

000 001 002 003 004 005 006 007 008 009 010 011 012 013 THE RANK AND GRADIENT LOST IN NON- STATIONARITY: SAMPLE WEIGHT DECAY FOR MIT- IGATING PLASTICITY LOSS IN REINFORCEMENT LEARNING

008 **Anonymous authors**
009 Paper under double-blind review

ABSTRACT

014 Deep reinforcement learning (RL) suffers from plasticity loss severely due to the
015 nature of non-stationarity, which impairs the ability to adapt to new data and learn
016 continually. Unfortunately, our understanding of how plasticity loss arises, dis-
017 sипates, and can be dissolved remains limited to empirical findings, leaving the
018 theoretical end underexplored. To address this gap, we study the plasticity loss
019 problem from the theoretical perspective of network optimization. By formally
020 characterizing the two culprit factors in online RL process: the non-stationarity of
021 data distributions and the non-stationarity of targets induced by bootstrapping, our
022 theory attributes the loss of plasticity to two mechanisms: the rank collapse of the
023 Neural Tangent Kernel (NTK) Gram matrix and the $\Theta(\frac{1}{k})$ decay of gradient mag-
024 nitude. The first mechanism echoes prior empirical findings from the theoretical
025 perspective and sheds light on the effects of existing methods, e.g., network reset,
026 neuron recycle, and noise injection. Against this backdrop, we focus primarily on
027 the second mechanism and aim to alleviate plasticity loss by addressing the gradi-
028 ent attenuation issue, which is orthogonal to existing methods. We propose Sam-
029 ple Weight Decay (SWD) — a lightweight method to restore gradient magnitude,
030 as a general remedy to plasticity loss for deep RL methods based on experience
031 replay. In experiments, we evaluate the efficacy of SWD upon TD3, **Double DQN**
032 and SAC with SimBa architecture in MuJoCo, **ALE** and DeepMind Control Suite
033 tasks. The results demonstrate that SWD effectively alleviates plasticity loss and
034 consistently improves learning performance across various configurations of deep
035 RL algorithms, UTD, network architectures, and environments, achieving SOTA
036 performance on challenging DMC Humanoid tasks.

037 1 INTRODUCTION

039 Deep reinforcement learning (RL)
040 has achieved remarkable success
041 across a variety of domains, including
042 robotics (Akkaya et al., 2019), game
043 playing (Berner et al., 2019) and LLM
044 post-training that endows language
045 models with the ability to generate
046 human-like replies for breaking the Turing
047 test (Biever, 2023). The core driver
048 behind these advancements of deep RL
049 lies in the combination of RL and deep
050 neural networks. With the powerful
051 expressive capacity and adaptive learning
052 ability, the neural networks can effectively
053 approximate and optimize value functions
and policies under the RL training regime.
However, recent studies have identified a

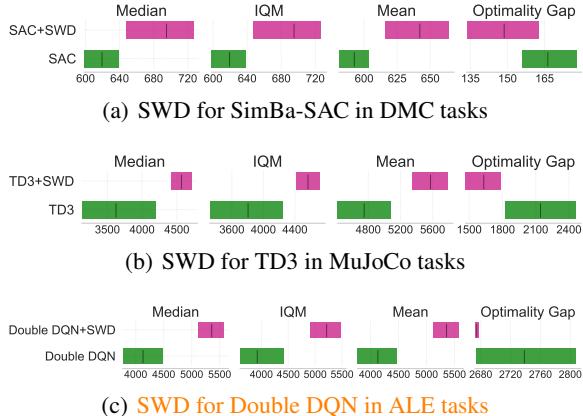


Figure 1: Aggregate Reliable metrics (Agarwal et al., 2021) with 95% Stratified Bootstrap CIS.

critical yet often overlooked challenge — *Plasticity Loss*: as training progresses, the learning ability of neural networks gradually diminishes (Elsayed & Mahmood, 2024; Nikishin et al., 2022). To address this phenomenon, researchers in the RL community have proposed different metrics and remedies mainly from empirical perspectives, such as Network Reset (Nikishin et al., 2022), Neuron Recycling (Sokar et al., 2023), Noise Injection (Nikishin et al., 2023a). However, these existing works all rely on empirical intuitions and lack clear theoretical grounding, leaving a significant gap between empiricism and theory. Despite the significance of this issue, explaining plasticity from the theoretical perspective and developing principled algorithms remain highly challenging due to the complexity of the underlying mechanisms of plasticity loss in the context of deep RL.

To analyze the optimization dynamics of Reinforcement Learning (RL) agents, we develop a structured theoretical framework rooted in a core insight: due to the dynamic nature of the optimization process in RL, the loss function evolves with each optimization iteration—effectively initiating a new optimization “task” in each round. Critically, the initial optimization point for the updated loss function in the current round is exactly the terminal point from optimizing the previous round’s loss function. This sequential initialization mechanism raises fundamental questions about its potential adverse impacts on optimization performance, and this line of inquiry underpins the entire logic of our theoretical analysis. Based on this insight, we arrive at a key conclusion: RL agents inherently confront two critical challenges that exert profound adverse effects on loss function optimization. The first is the potential rank deficiency of the Neural Tangent Kernel (NTK) (Jacot et al., 2018)—a core factor that governs the network’s fitting capacity, specifically its ability to approximate the optimal value function in RL. The second is a gradient magnitude decay, which directly regulates the neural network’s fitting rate and dictates the time required to escape saddle points.

Our theoretical results reveal two causal mechanisms for the occurrence of plasticity loss. The first mechanism echoes prior empirical findings from the theoretical perspective and sheds light on the effects of existing methods. Differently, we focus primarily on the second mechanism, which has not been well explored, and aim to alleviate plasticity loss by addressing the gradient attenuation issue from an orthogonal angle to existing methods. In this paper, we design an anti-decay sampling strategy as a compensation measure. We observe that gradient decay is governed by the linearly decaying term $\frac{1}{k}$, where k represents the number of learning iteration. In response to this, we construct a set of linearly weighted coefficients, where the sampling probability decreases linearly with the *age* of the samples. Specifically, we propose **Sample Weight Decay (SWD)** — a lightweight method tailored to mitigate plasticity loss in deep Reinforcement Learning (RL) algorithms. SWD effectively maintains the gradient magnitude at an appropriate scale, ensuring stable learning dynamics.

Building on the SimBa-SAC (Lee et al., 2025a; Haarnoja et al., 2018), TD3 (Fujimoto et al., 2018) and **Double DQN** (Hasselt et al., 2016) algorithms as base algorithm, SWD significantly enhances learning stability and performance in continuous control tasks and **pixel-based tasks**. To validate its effectiveness, we evaluated SWD across three well-established online reinforcement learning (RL) benchmarks: the MuJoCo (Brockman, 2016), **Arcade Learning Environment** (Bellemare et al., 2013) and the DeepMind Control (DMC) Suite (Tassa et al., 2018). For our evaluation protocol, we adopted the Interquartile Mean (IQM) as the core performance metric, while leveraging **GraMa** (Liu et al., 2025) as the key indicator to quantify plasticity. As illustrated in Figure 1, SWD consistently delivers state-of-the-art (SOTA) performance.

The contributions of this paper are summarized as follows:

- We have developed a unified theory to account for plasticity in deep reinforcement learning (RL), thereby shedding clear light on the origins of such plasticity, bridging the gap between empirical practice and theoretical research.
- We propose SWD, a theoretically grounded plug-and-play method to different RL algorithms for mitigating plasticity loss and improving learning performance.
- The experiments demonstrate the efficacy of SWD in improving learning stability and performance. Additionally, SWD achieves state-of-the-art (SOTA) performance in challenging DMC Humanoid tasks.

108 **2 RELATED WORK**

110 Plasticity loss refers to the phenomenon in neural network training where the model gradually loses
 111 its ability to adapt to new data, objectives, or tasks during the learning process (Dohare et al., 2024).
 112 This usually reflects that the network becomes overly specialized to the early stages of training,
 113 resulting in reduced learning capacity, slower convergence, or even a collapse in later stages of
 114 training (Nikishin et al., 2022; 2023a). To gain a better understanding of plasticity loss and address
 115 it effectively, many efforts have been made to conduct various empirical investigations and propose
 116 different solutions (Ash & Adams, 2020; Lewandowski et al., 2023; Kumar et al., 2023; Ceron et al.,
 117 2023; Asadi et al., 2023; Ellis et al., 2024; Chung et al., 2024; Tang & Berseth, 2024; Frati et al.,
 118 2024; Ceron et al., 2024).

119 **Sokar et al. (2023)** first identified the *dormant neuron phenomenon* in deep reinforcement learning
 120 (RL) networks, where neurons progressively fall into an inactive state and their expressive capacity
 121 diminishes over the course of training. To address this issue, they proposed Recycle Dormant neu-
 122 rons (ReDo) — a strategy that continuously detects and recycles dormant neurons throughout the
 123 training process. In a separate line of work, **Nikishin et al. (2023a)** proposed Plasticity Injection,
 124 a minimal-intervention technique that boosts network plasticity without altering trainable parame-
 125 ters or introducing biases into predictive outputs. More recently, **Liu et al. (2025)** introduced Reset
 126 guided by Gradient Magnitude (ReGraMa), which addresses neuronal activity loss in deep RL agents
 127 by transitioning from activation statistics to gradient-based neuron reset strategies, maintaining net-
 128 work plasticity through GraMa metrics. While these approaches have empirically validated their
 129 effectiveness in combating plasticity loss, they predominantly operate at the model level — modify-
 130 ing network architectures without addressing the fundamental theoretical questions: *why* plasticity
 131 loss occurs and *how* different underlying mechanisms contribute to this phenomenon. This presents
 132 a significant gap between empiricism and theory.

133 This theoretical gap motivates our work, which targets the fundamental gradient decay mechanism
 134 identified through our theoretical analysis. Our proposed Sample Weight Decay (SWD) approach
 135 operates at the strategic level — focused on weighting in experience replay — and provides a prin-
 136 cipled means of compensating for the $\Theta(1/k)$ gradient attenuation, a challenge unaddressed by
 137 recent techniques. A key distinguishing feature of SWD is its *orthogonality* to existing methods:
 138 whereas prior approaches modify network structures or plasticity injection patterns, SWD acts at the
 139 data distribution level via intelligent experience reweighting, ensuring compatibility with existing
 140 plasticity-preserving techniques and enabling synergistic performance improvements.

141 **3 PRELIMINARIES**

142 We consider an episodic Markov Decision Process (MDP) $(\mathbb{S}, \mathbb{A}, H, \{P_h\}_{h=1}^H, \{r_h\}_{h=1}^H)$ with hori-
 143 zon $H \in \mathbb{Z}^+$ (Puterman, 2014). Here, \mathbb{S}, \mathbb{A} are measurable state, action spaces; $P_h(\cdot | s, a)$ is the
 144 transition kernel at step h ; $r_h : \mathbb{S} \times \mathbb{A} \rightarrow [0, 1]$ is the reward at step h . At each episode, an initial
 145 state x_1 is drawn. At step $h \in [H]$, the agent observes $x_h \in \mathbb{S}$, chooses $a_h \in \mathbb{A}$, receives $r_h(x_h, a_h)$,
 146 and transits to $x_{h+1} \sim P_h(\cdot | x_h, a_h)$. A policy is $\pi = \{\pi_h\}_{h=1}^H$ with $\pi_h(\cdot | x)$.

147 For policy π , the value and action-value functions are defined as:

$$148 \begin{aligned} V_h^\pi(x) &= \mathbb{E} \left[\sum_{t=h}^H r_t(x_t, a_t) \mid x_h = x, a_t \sim \pi_t(\cdot | x_t) \right], & \forall x \in \mathbb{S}, h \in [H], \\ 149 Q_h^\pi(x, a) &= r_h(x, a) + \mathbb{E}_{x' \sim P_h(\cdot | x, a)} [V_{h+1}^\pi(x')], & \forall (x, a) \in \mathbb{S} \times \mathbb{A}, h \in [H], \end{aligned}$$

150 with terminal condition $V_{H+1}^\pi \equiv 0$. It is convenient to write the transition expectation operator \mathbb{P}_h
 151 and policy expectation operator \mathbb{J}_h^π :

$$152 (\mathbb{P}_h V)(x, a) = \mathbb{E}_{x' \sim P_h(\cdot | x, a)} [V(x')], \quad (\mathbb{J}_h^\pi Q)(x) = \mathbb{E}_{a \sim \pi_h(\cdot | x)} [Q(x, a)].$$

153 Then the policy Bellman equations compactly read,

$$154 \begin{aligned} Q_h^\pi(x, a) &= r_h(x, a) + (\mathbb{P}_h V_{h+1}^\pi)(x, a), \\ 155 V_h^\pi(x) &= (\mathbb{J}_h^\pi Q_h^\pi)(x), \quad V_{H+1}^\pi \equiv 0. \end{aligned}$$

162 For any function $g : \mathbb{S} \times \mathbb{A} \rightarrow \mathbb{R}$, define the value maximization operator \mathbb{V} and the step- h optimality
 163 Bellman operator \mathcal{T}_h by
 164

$$\begin{aligned} \mathbb{V}_g(x) &:= \max_a g(x, a) \\ (\mathcal{T}_h g)(x, a) &:= r_h(x, a) + (\mathbb{P}_h \mathbb{V}_g)(x, a). \end{aligned}$$

168 4 THEORY ANALYSIS: THE RANK LOSS AND GRADIENT ATTENUATION

171 In this section, our primary objective is to establish a rigorous connection between the optimization
 172 process and plasticity loss. To this end, we first utilize Equation 3 to derive a formal bound on
 173 the model’s performance. We then simplify the dynamic optimization process by reducing it to an
 174 initialization problem—a key step that streamlines subsequent analyses. Finally, we elaborate on
 175 the derivation of our core results, with the full details presented in Section 4.1 and Section 4.2.

176 For the sake of clarity and analytical tractability, we focus our discussion on the simplest variant
 177 of Fitted Q-Iteration (FQI) (Ernst et al., 2005). Importantly, the theoretical framework proposed
 178 herein is not limited to this specific algorithm; it can be readily extended to accommodate a wider
 179 class of value-based reinforcement learning methods. Of note, analogous analytical findings hold
 180 for entropy-regularized Markov Decision Processes (MDPs). A comprehensive treatment of this
 181 extension, including detailed proofs and supplementary analyses, is provided in Appendix B.4.

182 Let \mathcal{D}_h^k denote the replay buffer at step h following k episodes, and let \hat{f}_{h+1}^k represent the estimated
 183 Q-value at step $h+1$ after k episodes. The loss function is then defined as follows:

$$\begin{aligned} \mathcal{L}_h^k(f, \hat{f}_{h+1}^k) &:= \frac{1}{|\mathcal{D}_h^k|} \sum_{(s_h, a_h, s_{h+1}) \sim \mathcal{D}_h^k} \left[\left(f(s_h, a_h) - \left(r(s_h, a_h) + \max_{a'} \hat{f}_{h+1}^k(s_{h+1}, a') \right) \right)^2 \right] \\ \hat{f}_h^k &= \arg \min_{f \in \mathcal{F}} \mathcal{L}_h^k(f, \hat{f}_{h+1}^k), \quad \hat{f}_{H+1} \equiv 0 \end{aligned}$$

189 Define the empirical distribution μ_h^k of the replay buffer over (s, a) and the empirical state-action
 190 visitation frequency of the behavior policy π^{k+1} at time h in episode k :

$$\begin{aligned} \mu_h^k(s, a) &:= \frac{1}{|\mathcal{D}_h^k|} \sum_{(s_i, a_i, s'_i) \in \mathcal{D}_h^k} \mathbb{I}\{s = s_i, a = a_i\}, \\ \hat{d}_h^{\pi^{k+1}}(s, a) &:= \mathbb{I}\{s = s_h^{k+1}, a = a_h^{k+1}\}, \quad (s_h^{k+1}, a_h^{k+1}) \sim \mathbb{P}_h^{\pi^{k+1}}(s, a) \end{aligned}$$

197 To establish a mathematical formulation for distribution shift and thereby quantify its impact on the
 198 loss function, we rely on Proposition 1 to characterize such distributional non-stationarity. Furthermore,
 199 to facilitate the subsequent gradient decomposition, we express the loss function in the form
 200 specified in Theorem 1. Finally, to connect the agent’s performance to the loss function, we leverage
 201 Theorem 2 to provide a bound on the agent’s final performance.

202 **Proposition 1** (Empirical distribution recursion). *The empirical distribution satisfies*

$$\mu_h^{k+1} = \frac{k}{k+1} \mu_h^k + \frac{1}{k+1} \hat{d}_h^{\pi^{k+1}}. \quad (1)$$

206 *Proof (sketch).* By construction, $|\mathcal{D}_h^{k+1}| = k+1$ and $\mathcal{D}_h^{k+1} = \mathcal{D}_h^k \cup \{(s_h^{k+1}, a_h^{k+1}, s_{h+1}^{k+1})\}$. Expanding
 207 the definition of μ_h^{k+1} and regrouping terms yields the stated convex combination. \square

209 **Theorem 1** (Population loss limit). *Let \mathcal{F} be a measurable function class. As the cardinality (or
 210 appropriate size measure) of \mathcal{D}_h^k tends to infinity (i.e., $|\mathcal{D}_h^k| \rightarrow \infty$), the following probabilistic
 211 convergence holds:*

$$\mathcal{L}_h^k(f, \hat{f}_{h+1}^k) \xrightarrow{p} \mathbb{E}_{(s_h, a_h) \sim \mu_h^k} \left[\left(f(s_h, a_h) - (\mathcal{T}_h \hat{f}_{h+1}^k)(s_h, a_h) \right)^2 \right] + C_h^k \quad (2)$$

212 where C_h^k is a constant independent of f . Henceforth, we do not rigorously distinguish between the
 213 empirical risk and the expected loss, focusing instead on the underlying optimization problem.

216

217
Takeaway 1. The non-stationarity in training process

218

219
220
221
222
The population loss limit established in Theorem 1 identifies two key sources of non-
stationarity in the training process of Fitted Q-Iteration: the non-stationary distribution μ_h^k
and the non-stationary target $\mathcal{T}_h \hat{f}_{h+1}^k$. Both of these sources drive variations in the target
population risk across training episodes k .

223

224
225
226
Theorem 2 (Suboptimality bound via squared bellman residuals). *Fix horizon H . Let $\{\hat{f}_h\}_{h=1}^H$*
denote the final value estimates (e.g., from the K -th iteration; write $\hat{f}_h := \hat{f}_h^{(K)}$). Define the greedy
policy

227

228
$$\pi_{\hat{f}, h}(s) \in \arg \max_{a \in \mathbb{A}} \hat{f}_h(s, a), \quad h = 1, \dots, H.$$

229

230
231
For functions $f, g : \mathbb{S} \times \mathbb{A} \rightarrow \mathbb{R}$, define the step- h squared Bellman residual

232
$$\Delta_h(f, g)(s, a) := (f(s, a) - (\mathcal{T}_h g)(s, a))^2$$

233

234
235
236
237
238
Then for any start state x ,

239
$$240 \quad V_1^*(x) - V_1^{\pi_f}(x) \leq \sqrt{H} \left(\sqrt{\mathbb{E}_{\pi^*} \left[\sum_{h=1}^H \Delta_h(\hat{f}_h, \hat{f}_{h+1})(s_h, a_h) \mid s_1 = x \right]} + \right. \\ 241 \quad \left. \sqrt{\mathbb{E}_{\pi_{\hat{f}}} \left[\sum_{h=1}^H \Delta_h(\hat{f}_h, \hat{f}_{h+1})(s_h, a_h) \mid s_1 = x \right]} \right). \quad (3)$$

242

243
Takeaway 2. Suboptimality bound

244

245
246
247
248
249
250
251
252
Equation 3 links model performance to the loss function for optimization. This means the
agent’s performance depends on Bellman residuals from the current and optimal policy tra-
jectories, not historical ones.

253

254
255
256
257
258
259
260
261
Building on the foundational framework established above, we can observe that the loss function
evolves at each iteration k ; this phenomenon is analogous to initiating an entirely new round of
training. A key distinction from supervised learning lies in the initialization process: whereas su-
pervised learning relies on **random initialization**, reinforcement learning (RL) commences optimi-
zation from the $\arg \min$ of the loss function obtained in the previous iteration. Consequently,
investigating the properties of initialization points under such non-steady-state conditions becomes
particularly crucial—an insight that further underscores the necessity of the theoretical exploration
presented in our work.

262

263
4.1 NEURAL TANGENT KERNEL (NTK) DEGENERATION

264

265
266
267
268
269
A key advantage of random initialization is that it ensures the Neural Tangent Kernel (NTK) ma-
trix of an overparameterized neural network is **full-rank with probability 1**. This comes from the
property that low-dimensional manifolds have zero measure in high-dimensional spaces, making
the NTK matrix rank-deficient extremely unlikely. However, this random initialization is violated
in Reinforcement Learning (RL), so the initial NTK matrix’s structural properties (e.g., rank, con-
ditioning) are no longer guaranteed, adding uncertainty to learning.

270

271
272
273
274
275
276
277
278
279
Prior research (Du et al., 2019; Allen-Zhu et al., 2019) shows overparameterized networks achieve
global convergence to zero training error via Gradient Descent (GD) or Stochastic Gradient Descent
(SGD) if two conditions hold: (i) The initial NTK matrix \mathbf{K}_0 is well-conditioned: its eigenvalues are
bounded (no extremely large/small values to distort optimization). (ii) The NTK matrix \mathbf{K} remains
stable during training, so its structural properties do not degrade and harm convergence.

280

281
4.2 GRADIENT ATTENUATION

282

283
284
285
286
287
288
289
Another advantage of proper random initialization lies in preserving an appropriate initial gradient
magnitude—a factor whose critical role in the optimization process has been well validated through

both experimental observations and theoretical analyses. As illustrated in (Dixit et al., 2023), the time an optimizer needs to escape a saddle point is dictated by the magnitude of the initial state’s projection onto the unstable (negative-curvature) subspace of the saddle point. In consequence, excessively small initial gradients prolong the optimizer’s stagnation near saddle points, resulting in a significant deterioration in optimization performance. Unfortunately, however, gradient decay is an inherent and unavoidable phenomenon in reinforcement learning (RL) training, as evidenced by the theorem presented below.

Theorem 3 (Gradient Dynamics at Initialization). *For the optimization objective defined in Equation 1, the initial gradient of the loss function (evaluated at the parameter values that minimized the loss of the previous iteration, \hat{f}_h^{k-1}) satisfies:*

$$\begin{aligned} \nabla \mathbb{E}_{\mu_h^k} \left[\left(f - \mathcal{T}_h \hat{f}_{h+1}^k \right)^2 \right] \Big|_{\hat{f}_h^{k-1}} &= \underbrace{\frac{1}{k} \nabla \mathbb{E}_{\hat{d}_h^{\pi^k}} \left[\left(f - \mathcal{T}_h \hat{f}_{h+1}^{k-1} \right)^2 \right] \Big|_{\hat{f}_h^{k-1}}}_{\text{Distributional shift}} \\ &+ \underbrace{\mathbb{E}_{\mu_h^k} \left[\nabla f^2 \Big|_{\hat{f}_h^{k-1}} \cdot \left(\mathcal{T}_h \hat{f}_{h+1}^{k-1} - \mathcal{T}_h \hat{f}_{h+1}^k \right) \right]}_{\text{Target drift}} \end{aligned} \quad (4)$$

By setting $\hat{f}_{h+1} \equiv 0$. This eliminates the target-drift term entirely, leaving only the distributional-shift component—where the $\Theta(1/k)$ scaling factor becomes the dominant driver of gradient decay. As the number of training iterations k grows large, the magnitude of the initial gradient will tend to approach zero. This near-zero gradient signal risks trapping the optimization process at saddle points, as the model lacks sufficient directional information to escape these suboptimal regions.

5 SAMPLE WEIGHT DECAY (SWD)

Algorithm 1 Sample Weight Decay (SWD)

Require: Linear decay steps T , minimum weight w_{\min} , Current time t , timestamps $\{t_i\}_{i=1}^{|\mathcal{D}|}$

- 1: **for** $i = 1$ to $|\mathcal{D}|$ **do**
- 2: $\text{age}_i = t - t_i$
- 3: $w_i = \max(w_{\min}, 1 - \frac{\text{age}_i}{T})$
- 4: **end for**
- 5: $p_i = \frac{w_i}{\sum_{j=1}^{|\mathcal{D}|} w_j}$ for $i = 1, \dots, |\mathcal{D}|$
- 6: $\mathcal{I} \sim \text{Categorical}(\{p_i\}_{i=1}^{|\mathcal{D}|}, B)$
- 7: **return** $\mathcal{B} = \{(s_i, a_i, r_i, s'_i, d_i)\}_{i \in \mathcal{I}}$

SWD is a principled algorithmic intervention to mitigate gradient signal degradation in non-stationary reinforcement learning environments. As in Algorithm 1, it addresses the core challenge in Theorem 3: the harmful $\frac{1}{k}$ decay of gradient contributions from new data. It uses a linear decay mechanism, assigning each sample a weight $w_i = \max(w_{\min}, 1 - \frac{\text{age}_i}{T})$, where $\text{age}_i = t - t_i$ (t = current training step, t_i = sample collection step). The key insight of Algorithm 1 is its rigorous sample weighting. It identifies the $\frac{1}{k}$ coefficient—overly attenuating gradients from the current policy distribution \hat{d}^{π^k} —as the root of gradient degradation. To counter this, SWD introduces a linear weighting scheme: each sample gets a probability $p_i = \frac{w_i}{\sum_{j=1}^{|\mathcal{D}|} w_j}$, with p_i proportional to sample recency. This neutralizes the $\frac{1}{k}$ attenuation, restoring gradient magnitude and sustaining model plasticity during training.

6 EXPERIMENTS

The core objective of the experiment is to validate the efficacy of the proposed SWD method in mitigating plasticity loss during long-horizon training and quantify its performance advantages with multifaceted analyses. Specifically, we focus on the following five key research questions:

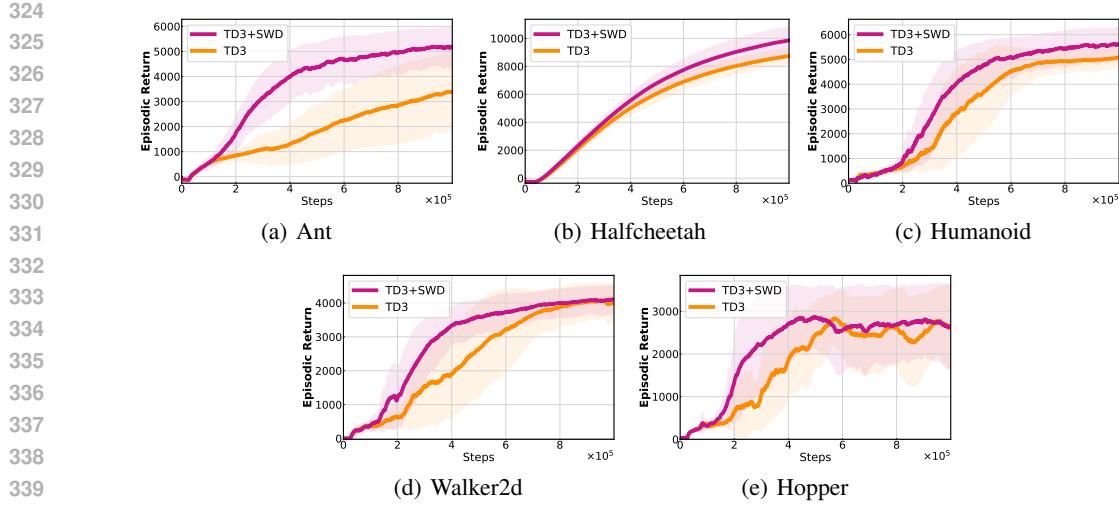


Figure 2: Empirical validation of SWD across TD3 in MuJoCo environments (mean \pm std over 5 runs). SWD consistently improves sample efficiency and performance.

- **Q1:** Does the proposed method SWD consistently improve the training performance of mainstream reinforcement learning (RL) algorithms across different continuous and discrete control tasks?
- **Q2:** Does the temporal weighting strategy of the proposed method SWD play a critical role in alleviating plasticity loss?
- **Q3:** Can SWD adapt to the training scenarios with increased Update-to-Data (UTD) ratio configurations, where more severe plasticity loss should be addressed for better data efficiency?
- **Q4:** How does SWD compare with other methods designed to address plasticity issues? And is it feasible to combine SWD with these other methods?
- **Q5:** How sensitive is the proposed SWD to the hyperparameters? How do different choices of heuristics influence the results?

To address Q1, we conduct experiments using the Double DQN, TD3, and SAC algorithms within the SimBa architecture (Lee et al., 2025a), evaluating their performance across the Arcade Learning Environment (Bellemare et al., 2013), the MuJoCo environments (Brockman, 2016), and the DMC suite (Tassa et al., 2018). We also include the canonical method Prioritized Experience Replay (PER) (Schaul et al., 2016) as a direct baseline method. Furthermore, to provide reverse validation of SWD’s effectiveness, we use a variant called Sample Weight Augmentation (SWA), i.e., a counterpart designed to produce the opposite effect by assigning higher weights to older samples. For Q2, we adopt GraMa (Liu et al., 2025) as the metric for plasticity, using it to empirically demonstrate the superiority of our proposed method in alleviating plasticity loss. To answer Q3, we evaluate the performance of SWD based on Simba-SAC under different UTD ratios, with a specific focus on the Humanoid Run environment. To address Q4, we compare SWD against other representative methods designed to address plasticity issues. For Q5, we conduct extensive experiments to analyze the hyperparameter sensitivity of SWD and the effects of different decay strategies, such as exponential decay and polynomial decay.

6.1 PERFORMANCE EVALUATION

Experimental Setup. We evaluate methods on three benchmark suites: (i) For the five MuJoCo environments (Ant, HalfCheetah, Hopper, Humanoid, Walker2d), we use TD3 (Fujimoto et al., 2018) as the base algorithm with conventional MLP networks. (ii) For the three ALE environments (DemonAttack, Phoenix, and Breakout), we use Double Deep Q-Network (Hasselt et al., 2016) as the base algorithm with the typical CNN-MLP networks. (iii) For the four difficult DMC tasks (Humanoid-Run, Humanoid-Walk, Dog-Run, Dog-Walk), we use SAC (Haarnoja et al., 2018) as the base algorithm with the SimBa network architecture (Lee et al., 2025a). In this subsection,

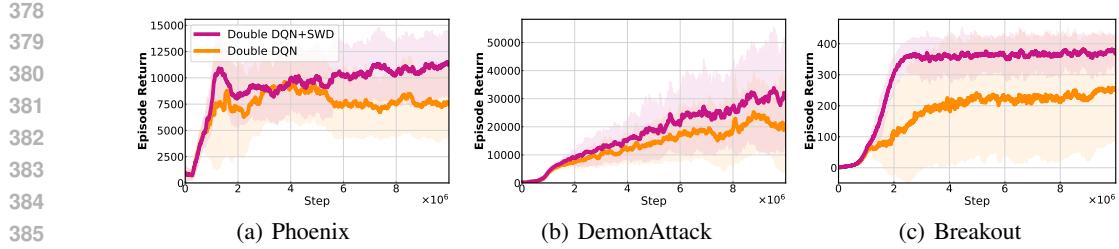


Figure 3: Empirical validation of SWD across Double DQN in ALE environments (mean \pm std over 5 runs). SWD consistently improves sample efficiency and performance.

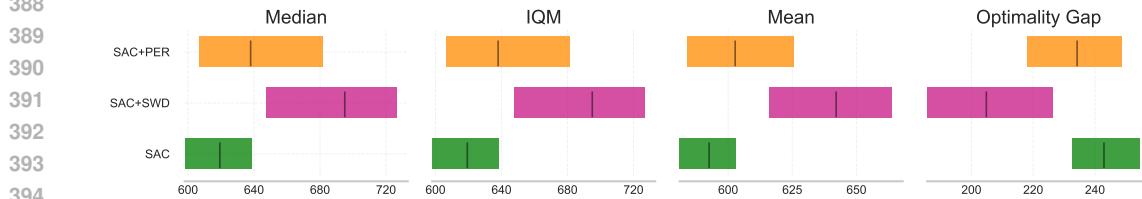


Figure 4: Performance comparison between SWD and PER based on SAC. Aggregate Reliable metrics (Agarwal et al., 2021) with 95% Stratified Bootstrap CIS in DMC tasks.

we include PER as a canonical baseline for comparison. Detailed hyperparameters and details are provided in Appendix C.

Results As illustrated in Figure 2, Figure 3 and Figure 4, SWD demonstrates a remarkable ability to enhance the algorithm’s performance. Specifically, it facilitates accelerated learning during the early phases of training and attains superior final policy quality upon convergence—an advantage that is particularly prominent in the Ant and Humanoid environments. In sharp contrast, PER (Prioritized Experience Replay) demands nearly several times more training time, while the performance improvements it yields remain extremely limited. This observation aligns well with our theoretical framework, and Equation 3 further confirms that performance enhancement can only be achieved by optimizing the TD errors along both the optimal policy path and the current policy path.

6.2 ABLATION STUDY

To provide reverse validation of SWD’s effectiveness, we develop a contrasting method called Sample Weight Augmentation (SWA), which implements the opposite weighting strategy by assigning higher weights to older data samples. This design allows us to empirically verify our theoretical hypothesis that prioritizing recent experiences is crucial for maintaining neural plasticity. More details are shown in Appendix F, where we employed GraMa (Liu et al., 2025) as our measure of neural plasticity.

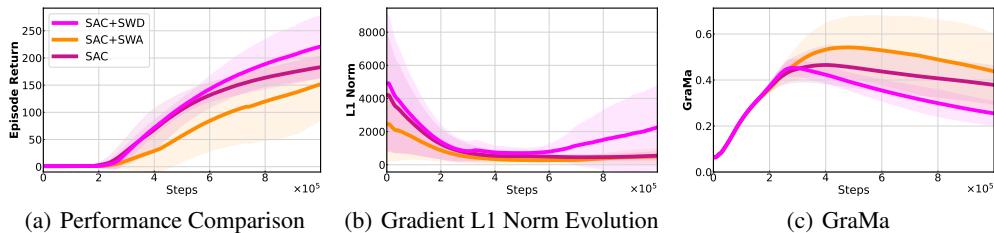


Figure 5: Experiments conducted in the humanoid-run environment demonstrate that SWA exhibits a lower gradient magnitude, GraMa, and inferior performance, which validates our hypothesis.

Results The reverse validation experiment yields key insights: (i) As shown in Figure 5(a), SWA consistently underperforms SWD and uniform sampling, validating that prioritizing recent experiences is critical for non-stationary RL learning; (ii) Figure 5(b) shows SWA reduces gradient L1 norms during training (weakened learning signals), aligning with our gradient attenuation analysis and confirming older data exacerbates plasticity loss; (iii) GraMa analysis in Figure 5(c) reveals SWA causes sparser gradients and greater plasticity loss than SWD (reduced neural activation/adaptation

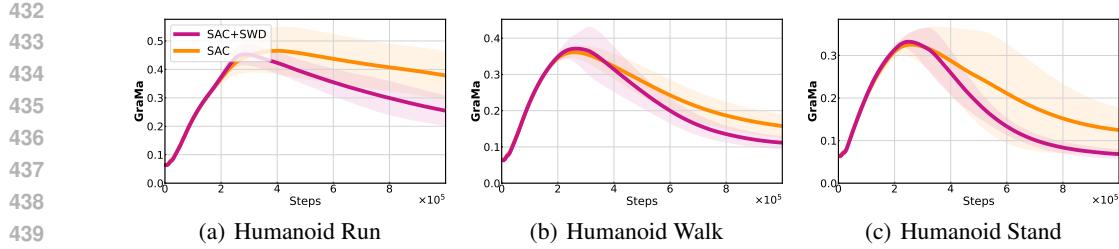


Figure 6: GraMa Metric in Humanoid Locomotion: Run, Walk, and Stand: The results clearly demonstrate that SWD effectively mitigates the loss of plasticity in humanoid robots across these key locomotor states.

capacity), providing direct empirical support for our theoretical framework’s plasticity degradation prediction.

6.3 THE EFFECT IN ALLEVIATING PLASTICITY LOSS

To verify whether SWD can mitigate plasticity, we employed GraMa as the evaluation metric to quantify the degree of plasticity during the model training process. Notably, a larger GraMa value indicates a weaker learning capability of the neural network.

Results The corresponding results are illustrated in Figure 6. As depicted in this figure, our proposed SWD effectively alleviates the gradient sparsity that arises during the training process. Notably, the most pronounced effects are observed in the Humanoid Run environment and the Humanoid Stand environment. It can be clearly seen from the figure that SWD exerts its function in the middle and late stages of training — gradient attenuation is not severe in the early stage — and this observation is consistent with our theoretical predictions.

6.4 COMPATIBILITY AGAINST HIGHER UPDATE-TO-DATA RATIOS

Figure 7: Performance comparison across different UTD ratios (1, 2, 5) in Humanoid Run. SWD consistently outperforms uniform sampling across all UTD settings, with improvements ranging from 17.3% to 30.1%.

The Update-to-Data Ratio (UTD) is a critical metric for measuring an algorithm’s data utilization efficiency. Intuitively, uniform sampling assigns equal weight to each sample; after multiple updates, the gradient signals that can effectively guide the update of network parameters become very weak. In contrast, our SWD method assigns greater weight to more recent samples, ensuring that sufficiently strong gradient signals are maintained even after multiple updates.

As shown in Figure 7, SWD demonstrates consistent effectiveness across UTD ratios of 1, 2, and 5. Notably, the method shows the largest improvement (+30.1%) at UTD=5, suggesting that SWD is particularly beneficial when gradient updates are frequent. This robustness indicates that our approach is broadly applicable across different algorithmic configurations without requiring UTD-specific tuning.

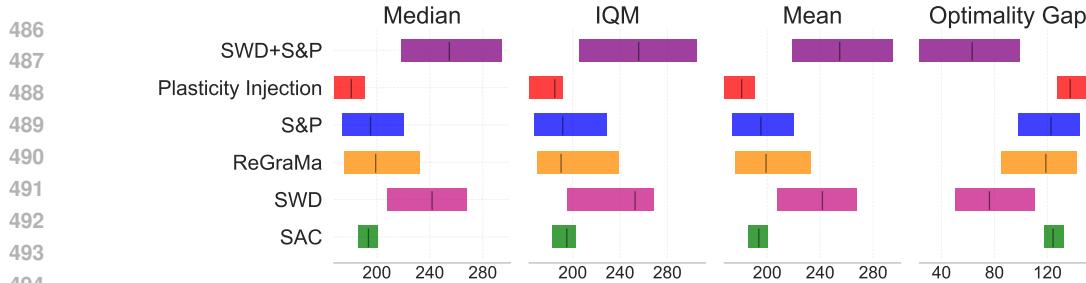


Figure 8: Performance comparison between SWD+S&P and other methods designed to address plasticity issues. Aggregate *Reliable* metrics (Agarwal et al., 2021) with 95% Stratified Bootstrap CIS in Humanoid run.

6.5 COMPARISON WITH OTHER METHODS DESIGNED TO ADDRESS PLASTICITY LOSS

To further evaluate the effectiveness of SWD, we compare it in the Humanoid Run environment with three representative methods that are designed to address plasticity issues: ReGraMa (Liu et al., 2025), S&P (Ash & Adams, 2020), and Plasticity Injection (Nikishin et al., 2023b). Moreover, we explore SWD’s synergistic potential with S&P, i.e., SWD+S&P, which demonstrates the orthogonality.

Results As in Figure 8, SWD outperforms other NTK-based methods on the SimBa (Lee et al., 2025a) network. Moreover, SWD combined with S&P yields the best result, validating its orthogonality to NTK-based methods. We provide a detailed discussion on the relationship between SWD and prior works for plasticity loss in Appendix C.2.

6.6 OTHER RESULTS

Hyperparameter Choices and Decay Strategies To analyze the hyperparameter sensitivity of SWD, we conduct a grid-search test for two core hyperparameters, i.e., linear decay steps T and minimum weight threshold w_{min} . In Table 12 of Appendix F, SWD exhibits low sensitivity to different choices, demonstrating its stability. Moreover, we compare the linear decay strategy of SWD with the other two commonly adopted strategies, i.e., exponential decay and polynomial decay. Table 13 shows that the linear decay strategy outperforms the other two strategies.

Compute-efficient Approximation of SWD To further reduce the computational overhead of per-sample weight, we propose a bucket-based approximation method. As in Table 2 of Appendix D, this approximation significantly reduces the training time at no compromise of policy performance.

7 CONCLUSION

In this paper, we identified and addressed the critical issue of plasticity loss in long-horizon reinforcement learning through both theoretical analysis and algorithmic innovation. Our theoretical framework reveals that gradient attenuation follows a $\Theta(1/k)$ decay pattern, fundamentally limiting the agent’s ability to adapt to new experiences over extended training periods. To counteract this degradation, we proposed Sample Weight Decay (SWD), a simple yet effective method that applies age-based weighting to replay buffer sampling. Through comprehensive experiments across MuJoCo, ALE and DMC environments with TD3, DDQN and SAC algorithms, we demonstrated consistent performance improvements ranging from 13.7% to 30.1% in IQM scores. Our ablation studies and reverse validation experiments confirm that temporal weighting direction is crucial for maintaining neural plasticity. The broad applicability of SWD across different algorithms, environments, and training configurations, combined with its minimal computational overhead, makes it a practical solution for enhancing long-horizon RL performance. This work opens new avenues for understanding and mitigating plasticity loss in deep reinforcement learning.

Limitations Owing to computational constraints, our evaluation is restricted to tasks within the MuJoCo, ALE and DeepMind Control Suite (DMC). Additionally, our exploration and practical application of the proposed theoretical framework remain at a preliminary stage—representing merely the “tip of the iceberg.” Moving forward, future research will extend SWD to more complex scenarios, real-world environments. Ultimately, our goal is to develop SWD into a practical, robust tool that effectively preserves the learning capacity of deep reinforcement learning (RL) agents.

540 **REPRODUCIBILITY STATEMENT**
541

542 To promote transparency and reproducibility within the scientific community, we provide com-
543 prehensive details regarding training parameters and associated resources in the appendix. Additionally,
544 the complete codebase for both the training and inference processes has been uploaded to the sup-
545 plementary material.

546
547 **ETHICS STATEMENT**
548

549 This paper is committed to advancing the field of plasticity loss to develop more effective Reinforce-
550 ment Learning (RL) algorithms. Our research adheres rigorously to responsible research practices
551 and is fully aligned with the ICLR Code of Ethics. All training data utilized in this study was
552 sourced from open-access datasets, and every asset employed strictly complies with the original
553 licensing agreements and terms of service of the respective data providers.

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
597 Deep reinforcement learning at the edge of the statistical precipice. *NeurIPS*, 2021.

598 Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
599 Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
600 robot hand. *arXiv preprint arXiv:1910.07113*, 2019.

601

602 Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
603 parameterization. In *ICML*, 2019.

604 Kavosh Asadi, Rasool Fakoor, and Shoham Sabach. Resetting the optimizer in deep RL: an empiri-
605 cal study. In *NeurIPS*, 2023.

606

607 Jordan Ash and Ryan P Adams. On warm-starting neural network training. *NeurIPS*, 2020.

608

609 Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
610 ronment: An evaluation platform for general agents. *Journal of Artificial Intelligence Research*,
611 2013.

612 Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
613 Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
614 scale deep reinforcement learning. *arXiv preprint arXiv:1912.06680*, 2019.

615

616 Celeste Biever. Chatgpt broke the turing test-the race is on for new ways to assess ai. *Nature*, 2023.

617

618 G Brockman. Openai gym. *arXiv preprint arXiv:1606.01540*, 2016.

619

620 Johan Samir Obando Ceron, Marc G Bellemare, and Pablo Samuel Castro. Small batch deep rein-
621 forcement learning. In *NeurIPS*, 2023.

622

623 Johan Samir Obando Ceron, Aaron Courville, and Pablo Samuel Castro. In value-based deep rein-
624 forcement learning, a pruned network is a good network. In *ICML*. PMLR, 2024.

625

626 Wesley Chung, Lynn Cherif, Doina Precup, and David Meger. Parseval regularization for continual
627 reinforcement learning. In *NeurIPS*, 2024.

628

629 Rishabh Dixit, Mert Gurbuzbalaban, and Waheed U. Bajwa. Exit time analysis for approximations
630 of gradient descent trajectories around saddle points. *Information and inference*, 2023.

631

632 Shibhansh Dohare, J. Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A. Rupam Mah-
633 mood, and Richard S. Sutton. Loss of plasticity in deep continual learning. *Nature*, 632(8026):
634 768–774, 2024.

635

636 Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds
637 global minima of over-parameterized neural networks. In *ICLR*, 2019.

638

639 Benjamin Ellis, Matthew T. Jackson, Andrei Lupu, Alexander D. Goldie, Mattie Fellows, Shimon
640 Whiteson, and Jakob Foerster. Adam on local time: Addressing nonstationarity in rl with relative
641 adam timesteps. *arXiv preprint arXiv:2412.17113*, 2024.

642

643 Mohamed Elsayed and A Rupam Mahmood. Addressing loss of plasticity and catastrophic forget-
644 ting in continual learning. *arXiv preprint arXiv:2404.00781*, 2024.

645

646 Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
647 *JMLR*, 2005.

648

649 Lapo Frati, Neil Traft, Jeff Clune, and Nick Cheney. Reset it and forget it: Relearning last-layer
650 weights improves continual and transfer learning. In *ECAI 2024*, pp. 2998–3005. 2024.

651

652 Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in
653 actor-critic methods. In *ICLR*, 2018.

648 Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
 649 Kumar, Henry Zhu, Abhishek Gupta, and Pieter Abbeel. Soft actor-critic algorithms and applica-
 650 tions. *arXiv preprint arXiv:1812.05905*, 2018.

651

652 Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
 653 learning. *AAAI*, 2016.

654

655 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
 656 eralization in neural networks. In *NeurIPS*, 2018.

657

658 Zilin Kang, Chenyuan Hu, Yu Luo, Zhecheng Yuan, Ruijie Zheng, and Huazhe Xu. A forget-and-
 659 grow strategy for deep reinforcement learning scaling in continuous control. *ICML*, 2025.

660

661 Saurabh Kumar, Henrik Marklund, Ashish Rao, Yifan Zhu, Hong Jun Jeon, Yueyang Liu, and Ben-
 662 jamin Van Roy. Continual learning as computationally constrained reinforcement learning. *arXiv*
 663 *preprint, arXiv:2307.04345*, 2023.

664

665 Hojoon Lee, Dongyoong Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian,
 666 Peter R. Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. Simba: Simplicity bias for scaling
 667 up parameters in deep reinforcement learning. In *ICLR*, 2025a.

668

669 Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspher-
 670 ical normalization for scalable deep reinforcement learning, 2025b.

671

672 Alex Lewandowski, Haruto Tanaka, Dale Schuurmans, and Marlos C. Machado. Directions of
 673 curvature as an explanation for loss of plasticity. volume *arXiv:2312.00246*, 2023.

674

675 Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
 676 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. *arXiv*
 677 *preprint arXiv:1509.02971*, 2015.

678

679 Jiashun Liu, Zihao Wu, Johan Obando-Ceron, Pablo Samuel Castro, Aaron Courville, and Ling Pan.
 680 Measure gradients, not activations! enhancing neuronal activity in deep reinforcement learning.
arXiv preprint arXiv:2505.24061, 2025.

681

682 Skander Moalla, Andrea Miele, Daniil Pyatko, Razvan Pascanu, and Caglar Gulcehre. No repre-
 683 sentation, no trust: connecting representation, collapse, and trust issues in ppo. *NeurIPS*, 37:
 684 69652–69699, 2024.

685

686 Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
 687 primacy bias in deep reinforcement learning. In *ICML*, 2022.

688

689 Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney,
 690 and André Barreto. Deep reinforcement learning with plasticity injection. *arXiv preprint*
 691 *arXiv:2305.15555*, 2023a.

692

693 Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney, and
 694 André Barreto. Deep reinforcement learning with plasticity injection. *NeurIPS*, 2023b.

695

696 Martin L Puterman. *Markov decision processes: discrete stochastic dynamic programming*. John
 697 Wiley & Sons, 2014.

698

699 Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
 700 *ICLR*, 2016.

701

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
 702 nomenon in deep reinforcement learning. In *ICML*, 2023.

Hongyao Tang and Glen Berseth. Improving deep reinforcement learning by reducing the chain
 703 effect of value and policy churn. In *NeurIPS*, 2024.

704

705 Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
 706 den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. *arXiv*
 707 *preprint arXiv:1801.00690*, 2018.

702 **A THE USE OF LARGE LANGUAGE MODELS (LLMs)**
 703

704 Large Language Models (LLMs) were utilized to support the writing and refinement of this
 705 manuscript. Specifically, an LLM was employed to assist in enhancing language clarity, improving
 706 readability, and ensuring coherent expression across different sections of the paper. It aided in
 707 tasks like rephrasing sentences, checking grammar, and optimizing the overall textual flow.

708 It should be noted that the LLM played no role in the conception of research ideas, the formulation
 709 of research methodologies, or the design of experiments. All research concepts, ideas, and analyses
 710 were independently developed and carried out by the authors. The LLM's contributions were strictly
 711 limited to elevating the linguistic quality of the paper, without any involvement in the scientific
 712 content or data analysis.

713 The authors fully assume responsibility for the entire content of the manuscript, including any text
 714 generated or polished with the help of the LLM. We have verified that the text produced with the
 715 LLM complies with ethical guidelines and does not lead to plagiarism or any form of scientific
 716 misconduct.

718 **B PROOF**
 719

720 **B.1 PROOF OF THEOREM 1**
 721

722 In this section, we prove Theorem 1.

724 $\mathbb{E}\mathcal{L}_h^k(f, \hat{f}_{h+1}^k)$
 725

$$726 = \mathbb{E}_{(s_h, a_h) \sim \mu_h^k} \left[\mathbb{E}_{s_{h+1} \sim p_h(\cdot | s_h, a_h)} \left[\left(f(s_h, a_h) - r(s_h, a_h) - \max_{a'} \hat{f}_{h+1}^k(s_{h+1}, a') \right)^2 \right] \right]$$

$$729 = \mathbb{E}_{(s_h, a_h) \sim \mu_h^k} \left[\mathbb{E}_{s_{h+1} \sim p_h(\cdot | s_h, a_h)} \left[\left(f(s_h, a_h) - \mathcal{T}_h \hat{f}_{h+1}^k(s_h, a_h) \right. \right. \right. \\ 730 \left. \left. \left. + \mathbb{P}_h \max_{a'} \hat{f}_{h+1}^k(s_{h+1}, a')(s_h, a_h) - \max_{a'} \hat{f}_{h+1}^k(s_{h+1}, a') \right)^2 \right] \right]$$

$$735 = \mathbb{E}_{(s_h, a_h) \sim \mu_h^k} \left[\mathbb{E}_{s_{h+1} \sim p_h(\cdot | s_h, a_h)} \left[\left(f(s_h, a_h) - \mathcal{T}_h \hat{f}_{h+1}^k(s_h, a_h) \right)^2 \right. \right. \\ 736 \left. \left. + \left(\mathbb{P}_h \max_{a'} \hat{f}_{h+1}^k(s_{h+1}, a')(s_h, a_h) - \max_{a'} \hat{f}_{h+1}^k(s_{h+1}, a') \right)^2 \right. \right. \\ 737 \left. \left. + 2 \left(f(s_h, a_h) - \mathcal{T}_h \hat{f}_{h+1}^k(s_h, a_h) \right) \right. \right. \\ 738 \left. \left. \times \left(\mathbb{P}_h \max_{a'} \hat{f}_{h+1}^k(s_{h+1}, a')(s_h, a_h) - \max_{a'} \hat{f}_{h+1}^k(s_{h+1}, a') \right) \right] \right]$$

$$745 = \mathbb{E}_{(s_h, a_h) \sim \mu_h^k} \left[\left(f(s_h, a_h) - \mathcal{T}_h \hat{f}_{h+1}^k(s_h, a_h) \right)^2 \right] \\ 746 + \mathbb{E}_{(s_h, a_h) \sim \mu_h^k} \left[\mathbb{E}_{s_{h+1} \sim p_h(\cdot | s_h, a_h)} \left[\left(\mathbb{P}_h \max_{a'} \hat{f}_{h+1}^k(s_{h+1}, a')(s_h, a_h) - \max_{a'} \hat{f}_{h+1}^k(s_{h+1}, a') \right)^2 \right] \right] \\ 747 = \mathbb{E}_{(s_h, a_h) \sim \mu_h^k} \left[\left(f(s_h, a_h) - \mathcal{T}_h \hat{f}_{h+1}^k(s_h, a_h) \right)^2 \right] + \mathbb{E}_{(s_h, a_h) \sim \mu_h^k} \left[\text{Var}_{s_{h+1} \sim p_h(\cdot | s_h, a_h)} \left[\max_{a'} \hat{f}_{h+1}^k(s_{h+1}, a') \right] \right]$$

752 The loss function can be decomposed into two components:
 753

- 754 **Bellman Residual Term:** $\mathbb{E}_{(s_h, a_h) \sim \mu_h^k} \left[\left(f(s_h, a_h) - \mathcal{T}_h \hat{f}_{h+1}^k(s_h, a_h) \right)^2 \right]$ - Measures the
 755 function approximation error.

756
 757 • **Environmental Stochasticity Term:** $\mathbb{E}_{(s_h, a_h) \sim \mu_h^k} \left[\text{Var}_{s_{h+1} \sim p_h(\cdot | s_h, a_h)} \left[\max_{a'} \hat{f}_{h+1}^k(s_{h+1}, a') \right] \right]$ –
 758 Reflects the intrinsic randomness of state transitions.

759
 760 B.2 PROOF OF THEOREM 2

761
 762 First, we prove one lemma to help the proof.

763
 764 **Lemma 1.** Consider an episodic MDP with horizon H . Let $\pi' = \{\pi'_h\}_{h=1}^H$ denote any policy,
 765 and let $\{\hat{Q}_h\}_{h=1}^H$ denote any set of estimated Q -functions. Let $\pi = \{\pi_h\}_{h=1}^H$ be the greedy policy
 766 induced by $\{\hat{Q}_h\}_{h=1}^H$.

767
 768 For all $h \in [H]$, define:

769
 770 • *Value function:* $\hat{V}_h(s) = \mathbb{J}_h^\pi \hat{Q}_h(s)$ where $\mathbb{J}_h^\pi f(s) = \mathbb{E}_{a \sim \pi_h(\cdot | s)} [f(s, a)]$
 771
 772 • *Bellman residual:* $l_h(s, a) := \hat{Q}_h(s, a) - (\mathcal{T}_h \hat{Q}_{h+1})(s, a)$

773
 774 Then, for all elements $x \in \mathcal{S}$, the following holds :

775
 776
 777
 778
$$\hat{V}_1(x) - V_1^{\pi'}(x) = \sum_{h=1}^H \mathbb{E}_{\pi'} \left[(\mathbb{J}_h^\pi - \mathbb{J}_h^{\pi'}) \hat{Q}_h(s_h) \mid s_1 = x \right]$$

 779
 780
$$+ \sum_{h=1}^H \mathbb{E}_{\pi'} \left[\hat{Q}_h(s_h, a_h) - (\mathcal{T}_h \hat{Q}_{h+1})(s_h, a_h) \mid s_1 = x \right]$$

 781
 782
 783

784
 785
 786
 787 *Proof.*

788
 789
 790
$$\hat{V}_h(x) - V_h^{\pi'}(x) = \mathbb{J}_h^\pi \hat{Q}_h(x) - \mathbb{J}_h^{\pi'} \hat{Q}_h^{\pi'}(x)$$

 791
 792
$$= \mathbb{J}_h^\pi \hat{Q}_h(x) - \mathbb{J}_h^{\pi'} \hat{Q}_h(x) + \mathbb{J}_h^{\pi'} \hat{Q}_h(x) - \mathbb{J}_h^{\pi'} \hat{Q}_h^{\pi'}(x)$$

 793
 794
$$= \mathbb{J}_h^{\pi'} (\hat{Q}_h - Q_h^{\pi'})(x) + (\mathbb{J}_h^\pi - \mathbb{J}_h^{\pi'}) \hat{Q}_h(x)$$

 795
 796
$$= \mathbb{J}_h^{\pi'} (l_h + \mathcal{T}_h \hat{Q}_{h+1} - r_h - \mathbb{P}_h V_{h+1}^{\pi'})(x) + (\mathbb{J}_h^\pi - \mathbb{J}_h^{\pi'}) \hat{Q}_h(x)$$

 797
 798
$$= \mathbb{J}_h^{\pi'} (l_h + \mathbb{P}_h \hat{V}_{h+1} - \mathbb{P}_h V_{h+1}^{\pi'})(x) + (\mathbb{J}_h^\pi - \mathbb{J}_h^{\pi'}) \hat{Q}_h(x)$$

 799

800 Using recurrence relations and the boundary condition $\hat{V}_{H+1} = V_{H+1}^{\pi'} \equiv 0$, we can derive that

801
 802
 803
$$\hat{V}_1(x) - V_1^{\pi'}(x) = \sum_{h=1}^H \left(\prod_{k=1}^{h-1} \mathbb{J}_k^{\pi'} \mathbb{P}_k \right) \mathbb{J}_h^{\pi'} l_h(x)$$

 804
 805
 806
$$+ \sum_{h=1}^H \left(\prod_{k=1}^{h-1} \mathbb{J}_k^{\pi'} \mathbb{P}_k \right) (\mathbb{J}_h^\pi - \mathbb{J}_h^{\pi'}) \hat{Q}_h(x)$$

 807
 808

809 Which complete our proof. □

810 let π' be the optimal policy π^* , π be the greedy policy induced by $\{\hat{Q}_h\}_{h=1}^H$, and $\{\hat{V}_h\}_{h=1}^H$ be the
811 corresponding value function. Then, the suboptimal bound is given by:

$$\begin{aligned}
812 \quad & V_1^*(x) - V_1^\pi(x) = V_1^*(x) - \hat{V}_1(x) + \hat{V}_1(x) - V_1^\pi(x) \\
813 \quad & = \underbrace{\sum_{h=1}^H \mathbb{E}_{\pi^*} \left[\mathcal{T}_h \hat{Q}_{h+1}(s_h, a_h) - \hat{Q}_h(s_h, a_h) \mid s_1 = x \right]}_{\textcircled{1}} + \underbrace{\sum_{h=1}^H \mathbb{E}_\pi \left[\hat{Q}_h(s_h, a_h) - \mathcal{T}_h \hat{Q}_{h+1}(s_h, a_h) \mid s_1 = x \right]}_{\textcircled{2}} \\
814 \quad & + \underbrace{\sum_{h=1}^H \mathbb{E}_{\pi^*} \left[(\mathbb{J}_h^{\pi^*} - \mathbb{J}_h^\pi) \hat{Q}_h \mid s_1 = x \right]}_{\textcircled{3}}
\end{aligned}$$

818 Since π is the greedy policy with respect to \hat{Q} , we have $\textcircled{3} \leq 0$, and for $\textcircled{1}$ we can derive that:

$$\begin{aligned}
824 \quad \textcircled{1} & \leq \sum_{h=1}^H \mathbb{E}_{\pi^*} \left[|\mathcal{T}_h \hat{Q}_{h+1}(s_h, a_h) - \hat{Q}_h(s_h, a_h)| \mid s_1 = x \right] \\
825 \quad & \leq \sum_{h=1}^H \sqrt{\mathbb{E}_{\pi^*} \left[(\mathcal{T}_h \hat{Q}_{h+1}(s_h, a_h) - \hat{Q}_h(s_h, a_h))^2 \mid s_1 = x \right]} \\
826 \quad & \leq \sqrt{H} \sqrt{\sum_{h=1}^H \mathbb{E}_{\pi^*} \left[(\mathcal{T}_h \hat{Q}_{h+1}(s_h, a_h) - \hat{Q}_h(s_h, a_h))^2 \mid s_1 = x \right]}
\end{aligned}$$

833 The last step makes use of the Cauchy-Schwarz inequality, and the second step employs Jensen's
834 inequality.

835 Similarly, we can derive that $\textcircled{2}$ also satisfies:

$$\textcircled{2} \leq \sqrt{H} \sqrt{\sum_{h=1}^H \mathbb{E}_\pi \left[(\mathcal{T}_h \hat{Q}_{h+1}(s_h, a_h) - \hat{Q}_h(s_h, a_h))^2 \mid s_1 = x \right]}$$

840 By combining the above results, we complete the proof of Theorem 2.

842 B.3 PROOF OF THEOREM 3

844 In this section, we prove Theorem 3.

846 *Proof.*

$$\begin{aligned}
847 \quad & \nabla \mathbb{E}_{\mu_h^k} \left[(f - \mathcal{T}_h \hat{f}_{h+1}^k)^2 \right] \Big|_{\hat{f}_h^{k-1}} = \mathbb{E}_{\mu_h^k} \left[2 \left(f - \mathcal{T}_h \hat{f}_{h+1}^k \right) \nabla f \Big|_{\hat{f}_h^{k-1}} \right] \\
848 \quad & = \mathbb{E}_{\mu_h^k} \left[2 \left(f - \mathcal{T}_h \hat{f}_h^{k-1} + \mathcal{T}_h \hat{f}_h^{k-1} - \mathcal{T}_h \hat{f}_{h+1}^k \right) \nabla f \Big|_{\hat{f}_h^{k-1}} \right] \\
849 \quad & = \mathbb{E}_{\mu_h^k} \left[2 \left(\mathcal{T}_h \hat{f}_h^{k-1} - \mathcal{T}_h \hat{f}_{h+1}^k \right) \nabla f \Big|_{\hat{f}_h^{k-1}} \right] + \underbrace{\mathbb{E}_{\mu_h^k} \left[2 \left(f - \mathcal{T}_h \hat{f}_{h+1}^k \right) \nabla f \Big|_{\hat{f}_h^{k-1}} \right]}_{\textcircled{1}}
\end{aligned}$$

857 Recall the define of \hat{f}_h^{k-1} and the Proposition 1 of μ_h^k ,

$$\begin{aligned}
859 \quad \textcircled{1} & = \nabla \mathbb{E}_{\mu_h^k} \left[\left(f - \mathcal{T}_h \hat{f}_{h+1}^k \right)^2 \right] \Big|_{\hat{f}_h^{k-1}} \\
860 \quad & = \underbrace{\frac{k-1}{k} \nabla \mathbb{E}_{\mu_h^{k-1}} \left[\left(f - \mathcal{T}_h \hat{f}_{h+1}^k \right)^2 \right] \Big|_{\hat{f}_h^{k-1}}}_{=0} + \frac{1}{k} \nabla \mathbb{E}_{\hat{d}_h^{\pi^k}} \left[\left(f - \mathcal{T}_h \hat{f}_{h+1}^k \right)^2 \right] \Big|_{\hat{f}_h^{k-1}}
\end{aligned}$$

864 By combining the above results, we complete the proof of Theorem 3 □
 865

866 **B.4 ENTROPY REGULARIZED MDP**
 867

868 In this section, we present the theoretical analysis and error bounds for the Entropy-Regularized
 869 Markov Decision Process (MDP). Specifically, the state value function with an entropy reward is
 870 defined as follows:

871
$$V_h^{\text{soft},\pi}(x) = \mathbb{E} \left[\sum_{t=h}^H (r_t(x_t, a_t) + \alpha \log \pi_t(a_t | x_t)) \mid x_h = x, a_t \sim \pi_t(\cdot | x_t) \right], \quad \forall x \in \mathbb{S}, h \in [H],$$

 872

873
$$Q_h^{\text{soft},\pi}(x, a) = r_h(x, a) + \mathbb{P}_h V_{h+1}^{\text{soft},\pi}(x, a), \quad \forall (x, a) \in \mathbb{S} \times \mathbb{A}, h \in [H]$$

 874

875 with terminal condition $V_{H+1}^{\text{soft},\pi} \equiv 0$. Then the policy Bellman equations compactly read
 876

877
$$Q_h^{\text{soft},\pi}(x, a) = r_h(x, a) + \mathbb{P}_h V_{h+1}^{\text{soft},\pi}(x, a)$$

 878
$$V_h^{\text{soft},\pi}(x) = \mathbb{J}_h^\pi(Q_h^{\text{soft},\pi} - \alpha \log \pi_h)(x), \quad V_{H+1}^{\text{soft}} \equiv 0$$

 879

880 For any function $g : \mathbb{S} \times \mathbb{A} \rightarrow \mathbb{R}$, define the soft value operator \mathbb{V}^{soft} and the step-h soft optimality
 881 Bellman operator $\mathcal{T}_h^{\text{soft}}$ by

882
$$\mathbb{V}_g^{\text{soft}}(s) := \max_{\pi} \mathbb{E}_{a \sim \pi} [g(s, a) - \alpha \log \pi(a | s)],$$

 883
 884
$$(\mathcal{T}_h^{\text{soft}} f)(s, a) := r(s, a) + (\mathbb{P}_h \mathbb{V}_f^{\text{soft}})(s, a)$$

 885

886 We define the Boltzmann policy π_f^{soft} induced by the function $f : \mathbb{S} \times \mathbb{A} \rightarrow \mathbb{R}$, which is given by:

887
$$\pi_f^{\text{soft}} = \arg \max_{\pi} \mathbb{E}_{a \sim \pi} [f(s, a) - \alpha \log \pi(a | s)].$$

 888

889 Similarly, we have the following lemma.

890 **Lemma 2.** Consider an entropy-regularized episodic MDP with horizon H . Let $\pi' = \{\pi'_h\}_{h=1}^H$
 891 denote any policy, and let $\hat{Q} = \{\hat{Q}_h\}_{h=1}^H$ denote any set of estimated soft Q -functions. Let $\pi =$
 892 $\{\pi_h\}_{h=1}^H$ be the Boltzmann policy induced by $\hat{Q} = \{\hat{Q}_h\}_{h=1}^H$. For all $h \in [H]$, define:

893
 894

- *Value function:* $\hat{V}_h(s) = \mathbb{J}_h^\pi(\hat{Q}_h - \alpha \log \pi_h)(s)$ where $\mathbb{J}_h^\pi f(s) = \mathbb{E}_{a \sim \pi_h(\cdot | s)} [f(s, a)]$
- *Bellman residual:* $l_h(s, a) := \hat{Q}_h(s, a) - (\mathcal{T}_h^{\text{soft}} \hat{Q}_{h+1})(s, a)$
- *Entropy:* $\mathcal{H}(\pi(\cdot | s)) = -\mathbb{E}_{a \sim \pi(\cdot | s)} [\log \pi(a | s)]$

 895

896 Then for all $x \in \mathbb{S}$, we have
 897

898
$$\hat{V}_1(x) - V_1^{\text{soft},\pi'}(x) = \sum_{h=1}^H \mathbb{E}_{\pi'} \left[(\mathbb{J}_h^\pi - \mathbb{J}_h^{\pi'}) \hat{Q}_h(s_h) + \alpha(\mathcal{H}(\pi_h(\cdot | s_h)) - \mathcal{H}(\pi'_h(\cdot | s_h))) \mid s_1 = x \right]$$

 899
 900
$$+ \sum_{h=1}^H \mathbb{E}_{\pi'} \left[\hat{Q}_h(s_h, a_h) - (\mathcal{T}_h^{\text{soft}} \hat{Q}_{h+1})(s_h, a_h) \mid s_1 = x \right].$$

 901

902 *Proof.*
 903

904
$$\hat{V}_h(x) - V_h^{\text{soft},\pi'}(x) = \mathbb{J}_h^\pi(\hat{Q}_h - \alpha \log \pi)(x) - \mathbb{J}_h^{\pi'}(Q_h^{\text{soft},\pi'} - \alpha \log \pi')(x)$$

 905
 906
$$= \mathbb{J}_h^\pi \hat{Q}_h(x) - \mathbb{J}_h^{\pi'} Q_h^{\text{soft},\pi'}(x) + \alpha(\mathcal{H}(\pi_h(\cdot | x)) - \mathcal{H}(\pi'_h(\cdot | x)))$$

 907
 908
$$= \mathbb{J}_h^\pi \hat{Q}_h(x) - \mathbb{J}_h^{\pi'} \hat{Q}_h(x) + \mathbb{J}_h^{\pi'} \hat{Q}_h(x) - \mathbb{J}_h^{\pi'} Q_h^{\text{soft},\pi'}(x) + \alpha(\mathcal{H}(\pi_h(\cdot | x)) - \mathcal{H}(\pi'_h(\cdot | x)))$$

 909
 910
$$= \mathbb{J}_h^{\pi'} (\hat{Q}_h - Q_h^{\text{soft},\pi'})(x) + \mathbb{J}_h^\pi \hat{Q}_h(x) - \mathbb{J}_h^{\pi'} \hat{Q}_h(x) + \alpha(\mathcal{H}(\pi_h(\cdot | x)) - \mathcal{H}(\pi'_h(\cdot | x)))$$

 911
 912
$$= \mathbb{J}_h^{\pi'} (l_h + \mathcal{T}_h^{\text{soft}} \hat{Q}_{h+1} - r - \mathbb{P}_h V_{h+1}^{\text{soft},\pi'})(x) + \mathbb{J}_h^\pi \hat{Q}_h(x) - \mathbb{J}_h^{\pi'} \hat{Q}_h(x) + \alpha(\mathcal{H}(\pi_h(\cdot | x)) - \mathcal{H}(\pi'_h(\cdot | x)))$$

 913
 914
$$= \mathbb{J}_h^{\pi'} (l_h + \mathbb{P}_h (\hat{V}_{h+1} - V_{h+1}^{\text{soft},\pi'}))(x) + \mathbb{J}_h^\pi \hat{Q}_h(x) - \mathbb{J}_h^{\pi'} \hat{Q}_h(x) + \alpha(\mathcal{H}(\pi_h(\cdot | x)) - \mathcal{H}(\pi'_h(\cdot | x)))$$

 915
 916
$$= \mathbb{J}_h^{\pi'} l_h(x) + \mathbb{J}_h^{\pi'} \mathbb{P}_h (\hat{V}_{h+1} - V_{h+1}^{\text{soft},\pi'})(x) + \mathbb{J}_h^\pi \hat{Q}_h(x) - \mathbb{J}_h^{\pi'} \hat{Q}_h(x) + \alpha(\mathcal{H}(\pi_h(\cdot | x)) - \mathcal{H}(\pi'_h(\cdot | x))).$$

 917

918 Using recurrence relations and the boundary condition $\hat{V}_{H+1} = V_{H+1}^{\text{soft}, \pi'} \equiv 0$, we can derive that
919

$$\begin{aligned} 920 \hat{V}_1(x) - V_1^{\text{soft}, \pi'}(x) &= \sum_{h=1}^H \left(\prod_{k=1}^{h-1} \mathbb{J}_k^{\pi'} \mathbb{P}_k \right) \mathbb{J}_h^{\pi'} l_h(x) \\ 921 &\quad + \sum_{h=1}^H \left(\prod_{k=1}^{h-1} \mathbb{J}_k^{\pi'} \mathbb{P}_k \right) \left((\mathbb{J}_h^{\pi} - \mathbb{J}_h^{\pi'}) \hat{Q}_h(x) + \alpha (\mathcal{H}(\pi_h(\cdot|x)) - \mathcal{H}(\pi_h'(\cdot|x))) \right). \\ 922 \\ 923 \end{aligned}$$

924 This completes the proof. \square
925

926 **Theorem 4** (Suboptimality bound for entropy-regularized MDP via squared Bellman residuals).
927 Fix horizon H . Let $\{\hat{Q}_h\}_{h=1}^H$ be the soft value estimates. Define $\{\pi_{\hat{Q}, h}\}_{h=1}^H$ as the Boltzmann policy
928 induced by $\{\hat{Q}_h\}_{h=1}^H$. Let $\{\pi_h^*\}_{h=1}^H$ be the optimal policy.
929

930 For functions $f, g : \mathbb{S} \times \mathbb{A} \rightarrow \mathbb{R}$, define the step- h squared Bellman residual:
931

$$\Delta_h(f, g)(s, a) = (f(s, a) - \mathcal{T}_h^{\text{soft}} g(s, a))^2.$$

932 Then we have
933

$$\begin{aligned} 934 V_1^{\text{soft}, \pi^*}(x) - V_1^{\text{soft}, \pi_{\hat{Q}}}(x) &\leq \sqrt{H} \left(\sqrt{\mathbb{E}_{\pi^*} \left[\sum_{h=1}^H \Delta_h(\hat{Q}_h, \hat{Q}_{h+1})(s_h, a_h) \mid s_1 = x \right]} + \right. \\ 935 &\quad \left. \sqrt{\mathbb{E}_{\pi_{\hat{Q}}} \left[\sum_{h=1}^H \Delta_h(\hat{Q}_h, \hat{Q}_{h+1})(s_h, a_h) \mid s_1 = x \right]} \right). \\ 936 \\ 937 \end{aligned}$$

938 *Proof.*
939

$$\begin{aligned} 940 V_1^{\text{soft}, \pi^*}(x) - V_1^{\text{soft}, \pi_{\hat{Q}}}(x) &= V_1^{\text{soft}, \pi^*}(x) - \hat{V}_1(x) + \hat{V}_1(x) - V_1^{\text{soft}, \pi_{\hat{Q}}}(x) \\ 941 &= \underbrace{\sum_{h=1}^H \mathbb{E}_{\pi^*} \left[\mathcal{T}_h^{\text{soft}} \hat{Q}_{h+1}(s_h, a_h) - \hat{Q}_h(s_h, a_h) \mid s_1 = x \right]}_{\textcircled{1}} + \underbrace{\sum_{h=1}^H \mathbb{E}_{\pi_{\hat{Q}}} \left[\hat{Q}_h(s_h, a_h) - \mathcal{T}_h^{\text{soft}} \hat{Q}_{h+1}(s_h, a_h) \mid s_1 = x \right]}_{\textcircled{2}} \\ 942 &\quad + \underbrace{\sum_{h=1}^H \mathbb{E}_{\pi^*} \left[(\mathbb{J}_h^{\pi^*} - \mathbb{J}_h^{\pi_{\hat{Q}}}) \hat{Q}_h + \alpha (\mathcal{H}(\pi_h^*(\cdot|s_h)) - \mathcal{H}(\pi_{\hat{Q}, h}(\cdot|s_h))) \mid s_1 = x \right]}_{\textcircled{3}}. \\ 943 \\ 944 \end{aligned}$$

945 Since $\pi_{\hat{Q}}$ is the Boltzmann policy induced by $\{\hat{Q}_h\}_{h=1}^H$ —a property that satisfies Equation B.4—we
946 can deduce that $\textcircled{3} \leq 0$. The remainder of the proof follows the same reasoning as that of Theorem 2.
947 \square
948

949 C RELATED PRELIMINARIES

950 In this section, we present the detailed parameters and settings of the experiments.
951

952 C.1 ALGORITHM

953 **TD3** In our paper, we utilize TD3 as a representative of deterministic policies. TD3, an Actor
954 - Critic algorithm, is widely adopted as a baseline in various decision - making scenarios and has
955 given rise to a multitude of variants, which have established new state - of - the - art (SOTA) results
956 on numerous occasions. Different from the traditional policy gradient method DDPG (Lillicrap
957 et al., 2015), TD3 makes use of two heterogeneous critic networks, denoted as $Q_{\theta_{1,2}}$, to alleviate the
958 problem of over - optimization in Q - learning. Thus, the loss function of the critics is
959

$$\mathcal{L}_Q(\theta_i) = \mathbb{E}_{a, s, r, s'} [(y - Q_{\theta_i}(s, a))^2] \text{ for } \forall i \in \{1, 2\}.$$

972 Where $y = r + \gamma \min_{j=1,2} Q_{\tilde{\theta}_j}(s', \pi_\phi(s'))$, $\tilde{\theta}$ denotes the target network parameters. The actor is
 973 updated according to the Deterministic Policy Gradient:
 974

$$975 \nabla_\phi J(\phi) = \mathbb{E}_s [\nabla_a Q_{\theta_1}(s, \pi_\phi(s)) \nabla_\phi \pi_\phi(s)].$$

977 **SAC** We select SAC as a representative of stochastic policies and combine it with SWD in the
 978 main experiment. SAC is devised to maximize expected cumulative rewards while also boosting
 979 exploration via the maximum entropy principle. The actor strives to learn a stochastic policy that
 980 outputs a distribution over actions, where the critics estimate the value of taking a specific action
 981 in a given state. This enables a more diverse range of actions, facilitating better exploration of the
 982 action space. In traditional reinforcement learning, the objective is to maximize the expected return.
 983 However, SAC introduces an additional term that maximizes the entropy of the policy, encouraging
 984 exploration. The objective function for optimizing the policy is given by:
 985

$$985 J(\pi) = \mathbb{E}_{s_t, a_t} [r(s_t, a_t) + \alpha \mathcal{H}(\pi(\cdot|s_t))]$$

986 where $\mathcal{H}(\pi(\cdot|s_t))$ denotes the entropy of the policy, and α is a temperature parameter that balances
 987 the trade-off between the immediate reward and the policy entropy. The training procedure of SAC
 988 involves two main updates: updating the value function and updating the policy. The value function
 989 is updated by minimizing the following loss:
 990

$$991 \mathcal{L}(Q) = \mathbb{E}_{(s, a, r, s') \sim D} \left[\frac{1}{2} (Q(s, a) - (r + \gamma V(s')))^2 \right]$$

992 where γ is the discount factor, dictating the weight assigned to future rewards. $V(s')$ denotes the
 993 value function of the next state, which is typically approximated using a separate neural network.
 994 The policy is updated by maximizing the following objective:
 995

$$996 J(\pi) = \mathbb{E}_{s_t \sim D} [\mathbb{E}_{a_t \sim \pi} [Q(s_t, a_t) - \alpha \log \pi(a_t|s_t)]]$$

997 Here, $-\alpha \log \pi(a_t|s_t)$ represents the entropy of the policy, which serves to promote exploration.
 998

999 **SimBa** We adopt SimBa (Lee et al., 2025a) as our SAC network architecture, which is specifically
 1000 designed for reinforcement learning (RL) scenarios. Distinctive for embedding a "simplicity bias,"
 1001 SimBa not only mitigates overfitting but also enables parameter scaling in deep RL—addressing
 1002 two key challenges in large-scale RL model training. Concretely, SimBa comprises three core com-
 1003 ponents: (i) an observation normalization layer that standardizes input data using running statistics,
 1004 ensuring stable data distribution for subsequent layers; (ii) a residual feedforward block that estab-
 1005 lishes a direct linear pathway from input to output, facilitating gradient propagation and preserving
 1006 low-complexity feature representations; and (iii) a layer normalization module that regulates feature
 1007 magnitudes, preventing excessive value drift during training.

1008 **Prioritized Experience Replay** We adopt Prioritized Experience Replay (PER) (Schaul et al.,
 1009 2016) to bias sampling toward transitions that are expected to yield larger learning progress. Instead
 1010 of drawing mini-batches uniformly from the replay buffer, PER assigns each transition i a priority
 1011 p_i based on its temporal-difference (TD) error and samples proportionally:
 1012

$$1013 \delta_i = |r_i + \gamma \hat{V}(s'_i) - Q(s_i, a_i)|, \quad p_i = (\delta_i + \varepsilon)^\alpha, \quad P(i) = \frac{p_i}{\sum_j p_j},$$

1015 where $\varepsilon > 0$ avoids zero priorities, $\alpha \in [0, 1]$ controls the degree of prioritization ($\alpha = 0$ recovers
 1016 uniform sampling). To correct the sampling bias introduced by $P(i)$, PER uses importance-sampling
 1017 (IS) weights

$$1018 w_i = \left(\frac{1}{N P(i)} \right)^\beta, \quad \tilde{w}_i = \frac{w_i}{\max_j w_j},$$

1020 where N is the buffer size and $\beta \in [0, 1]$ is annealed toward 1 during training.
 1021

1022 **Gradient Magnitude-based neuron activity assessment** We employ GraMa (Liu et al.,
 1023 2025)—a gradient-magnitude-driven, architecture-agnostic metric—as our plasticity metric.
 1024 Specifically, for each individual neuron (or predefined parameter group), GraMa calculates the mag-
 1025 nitude of gradients computed over mini-batches and maintains a normalized score for each layer;
 crucially, higher scores correspond to greater neural plasticity.

1026 Given an input distribution D , let $|\nabla h_\ell^i L(x)|$ denote the gradient magnitude of neuron i in layer ℓ
 1027 under an input $x \in D$, and let H_ℓ represent the number of neurons in layer ℓ . The learning capacity
 1028 score for each individual neuron by leveraging the normalized average of its corresponding layer ℓ ,
 1029 as formulated below:
 1030

$$1031 \quad 1032 \quad 1033 \quad G_\ell^i = \frac{\mathbb{E}_{x \in D} [|\nabla h_\ell^i L(x)|]}{\frac{1}{H_\ell} \sum_{k \in \mathcal{H}_\ell} \mathbb{E}_{x \in D} [|\nabla h_\ell^k L(x)|]}$$

1034 GraMa (Gradient Magnitude-based neuron activity assessment) identifies neuron i in layer ℓ as in-
 1035 active if $G_\ell^i \leq \tau$, where τ denotes the predefined inactivity threshold.
 1036
 1037

1038 **Double DQN** We adopt Double Deep Q-Network (DDQN) (Hasselt et al., 2016) as our reinforce-
 1039 ment learning (RL) baseline, specifically chosen for both pixel-based input scenarios and tasks with
 1040 long time horizons. By decoupling action selection from target value estimation, DDQN effectively
 1041 mitigates the overestimation bias inherent in standard DQN, ensuring more stable and accurate value
 1042 learning. Concretely, while standard DQN maximizes the estimated value using the same network,
 1043 DDQN utilizes the online network with parameters θ to select the optimal action and the target
 1044 network with parameters θ^- to evaluate that action.
 1045
 1046

1047 C.2 RELATIONSHIP AND COMPLEMENTARITY WITH EXISTING WORK

1049 Prior research on plasticity loss has predominantly centered on **NTK-based methods**, which we
 1050 classify into three core categories based on their underlying mechanisms:

1051 (1) **Reset-based methods (leveraging random initialization properties):** These approaches capi-
 1052 talize on a key characteristic of over-parameterized neural networks: randomly initialized networks
 1053 exhibit full-rank Neural Tangent Kernel (NTK) matrices. To mitigate plasticity loss, they period-
 1054 ically reset network parameters to refresh the NTK and restore the model’s capacity for learning.
 1055 Representative examples include:

- 1056 • **ReDo** (Sokar et al., 2023): Employs activation-driven reinitialization to reset critical net-
 1057 work components
- 1058 • **ReGraMa** (Liu et al., 2025): Utilizes gradient information to guide parameter reinitializa-
 1059 tion, targeting degraded NTK structures
- 1060 • **S&P** (Ash & Adams, 2020): Introduces controlled noise into network parameters to reac-
 1061 tivate dormant plasticity
- 1062 • **Plasticity Injection** (Nikishin et al., 2023b): Under the premise of keeping the output
 1063 unchanged, thoroughly refresh the final linear layer.

1065 (2) **Implicit NTK regularization methods:** This category focuses on detecting early signs of NTK
 1066 rank deficiency—such as unconstrained parameter norm growth—and implementing targeted con-
 1067 straints to avert rank collapse. Key strategies within this framework are:

- 1069 • **Reducing Churn** (Tang & Berseth, 2024): Suppresses off-diagonal elements of the NTK
 1070 matrix to minimize gradient correlations, while dynamically adjusting step sizes in rein-
 1071 forcement learning (RL) settings to preserve NTK integrity
- 1072 • **Auxiliary-loss-based representation stabilization** (Moalla et al., 2024): Integrates addi-
 1073 tional loss terms to stabilize feature representations, indirectly safeguarding NTK rank

1074 (3) **Architecture-based methods:** These approaches address plasticity loss at the network design
 1075 level, either by constructing inherently larger and more robust architectures or by dynamically ex-
 1076 panding parameter counts during training to prevent NTK rank collapse. Notable instances include:

- 1078 • **Hyperspherical Normalization for Scalable Deep RL** (Lee et al., 2025b): Designs archi-
 1079 tectures with built-in stability, leveraging hyperspherical normalization to maintain NTK
 full-rank properties

1080
 1081 • **Forget-and-Grow Strategy for Deep RL Scaling** (Kang et al., 2025): Implements dy-
 1082 dynamic parameter expansion to sustain NTK rank and preserve plasticity
 1083

1084 Our work is **fundamentally orthogonal** to these NTK-based paradigms. Unlike existing methods—
 1085 which tackle plasticity loss through architectural modifications, explicit NTK regularization, or pa-
 1086 rameter resetting—we adopt a **novel gradient dynamics perspective**: our core objective is to mit-
 1087 igate the **temporal distribution shift in the replay buffer**, a primary driver of gradient magnitude
 1088 decay and subsequent plasticity loss. Theoretically, our distribution-aware sampling strategy does
 1089 not overlap with NTK-based plasticity preservation techniques; instead, it offers a complementary
 1090 approach to addressing the root causes of plasticity loss in deep learning systems.
 1091
 1092

D APPROXIMATE BUCKET-BASED SAMPLING

1093 **Efficient Approximation via Bucket Sampling** To mitigate the computational overhead of re-
 1094 calculating weights for the entire replay buffer, we exploit the **monotonic age property** of our
 1095 weighting scheme. Since the weights are strictly determined by the temporal age of transitions, we
 1096 propose a bucket-based approximation method:
 1097

- 1098 1. **Partitioning:** We divide the N transitions in the buffer into B sequential buckets (where
 1099 $B \ll N$).
- 1100 2. **Approximation:** Leveraging the monotonicity, we estimate the total weight of each bucket
 1101 using the weight of its median sample, significantly reducing calculation redundancy.
- 1102 3. **Hierarchical Sampling:** We first sample a bucket according to the approximated proba-
 1103 bility distribution, then uniformly sample a transition within that bucket.

1104 As shown in Table 1, this approach reduces the sampling complexity from $\mathcal{O}(N)$ to $\mathcal{O}(B)$. With
 1105 $B = 2000$ and a buffer size of $N = 10^6$, this yields a theoretical **500× speedup** in the weight
 1106 computation phase, rendering the overhead negligible.
 1107

1111 Table 1: Computational complexity comparison. N denotes the buffer size (10^6), M the batch size,
 1112 and B the number of buckets (2000).

Method	Complexity	Scale Dependency
Uniform Sampling	$\mathcal{O}(M)$	Independent of Buffer
Exact SWD	$\mathcal{O}(N + M)$	Linear w.r.t Buffer
Approximate SWD	$\mathcal{O}(B + M)$	Linear w.r.t Buckets

1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121 **Empirical Validation** We validate the efficiency and effectiveness of this approximation on the
 1122 Humanoid-run task. As presented in Table 2, the Approximate SWD method matches the wall-
 1123 clock training time of Uniform sampling (approx. 8.7 hours) while preserving the performance gains
 1124 of the exact method, achieving a high episode return of 224.9 ± 17.5 .
 1125
 1126

1127 Table 2: Runtime and performance comparison on Humanoid Run. The approximate method
 1128 retains performance while significantly reducing training time.

Method	Wall-Clock Time	Episode Return
Uniform	8.65 h	190.46 ± 7.99
Exact SWD	10.43 h	229.01 ± 37.43
Approximate SWD	8.70 h	224.93 ± 17.47

1134 **E EXPERIMENTAL DETAILS**
11351136 **E.1 STRUCTURE**
11371138 **TD3** In this paper, we adopt the official network architecture of Twin Delayed Deep Deterministic
1139 Policy Gradient (TD3) for baseline comparison, with detailed layer-wise configurations provided in
1140 Table 3.
11411142 **Table 3: Network Structures of the Twin Delayed Deep Deterministic Policy Gradient (TD3)**

1144 Network Component	1145 Actor Network	1146 Critic Network[†]
Fully Connected Layer	(state_dim) \rightarrow (256)	(state_dim + action_dim) \rightarrow (256)
Activation	ReLU	ReLU
Fully Connected Layer	(256) \rightarrow (128)	(256) \rightarrow (128)
Activation	ReLU	ReLU
Output Fully Connected Layer	(128) \rightarrow (action_dim)	(128) \rightarrow (1)
Activation	Tanh [‡]	None

1151 [†]: TD3 adopts two identical critic networks (Critic 1 & Critic 2) for delayed Q-value update, both following
1152 the above structure;
1153 [‡]: Tanh activation constrains the actor's output action to the range $[-1, 1]$, consistent with standard continuous
1154 action space settings.
11551158 **Double DQN** We adopt the Nature CNN network architecture, the detailed specifications of which
1159 are presented in Table 4 and Table 5. Our implementation refers to the official code repository¹ to
1160 ensure consistency with the original design.
11611163 **Table 4: Architecture of the Nature CNN Encoder used in Double DQN. The input consists of 4
1164 stacked frames of size 84×84 .**

1166 Layer	1167 Input Channels	1168 Kernel Size / Stride	1169 Output Channels	1170 Activation
Conv1	4	$8 \times 8 / 4$	32	ReLU
Conv2	32	$4 \times 4 / 2$	64	ReLU
Conv3	64	$3 \times 3 / 1$	64	ReLU

1173 **Table 5: Architecture of the Double DQN Q-Network. The input is the flattened feature vector from
1174 the Encoder.**

1175 Layer	1176 Configuration	1177 Activation
Input (Flatten)	3136 units ($7 \times 7 \times 64$)	-
FC1	Linear($3136 \rightarrow 512$)	ReLU
Output	Linear($512 \rightarrow \mathcal{A} $)	-

1181 **SAC** In this paper, we adopt the same configuration of SimBa as used in the Soft Actor-Critic
1182 (SAC) algorithm, with detailed network structures provided in Table 6, Table 7, and Table 8. Our
1183 implementation refers to the official SimBa code repository² to ensure consistency with the original
1184 design.
11851¹<https://github.com/google-deepmind/dqn>2²<https://github.com/SonyResearch/simba>

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Table 6: Architecture of the SimBa Residual Block

Layer/Operation	Input/Output Dimensions	Activation Function
Layer Normalization	(hidden_dim) \rightarrow (hidden_dim)	None
Fully Connected (Expansion)	(hidden_dim) \rightarrow (4 \times hidden_dim)	ReLU
Fully Connected (Compression)	(4 \times hidden_dim) \rightarrow (hidden_dim)	None
Residual Connection	Input \oplus Block Output*	None

*: “ \oplus ” denotes element-wise addition between the original input and the block output.

Table 7: Architecture of the SimBa Encoder

Component	Structure & Dimension Flow
Input Projection (Fully Connected)	(input_dim) \rightarrow (hidden.dim)
Residual Block Stack	\times num_blocks [†] (each block follows Table 6)
Final Layer Normalization	(hidden.dim) \rightarrow (hidden.dim)

†: “num_blocks” denotes the number of stacked residual blocks, configurable based on task requirements.

Table 8: Network Structures of the SimBa-SAC Framework

Component	Actor Network	Critic Network
Input Dimension	(state_dim)	(state_dim + action_dim)
SimBa Encoder	hidden_dim=128; num_blocks=1	hidden_dim=512; num_blocks=2
Fully Connected	(128) \rightarrow (action_dim)	(512) \rightarrow (1)
Output Activation	Tanh [‡]	None

‡: Tanh activation is used to constrain the action output within the range $[-1, 1]$, consistent with standard SAC implementations.

E.2 IMPLEMENTATION DETAILS

Our codes are implemented with Python 3.10 and JAX. All experiments were run on NVIDIA GeForce GTX 3090 GPUs. Each single training trial ranges from 10 hours to 21 hours, depending on the algorithms and environments.

TD3 Implementation Our TD3 implementation refers to CleanRL³, an efficient and reliable repository for reinforcement learning (RL) algorithm implementations.

Notably, for all OpenAI MuJoCo experiments, we directly use the raw state and reward signals from the environment without any normalization or scaling. To facilitate exploration, an exploration noise sampled from $\mathcal{N}(0, 0.1)$ is added to the action selection process of all baseline methods. The discount factor is set to 0.99, and the Adam optimizer is adopted for all algorithms.

Table 9 presents the complete hyperparameters of TD3 used in our experiments; to reproduce the learning curves reported in the main text, we recommend using random seeds 1 to 5.

Double DQN Implementation Our Double DQN implementation builds upon the CleanRL repository⁴, recognized for its high-fidelity and reproducible reference algorithms. To ensure experimental fairness, we strictly align our configuration with standard Atari benchmarks.

The detailed hyperparameters are presented in Table 10. Notably, for the Arcade Learning Environment (ALE) tasks, we incorporate the bucket-based approximate sampling mechanism from SWD to enhance efficiency.

³https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/td3_continuous_action.py

⁴https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari.py

1242
1243
1244
1245
1246
1247

1248 Table 9: Hyperparameters of the TD3 Algorithm

Hyperparameter	TD3 Configuration
Actor Learning Rate	10^{-4}
Critic Learning Rate	10^{-3}
Discount Factor	0.99
Batch Size	128
Replay Buffer Size	10^6
SWD-Specific Hyperparameters	
Linear Decay Steps	100,000
Minimum Weight (min_weight)	0.1

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

1269 Table 10: Hyperparameters of Our Double DQN Implementation

Hyperparameter	Value
<i>General Training</i>	
Optimizer	Adam
Learning Rate	1×10^{-4}
Discount Factor (γ)	0.99
Buffer Size	1×10^6
Batch Size	32
Learning Starts	80,000 steps
Train Frequency	4 steps
Total Timesteps	10 M
<i>Exploration (Epsilon-Greedy)</i>	
Start Epsilon ($\varepsilon_{\text{start}}$)	1.0
End Epsilon (ε_{end})	0.01
Exploration Fraction	$0.10 (1 \times 10^6 \text{ steps})$
<i>Target Network</i>	
Target Update Frequency	1000 steps
Target Update Rate (τ)	1.0 (Hard Update)
SWD-Specific Hyperparameters	
Linear Decay Steps	80,000
Minimum Weight	0.1
Number of Buckets	2000

1291
1292
1293
1294
1295

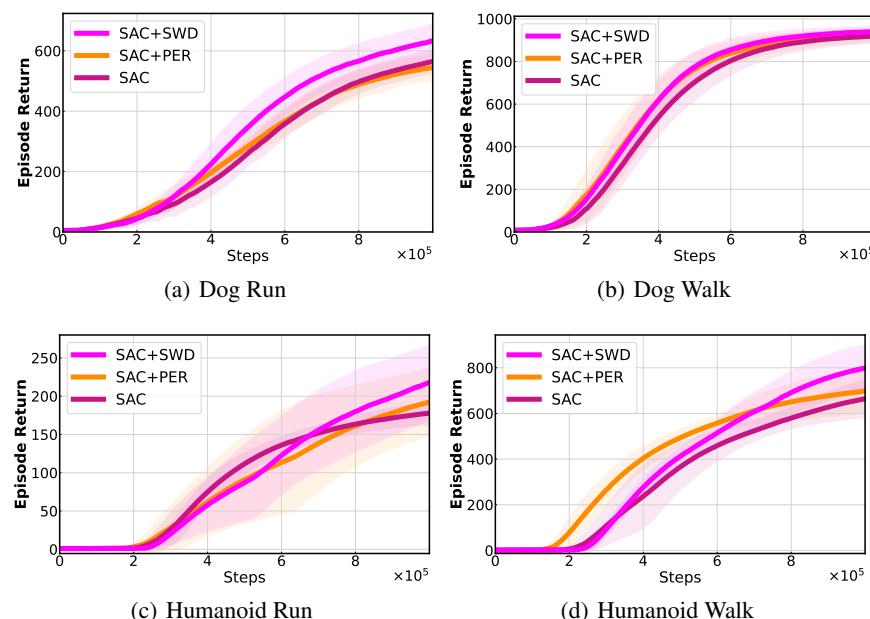
1296 **SAC Implementation** Our Soft Actor-Critic (SAC) implementation is also based on the CleanRL
 1297 repository, specifically referencing the continuous action SAC implementation⁵.
 1298

1300 Table 11: Hyperparameters of Our SAC Implementation (with SimBa Encoder)

Hyperparameter	SAC (with SimBa Encoder)
Optimizer	AdamW (weight decay = 10^{-2})
Policy (Actor) Learning Rate	1×10^{-4}
Q-Network (Critic) Learning Rate	1×10^{-4}
Discount Factor	0.99
Batch Size	256
Warmup Steps (for Policy Update)	5000
Target Q-Network Update Rate (τ)	0.005
Target Q-Network Update Interval	1 (step)
Policy (Actor) Update Interval	2 (steps, policy_frequency)
Entropy Target	$- A $ ($ A $ = action space dimension)
SimBa Encoder (Actor): Hidden Dim / Blocks	128 / 1
SimBa Encoder (Critic): Hidden Dim / Blocks	512 / 2
SWD-Specific Hyperparameters	
Linear Decay Steps	80,000
Minimum Weight (min_weight)	0.1
PER-Specific Hyperparameters	
Prioritization Exponent (α)	0.6
Importance Sampling Exponent (β)	0.4
Beta Increment Rate	1×10^{-6}

1322 The hyperparameters for our SAC (equipped with the SimBa encoder) are detailed in Table 11.
 1323

E.3 SAC LEANRING CURVE

1347 Figure 9: SAC leanrning curve on DMC tasks
 1348

1349 ⁵https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sac_continuous_action.py

1350 **F ADDITIONAL EXPERIMENTS**
13511352 **F.1 SWA**
13531354 In this section, we provide detailed information about our ablation experiments. First, we present
1355 the algorithmic details of SWA, which are summarized in Algorithm 2.
13561357 We adopt the detailed parameter settings of Soft Actor-Critic (SAC), as presented in Ta-
1358 ble 11—specifically, we use the same Linear decay steps T and minimum weight w_{\min} as specified
1359 therein.
1360**Algorithm 2** SWA

1361 **Require:** Linear decay steps T , minimum weight w_{\min} , Current time t , timestamps $\{t_i\}_{i=1}^{|\mathcal{D}|}$

1362 1: **for** $i = 1$ to $|\mathcal{D}|$ **do**

1363 2: $age_i = t - t_i$

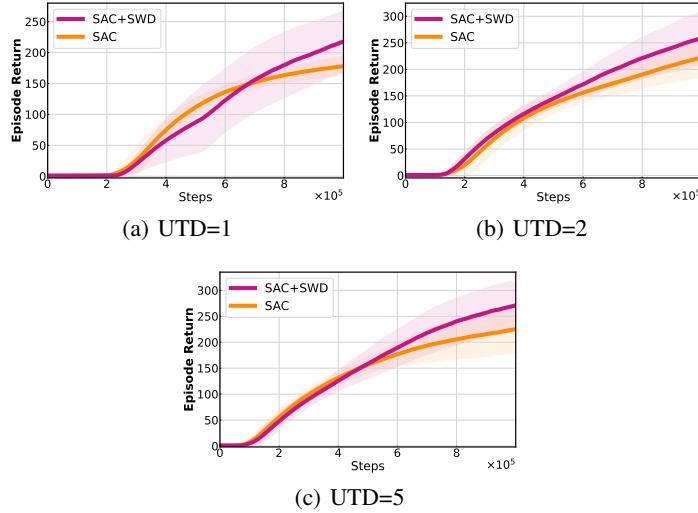
1364 3: $w_i = \min(1, w_{\min} + \frac{age_i}{T})$

1365 4: **end for**

1366 5: $p_i = \frac{w_i}{\sum_{j=1}^{|\mathcal{D}|} w_j}$ for $i = 1, \dots, |\mathcal{D}|$

1367 6: $\mathcal{I} \sim \text{Categorical}(\{p_i\}_{i=1}^{|\mathcal{D}|}, B)$

1368 7: **return** $\mathcal{B} = \{(s_i, a_i, r_i, s'_i, d_i)\}_{i \in \mathcal{I}}$

1370
1371 **F.2 ABLATION STUDY OF UPDATE-TO-DATA**
1372Figure 10: Sensitivity analysis regarding the UTD. Data represents the mean \pm std of five experimental runs conducted on the Humanoid Run.

We adopt SAC (Soft Actor-Critic) as the backbone algorithm and aim to optimize the Update-to-Data (UTD) ratio. This optimization enables faster policy iteration, thereby better leveraging the advantages of SWD. As illustrated in Figure 10, with the increase in the UTD ratio, SWD consistently outperforms the uniform sampling baseline.

1400 **F.3 PARAMETER SENSITIVITY ANALYSIS**
14011402 To assess the robustness of our proposed method, we conducted an extensive grid search to evaluate
1403 the sensitivity of SWD to its two primary hyperparameters: the linear decay steps (T) and the
minimum weight threshold (w_{\min}).

We constructed a 5×5 hyperparameter grid, varying T_{decay} from 20,000 to 100,000 and w_{min} from 0.02 to 0.10. Experiments were performed on the Humanoid Run task, with each of the 25 configurations averaged over 5 random seeds (totaling 125 independent runs). The results, summarized in Table 12, indicate that SWD maintains stable performance across a wide range of hyperparameter settings. While optimal performance fluctuates slightly, the method does not exhibit drastic failure modes within the tested range, demonstrating its robustness to hyperparameter selection.

Table 12: **Parameter Sensitivity Analysis.** Grid search results on Humanoid Run (Mean \pm Std). The best performance is marked in bold.

(T _{decay})	Minimum Weight Threshold (w _{min})				
	0.02	0.04	0.06	0.08	0.10
20,000	229.7 \pm 26.4	240.9 \pm 37.1	234.9 \pm 15.0	217.9 \pm 38.6	226.1 \pm 23.7
40,000	231.4 \pm 44.4	224.5 \pm 34.4	231.3 \pm 30.8	227.0 \pm 23.1	225.5 \pm 22.5
60,000	217.4 \pm 40.2	231.2 \pm 29.9	240.5 \pm 55.0	215.7 \pm 27.9	240.7 \pm 35.3
80,000	233.6 \pm 42.9	231.8 \pm 35.7	225.2 \pm 42.6	220.9 \pm 17.6	231.3 \pm 54.4
100,000	224.0 \pm 32.1	201.8 \pm 31.9	217.0 \pm 48.5	241.6 \pm 38.4	229.2 \pm 29.5

F.4 IMPACT OF DECAY STRATEGY

We further investigate the influence of the weight decay schedule on performance. To this end, we compare our default **Linear Decay** against **Exponential** and **Polynomial** variants. The specific formulations are defined as follows:

- **Linear (Ours):** $w(t) = \max(w_{\text{min}}, 1 - t/T)$, providing a constant rate of importance reduction.
- **Exponential:** $w(t) = \max(w_{\text{min}}, \exp(-t/\tau))$, where $\tau = 1$, modeling rapid initial forgetting.
- **Polynomial:** $w(t) = \max(w_{\text{min}}, (1 - t/T)^p)$, where $p = 2$, penalizing older samples more aggressively than the linear approach.

The empirical results on Humanoid-run are summarized in Table 13. Our proposed Linear Decay strategy significantly outperforms alternative schedules. Notably, both Exponential and Polynomial decay perform worse than the SAC baseline, suggesting that overly aggressive weight reduction disrupts the learning stability required for high-dimensional control tasks.

Table 13: Performance comparison of different decay strategies on Humanoid Run. The relative difference is calculated with respect to our Linear Decay method.

Decay Strategy	Episode Return	vs. Linear SWD
Linear Decay (Ours)	229.01 \pm 37.43	–
SAC (Baseline)	190.46 \pm 7.99	–16.8%
Exponential Decay ($\tau = 1$)	187.04 \pm 29.85	–18.3%
Polynomial Decay ($p = 2$)	132.91 \pm 11.12	–42.0%