Define the empirical distribution z¥ of the replay buffer over (s, a) and the empirical state-action
visitation frequency of the behavior policy 7%+ at time h in episode k:

1
k
wr(s,a) =] Z I{s=s; a=a;},
h (si,ai,s;)€EDE
gkt k+1 k+1 k+1 k+1 k+1
dr " (s,a) ={s=st" a=a "'}, (it ai ™) ~PE (s,a)
To establish a mathematical formulation for distribution shift and thereby quantify its impact on the
loss function, we rely on Proposition 1 to characterize such distributional non-stationarity. Further-
more, to facilitate the subsequent gradient decomposition, we express the loss function in the form
specified in Theorem 1. Finally, to connect the agent’s performance to the loss function, we leverage
Theorem 2 to provide a bound on the agent’s final performance.

Proposition 1 (Empirical distribution recursion). The empirical distribution satisfies

k 1 - k1
k:-‘rl: k dr] 1

Proof (sketch). By construction, [Dy*!| = k+1and Dyt = DFU{(si ™, a) ™", sy T])}. Expand-
ing the definition of u’,ﬁ“ and regrouping terms yields the stated convex combination. O
Theorem 1 (Population loss limit). Let F be a measurable function class. As the cardinality (or
appropriate size measure) of D,’fb tends to infinity (i.e., D’,ﬂ — 00), the following probabilistic
convergence holds:

CH T B By | (Foman) = i) onan) | + @

where C}’f is a constant independent of f. Henceforth, we do not rigorously distinguish between the
empirical risk and the expected loss, focusing instead on the underlying optimization problem.

Under review as a conference paper at ICLR 2026

The population loss limit established in Theorem 1 identifies two key sources of non-
stationarity in the training process of Fitted Q-Iteration: the non-stationary distribution UZ

and the non-stationary target 7y, f,lf 1~ Both of these sources drive variations in the target
population risk across training episodes k.

Theorem 2 (Suboptimality bound via squared bellman residuals). Fix horizon H. Let { fh}le

denote the final value estimates (e.g., from the K-th iteration; write fh = f}(LK))_ Define the greedy
policy
in(s) € argmax fu(s,a), h=1,... . H.

For functions f,g : S x A — R, define the step-h squared Bellman residual
2
Ah(f7g)(3, a) = (f(sv CL) - (ng)(& a))

Then for any start state x,

Vi(z) = V{7 (z) < VH | | En s1=a|+

H
ZAh(fh,th)(shaah)
h=1

E:.
i

H
Z An(fny Fri1) (s, an)
h=1

s1 = :c] . 3)

Equation 3 links model performance to the loss function for optimization. This means the
agent’s performance depends on Bellman residuals from the current and optimal policy tra-
jectories, not historical ones.

Building on the foundational framework established above, we can observe that the loss function
evolves at each iteration k; this phenomenon is analogous to initiating an entirely new round of
training. A key distinction from supervised learning lies in the initialization process: whereas su-
pervised learning relies on random initialization, reinforcement learning (RL) commences opti-
mization from the arg min of the loss function obtained in the previous iteration. Consequently,
investigating the properties of initialization points under such non-steady-state conditions becomes
particularly crucial—an insight that further underscores the necessity of the theoretical exploration
presented in our work.

4.1 NEURAL TANGENT KERNEL (NTK) DEGENERATION

A key advantage of random initialization is that it ensures the Neural Tangent Kernel (NTK) ma-
trix of an overparameterized neural network is full-rank with probability 1. This comes from the
property that low-dimensional manifolds have zero measure in high-dimensional spaces, making
the NTK matrix rank-deficient extremely unlikely. However, this random initialization is violated
in Reinforcement Learning (RL), so the initial NTK matrix’s structural properties (e.g., rank, condi-
tioning) are no longer guaranteed, adding uncertainty to learning.

Prior research (Du et al., 2019; Allen-Zhu et al., 2019) shows overparameterized networks achieve
global convergence to zero training error via Gradient Descent (GD) or Stochastic Gradient Descent
(SGD) if two conditions hold: (i) The initial NTK matrix K is well-conditioned: its eigenvalues are
bounded (no extremely large/small values to distort optimization). (ii) The NTK matrix K remains
stable during training, so its structural properties do not degrade and harm convergence.

4.2 GRADIENT ATTENUATION

Another advantage of proper random initialization lies in preserving an appropriate initial gradient
magnitude—a factor whose critical role in the optimization process has been well validated through

Under review as a conference paper at ICLR 2026

both experimental observations and theoretical analyses. As illustrated in (Dixit et al., 2023), the
time an optimizer needs to escape a saddle point is dictated by the magnitude of the initial state’s
projection onto the unstable (negative-curvature) subspace of the saddle point. In consequence,
excessively small initial gradients prolong the optimizer’s stagnation near saddle points, resulting in
a significant deterioration in optimization performance. Unfortunately, however, gradient decay is
an inherent and unavoidable phenomenon in reinforcement learning (RL) training, as evidenced by
the theorem presented below.

Theorem 3 (Gradient Dynamics at Initialization). For the optimization objective defined in Equa-
tion 1, the initial gradient of the loss function (evaluated at the parameter values that minimized the

loss of the previous iteration, f L satlsﬁes

e [(r-mi], Lo [
Distributional shift (4)
B [V - (Tflit — Tdln)]
Target drift

By setting f H+1 = 0. This eliminates the target-drift term entirely, leaving only the distributional-
shift component—where the ©(1/k) scaling factor becomes the dominant driver of gradient decay.
As the number of training iterations k£ grows large, the magnitude of the initial gradient will tend
to approach zero. This near-zero gradient signal risks trapping the optimization process at saddle
points, as the model lacks sufficient directional information to escape these suboptimal regions.

5 SAMPLE WEIGHT DECAY (SWD)

Algorithm 1 Sample Weight Decay (SWD)

Require: Linear decay steps 7', minimum weight wyy,;,, Current time ¢, timestamps {t; }‘Dl

for i = 1to |D| do

1:

2: age,=t—1;

3: w; = max (wmin, 1-— %)
4: end for

5: p; = Z‘D' -fori=1,...,[D]
6: L~ Categorlcal({pl}Z 1, B)

7: return B = {(s;, a;, 73,5}, d;) biet

SWD is a principled algorithmic intervention to mitigate gradient signal degradation in non-stationary
reinforcement learning environments. As in Algorithm 1, it addresses the core challenge in Theo-
rem 3: the harmful % decay of gradient contributions from new data. It uses a linear decay mecha-
nism, assigning each sample a weight w; = max(wmin, 1 — %), where age; = t — t; (t = current
training step, t; = sample collection step). The key insight of Algorithm 1 is its rigorous sample
weighting. It identifies the % coefficient—overly attenuating gradients from the current policy distri-

bution d™ —as the root of gradient degradation. To counter this, SWD introduces a linear weighting

scheme: each sample gets a probability p; = ﬁ with p; proportional to sample recency. This
j=1"i

neutralizes the % attenuation, restoring gradient magnitude and sustaining model plasticity during
training.

6 EXPERIMENTS

The core objective of the experiment is to validate the efficacy of the proposed SWD method in
mitigating plasticity loss during long-horizon training and quantify its performance advantages with
multifaceted analyses. Specifically, we focus on the following five key research questions:

Under review as a conference paper at ICLR 2026

6000}

— TD3+SWD 10000| === TD3+SWD 6000| === TD3+SWD
5000 03 c D3 c 03
::: 000 ::: 8000) : 5000
g K] 84000
v 3000 v 6000 v
2 2 4000 g
@ 2000 0 1)
i i E_zooo
1000 2000 1000
0 o
7 7 3 5 2 7 3 5 7 7 3 B
Steps x10° Steps x10° Steps x10°
(a) Ant (b) Halfcheetah (¢) Humanoid
— TD3+SWD = TD3+SWD
4000
£ B3 £3000 D3
2 2
© 3000 7]
o« o©
v S 2000
32000 g
2 2
(-3 (-3
& 1000 = 1000
0 2 4 6 8 -0 2 4 6 8
Steps x10° Steps x10°
(d) Walker2d (e) Hopper

Figure 2: Empirical validation of SWD across TD3 in MuJoCo environments (mean =+ std over 5
runs). SWD consistently improves sample efficiency and performance.

Q1: Does the proposed method SWD consistently improve the training performance of
mainstream reinforcement learning (RL) algorithms across different continuous and dis-
crete control tasks?

* Q2: Does the temporal weighting strategy of the proposed method SWD play a critical role
in alleviating plasticity loss?

* Q3: Can SWD adapt to the training scenarios with increased Update-to-Data (UTD) ra-
tio configurations, where more severe plasticity loss should be addressed for better data
efficiency?

To address Q1, we conduct experiments using the , TD3, and SAC algorithms within
the SimBa architecture (Lee et al., 2025a), evaluating their performance across the

(Bellemare et al., 2013), the MuJoCo environments (Brockman, 2016), and the DMC
suite (Tassa et al., 2018). We also include the canonical method Prioritized Experience Replay
(PER) (Schaul et al., 2016) as a direct baseline method. Furthermore, to provide reverse validation of
SWD’s effectiveness, we use a variant called Sample Weight Augmentation (SWA), i.e., a counterpart
designed to produce the opposite effect by assigning higher weights to older samples. For Q2, we
adopt GraMa (Liu et al., 2025) as the metric for plasticity, using it to empirically demonstrate the
superiority of our proposed method in alleviating plasticity loss. To answer Q3, we evaluate the
performance of SWD based on Simba-SAC under different UTD ratios, with a specific focus on the
Humanoid Run environment.

6.1 PERFORMANCE EVALUATION

Experimental Setup. We evaluate methods on three benchmark suites: (i) For the five MuJoCo
environments (Ant, HalfCheetah, Hopper, Humanoid, Walker2d), we use TD3 (Fujimoto et al.,
2018) as the base algorithm with conventional MLP networks.
Hasselt et al., 2016
(iii) For the four difficult DMC tasks
(Humanoid-Run, Humanoid-Walk, Dog-Run, Dog-Walk),we use SAC (Haarnoja et al., 2018) as
the base algorithm with the SimBa network architecture (Lee et al., 2025a). In this subsection,

Under review as a conference paper at ICLR 2026

15000
me Double DQN+SWD
50000 400
< 12500 Double DQN c c
H 5 40000 H
E 10000 E, E 300
30000
§ 7500} g § 200
] % 20000 a
a 5000} 3 2100
& & &
2500} 10000
0|
2 4 6 8 2 4 6 8 0 2 4 6 8
Step X108 Step x10° Step x10°
(a) Phoenix (b) DemonAttack (c) Breakout

Figure 3: Empirical validation of SWD across Double DQN in ALE environments (mean = std over
5 runs). SWD consistently improves sample efficiency and performance.
Median QM Mean Optimality Gap

SAC+PER | | | |

o I e BE B

600 640 680 720 600 640 680 720 600 625 650 200 220 240

Figure 4: Performance comparison between SWD and PER based on SAC. Aggregate Reliable met-
rics (Agarwal et al., 2021) with 95% Stratified Bootstrap CIS in DMC tasks.

we include PER as a canonical baseline for comparison. Detailed hyperparameters and details are
provided in Appendix C.

Results As illustrated in Figure 2, Figure 3 and Figure 4, SWD demonstrates a remarkable ability
to enhance the algorithm’s performance. Specifically, it facilitates accelerated learning during the
early phases of training and attains superior final policy quality upon convergence—an advantage
that is particularly prominent in the Ant and Humanoid environments. In sharp contrast, PER (Prior-
itized Experience Replay) demands nearly several times more training time, while the performance
improvements it yields remain extremely limited. This observation aligns well with our theoretical
framework, and Equation 3 further confirms that performance enhancement can only be achieved by
optimizing the TD errors along both the optimal policy path and the current policy path.

6.2 ABLATION STUDY

To provide reverse validation of SWD’s effectiveness, we develop a contrasting method calledSample
Weight Augmentation (SWA), which implements the opposite weighting strategy by assigning higher
weights to older data samples. This design allows us to empirically verify our theoretical hypothesis
that prioritizing recent experiences is crucial for maintaining neural plasticity.More details are shown
in Appendix F, where we employed GraMa (Liu et al., 2025) as our measure of neural plasticity.

— SAC+SWD
- 250 SAC+SWA 8000 0.6|
F200) = SAC £ 6000 o
£ 150 S = 0.4
2 Z 4000 4
8100 i ©
- 2000 / 0.2
0|
‘ 2 7 % (] 2 7 3 3 0.8y 2 7 % 3
Steps x10° Steps x10° Steps x10°
(a) Performance Comparison (b) Gradient L1 Norm Evolution (c) GraMa

Figure 5: Experiments conducted in the humanoid-run environment demonstrate that SWA exhibits
a lower gradient magnitude, GraMa, and inferior performance, which validates our hypothesis.

Results The reverse validation experiment yields key insights: (i) As shown in Figure 5(a), SWA
consistently underperforms SWD and uniform sampling, validating that prioritizing recent experi-
ences is critical for non-stationary RL learning; (ii) Figure 5(b) shows SWA reduces gradient L1
norms during training (weakened learning signals), aligning with our gradient attenuation analysis
and confirming older data exacerbates plasticity loss; (iii) GraMa analysis in Figure 5(c) reveals SWA
causes sparser gradients and greater plasticity loss than SWD (reduced neural activation/adaptation

Under review as a conference paper at ICLR 2026

0.5 == SAC+SWD ol
SAC 03l
0.4 03l
H H 2.,
503 T .
I} 502 E
0.2
0.1}
o1 01
0 7 7 3 (] 0 7 7 % (] 085 2 7 % (]
Steps x10° Steps x10° Steps x10°
(a) Humanoid Run (b) Humanoid Walk (¢) Humanoid Stand

Figure 6: GraMa Metric in Humanoid Locomotion: Run, Walk, and Stand: The results clearly
demonstrate that SWD effectively mitigates the loss of plasticity in humanoid robots across these key
locomotor states.

capacity), providing direct empirical support for our theoretical framework’s plasticity degradation
prediction.

6.3 THE EFFECT IN ALLEVIATING PLASTICITY LOSS

To verify whether SWD can mitigate plasticity, we employed GraMa as the evaluation metric to
quantify the degree of plasticity during the model training process. Notably, a larger GraMa value
indicates a weaker learning capability of the neural network.

Results The corresponding results are illustrated in Figure 6. As depicted in this figure, our pro-
posed SWD effectively alleviates the gradient sparsity that arises during the training process. Notably,
the most pronounced effects are observed in the Humanoid Run environment and the Humanoid
Stand environment. It can be clearly seen from the figure that SWD exerts its function in the mid-
dle and late stages of training — gradient attenuation is not severe in the early stage — and this
observation is consistent with our theoretical predictions.

6.4 COMPATIBILITY AGAINST HIGHER UPDATE-TO-DATA RATIOS

SAC I SAC+SWD

350
268 285
o 300 - 220
f
& 250
g 188
£ 200
j0)
2 150
5
=100
50
0
UTD=1 UTD=2 UTD=5

Update-to-Data Ratio

Figure 7: Performance comparison across different UTD ratios (1, 2, 5) in Humanoid Run. SWD
consistently outperforms uniform sampling across all UTD settings, with improvements ranging
from 17.3% to 30.1%.

The Update-to-Data Ratio (UTD) is a critical metric for measuring an algorithm’s data utilization
efficiency. Intuitively, uniform sampling assigns equal weight to each sample; after multiple updates,
the gradient signals that can effectively guide the update of network parameters become very weak.
In contrast, our SWD method assigns greater weight to more recent samples, ensuring that sufficiently
strong gradient signals are maintained even after multiple updates.

As shown in Figure 7, SWD demonstrates consistent effectiveness across UTD ratios of 1, 2, and
5. Notably, the method shows the largest improvement (+30.1%) at UTD=5, suggesting that SWD
is particularly beneficial when gradient updates are frequent. This robustness indicates that our
approach is broadly applicable across different algorithmic configurations without requiring UTD-
specific tuning.

Under review as a conference paper at ICLR 2026

Median QM Mean Optimality Gap
SWD+S&P 11 I T I
Plasticity Injection [l [| [| [|
ssp N [[[
ReGraMa | | | |
SWD . 1 [1
sac W [] [| [|
200 240 280 200 240 280 200 240 280 40 80 120

Figure 8: Performance comparison between SWD+S &P and other methods designed to address plas-
ticity issues. Aggregate Reliable metrics (Agarwal et al., 2021) with 95% Stratified Bootstrap CIS
in Humanoid run.

6.5 COMPARISON WITH OTHER METHODS DESIGNED TO ADDRESS PLASTICITY LOSS

To further evaluate the effectiveness of SWD, we compare it in the Humanoid Run environment with
three representative methods that are designed to address plasticity issues: ReGraMa (Liu et al.,
2025), S&P (Ash & Adams, 2020), and Plasticity Injection (Nikishin et al., 2023b). Moreover, we
explore SWD’s synergistic potential with S&P, i.e., SWD+S &P, which demonstrates the orthogonality.

Results As in Figure 8, SWD outperforms other NTK-based methods on the SimBa (Lee et al.,
2025a) network. Moreover, SWD combined with S&P yields the best result, validating its orthogo-
nality to NTK-based methods. We provide a detailed discussion on the relationship between SWD
and prior works for plasticity loss in Appendix C.2.

6.6 OTHER RESULTS

Hyperparameter Choices and Decay Strategies To analyze the hyperparameter sensitivity of
SWD, we conduct a grid-search test for two core hyperparameters, i.e., linear decay steps 7' and min-
imum weight threshold w;,;,. In Table 12 of Appendix F, SWD exhibits low sensitivity to different
choices, demonstrating its stability. Moreover, we compare the linear decay strategy of SWD with
the other two commonly adopted strategies, i.e., exponential decay and polynomial decay. Table 13
shows that the linear decay strategy outperforms the other two strategies.

Compute-efficient Approximation of SWD To further reduce the computational overhead of per-
sample weight, we propose a bucket-based approximation method. As in Table 2 of Appendix D,
this approximation significantly reduces the training time at no compromise of policy performance.

7 CONCLUSION

In this paper, we identified and addressed the critical issue of plasticity loss in long-horizon rein-
forcement learning through both theoretical analysis and algorithmic innovation. Our theoretical
framework reveals that gradient attenuation follows a ©(1/k) decay pattern, fundamentally limit-
ing the agent’s ability to adapt to new experiences over extended training periods. To counteract
this degradation, we proposed Sample Weight Decay (SWD), a simple yet effective method that ap-
plies age-based weighting to replay buffer sampling. Through comprehensive experiments across
MuJoCo, ALE and DMC environments with TD3, DDQN and SAC algorithms, we demonstrated
consistent performance improvements ranging from 13.7% to 30.1% in IQM scores. Our ablation
studies and reverse validation experiments confirm that temporal weighting direction is crucial for
maintaining neural plasticity. The broad applicability of SWD across different algorithms, environ-
ments, and training configurations, combined with its minimal computational overhead, makes it a
practical solution for enhancing long-horizon RL performance. This work opens new avenues for
understanding and mitigating plasticity loss in deep reinforcement learning.

Limitations Owing to computational constraints, our evaluation is restricted to tasks within the
MuJoCo, ALE and DeepMind Control Suite (DMC). Additionally, our exploration and practical ap-
plication of the proposed theoretical framework remain at a preliminary stage—representing merely
the “tip of the iceberg.” Moving forward, future research will extend SWD to more complex scenar-
ios, real-world environments. Ultimately, our goal is to develop SWD into a practical, robust tool that
effectively preserves the learning capacity of deep reinforcement learning (RL) agents.

10

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To promote transparency and reproducibility within the scientific community, we provide compre-
hensive details regarding training parameters and associated resources in the appendix. Additionally,
the complete codebase for both the training and inference processes has been uploaded to the sup-
plementary material.

ETHICS STATEMENT

This paper is committed to advancing the field of plasticity loss to develop more effective Reinforce-
ment Learning (RL) algorithms. Our research adheres rigorously to responsible research practices
and is fully aligned with the ICLR Code of Ethics. All training data utilized in this study was
sourced from open-access datasets, and every asset employed strictly complies with the original
licensing agreements and terms of service of the respective data providers.

11

Under review as a conference paper at ICLR 2026

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. NeurIPS, 2021.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In /ICML, 2019.

Kavosh Asadi, Rasool Fakoor, and Shoham Sabach. Resetting the optimizer in deep RL: an empiri-
cal study. In NeurIPS, 2023.

Jordan Ash and Ryan P Adams. On warm-starting neural network training. NeurIPS, 2020.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
2013.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Celeste Biever. Chatgpt broke the turing test-the race is on for new ways to assess ai. Nature, 2023.
G Brockman. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Johan Samir Obando Ceron, Marc G Bellemare, and Pablo Samuel Castro. Small batch deep rein-
forcement learning. In NeurIPS, 2023.

Johan Samir Obando Ceron, Aaron Courville, and Pablo Samuel Castro. In value-based deep rein-
forcement learning, a pruned network is a good network. In ICML. PMLR, 2024.

Wesley Chung, Lynn Cherif, Doina Precup, and David Meger. Parseval regularization for continual
reinforcement learning. In NeurlIPS, 2024.

Rishabh Dixit, Mert Gurbuzbalaban, and Waheed U. Bajwa. Exit time analysis for approximations
of gradient descent trajectories around saddle points. Information and inference, 2023.

Shibhansh Dohare, J. Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A. Rupam Mah-
mood, and Richard S. Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):
768-774, 2024.

Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds
global minima of over-parameterized neural networks. In /CLR, 2019.

Benjamin Ellis, Matthew T. Jackson, Andrei Lupu, Alexander D. Goldie, Mattie Fellows, Shimon
Whiteson, and Jakob Foerster. Adam on local time: Addressing nonstationarity in rl with relative
adam timesteps. arXiv preprint, arXiv:2412.17113, 2024.

Mohamed Elsayed and A Rupam Mahmood. Addressing loss of plasticity and catastrophic forget-
ting in continual learning. arXiv preprint arXiv:2404.00781, 2024.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
JMLR, 2005.

Lapo Frati, Neil Traft, Jeff Clune, and Nick Cheney. Reset it and forget it: Relearning last-layer
weights improves continual and transfer learning. In ECAI 2024, pp. 2998-3005. 2024.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In ICLR, 2018.

12

Under review as a conference paper at ICLR 2026

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, and Pieter Abbeel. Soft actor-critic algorithms and applica-
tions. arXiv preprint arXiv:1812.05905, 2018.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning. AAAI, 2016.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In NeurIPS, 2018.

Zilin Kang, Chenyuan Hu, Yu Luo, Zhecheng Yuan, Ruijie Zheng, and Huazhe Xu. A forget-and-
grow strategy for deep reinforcement learning scaling in continuous control. ICML, 2025.

Saurabh Kumar, Henrik Marklund, Ashish Rao, Yifan Zhu, Hong Jun Jeon, Yueyang Liu, and Ben-
jamin Van Roy. Continual learning as computationally constrained reinforcement learning. arXiv
preprint, arXiv:2307.04345, 2023.

Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian,
Peter R. Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. Simba: Simplicity bias for scaling
up parameters in deep reinforcement learning. In /CLR, 2025a.

Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspher-
ical normalization for scalable deep reinforcement learning, 2025b.

Alex Lewandowski, Haruto Tanaka, Dale Schuurmans, and Marlos C. Machado. Directions of
curvature as an explanation for loss of plasticity. volume arXiv:2312.00246, 2023.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Jiashun Liu, Zihao Wu, Johan Obando-Ceron, Pablo Samuel Castro, Aaron Courville, and Ling Pan.
Measure gradients, not activations! enhancing neuronal activity in deep reinforcement learning.
arXiv preprint arXiv:2505.24061, 2025.

Skander Moalla, Andrea Miele, Daniil Pyatko, Razvan Pascanu, and Caglar Gulcehre. No repre-
sentation, no trust: connecting representation, collapse, and trust issues in ppo. NeurlPS, 37:
69652-69699, 2024.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In /CML, 2022.

Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney,
and André Barreto. Deep reinforcement learning with plasticity injection. arXiv preprint
arXiv:2305.15555, 2023a.

Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney, and
André Barreto. Deep reinforcement learning with plasticity injection. NeurIPS, 2023b.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
ICLR, 2016.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In ICML, 2023.

Hongyao Tang and Glen Berseth. Improving deep reinforcement learning by reducing the chain
effect of value and policy churn. In NeurlIPS, 2024.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

13

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were utilized to support the writing and refinement of this
manuscript. Specifically, an LLM was employed to assist in enhancing language clarity, improv-
ing readability, and ensuring coherent expression across different sections of the paper. It aided in
tasks like rephrasing sentences, checking grammar, and optimizing the overall textual flow.

It should be noted that the LLM played no role in the conception of research ideas, the formulation
of research methodologies, or the design of experiments. All research concepts, ideas, and analyses
were independently developed and carried out by the authors. The LLM’s contributions were strictly
limited to elevating the linguistic quality of the paper, without any involvement in the scientific
content or data analysis.

The authors fully assume responsibility for the entire content of the manuscript, including any text
generated or polished with the help of the LLM. We have verified that the text produced with the
LLM complies with ethical guidelines and does not lead to plagiarism or any form of scientific
misconduct.

B PROOF

B.1 PROOF OF THEOREM 1

In this section, we prove Theoreml.

E‘Cﬁ(fv fll'f—o—l)

. 2
= E(Sh,ah)’vuﬁ |:]E5h+1"’ph,('5hsah) |:(f(5h’ ah) - T(Sh’ ah) - HE%X ffl;Jrl (S’H‘l’ a/)) :|:|

= E(shyah,)“‘#ﬁ

E3h+1~ph('|sh,ah) [(f(‘s’“ah) - 771f;5+1(3h’ah)

R . 2
+ P max Frsr(8ne1,0") (s, an) — max Fra(sni, a/)) H

= E(Shyah,)wﬂﬁ

N 2
ES}L+1~p}L('|S}L7a}L) [<f(sh’ah) - 771ff]1€+1(3h’ah))

. . 2
(P max f (sns1,0)(snyan) = max fi (sni,)

+2 (f(sh,ah) - 771f;’f+1(8h»ah))

X (Ph H}f}x]Ei]f+1(5h+1a a')(sn,an) — H}f}x f;]f+1(5h+1, a’)) H

) 2]
=E(,, an)~out (f(Sh, an) — Tnfr 1 (s, ah))

~ ~ 2
By [BerrenClonny | (Bamse Fsonnsa)onan) — mae s (onnsa)) |

.
rk £k /

= E(sh,,ah,)N,u’;; (f(sha ap) — ﬁth+1(5h, ah)) + E(sh,ah)N#’g |:Var5h+1"’l)h("3haah) [m;}X fh+1(5h-i-17 a)”

The loss function can be decomposed into two components:

. 2
* Bellman Residual Term:]E(s;“ah)Nuii [(f(sh, ap) — Thf,’fﬂ(sh, ah)) }—Measures the

function approximation error.

14

Under review as a conference paper at ICLR 2026

* Environmental Stochasticity Term: E,,).« [VarshHNph(,‘s,“ah) maxeq/ f}}fﬂ(ShH’al)”_

Reflects the intrinsic randomness of state transitions.

B.2 PROOF OF THEOREM 2

First, we prove one lemma to help the proof.

Lemma 1. Consider an episodic MDP with horizon H. Let 7' {7rh} h—1 denote any policy,
and let {Qh}hH | denote any set of estimated Q-functions. Let m = {m,}L | be the greedy policy

induced by {Q YL,
For all h € [H], define:

« Value function: Vi,(s) = J7Qn(s) where J7 f(s) = Egmm,(1s)[f (5, a)]
« Bellman residual: (s, a) := Qn(s,a) — (ThQns1)(s, a)

Then, for all elements x € S, the followingholds :

H
Vilw) = V{7 (@) = 3 Bor |(OF = 37)Qn(s) | 51 =
h=1

H
+ ZEﬂ/ [Qh(sh,ah) — (ThQns1)(sn,an) | 51 =

h=1

Proof.

Vi(z) = Vi (z) = J5Qu(x) =I5 QF (x)

= I5Qn(x) — IF Qn(x >+Jz’é2h(x> - I7 QF (x)

=I5 (Qn — Q))(@) + (TF =I5)Qn(x)

= I7 (In + T(Qns1 — h —]P’thr)(@) + JIF — I7)Qn(x)
= I (In + Pu Vi — PuVim) () + (JF — IF) Qu ()

= I U (x) + J5 Pp (Vs — Vit (@) + (IF — I3)Qn(x)

Using recurrence relations and the boundary condition VHH = VgI_H = 0, we can derive that

H h—1
i) -)= 3 (Tt) s

k=1

H

h—1
+2 (H I M) (I = 7)) @n (=)
h=1 \k=1
Which complete our proof. O

15

Under review as a conference paper at ICLR 2026

let 7’ be the optimal policy 7*,7 be the greedy policy induced by {Qp }iL,, and {V,,}}, be the
corresponding value function.Then, the suboptimal bound is given by:

Vi'(@) = V' (2) = V' (2) = Va(2) + Va(e) — V" ()

H
{ﬁn@h—i—l shoan) = Qnlsnsan) | 51 = Jf} +) E. {Qh(shaah) — ThQnr1(sn,an) | s1 =

h=1 h=1

) @)
H .)
+ > B [0 - I)Qn | 51 =2
h=1

Mm

©)

Since 7 is the greedy policy with respect to Q. we have @ <0, and for (D) we can drive that:

H
@®< ZET&'* [|77LQh+1(5haah) — Qn(sn,an)l|s1 = 1}
h=1

u 2
< Z \/Ew* {(ﬁ@hﬂ(sha an) — Qn(sn, ah)) | s = x]
h=1

H
> En |:(771Qh+1(8h7ah) - Qh(sh,ah))2 | 51 = x}
h=1

The last step makes use of the Cauchy-Schwarz inequality, and the second step employs Jensen’s
inequality.

Similarly, we can derive that (2) also satisfies:

H 2
@ <VH ZEw {(EQ}LH(S}“%) — Qh(%,%)) | s1 = 17]
h=1

By combining the above results, we complete the proof of Theorem 2.
B.3 PROOF OF THEOREM 3

In this section, we prove Theorem 3.

Proof.

VE & [(f - 7—hff]f+l)2} =E.x |2 (f - 77th'+1)

£k
) f:71

=By |2(F - TfE T - Tafln) VS

fh—1 Fl—1 i
k fk—1
L i

=E.: |2 (ﬁf}f*l - Eﬂfﬂ) Vf‘fk_l (f 77lfh+1)

fk—1
fu

+ B,

N

@
Recall the define of f =1 and the Proposition 1 of e,

®=VE, [(f Tfi) }

fk—1
h

= IvE, [(f i) }

=0

h

v -]

fk—1
fn

16

Under review as a conference paper at ICLR 2026

By combining the above results, we complete the proof of Theorem 3 O

B.4 ENTROPY REGULARIZED MDP

In this section, we present the theoretical analysis and error bounds for the Entropy-Regularized
Markov Decision Process (MDP). Specifically, the state value function with an entropy reward is
defined as follows:

H
V’:ott,ﬂ'(z) —-F Z (Tt(xhat) + Oélogﬂ't(at | xt)) Tp =T, ~ Wt(-|It)]) Vo € S7h € [HL
t=h
T (3 a) = rp(x, a) +]PhV,f(jrﬁlﬂ(a: a), V(z,a) €S x A h € [H]
with terminal condition V;I"i‘ 1" = 0. Then the policy Bellman equations compactly read
T (2, a) = iz, a) + IP’hV,fiﬁl”(x, a)
Vit (@) = T(QT — alogm)(2), Vil =

For any function g : S x A — R, define the soft value operator V*° and the step-h soft optimality
Bellman operator 7.° by

V;Oﬁ(s) — m;l'XEaNTF [9(s,a) — alogm(als)],
(7750ﬂf) (S,(I) = ’I“(S,(l) —+ (]P)thfoft) (3, a)

We define the Boltzmann policy w}"f‘ induced by the function f : S x A — R, which is given by:

7" = argmax Eqx[f (s, a) — alogm(als)].

Similarly, we have the following lemma.

Lemma 2. Consider an entropy- regularized episodic MDP with horizon H. Let 7' {ﬂ'h}
denote any policy, and let Q = {Qh} n_, denote any set of estimated soft Q-functions. Let m =
{7} be the Boltzmann policy induced by Q = {Qu}I_,. For all h € [H], define:

* Value function: Viy(s) = I} (Qn — alog my)(s) where I f(s) = Eqr,(-15)[f (5, a)]
* Bellman residual: 1 (s, a) :== Qn(s,a) — (T, Qny1)(s, a)

* Entropy: H(m(-|s)) = —Equn(.|s)[log m(-[s)]
Then for all x € S, we have

Vi) =13 ZEW[B = 37)Qu(sn) + a(H(ma-Js1)) = Hiwh (lsn)) | s1 =]

+ B |[Qnlsnsan) = (T Quia)(snyan) | 51 = .

Proof.
Vi(2) = Vi () = T (Qn — alogm)(z) — IF (Q — alogn’)(x)
= I5Qn() — JF Q™ (2) + a(H(mn(|2)) — H(m),(|2))
= I5Qn(w) — IF Qu(w) + IF Qu(w) — I Q™™ (2) + a(H(ma(-|2)) — H(m)(-]2)))
=I5 (Qn — QX")(@) + IFQn(w) — IF Qul(@) + a(H(mn(-|2) — H(m},(2))
= IF (b + T3 Qnr — 7 — PaVioly™) (@) + I Qn () — IF Qu(x) + a(H(ma(-|2)) — H(m},(|2))
= T5 (I + Ba(Vier = VY™) (@) + T5Qn (@) — I7 Q) + a(M(ma(2)) = H(mh ()
= I7 In(2) + I} Pp (Vi *Vi(ftiﬁ,)(w) +I7Qn(x) — IF Qu(z) + a(H(mp(-

17

Under review as a conference paper at ICLR 2026

soft, 7’

Using recurrence relations and the boundary condition VH+1 Vi 11 = = 0, we can derive that
- H /[h-1
Vi(a) = V™ (@) =) (H 7 Pk-) 7 In()
h=1 \k=1

This completes the proof. O

Theorem 4 (Suboptimality bound for entropy-regularized MDP via squared Bellman residuals).
Fix horizon H. Let {Qy, }f_, be the soft value estimates. Define {WQ,h}f:I as the Boltzmann policy

induced by {Qh}thl. Let {7} }L | be the optimal policy.
For functions f,qg : S x A — R, define the step-h squared Bellman residual:

An(f,9)(s,a) = (f(s, a) — mqfig(s,a))z |

Then we have

Vi (2) = VP (2) < VH

H
E,.
Q
h=1

S1=x|+

H
Z 1(Qn, Qni)(sn, an)

51:$‘|

Z An(Qny Qi) (snyan)

Proof.

softﬂrQ

Vlsofl,ﬂ'* (:L’) o Vl ’ (CC) = Vlsc'ft’ﬂ—* (:L’) — Vl() V () Vl ()

H
Ere [T Qura(snsan) = Qnlsnyan) | 51 = 2] + 3 Eny [Qnlsnsan) = T Qua(sn,an) | 51 = 2]

= h=1

O ®
H

+ Y e [(U - 300) Qn+a (H(miClsn)) = Himg Clsn) |51 =]
h=1

I
M=

©)

Since T is the Boltzmann policy induced by {Q h}thl—a property that satisfies Equation B.4—we

can deduce that @) < 0. The remainder of the proof follows the same reasoning as that of Theorem 2.
O

C RELATED PRELIMINARIES

In this section, we present the detailed parameters and settings of the experiments.

C.1 ALGORITHM

TD3 In our paper, we utilize TD3 as a representative of deterministic policies. TD3, an Actor
- Critic algorithm, is widely adopted as a baseline in various decision - making scenarios and has
given rise to a multitude of variants, which have established new state - of - the - art (SOTA) results
on numerous occasions. Different from the traditional policy gradient method DDPG (Lillicrap
et al., 2015), TD3 makes use of two heterogeneous critic networks, denoted as ng , to alleviate the
problem of over - optimization in Q - learning. Thus, the loss function of the critics is

Lo(0;) =Easrs [(y— Qgi(s,a))Q] for Vi € {1,2}.

18

Under review as a conference paper at ICLR 2026

Where y = r + ymin;—1» Q5 (s',74(s")), O denotes the target network parameters. The actor is
updated according to the Deterministic Policy Gradient:

Vd(9) = Es [VaQo, (5,75(5)) Vome(s)] .

SAC We select SAC as a representative of stochastic policies and combine it with SWD in the
main experiment. SAC is devised to maximize expected cumulative rewards while also boosting
exploration via the maximum entropy principle. The actor strives to learn a stochastic policy that
outputs a distribution over actions, where the critics estimate the value of taking a specific action
in a given state. This enables a more diverse range of actions, facilitating better exploration of the
action space. In traditional reinforcement learning, the objective is to maximize the expected return.
However, SAC introduces an additional term that maximizes the entropy of the policy, encouraging
exploration. The objective function for optimizing the policy is given by:

J(m) = Es, 0, [r(51, 1) + aH(m(-]51))]

where H (7(+|s:)) denotes the entropy of the policy, and « is a temperature parameter that balances
the trade-off between the immediate reward and the policy entropy. The training procedure of SAC
involves two main updates: updating the value function and updating the policy. The value function
is updated by minimizing the following loss:

1 2
L(Q) = E¢sanns)~p | 5 (Qs;a) = (r V("))
where + is the discount factor, dictating the weight assigned to future rewards. V' (s’) denotes the
value function of the next state, which is typically approximated using a separate neural network.
The policy is updated by maximizing the following objective:

J(m) = Eg,p [Eqymr [Q(St, ar) — alog m(as|s:)]]

Here, —alog 7(ay|s;) represents the entropy of the policy, which serves to promote exploration.

SimBa We adopt SimBa (Lee et al., 2025a) as our SAC network architecture, which is specifically
designed for reinforcement learning (RL) scenarios. Distinctive for embedding a ”simplicity bias,”
SimBa not only mitigates overfitting but also enables parameter scaling in deep RL—addressing
two key challenges in large-scale RL model training. Concretely, SimBa comprises three core com-
ponents: (i) an observation normalization layer that standardizes input data using running statistics,
ensuring stable data distribution for subsequent layers; (ii) a residual feedforward block that estab-
lishes a direct linear pathway from input to output, facilitating gradient propagation and preserving
low-complexity feature representations; and (iii) a layer normalization module that regulates feature
magnitudes, preventing excessive value drift during training.

Prioritized Experience Replay We adopt Prioritized Experience Replay (PER) (Schaul et al.,
2016) to bias sampling toward transitions that are expected to yield larger learning progress. Instead
of drawing mini-batches uniformly from the replay buffer, PER assigns each transition ¢ a priority
p; based on its temporal-difference (TD) error and samples proportionally:

0; = |Tz' +’YV(8§) — Q(si,ai)|7 p; = (5i +5)a7 P(i) = Epip,’
R

where € > 0 avoids zero priorities, « € [0, 1] controls the degree of prioritization (v = 0 recovers
uniform sampling). To correct the sampling bias introduced by P(%), PER uses importance-sampling

(IS) weights
(vtw) "= o
w; = ') w; =)
N P() max; wj

where N is the buffer size and 5 € [0, 1] is annealed toward 1 during training.

Gradient Magnitude-based neuron activity assessment We employ GraMa (Liu et al,
2025)—a gradient-magnitude-driven, architecture-agnostic metric— as our plasticity metric.
Specifically, for each individual neuron (or predefined parameter group), GraMa calculates the mag-
nitude of gradients computed over mini-batches and maintains a normalized score for each layer;
crucially, higher scores correspond to greater neural plasticity.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Given an input distribution D, let |[Vh}L(z)| denote the gradient magnitude of neuron i in layer ¢
under an input x € D, and let H, represent the number of neurons in layer ¢. The learning capacity
score for each individual neuron by leveraging the normalized average of its corresponding layer /,
as formulated below:

o Baco [[VHLG@)]]
© i Shen, Been [[VREL(2)]]

GraMa (Gradient Magnitude-based neuron activity assessment) identifies neuron i in layer £ as in-
active if G, < 7, where 7 denotes the predefined inactivity threshold.

Double DQN We adopt Double Deep Q-Network (DDQN) (Hasselt et al., 2016) as our reinforce-
ment learning (RL) baseline, specifically chosen for both pixel-based input scenarios and tasks with
long time horizons. By decoupling action selection from target value estimation, DDQN effectively
mitigates the overestimation bias inherent in standard DQN, ensuring more stable and accurate value
learning. Concretely, while standard DQN maximizes the estimated value using the same network,
DDQN utilizes the online network with parameters 6 to select the optimal action and the target
network with parameters 6~ to evaluate that action.

C.2 RELATIONSHIP AND COMPLEMENTARITY WITH EXISTING WORK

Prior research on plasticity loss has predominantly centered on NTK-based methods, which we
classify into three core categories based on their underlying mechanisms:

(1) Reset-based methods (leveraging random initialization properties): These approaches capi-
talize on a key characteristic of over-parameterized neural networks: randomly initialized networks
exhibit full-rank Neural Tangent Kernel (NTK) matrices. To mitgate plasticity loss, they period-
ically reset network parameters to refresh the NTK and restore the model’s capacity for learning.
Representative examples include:

* ReDo (Sokar et al., 2023): Employs activation-driven reinitialization to reset critical net-
work components

* ReGraMa (Liu et al., 2025): Utilizes gradient information to guide parameter reinitializa-
tion, targeting degraded NTK structures

* S&P (Ash & Adams, 2020): Introduces controlled noise into network parameters to reac-
tivate dormant plasticity

* Plasticity Injection (Nikishin et al., 2023b): Under the premise of keeping the output
unchanged, thoroughly refresh the final linear layer.

(2) Implicit NTK regularization methods: This category focuses on detecting early signs of NTK
rank deficiency—such as unconstrained parameter norm growth—and implementing targeted con-
straints to avert rank collapse. Key strategies within this framework are:

* Reducing Churn (Tang & Berseth, 2024): Suppresses off-diagonal elements of the NTK
matrix to minimize gradient correlations, while dynamically adjusting step sizes in rein-
forcement learning (RL) settings to preserve NTK integrity

* Auxiliary-loss-based representation stabilization (Moalla et al., 2024): Integrates addi-
tional loss terms to stabilize feature representations, indirectly safeguarding NTK rank

(3) Architecture-based methods: These approaches address plasticity loss at the network design
level, either by constructing inherently larger and more robust architectures or by dynamically ex-
panding parameter counts during training to prevent NTK rank collapse. Notable instances include:

* Hyperspherical Normalization for Scalable Deep RL (Lee et al., 2025b): Designs archi-
tectures with built-in stability, leveraging hyperspherical normalization to maintain NTK
full-rank properties

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

* Forget-and-Grow Strategy for Deep RL Scaling (Kang et al., 2025): Implements dy-
namic parameter expansion to sustain NTK rank and preserve plasticity

Our work is fundamentally orthogonal to these NTK-based paradigms. Unlike existing methods—
which tackle plasticity loss through architectural modifications, explicit NTK regularization, or pa-
rameter resetting—we adopt a novel gradient dynamics perspective: our core objective is to mit-
igate the temporal distribution shift in the replay buffer, a primary driver of gradient magnitude
decay and subsequent plasticity loss. Theoretically, our distribution-aware sampling strategy does
not overlap with NTK-based plasticity preservation techniques; instead, it offers a complementary
approach to addressing the root causes of plasticity loss in deep learning systems.

D APPROXIMATE BUCKET-BASED SAMPLING

Efficient Approximation via Bucket Sampling To mitigate the computational overhead of re-
calculating weights for the entire replay buffer, we exploit the monotonic age property of our
weighting scheme. Since the weights are strictly determined by the temporal age of transitions, we
propose a bucket-based approximation method:

1. Partitioning: We divide the [V transitions in the buffer into B sequential buckets (where
B < N).

2. Approximation: Leveraging the monotonicity, we estimate the total weight of each bucket
using the weight of its median sample, significantly reducing calculation redundancy.

3. Hierarchical Sampling: We first sample a bucket according to the approximated proba-
bility distribution, then uniformly sample a transition within that bucket.

As shown in Table 1, this approach reduces the sampling complexity from O(N) to O(B). With
B = 2000 and a buffer size of N = 10°, this yields a theoretical 500x speedup in the weight
computation phase, rendering the overhead negligible.

Table 1: Computational complexity comparison. N denotes the buffer size (10%), M the batch size,
and B the number of buckets (2000).

Method Complexity Scale Dependency
Uniform Sampling O(M) Independent of Buffer
Exact SWD O(N + M) Linear w.r.t Buffer

Approximate SWD O(B + M) Linear w.r.t Buckets

Empirical Validation We validate the efficiency and effectiveness of this approximation on the
Humanoid-run task. As presented in Table 2, the Approximate SWD method matches the wall-
clock training time of Uniform sampling (approx. 8.7 hours) while preserving the performance gains
of the exact method, achieving a high episode return of 224.9 + 17.5.

Table 2: Runtime and performance comparison on Humanoid Run. The approximate method
retains performance while significantly reducing training time.

Method Wall-Clock Time Episode Return
Uniform 8.65h 190.46 + 7.99

Exact SWD 1043 h 229.01 £37.43
Approximate SWD 8.70 h 224.93 +17.47

21

Under review as a conference paper at ICLR 2026

E EXPERIMENTAL DETAILS

E.1 STRUCTURE

TD3 In this paper, we adopt the official network architecture of Twin Delayed Deep Deterministic
Policy Gradient (TD3) for baseline comparison, with detailed layer-wise configurations provided in
Table 3.

Table 3: Network Structures of the Twin Delayed Deep Deterministic Policy Gradient (TD3)

Network Component Actor Network Critic Network"

Fully Connected Layer (state_dim) — (256) (state_dim + action_dim) — (256)
Activation ReLLU RelLU

Fully Connected Layer (256) — (128) (256) — (128)
Activation RelLU RelLU

Output Fully Connected Layer (128) — (action_dim) (128) — (1)
Activation Tanh? None

T: TD3 adopts two identical critic networks (Critic 1 & Critic 2) for delayed Q-value update, both following
the above structure;
1. Tanh activation constrains the actor’s output action to the range [—1, 1], consistent with standard continuous
action space settings.

Table 4:

Layer Input Channels Kernel Size /Stride OQOutput Channels Activation

Convl 4 8x8/4 32 RelLU
Conv2 32 4x4/2 64 RelLU
Conv3 64 3x3/1 64 ReLU

Table 5: Architecture of the Double DQN Q-Network. The input is the flattened feature vector from
the Encoder.

Layer Configuration Activation
Input (Flatten) 3136 units (7 X 7 x 64) -

FC1 Linear(3136 — 512) ReLU
Output Linear(512 — |.A|) -

SAC In this paper, we adopt the same configuration of SimBa as used in the Soft Actor-Critic
(SAC) algorithm, with detailed network structures provided in Table 6, Table 7, and Table 8. Our
implementation refers to the official SimBa code repository? to ensure consistency with the original
design.

'nttps://github.com/google—deepmind/dgn
https://github.com/SonyResearch/simba

22

https://github.com/google-deepmind/dqn
https://github.com/SonyResearch/simba

Under review as a conference paper at ICLR 2026

Table 6: Architecture of the SimBa Residual Block

Layer/Operation Input/Output Dimensions Activation Function
Layer Normalization (hidden_dim) — (hidden_dim) None
Fully Connected (Expansion) (hidden_dim) — (4 xhidden_dim) ReLLU
Fully Connected (Compression) (4 xhidden_dim) — (hidden_dim) None
Residual Connection Input & Block Output* None

*, 9

: ”@” denotes element-wise addition between the original input and the block output.

Table 7: Architecture of the SimBa Encoder

Component Structure & Dimension Flow

Input Projection (Fully Connected) (input_dim) — (hidden_dim)
Residual Block Stack x num_blocks® (each block follows Table 6)
Final Layer Normalization (hidden_dim) — (hidden_dim)

f: ”num_blocks™ denotes the number of stacked residual blocks, configurable based on task requirements.

Table 8: Network Structures of the SimBa-SAC Framework

Component Actor Network Critic Network

Input Dimension (state_dim) (state_dim + action_dim)
SimBa Encoder hidden_dim=128; num_blocks=1 hidden_dim=512; num_blocks=2
Fully Connected (128) — (action_dim) 512) = (1)

Output Activation Tanh? None

%: Tanh activation is used to constrain the action output within the range [—1, 1], consistent with standard SAC
implementations.

E.2 IMPLEMENTATION DETAILS

Our codes are implemented with Python 3.10 and JAX. All experiments were run on NVIDIA
GeForce GTX 3090 GPUs. Each single training trial ranges from 10 hours to 21 hours, depend-
ing on the algorithms and environments.

TD3 Implementation Our TD3 implementation refers to CleanRL?, an efficient and reliable
repository for reinforcement learning (RL) algorithm implementations.

Notably, for all OpenAl MuJoCo experiments, we directly use the raw state and reward signals
from the environment without any normalization or scaling. To facilitate exploration, an exploration
noise sampled from A (0, 0.1) is added to the action selection process of all baseline methods. The
discount factor is set to 0.99, and the Adam optimizer is adopted for all algorithms.

Table 9 presents the complete hyperparameters of TD3 used in our experiments; to reproduce the
learning curves reported in the main text, we recommend using random seeds 1 to 5.

10

Shttps://github.com/vwxyzijn/cleanrl/blob/master/cleanrl/td3_continuous_
action.py
*nttps://github.com/vwxyzin/cleanrl/blob/master/cleanrl/dgn_atari.py

23

https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/td3_continuous_action.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/td3_continuous_action.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari.py

Under review as a conference paper at ICLR 2026

Table 9: Hyperparameters of the TD3 Algorithm

Hyperparameter TD3 Configuration
Actor Learning Rate 1074
Critic Learning Rate 1073
Discount Factor 0.99
Batch Size 128
Replay Buffer Size 106
SWD-Specific Hyperparameters
Linear Decay Steps 100, 000
Minimum Weight (min_weight) 0.1
Table 10:
Hyperparameter Value
General Training
Optimizer Adam
Learning Rate 1x1074
Discount Factor () 0.99
Buffer Size 1 x 108
Batch Size 32
Learning Starts 80, 000 steps
Train Frequency 4 steps
Total Timesteps 10M
Exploration (Epsilon-Greedy)
Start Epsilon (ggar) 1.0
End Epsilon (geng) 0.01
Exploration Fraction 0.10 (1 x 10° steps)
Target Network
Target Update Frequency 1000 steps

Target Update Rate (7) 1.0 (Hard Update)
SWD-Specific Hyperparameters

Linear Decay Steps 80, 000
Minimum Weight 0.1
Number of Buckets 2000

24

Under review as a conference paper at ICLR 2026

SAC Implementation Our Soft Actor-Critic (SAC) implementation is also based on the CleanRL
repository, specifically referencing the continuous action SAC implementation”.

Table 11: Hyperparameters of Our SAC Implementation (with SimBa Encoder)

Hyperparameter SAC (with SimBa Encoder)
Optimizer AdamW (weight decay = 10~2)
Policy (Actor) Learning Rate 1x1074
Q-Network (Critic) Learning Rate 1x107%

Discount Factor 0.99

Batch Size 256

Warmup Steps (for Policy Update) 5000

Target Q-Network Update Rate (7) 0.005

Target Q-Network Update Interval 1 (step)

Policy (Actor) Update Interval
Entropy Target

SimBa Encoder (Actor): Hidden Dim / Blocks
SimBa Encoder (Critic): Hidden Dim / Blocks

2 (steps, policy_frequency)
—|A] (|A| = action space dimension)
128 /1
512/2

SWD-Specific Hyperparameters
Linear Decay Steps
Minimum Weight (min_weight)

80,000
0.1

PER-Specific Hyperparameters
Prioritization Exponent (o)
Importance Sampling Exponent (3)
Beta Increment Rate

0.6
0.4
1x 1076

E.3 SAC LEANRING CURVE

The hyperparameters for our SAC (equipped with the SimBa encoder) are detailed in Table 11.

1000
s SAC+SWD m— SAC+SWD
EGOO SAC+PER c 800 SAC+PER
3 m— SAC :?-: — SAC
[} [}
& 400 x 600
3 3
'g 3 400
8.200 ‘a
w W 200
%) 3 5 %) T 3
Steps x10° Steps x10°
(a) Dog Run (b) Dog Walk
250| === SAC+SWD s SAC+SWD
c SAC+PER 22 SAC+PER
5200 s SAC 5 m— SAC
2 £ 600)
&€ 150 <
3 3 400
_g 100, .g
Q. Q.
“osp w200
0 (
0 2 7 6 2 Z 3
Steps x10° Steps x10°

(¢) Humanoid Run

(d) Humanoid Walk

Figure 9: SAC leanrning curve on DMC tasks

Shttps://github.com/vwxyzin/cleanrl/blob/master/cleanrl/sac_continuous_
action.py

25

https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sac_continuous_action.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sac_continuous_action.py

Under review as a conference paper at ICLR 2026

F ADDITIONAL EXPERIMENTS

F.1 swa

In this section, we provide detailed information about our ablation experiments. First, we present
the algorithmic details of SWA, which are summarized in Algorithm 2.

We adopt the detailed parameter settings of Soft Actor-Critic (SAC), as presented in Ta-
ble 11—specifically, we use the same Linear decay steps 7' and minimum weight wy,i, as specified
therein.

Algorithm 2 SWA

Require: Linear decay steps 7', minimum weight wy,;,, Current time ¢, timestamps {¢; } ﬂ

1: fori=1to|D| do

2 age; =1t —t;

3: w; = min (1, Wpmin + “gfi)

4: end for

5: p;= —=p+—fori=1,...,|D
bi > 12w, Il

c T~ Ceuegorical({pi}‘Z-El17 B)
7: return B = {(s;, a;, 4, 8;,d;) }iez

o))

F.2 ABLATION STUDY OF UPDATE-TO-DATA

250| == SAC+SWD 300] s SAC+SWD

SAC £250 SAC

H
@ 200
[
@
2150
3
-5_100

50| 50

4 6 8 4 6 8
Steps x10° Steps x10°

(a) UTD=1 (b) UTD=2

300} === SAC+SWD
SAC

Episode Return

2 4 6 8
Steps x10°

(c) UTD=5

Figure 10: Sensitivity analysis regarding the UTD. Data represents the mean =+ std of five experi-
mental runs conducted on the Humanoid Run.

We adopt SAC (Soft Actor-Critic) as the backbone algorithm and aim to optimize the Update-to-
Data (UTD) ratio. This optimization enables faster policy iteration, thereby better leveraging the
advantages of SWD. As illustrated in Figure 10, with the increase in the UTD ratio, SWD consistently
outperforms the uniform sampling baseline.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

We constructed a 5 x 5 hyperparameter grid, varying Tjecay from 20, 000 to 100, 000 and wyi, from
0.02 to 0.10. Experiments were performed on the Humanoid Run task, with each of the 25 con-
figurations averaged over 5 random seeds (totaling 125 independent runs). The results, summarized
in Table 12, indicate that SWD maintains stable performance across a wide range of hyperparameter
settings. While optimal performance fluctuates slightly, the method does not exhibit drastic failure
modes within the tested range, demonstrating its robustness to hyperparameter selection.

Table 12: Parameter Sensitivity Analysis. Grid search results on Humanoid Run (Mean =+ Std).
The best performance is marked in bold.

Decay Steps Minimum Weight Threshold (w,;y,)

(Tlecay) 0.02 0.04 0.06 0.08 0.10
20,000 229.7 +26.4 2409 +37.1 2349 +15.0 217.9 £38.6 226.1 +23.7
40,000 231.4 +44.4 224.5 £34.4 231.3 +30.8 227.0 £23.1 225.5 +22.5
60,000 217.4 +40.2 231.2 £29.9 240.5 +55.0 215.7 +27.9 240.7 +35.3
80,000 233.6 +42.9 231.8 +35.7 225.2 +42.6 2209 +17.6 231.3 +54.4
100,000 224.0 £32.1 201.8 +31.9 217.0 +48.5 241.6 +38.4 229.2 +29.5

F.4 IMPACT OF DECAY STRATEGY

We further investigate the influence of the weight decay schedule on performance. To this end,
we compare our default Linear Decay against Exponential and Polynomial variants. The specific
formulations are defined as follows:

 Linear (Ours): w(t) = max(wmin, 1 — t/T), providing a constant rate of importance
reduction.

* Exponential: w(t) = max(wmin, exp(—t/7)), where 7 = 1, modeling rapid initial for-
getting.

¢ Polynomial: w(t) = max(wmin, (1—¢/T)P), where p = 2, penalizing older samples more
aggressively than the linear approach.

The empirical results on Humanoid-run are summarized in Table 13. Our proposed Linear Decay
strategy significantly outperforms alternative schedules. Notably, both Exponential and Polynomial
decay perform worse than the SAC baseline, suggesting that overly aggressive weight reduction
disrupts the learning stability required for high-dimensional control tasks.

Table 13: Performance comparison of different decay strategies on Humanoid Run. The relative
difference is calculated with respect to our Linear Decay method.

Decay Strategy Episode Return vs. Linear SWD
Linear Decay (Ours) 229.01 + 3743 -

SAC (Baseline) 190.46 £+ 7.99 —16.8%
Exponential Decay (r = 1) 187.04 £ 29.85 —18.3%
Polynomial Decay (p =2) 13291 £ 11.12 —42.0%

27

	Introduction
	Related Work
	Preliminaries
	Theory Analysis: The Rank Loss and Gradient Attenuation
	Neural Tangent Kernel (NTK) Degeneration
	Gradient Attenuation

	Sample Weight Decay (SWD)
	Experiments
	Performance Evaluation
	Ablation Study
	The Effect in Alleviating Plasticity Loss
	Compatibility Against Higher Update-to-Data Ratios
	Comparison with Other Methods Designed to Address Plasticity Loss
	Other Results

	Conclusion
	The Use of Large Language Models (LLMs)
	Proof
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of theorem 3
	Entropy Regularized MDP

	Related Preliminaries
	Algorithm
	Relationship and Complementarity with Existing Work

	Approximate bucket-based sampling
	Experimental Details
	Structure
	Implementation Details
	SAC leanring curve

	Additional Experiments
	SWA
	Ablation Study of Update-to-Data
	Parameter Sensitivity Analysis
	Impact of Decay Strategy

