
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE RANK AND GRADIENT LOST IN NON-
STATIONARITY: SAMPLE WEIGHT DECAY FOR MIT-
IGATING PLASTICITY LOSS IN REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning (RL) suffers from plasticity loss severely due to the
nature of non-stationarity, which impairs the ability to adapt to new data and learn
continually. Unfortunately, our understanding of how plasticity loss arises, dis-
sipates, and can be dissolved remains limited to empirical findings, leaving the
theoretical end underexplored. To address this gap, we study the plasticity loss
problem from the theoretical perspective of network optimization. By formally
characterizing the two culprit factors in online RL process: the non-stationarity of
data distributions and the non-stationarity of targets induced by bootstrapping, our
theory attributes the loss of plasticity to two mechanisms: the rank collapse of the
Neural Tangent Kernel (NTK) Gram matrix and the Θ(1k) decay of gradient mag-
nitude. The first mechanism echoes prior empirical findings from the theoretical
perspective and sheds light on the effects of existing methods, e.g., network reset,
neuron recycle, and noise injection. Against this backdrop, we focus primarily on
the second mechanism and aim to alleviate plasticity loss by addressing the gradi-
ent attenuation issue, which is orthogonal to existing methods. We propose Sam-
ple Weight Decay (SWD) — a lightweight method to restore gradient magnitude,
as a general remedy to plasticity loss for deep RL methods based on experience
replay. In experiments, we evaluate the efficacy of SWD upon TD3, Double DQN
and SAC with SimBa architecture in MuJoCo, ALE and DeepMind Control Suite
tasks. The results demonstrate that SWD effectively alleviates plasticity loss and
consistently improves learning performance across various configurations of deep
RL algorithms, UTD, network architectures, and environments, achieving SOTA
performance on challenging DMC Humanoid tasks.

1 INTRODUCTION

600 640 680 720
SAC

SAC+SWD
Median

600 640 680 720

IQM

600 625 650

Mean

135 150 165

Optimality Gap

(a) SWD for SimBa-SAC in DMC tasks

3500 4000 4500
TD3

TD3+SWD
Median

3600 4000 4400

IQM

4800 5200 5600

Mean

1500 1800 2100 2400

Optimality Gap

(b) SWD for TD3 in MuJoCo tasks

4000 4500 5000 5500
Double DQN

Double DQN+SWD
Median

4000 4500 5000 5500

IQM

4000 4500 5000 5500

Mean

2680 2720 2760 2800

Optimality Gap

(c) SWD for Double DQN in ALE tasks

Figure 1: Aggregate Reliable metrics (Agarwal et al.,
2021) with 95% Stratified Bootstrap CIS.

Deep reinforcement learning (RL)
has achieved remarkable success
across a variety of domains, includ-
ing robotics (Akkaya et al., 2019), game
playing (Berner et al., 2019) and LLM
post-training that endows language
models with the ability to generate
human-like replies for breaking the Turing
test (Biever, 2023). The core driver
behind these advancements of deep RL
lies in the combination of RL and deep
neural networks. With the powerful
expressive capacity and adaptive learning
ability, the neural networks can effectively
approximate and optimize value functions
and policies under the RL training regime.
However, recent studies have identified a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

critical yet often overlooked challenge — Plasticity Loss: as training progresses, the learning ability
of neural networks gradually diminishes (Elsayed & Mahmood, 2024; Nikishin et al., 2022). To
address this phenomenon, researchers in the RL community have proposed different metrics and
remedies mainly from empirical perspectives, such as Network Reset (Nikishin et al., 2022), Neuron
Recycling (Sokar et al., 2023), Noise Injection (Nikishin et al., 2023a). However, these existing
works all rely on empirical intuitions and lack clear theoretical grounding, leaving a significant gap
between empiricism and theory. Despite the significance of this issue, explaining plasticity from
the theoretical perspective and developing principled algorithms remain highly challenging due to
the complexity of the underlying mechanisms of plasticity loss in the context of deep RL.

To analyze the optimization dynamics of Reinforcement Learning (RL) agents, we develop a struc-
tured theoretical framework rooted in a core insight: due to the dynamic nature of the optimization
process in RL, the loss function evolves with each optimization iteration—effectively initiating a
new optimization ”task” in each round. Critically, the initial optimization point for the updated loss
function in the current round is exactly the terminal point from optimizing the previous round’s loss
function. This sequential initialization mechanism raises fundamental questions about its potential
adverse impacts on optimization performance, and this line of inquiry underpins the entire logic of
our theoretical analysis. Based on this insight, we arrive at a key conclusion: RL agents inherently
confront two critical challenges that exert profound adverse effects on loss function optimization.The
first is the potential rank deficiency of the Neural Tangent Kernel (NTK) (Jacot et al., 2018)—a core
factor that governs the network’s fitting capacity, specifically its ability to approximate the optimal
value function in RL.The second is a gradient magnitude decay , which directly regulates the neural
network’s fitting rate and dictates the time required to escape saddle points.

Our theoretical results reveal two causal mechanisms for the occurrence of plasticity loss. The first
mechanism echoes prior empirical findings from the theoretical perspective and sheds light on the
effects of existing methods. Differently, we focus primarily on the second mechanism, which has
not been well explored, and aim to alleviate plasticity loss by addressing the gradient attenuation
issue from an orthogonal angle to existing methods. In this paper, we design an anti-decay sampling
strategy as a compensation measure. We observe that gradient decay is governed by the linearly de-
caying term 1

k , where k represents the number of learning iteration. In response to this, we construct
a set of linearly weighted coefficients, where the sampling probability decreases linearly with the
age of the samples. Specifically, we propose Sample Weight Decay (SWD) — a lightweight method
tailored to mitigate plasticity loss in deep Reinforcement Learning (RL) algorithms. SWD effectively
maintains the gradient magnitude at a appropriate scale, ensuring stable learning dynamics.

Building on the SimBa-SAC (Lee et al., 2025a; Haarnoja et al., 2018) , TD3 (Fujimoto et al., 2018)
and Double DQN (Hasselt et al., 2016) algorithms as base algorithm, SWD significantly enhances
learning stability and performance in continuous control tasks and pixel-based tasks. To validate its
effectiveness, we evaluated SWD across three well-established online reinforcement learning (RL)
benchmarks: the MuJoCo (Brockman, 2016) , Arcade Learning Environment (Bellemare et al.,
2013) and the DeepMind Control (DMC) Suite (Tassa et al., 2018). For our evaluation protocol, we
adopted the Interquartile Mean (IQM) as the core performance metric, while leveraging GraMa (Liu
et al., 2025) as the key indicator to quantify plasticity. As illustrated in Figure 1, SWD consistently
delivers state-of-the-art (SOTA) performance.

The contributions of this paper are summarized as follows:

• We have developed a unified theory to account for plasticity in deep reinforcement learn-
ing (RL), thereby shedding clear light on the origins of such plasticity, bridging the gap
between empirical practice and theoretical research.

• We propose SWD, a theoretically grounded plug-and-play method to different RL algo-
rithms for mitigating plasticity loss and improving learning performance.

• The experiments demonstrate the efficacy of SWD in improving learning stability and per-
formance. Additionally, SWD achieves state-of-the-art (SOTA) performance in challenging
DMC Humanoid tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Plasticity loss refers to the phenomenon in neural network training where the model gradually loses
its ability to adapt to new data, objectives, or tasks during the learning process (Dohare et al., 2024).
This usually reflects that the network becomes overly specialized to the early stages of training,
resulting in reduced learning capacity, slower convergence, or even a collapse in later stages of
training (Nikishin et al., 2022; 2023a). To gain a better understanding of plasticity loss and address
it effectively, many efforts have been made to conduct various empirical investigations and propose
different solutions (Ash & Adams, 2020; Lewandowski et al., 2023; Kumar et al., 2023; Ceron et al.,
2023; Asadi et al., 2023; Ellis et al., 2024; Chung et al., 2024; Tang & Berseth, 2024; Frati et al.,
2024; Ceron et al., 2024).

Sokar et al. (2023) first identified the dormant neuron phenomenon in deep reinforcement learning
(RL) networks, where neurons progressively fall into an inactive state and their expressive capacity
diminishes over the course of training. To address this issue, they proposed Recycle Dormant neu-
rons (ReDo) — a strategy that continuously detects and recycles dormant neurons throughout the
training process. In a separate line of work, Nikishin et al. (2023a) proposed Plasticity Injection,
a minimal-intervention technique that boosts network plasticity without altering trainable parame-
ters or introducing biases into predictive outputs. More recently, Liu et al. (2025) introduced Reset
guided by Gradient Magnitude (ReGraMa), which addresses neuronal activity loss in deep RL agents
by transitioning from activation statistics to gradient-based neuron reset strategies, maintaining net-
work plasticity through GraMa metrics. While these approaches have empirically validated their
effectiveness in combating plasticity loss, they predominantly operate at the model level — modify-
ing network architectures without addressing the fundamental theoretical questions: why plasticity
loss occurs and how different underlying mechanisms contribute to this phenomenon. This presents
a significant gap between empiricism and theory.

This theoretical gap motivates our work, which targets the fundamental gradient decay mechanism
identified through our theoretical analysis. Our proposed Sample Weight Decay (SWD) approach
operates at the strategic level — focused on weighting in experience replay — and provides a prin-
cipled means of compensating for the Θ(1/k) gradient attenuation, a challenge unaddressed by
recent techniques. A key distinguishing feature of SWD is its orthogonality to existing methods:
whereas prior approaches modify network structures or plasticity injection patterns, SWD acts at the
data distribution level via intelligent experience reweighting, ensuring compatibility with existing
plasticity-preserving techniques and enabling synergistic performance improvements.

3 PRELIMINARIES

We consider an episodic Markov Decision Process (MDP) (S,A, H, {Ph}Hh=1, {rh}Hh=1) with hori-
zon H ∈ Z+ (Puterman, 2014). Here, S,A are measurable state, action spaces; Ph(· | s, a) is the
transition kernel at step h ; rh : S × A → [0, 1] is the reward at step h. At each episode, an initial
state x1 is drawn. At step h ∈ [H], the agent observes xh ∈ S, chooses ah ∈ A, receives rh(xh, ah),
and transits to xh+1 ∼ Ph(· | xh, ah). A policy is π = {πh}Hh=1 with πh(· | x).
For policy π, the value and action-value functions are defined as:

V π
h (x) = E

[
H∑
t=h

rt(xt, at)

∣∣∣∣∣xh = x, at ∼ πt(· | xt)

]
, ∀x ∈ S, h ∈ [H],

Qπ
h(x, a) = rh(x, a) + Ex′∼Ph(·|x,a)

[
V π
h+1(x

′)
]
, ∀(x, a) ∈ S× A, h ∈ [H],

with terminal condition V π
H+1 ≡ 0. It is convenient to write the transition expectation operator Ph

and policy expectation operator Jπh:

(PhV)(x, a) = Ex′∼Ph(·|x,a)[V (x′)], (JπhQ)(x) = Ea∼πh(·|x)[Q(x, a)].

Then the policy Bellman equations compactly read,

Qπ
h(x, a) = rh(x, a) + (PhV

π
h+1)(x, a),

V π
h (x) = (JπhQπ

h)(x), V π
H+1 ≡ 0.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

For any function g : S×A → R, define the value maximization operator V and the step-h optimality
Bellman operator Th by

Vg(x) := max
a

g(x, a)

(Thg)(x, a) := rh(x, a) + (PhVg)(x, a).

4 THEORY ANALYSIS: THE RANK LOSS AND GRADIENT ATTENUATION

In this section, our primary objective is to establish a rigorous connection between the optimization
process and plasticity loss. To this end, we first utilize Equation 3 to derive a formal bound on
the model’s performance. We then simplify the dynamic optimization process by reducing it to an
initialization problem—a key step that streamlines subsequent analyses. Finally, we elaborate on
the derivation of our core results, with the full details presented in Section 4.1 and Section 4.2.

For the sake of clarity and analytical tractability, we focus our discussion on the simplest variant
of Fitted Q-Iteration (FQI) (Ernst et al., 2005). Importantly, the theoretical framework proposed
herein is not limited to this specific algorithm; it can be readily extended to accommodate a wider
class of value-based reinforcement learning methods. Of note, analogous analytical findings hold
for entropy-regularized Markov Decision Processes (MDPs). A comprehensive treatment of this
extension, including detailed proofs and supplementary analyses, is provided in Appendix B.4.

Let Dk
h denote the replay buffer at step h following k episodes, and let f̂k

h+1 represent the estimated
Q-value at step h+ 1 after k episodes. The loss function is then defined as follows:

Lk
h(f, f̂

k
h+1) :=

1

|Dk
h|

∑
(sh,ah,sh+1)∼Dk

h

[(
f(sh, ah)−

(
r(sh, ah) + max

a′
f̂k
h+1(sh+1, a

′)
))2]

f̂k
h = argmin

f∈F
Lk
h(f, f̂

k
h+1), f̂H+1 ≡ 0

Define the empirical distribution µk
h of the replay buffer over (s, a) and the empirical state-action

visitation frequency of the behavior policy πk+1 at time h in episode k:

µk
h(s, a) :=

1

|Dk
h|

∑
(si,ai,s′i)∈Dk

h

I{s = si, a = ai},

d̂π
k+1

h (s, a) := I{s = sk+1
h , , a = ak+1

h }, (sk+1
h , ak+1

h) ∼ Pπk+1

h (s, a)

To establish a mathematical formulation for distribution shift and thereby quantify its impact on the
loss function, we rely on Proposition 1 to characterize such distributional non-stationarity. Further-
more, to facilitate the subsequent gradient decomposition, we express the loss function in the form
specified in Theorem 1. Finally, to connect the agent’s performance to the loss function, we leverage
Theorem 2 to provide a bound on the agent’s final performance.
Proposition 1 (Empirical distribution recursion). The empirical distribution satisfies

µk+1
h =

k

k + 1
µk
h +

1

k + 1
d̂π

k+1

h . (1)

Proof (sketch). By construction, |Dk+1
h | = k+1 and Dk+1

h = Dk
h∪{(sk+1

h , ak+1
h , sk+1

h+1)}. Expand-
ing the definition of µk+1

h and regrouping terms yields the stated convex combination.

Theorem 1 (Population loss limit). Let F be a measurable function class. As the cardinality (or
appropriate size measure) of Dk

h tends to infinity (i.e., |Dk
h| → ∞), the following probabilistic

convergence holds:

Lk
h(f, f̂

k
h+1)

p−→ E(sh,ah)∼µk
h

[(
f(sh, ah)− (Thf̂k

h+1)(sh, ah)
)2]

+ Ck
h (2)

where Ck
h is a constant independent of f . Henceforth, we do not rigorously distinguish between the

empirical risk and the expected loss, focusing instead on the underlying optimization problem.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Takeaway 1. The non-stationarity in training process

The population loss limit established in Theorem 1 identifies two key sources of non-
stationarity in the training process of Fitted Q-Iteration: the non-stationary distribution µk

h

and the non-stationary target Thf̂k
h+1. Both of these sources drive variations in the target

population risk across training episodes k.

Theorem 2 (Suboptimality bound via squared bellman residuals). Fix horizon H . Let {f̂h}Hh=1

denote the final value estimates (e.g., from the K-th iteration; write f̂h := f̂
(K)
h). Define the greedy

policy
πf̂ ,h(s) ∈ argmax

a∈A
f̂h(s, a), h = 1, . . . , H.

For functions f, g : S× A → R, define the step-h squared Bellman residual

∆h(f, g)(s, a) :=
(
f(s, a)− (Thg)(s, a)

)2
Then for any start state x,

V ∗
1 (x)− V

πf̂

1 (x) ≤
√
H


√√√√Eπ∗

[
H∑

h=1

∆h(f̂h, f̂h+1)(sh, ah)

∣∣∣∣ s1 = x

]
+

√√√√Eπf̂

[
H∑

h=1

∆h(f̂h, f̂h+1)(sh, ah)

∣∣∣∣ s1 = x

] . (3)

Takeaway 2. Suboptimality bound

Equation 3 links model performance to the loss function for optimization. This means the
agent’s performance depends on Bellman residuals from the current and optimal policy tra-
jectories, not historical ones.

Building on the foundational framework established above, we can observe that the loss function
evolves at each iteration k; this phenomenon is analogous to initiating an entirely new round of
training. A key distinction from supervised learning lies in the initialization process: whereas su-
pervised learning relies on random initialization, reinforcement learning (RL) commences opti-
mization from the argmin of the loss function obtained in the previous iteration. Consequently,
investigating the properties of initialization points under such non-steady-state conditions becomes
particularly crucial—an insight that further underscores the necessity of the theoretical exploration
presented in our work.

4.1 NEURAL TANGENT KERNEL (NTK) DEGENERATION

A key advantage of random initialization is that it ensures the Neural Tangent Kernel (NTK) ma-
trix of an overparameterized neural network is full-rank with probability 1. This comes from the
property that low-dimensional manifolds have zero measure in high-dimensional spaces, making
the NTK matrix rank-deficient extremely unlikely. However, this random initialization is violated
in Reinforcement Learning (RL), so the initial NTK matrix’s structural properties (e.g., rank, condi-
tioning) are no longer guaranteed, adding uncertainty to learning.

Prior research (Du et al., 2019; Allen-Zhu et al., 2019) shows overparameterized networks achieve
global convergence to zero training error via Gradient Descent (GD) or Stochastic Gradient Descent
(SGD) if two conditions hold: (i) The initial NTK matrix K0 is well-conditioned: its eigenvalues are
bounded (no extremely large/small values to distort optimization). (ii) The NTK matrix K remains
stable during training, so its structural properties do not degrade and harm convergence.

4.2 GRADIENT ATTENUATION

Another advantage of proper random initialization lies in preserving an appropriate initial gradient
magnitude—a factor whose critical role in the optimization process has been well validated through

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

both experimental observations and theoretical analyses. As illustrated in (Dixit et al., 2023), the
time an optimizer needs to escape a saddle point is dictated by the magnitude of the initial state’s
projection onto the unstable (negative-curvature) subspace of the saddle point. In consequence,
excessively small initial gradients prolong the optimizer’s stagnation near saddle points, resulting in
a significant deterioration in optimization performance. Unfortunately, however, gradient decay is
an inherent and unavoidable phenomenon in reinforcement learning (RL) training, as evidenced by
the theorem presented below.
Theorem 3 (Gradient Dynamics at Initialization). For the optimization objective defined in Equa-
tion 1, the initial gradient of the loss function (evaluated at the parameter values that minimized the
loss of the previous iteration, f̂k−1

h) satisfies:

∇Eµk
h

[(
f − Thf̂k

h+1

)2]∣∣∣∣
f̂k−1
h

=
1

k
∇E

d̂πk

h

[(
f − Thf̂k−1

h+1

)2]∣∣∣∣
f̂k−1
h︸ ︷︷ ︸

Distributional shift

+ Eµk
h

[
∇f2

∣∣
f̂k−1
h

·
(
Thf̂k−1

h+1 − Thf̂k
h+1

)]
︸ ︷︷ ︸

Target drift

(4)

By setting f̂H+1 ≡ 0. This eliminates the target-drift term entirely, leaving only the distributional-
shift component—where the Θ(1/k) scaling factor becomes the dominant driver of gradient decay.
As the number of training iterations k grows large, the magnitude of the initial gradient will tend
to approach zero. This near-zero gradient signal risks trapping the optimization process at saddle
points, as the model lacks sufficient directional information to escape these suboptimal regions.

5 SAMPLE WEIGHT DECAY (SWD)

Algorithm 1 Sample Weight Decay (SWD)

Require: Linear decay steps T , minimum weight wmin, Current time t, timestamps {ti}|D|
i=1

1: for i = 1 to |D| do
2: agei = t− ti
3: wi = max

(
wmin, 1− agei

T

)
4: end for
5: pi =

wi∑|D|
j=1 wj

for i = 1, . . . , |D|

6: I ∼ Categorical({pi}|D|
i=1, B)

7: return B = {(si, ai, ri, s′i, di)}i∈I

SWD is a principled algorithmic intervention to mitigate gradient signal degradation in non-stationary
reinforcement learning environments. As in Algorithm 1, it addresses the core challenge in Theo-
rem 3: the harmful 1

k decay of gradient contributions from new data. It uses a linear decay mecha-
nism, assigning each sample a weight wi = max(wmin, 1 − agei

T), where agei = t − ti (t = current
training step, ti = sample collection step). The key insight of Algorithm 1 is its rigorous sample
weighting. It identifies the 1

k coefficient—overly attenuating gradients from the current policy distri-
bution d̂π

k

—as the root of gradient degradation. To counter this, SWD introduces a linear weighting
scheme: each sample gets a probability pi =

wi∑|D|
j=1 wj

, with pi proportional to sample recency. This

neutralizes the 1
k attenuation, restoring gradient magnitude and sustaining model plasticity during

training.

6 EXPERIMENTS

The core objective of the experiment is to validate the efficacy of the proposed SWD method in
mitigating plasticity loss during long-horizon training and quantify its performance advantages with
multifaceted analyses. Specifically, we focus on the following five key research questions:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 2 4 6 8
Steps ×105

0

1000

2000

3000

4000

5000

6000

Ep
is

od
ic

 R
et

ur
n

TD3+SWD
TD3

(a) Ant

0 2 4 6 8
Steps ×105

0

2000

4000

6000

8000

10000

Ep
is

od
ic

 R
et

ur
n

TD3+SWD
TD3

(b) Halfcheetah

0 2 4 6 8
Steps ×105

0

1000

2000

3000

4000

5000

6000

Ep
is

od
ic

 R
et

ur
n

TD3+SWD
TD3

(c) Humanoid

0 2 4 6 8
Steps ×105

0

1000

2000

3000

4000

Ep
is

od
ic

 R
et

ur
n

TD3+SWD
TD3

(d) Walker2d

0 2 4 6 8
Steps ×105

0

1000

2000

3000

Ep
is

od
ic

 R
et

ur
n

TD3+SWD
TD3

(e) Hopper

Figure 2: Empirical validation of SWD across TD3 in MuJoCo environments (mean ± std over 5
runs). SWD consistently improves sample efficiency and performance.

• Q1: Does the proposed method SWD consistently improve the training performance of
mainstream reinforcement learning (RL) algorithms across different continuous and dis-
crete control tasks?

• Q2: Does the temporal weighting strategy of the proposed method SWD play a critical role
in alleviating plasticity loss?

• Q3: Can SWD adapt to the training scenarios with increased Update-to-Data (UTD) ra-
tio configurations, where more severe plasticity loss should be addressed for better data
efficiency?

• Q4: How does SWD compare with other methods designed to address plasticity issues?
And is it feasible to combine SWD with these other methods?

• Q5: How sensitive is the proposed SWD to the hyperparameters? How do different choices
of heuristics influence the results?

To address Q1, we conduct experiments using the Double DQN, TD3, and SAC algorithms within
the SimBa architecture (Lee et al., 2025a), evaluating their performance across the Arcade Learning
Environment (Bellemare et al., 2013), the MuJoCo environments (Brockman, 2016), and the DMC
suite (Tassa et al., 2018). We also include the canonical method Prioritized Experience Replay
(PER) (Schaul et al., 2016) as a direct baseline method. Furthermore, to provide reverse validation of
SWD’s effectiveness, we use a variant called Sample Weight Augmentation (SWA), i.e., a counterpart
designed to produce the opposite effect by assigning higher weights to older samples. For Q2, we
adopt GraMa (Liu et al., 2025) as the metric for plasticity, using it to empirically demonstrate the
superiority of our proposed method in alleviating plasticity loss. To answer Q3, we evaluate the
performance of SWD based on Simba-SAC under different UTD ratios, with a specific focus on the
Humanoid Run environment. To address Q4, we compare SWD against other representative methods
designed to address plasticity issues. For Q5, we conduct extensive experiments to analyze the
hyperparameter sensitivity of SWD and the effects of different decay strategies, such as exponential
decay and polynomial decay.

6.1 PERFORMANCE EVALUATION

Experimental Setup. We evaluate methods on three benchmark suites: (i) For the five MuJoCo
environments (Ant, HalfCheetah, Hopper, Humanoid, Walker2d), we use TD3 (Fujimoto et al.,
2018) as the base algorithm with conventional MLP networks. (ii) For the three ALE environments
(DemonAttack, Phoenix, and Breakout), we use Double Deep Q-Network (Hasselt et al., 2016) as
the base algorithm with the typical CNN-MLP networks. (iii) For the four difficult DMC tasks
(Humanoid-Run, Humanoid-Walk, Dog-Run, Dog-Walk),we use SAC (Haarnoja et al., 2018) as
the base algorithm with the SimBa network architecture (Lee et al., 2025a). In this subsection,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 2 4 6 8
Step ×106

0

2500

5000

7500

10000

12500

15000

Ep
is

od
e

Re
tu

rn

Double DQN+SWD
Double DQN

(a) Phoenix

0 2 4 6 8
Step ×106

0

10000

20000

30000

40000

50000

Ep
is

od
e

Re
tu

rn

(b) DemonAttack

0 2 4 6 8
Step ×106

0

100

200

300

400

Ep
is

od
e

Re
tu

rn

(c) Breakout

Figure 3: Empirical validation of SWD across Double DQN in ALE environments (mean ± std over
5 runs). SWD consistently improves sample efficiency and performance.

600 640 680 720

SAC

SAC+SWD

SAC+PER

Median

600 640 680 720

IQM

600 625 650

Mean

200 220 240

Optimality Gap

Figure 4: Performance comparison between SWD and PER based on SAC. Aggregate Reliable met-
rics (Agarwal et al., 2021) with 95% Stratified Bootstrap CIS in DMC tasks.

we include PER as a canonical baseline for comparison. Detailed hyperparameters and details are
provided in Appendix C.

Results As illustrated in Figure 2, Figure 3 and Figure 4, SWD demonstrates a remarkable ability
to enhance the algorithm’s performance. Specifically, it facilitates accelerated learning during the
early phases of training and attains superior final policy quality upon convergence—an advantage
that is particularly prominent in the Ant and Humanoid environments. In sharp contrast, PER (Prior-
itized Experience Replay) demands nearly several times more training time, while the performance
improvements it yields remain extremely limited. This observation aligns well with our theoretical
framework, and Equation 3 further confirms that performance enhancement can only be achieved by
optimizing the TD errors along both the optimal policy path and the current policy path.

6.2 ABLATION STUDY

To provide reverse validation of SWD’s effectiveness, we develop a contrasting method calledSample
Weight Augmentation (SWA), which implements the opposite weighting strategy by assigning higher
weights to older data samples. This design allows us to empirically verify our theoretical hypothesis
that prioritizing recent experiences is crucial for maintaining neural plasticity.More details are shown
in Appendix F, where we employed GraMa (Liu et al., 2025) as our measure of neural plasticity.

0 2 4 6 8
Steps ×105

0

50

100

150

200

250

Ep
is

od
e

Re
tu

rn

SAC+SWD
SAC+SWA
SAC

(a) Performance Comparison

0 2 4 6 8
Steps ×105

0

2000

4000

6000

8000

L1
 N

or
m

(b) Gradient L1 Norm Evolution

0 2 4 6 8
Steps ×105

0.0

0.2

0.4

0.6

G
ra

M
a

(c) GraMa

Figure 5: Experiments conducted in the humanoid-run environment demonstrate that SWA exhibits
a lower gradient magnitude, GraMa, and inferior performance, which validates our hypothesis.

Results The reverse validation experiment yields key insights: (i) As shown in Figure 5(a), SWA
consistently underperforms SWD and uniform sampling, validating that prioritizing recent experi-
ences is critical for non-stationary RL learning; (ii) Figure 5(b) shows SWA reduces gradient L1
norms during training (weakened learning signals), aligning with our gradient attenuation analysis
and confirming older data exacerbates plasticity loss; (iii) GraMa analysis in Figure 5(c) reveals SWA
causes sparser gradients and greater plasticity loss than SWD (reduced neural activation/adaptation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 2 4 6 8
Steps ×105

0.0

0.1

0.2

0.3

0.4

0.5

G
ra

M
a

SAC+SWD
SAC

(a) Humanoid Run

0 2 4 6 8
Steps ×105

0.0

0.1

0.2

0.3

0.4

G
ra

M
a

(b) Humanoid Walk

0 2 4 6 8
Steps ×105

0.0

0.1

0.2

0.3

G
ra

M
a

(c) Humanoid Stand

Figure 6: GraMa Metric in Humanoid Locomotion: Run, Walk, and Stand: The results clearly
demonstrate that SWD effectively mitigates the loss of plasticity in humanoid robots across these key
locomotor states.

capacity), providing direct empirical support for our theoretical framework’s plasticity degradation
prediction.

6.3 THE EFFECT IN ALLEVIATING PLASTICITY LOSS

To verify whether SWD can mitigate plasticity, we employed GraMa as the evaluation metric to
quantify the degree of plasticity during the model training process. Notably, a larger GraMa value
indicates a weaker learning capability of the neural network.

Results The corresponding results are illustrated in Figure 6. As depicted in this figure, our pro-
posed SWD effectively alleviates the gradient sparsity that arises during the training process. Notably,
the most pronounced effects are observed in the Humanoid Run environment and the Humanoid
Stand environment. It can be clearly seen from the figure that SWD exerts its function in the mid-
dle and late stages of training — gradient attenuation is not severe in the early stage — and this
observation is consistent with our theoretical predictions.

6.4 COMPATIBILITY AGAINST HIGHER UPDATE-TO-DATA RATIOS

UTD=1 UTD=2 UTD=5
Update-to-Data Ratio

0

50

100

150

200

250

300

350

IQ
M

 P
er

fo
rm

an
ce

188

236
+25.4%

229

268
+17.3%

219

285
+30.1%

SAC SAC+SWD

Figure 7: Performance comparison across different UTD ratios (1, 2, 5) in Humanoid Run. SWD
consistently outperforms uniform sampling across all UTD settings, with improvements ranging
from 17.3% to 30.1%.

The Update-to-Data Ratio (UTD) is a critical metric for measuring an algorithm’s data utilization
efficiency. Intuitively, uniform sampling assigns equal weight to each sample; after multiple updates,
the gradient signals that can effectively guide the update of network parameters become very weak.
In contrast, our SWDmethod assigns greater weight to more recent samples, ensuring that sufficiently
strong gradient signals are maintained even after multiple updates.

As shown in Figure 7, SWD demonstrates consistent effectiveness across UTD ratios of 1, 2, and
5. Notably, the method shows the largest improvement (+30.1%) at UTD=5, suggesting that SWD
is particularly beneficial when gradient updates are frequent. This robustness indicates that our
approach is broadly applicable across different algorithmic configurations without requiring UTD-
specific tuning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

200 240 280

SAC

SWD

ReGraMa

S&P

Plasticity Injection

SWD+S&P
Median

200 240 280

IQM

200 240 280

Mean

40 80 120

Optimality Gap

Figure 8: Performance comparison between SWD+S&P and other methods designed to address plas-
ticity issues. Aggregate Reliable metrics (Agarwal et al., 2021) with 95% Stratified Bootstrap CIS
in Humanoid run.

6.5 COMPARISON WITH OTHER METHODS DESIGNED TO ADDRESS PLASTICITY LOSS

To further evaluate the effectiveness of SWD, we compare it in the Humanoid Run environment with
three representative methods that are designed to address plasticity issues: ReGraMa (Liu et al.,
2025), S&P (Ash & Adams, 2020), and Plasticity Injection (Nikishin et al., 2023b). Moreover, we
explore SWD’s synergistic potential with S&P, i.e., SWD+S&P, which demonstrates the orthogonality.

Results As in Figure 8, SWD outperforms other NTK-based methods on the SimBa (Lee et al.,
2025a) network. Moreover, SWD combined with S&P yields the best result, validating its orthogo-
nality to NTK-based methods. We provide a detailed discussion on the relationship between SWD
and prior works for plasticity loss in Appendix C.2.

6.6 OTHER RESULTS

Hyperparameter Choices and Decay Strategies To analyze the hyperparameter sensitivity of
SWD, we conduct a grid-search test for two core hyperparameters, i.e., linear decay steps T and min-
imum weight threshold wmin. In Table 12 of Appendix F, SWD exhibits low sensitivity to different
choices, demonstrating its stability. Moreover, we compare the linear decay strategy of SWD with
the other two commonly adopted strategies, i.e., exponential decay and polynomial decay. Table 13
shows that the linear decay strategy outperforms the other two strategies.

Compute-efficient Approximation of SWD To further reduce the computational overhead of per-
sample weight, we propose a bucket-based approximation method. As in Table 2 of Appendix D,
this approximation significantly reduces the training time at no compromise of policy performance.

7 CONCLUSION

In this paper, we identified and addressed the critical issue of plasticity loss in long-horizon rein-
forcement learning through both theoretical analysis and algorithmic innovation. Our theoretical
framework reveals that gradient attenuation follows a Θ(1/k) decay pattern, fundamentally limit-
ing the agent’s ability to adapt to new experiences over extended training periods. To counteract
this degradation, we proposed Sample Weight Decay (SWD), a simple yet effective method that ap-
plies age-based weighting to replay buffer sampling. Through comprehensive experiments across
MuJoCo, ALE and DMC environments with TD3, DDQN and SAC algorithms, we demonstrated
consistent performance improvements ranging from 13.7% to 30.1% in IQM scores. Our ablation
studies and reverse validation experiments confirm that temporal weighting direction is crucial for
maintaining neural plasticity. The broad applicability of SWD across different algorithms, environ-
ments, and training configurations, combined with its minimal computational overhead, makes it a
practical solution for enhancing long-horizon RL performance. This work opens new avenues for
understanding and mitigating plasticity loss in deep reinforcement learning.

Limitations Owing to computational constraints, our evaluation is restricted to tasks within the
MuJoCo, ALE and DeepMind Control Suite (DMC). Additionally, our exploration and practical ap-
plication of the proposed theoretical framework remain at a preliminary stage—representing merely
the ”tip of the iceberg.” Moving forward, future research will extend SWD to more complex scenar-
ios, real-world environments. Ultimately, our goal is to develop SWD into a practical, robust tool that
effectively preserves the learning capacity of deep reinforcement learning (RL) agents.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To promote transparency and reproducibility within the scientific community, we provide compre-
hensive details regarding training parameters and associated resources in the appendix. Additionally,
the complete codebase for both the training and inference processes has been uploaded to the sup-
plementary material.

ETHICS STATEMENT

This paper is committed to advancing the field of plasticity loss to develop more effective Reinforce-
ment Learning (RL) algorithms. Our research adheres rigorously to responsible research practices
and is fully aligned with the ICLR Code of Ethics. All training data utilized in this study was
sourced from open-access datasets, and every asset employed strictly complies with the original
licensing agreements and terms of service of the respective data providers.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. NeurIPS, 2021.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML, 2019.

Kavosh Asadi, Rasool Fakoor, and Shoham Sabach. Resetting the optimizer in deep RL: an empiri-
cal study. In NeurIPS, 2023.

Jordan Ash and Ryan P Adams. On warm-starting neural network training. NeurIPS, 2020.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
2013.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Celeste Biever. Chatgpt broke the turing test-the race is on for new ways to assess ai. Nature, 2023.

G Brockman. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Johan Samir Obando Ceron, Marc G Bellemare, and Pablo Samuel Castro. Small batch deep rein-
forcement learning. In NeurIPS, 2023.

Johan Samir Obando Ceron, Aaron Courville, and Pablo Samuel Castro. In value-based deep rein-
forcement learning, a pruned network is a good network. In ICML. PMLR, 2024.

Wesley Chung, Lynn Cherif, Doina Precup, and David Meger. Parseval regularization for continual
reinforcement learning. In NeurIPS, 2024.

Rishabh Dixit, Mert Gurbuzbalaban, and Waheed U. Bajwa. Exit time analysis for approximations
of gradient descent trajectories around saddle points. Information and inference, 2023.

Shibhansh Dohare, J. Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A. Rupam Mah-
mood, and Richard S. Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):
768–774, 2024.

Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds
global minima of over-parameterized neural networks. In ICLR, 2019.

Benjamin Ellis, Matthew T. Jackson, Andrei Lupu, Alexander D. Goldie, Mattie Fellows, Shimon
Whiteson, and Jakob Foerster. Adam on local time: Addressing nonstationarity in rl with relative
adam timesteps. arXiv preprint, arXiv:2412.17113, 2024.

Mohamed Elsayed and A Rupam Mahmood. Addressing loss of plasticity and catastrophic forget-
ting in continual learning. arXiv preprint arXiv:2404.00781, 2024.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
JMLR, 2005.

Lapo Frati, Neil Traft, Jeff Clune, and Nick Cheney. Reset it and forget it: Relearning last-layer
weights improves continual and transfer learning. In ECAI 2024, pp. 2998–3005. 2024.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In ICLR, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, and Pieter Abbeel. Soft actor-critic algorithms and applica-
tions. arXiv preprint arXiv:1812.05905, 2018.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. AAAI, 2016.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In NeurIPS, 2018.

Zilin Kang, Chenyuan Hu, Yu Luo, Zhecheng Yuan, Ruijie Zheng, and Huazhe Xu. A forget-and-
grow strategy for deep reinforcement learning scaling in continuous control. ICML, 2025.

Saurabh Kumar, Henrik Marklund, Ashish Rao, Yifan Zhu, Hong Jun Jeon, Yueyang Liu, and Ben-
jamin Van Roy. Continual learning as computationally constrained reinforcement learning. arXiv
preprint, arXiv:2307.04345, 2023.

Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian,
Peter R. Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. Simba: Simplicity bias for scaling
up parameters in deep reinforcement learning. In ICLR, 2025a.

Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspher-
ical normalization for scalable deep reinforcement learning, 2025b.

Alex Lewandowski, Haruto Tanaka, Dale Schuurmans, and Marlos C. Machado. Directions of
curvature as an explanation for loss of plasticity. volume arXiv:2312.00246, 2023.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Jiashun Liu, Zihao Wu, Johan Obando-Ceron, Pablo Samuel Castro, Aaron Courville, and Ling Pan.
Measure gradients, not activations! enhancing neuronal activity in deep reinforcement learning.
arXiv preprint arXiv:2505.24061, 2025.

Skander Moalla, Andrea Miele, Daniil Pyatko, Razvan Pascanu, and Caglar Gulcehre. No repre-
sentation, no trust: connecting representation, collapse, and trust issues in ppo. NeurIPS, 37:
69652–69699, 2024.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In ICML, 2022.

Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney,
and André Barreto. Deep reinforcement learning with plasticity injection. arXiv preprint
arXiv:2305.15555, 2023a.

Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney, and
André Barreto. Deep reinforcement learning with plasticity injection. NeurIPS, 2023b.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
ICLR, 2016.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In ICML, 2023.

Hongyao Tang and Glen Berseth. Improving deep reinforcement learning by reducing the chain
effect of value and policy churn. In NeurIPS, 2024.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were utilized to support the writing and refinement of this
manuscript. Specifically, an LLM was employed to assist in enhancing language clarity, improv-
ing readability, and ensuring coherent expression across different sections of the paper. It aided in
tasks like rephrasing sentences, checking grammar, and optimizing the overall textual flow.

It should be noted that the LLM played no role in the conception of research ideas, the formulation
of research methodologies, or the design of experiments. All research concepts, ideas, and analyses
were independently developed and carried out by the authors. The LLM’s contributions were strictly
limited to elevating the linguistic quality of the paper, without any involvement in the scientific
content or data analysis.

The authors fully assume responsibility for the entire content of the manuscript, including any text
generated or polished with the help of the LLM. We have verified that the text produced with the
LLM complies with ethical guidelines and does not lead to plagiarism or any form of scientific
misconduct.

B PROOF

B.1 PROOF OF THEOREM 1

In this section, we prove Theorem1.

ELk
h(f, f̂

k
h+1)

= E(sh,ah)∼µk
h

[
Esh+1∼ph(·|sh,ah)

[(
f(sh, ah)− r(sh, ah)−max

a′
f̂k
h+1(sh+1, a

′)
)2]]

= E(sh,ah)∼µk
h

[
Esh+1∼ph(·|sh,ah)

[(
f(sh, ah)− Thf̂k

h+1(sh, ah)

+ Ph max
a′

f̂k
h+1(sh+1, a

′)(sh, ah)−max
a′

f̂k
h+1(sh+1, a

′)
)2]]

= E(sh,ah)∼µk
h

[
Esh+1∼ph(·|sh,ah)

[(
f(sh, ah)− Thf̂k

h+1(sh, ah)
)2

+
(
Ph max

a′
f̂k
h+1(sh+1, a

′)(sh, ah)−max
a′

f̂k
h+1(sh+1, a

′)
)2

+ 2
(
f(sh, ah)− Thf̂k

h+1(sh, ah)
)

×
(
Ph max

a′
f̂k
h+1(sh+1, a

′)(sh, ah)−max
a′

f̂k
h+1(sh+1, a

′)
)]]

= E(sh,ah)∼µk
h

[(
f(sh, ah)− Thf̂k

h+1(sh, ah)
)2]

+ E(sh,ah)∼µk
h

[
Esh+1∼ph(·|sh,ah)

[(
Ph max

a′
f̂k
h+1(sh+1, a

′)(sh, ah)−max
a′

f̂k
h+1(sh+1, a

′)
)2]]

= E(sh,ah)∼µk
h

[(
f(sh, ah)− Thf̂k

h+1(sh, ah)
)2]

+ E(sh,ah)∼µk
h

[
Varsh+1∼ph(·|sh,ah)

[
max
a′

f̂k
h+1(sh+1, a

′)
]]

The loss function can be decomposed into two components:

• Bellman Residual Term: E(sh,ah)∼µk
h

[(
f(sh, ah)− Thf̂k

h+1(sh, ah)
)2]

–Measures the

function approximation error.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Environmental Stochasticity Term: E(sh,ah)∼µk
h

[
Varsh+1∼ph(·|sh,ah)

[
maxa′ f̂k

h+1(sh+1, a
′)
]]

–
Reflects the intrinsic randomness of state transitions.

B.2 PROOF OF THEOREM 2

First, we prove one lemma to help the proof.

Lemma 1. Consider an episodic MDP with horizon H . Let π′ = {π′
h}Hh=1 denote any policy,

and let {Q̂h}Hh=1 denote any set of estimated Q-functions. Let π = {πh}Hh=1 be the greedy policy
induced by {Q̂h}Hh=1.

For all h ∈ [H], define:

• Value function: V̂h(s) = JπhQ̂h(s) where Jπhf(s) = Ea∼πh(·|s)[f(s, a)]

• Bellman residual: lh(s, a) := Q̂h(s, a)− (ThQ̂h+1)(s, a)

Then, for all elements x ∈ S, thefollowingholds :

V̂1(x)− V π′

1 (x) =

H∑
h=1

Eπ′

[
(Jπh − Jπ

′

h)Q̂h(sh) | s1 = x
]

+

H∑
h=1

Eπ′

[
Q̂h(sh, ah)− (ThQ̂h+1)(sh, ah) | s1 = x

]

Proof.

V̂h(x)− V π′

h (x) = JπhQ̂h(x)− Jπ
′

h Qπ′

h (x)

= JπhQ̂h(x)− Jπ
′

h Q̂h(x) + Jπ
′

h Q̂h(x)− Jπ
′

h Qπ′

h (x)

= Jπ
′

h (Q̂h −Qπ′

h)(x) + (Jπh − Jπ
′

h)Q̂h(x)

= Jπ
′

h (lh + T⟨Q̂h+1 − rh − PhV
π′

h+1)(x) + (Jπh − Jπ
′

h)Q̂h(x)

= Jπ
′

h (lh + PhV̂h+1 − PhV
π′

h+1)(x) + (Jπh − Jπ
′

h)Q̂h(x)

= Jπ
′

h lh(x) + Jπ
′

h Ph(V̂h+1 − V π′

h+1)(x) + (Jπh − Jπ
′

h)Q̂h(x)

Using recurrence relations and the boundary condition V̂H+1 = V π′

H+1 ≡ 0, we can derive that

V̂1(x)− V π′

1 (x) =

H∑
h=1

(
h−1∏
k=1

Jπ
′

k Pk

)
Jπ

′

h lh(x)

+

H∑
h=1

(
h−1∏
k=1

Jπ
′

k Pk

)
(Jπh − Jπ

′

h)Q̂h(x)

Which complete our proof.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

let π′ be the optimal policy π∗,π be the greedy policy induced by {Q̂h}Hh=1, and {V̂h}Hh=1 be the
corresponding value function.Then, the suboptimal bound is given by:

V ∗
1 (x)− V π

1 (x) = V ∗
1 (x)− V̂1(x) + V̂1(x)− V π

1 (x)

=

H∑
h=1

Eπ∗

[
ThQ̂h+1(sh, ah)− Q̂h(sh, ah) | s1 = x

]
︸ ︷︷ ︸

1⃝

+

H∑
h=1

Eπ

[
Q̂h(sh, ah)− ThQ̂h+1(sh, ah) | s1 = x

]
︸ ︷︷ ︸

2⃝

+

H∑
h=1

Eπ∗

[
(Jπ

∗

h − Jπh)Q̂h | s1 = x
]

︸ ︷︷ ︸
3⃝

Since π is the greedy policy with respect to Q̂, we have 3⃝ ≤ 0, and for 1⃝ we can drive that:

1⃝ ≤
H∑

h=1

Eπ∗

[
|ThQ̂h+1(sh, ah)− Q̂h(sh, ah)|

∣∣s1 = x
]

≤
H∑

h=1

√
Eπ∗

[(
ThQ̂h+1(sh, ah)− Q̂h(sh, ah)

)2
| s1 = x

]

≤
√
H

√√√√ H∑
h=1

Eπ∗

[(
ThQ̂h+1(sh, ah)− Q̂h(sh, ah)

)2
| s1 = x

]
The last step makes use of the Cauchy-Schwarz inequality, and the second step employs Jensen’s
inequality.

Similarly, we can derive that 2⃝ also satisfies:

2⃝ ≤
√
H

√√√√ H∑
h=1

Eπ

[(
ThQ̂h+1(sh, ah)− Q̂h(sh, ah)

)2
| s1 = x

]
By combining the above results, we complete the proof of Theorem 2.

B.3 PROOF OF THEOREM 3

In this section, we prove Theorem 3.

Proof.

∇Eµk
h

[
(f − Thf̂k

h+1)
2
] ∣∣∣∣

f̂k−1
h

= Eµk
h

[
2
(
f − Thf̂k

h+1

)
∇f

∣∣∣∣
f̂k−1
h

]

= Eµk
h

[
2
(
f − Thf̂k−1

h + Thf̂k−1
h − Thf̂k

h+1

)
∇f

∣∣∣∣
f̂k−1
h

]

= Eµk
h

[
2
(
Thf̂k−1

h − Thf̂k
h+1

)
∇f

∣∣∣∣
f̂k−1
h

]
+ Eµk

h

[
2
(
f − Thf̂k−1

h+1

)
∇f

∣∣∣∣
f̂k−1
h

]
︸ ︷︷ ︸

1⃝
Recall the define of f̂k−1

h and the Proposition 1 of µk
h,

1⃝ = ∇Eµk
h

[(
f − Thf̂k−1

h+1

)2] ∣∣∣∣
f̂k−1
h

=
k − 1

k
∇Eµk−1

h

[(
f − Thf̂k−1

h+1

)2] ∣∣∣∣
f̂k−1
h︸ ︷︷ ︸

=0

+
1

k
∇E

d̂πk

h

[(
f − Thf̂k−1

h+1

)2] ∣∣∣∣
f̂k−1
h

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

By combining the above results, we complete the proof of Theorem 3

B.4 ENTROPY REGULARIZED MDP

In this section, we present the theoretical analysis and error bounds for the Entropy-Regularized
Markov Decision Process (MDP). Specifically, the state value function with an entropy reward is
defined as follows:

V soft,π
h (x) = E

[
H∑
t=h

(rt(xt, at) + α log πt(at | xt))

∣∣∣∣xh = x, at ∼ πt(·|xt)

]
, ∀x ∈ S, h ∈ [H],

Qsoft,π
h (x, a) = rh(x, a) + PhV

soft,π
h+1 (x, a), ∀(x, a) ∈ S× A, h ∈ [H]

with terminal condition V soft,π
H+1 ≡ 0. Then the policy Bellman equations compactly read

Qsoft,π
h (x, a) = rh(x, a) + PhV

soft,π
h+1 (x, a)

V soft,π
h (x) = Jπh(Q

soft,π
h − α log πh)(x), V soft

H+1 ≡ 0

For any function g : S × A → R, define the soft value operator Vsoft and the step-h soft optimality
Bellman operator T soft

h by

Vsoft
g (s) := max

π
Ea∼π [g(s, a)− α log π(a|s)] ,(

T soft
h f

)
(s, a) := r(s, a) +

(
PhVsoft

f

)
(s, a)

We define the Boltzmann policy πsoft
f induced by the function f : S× A → R, which is given by:

πsoft
f = argmax

π
Ea∼π[f(s, a)− α log π(a|s)].

Similarly, we have the following lemma.
Lemma 2. Consider an entropy-regularized episodic MDP with horizon H. Let π′ = {π′

h}Hh=1

denote any policy, and let Q̂ = {Q̂h}Hh=1 denote any set of estimated soft Q-functions. Let π =

{πh}Hh=1 be the Boltzmann policy induced by Q̂ = {Q̂h}Hh=1. For all h ∈ [H], define:

• Value function: V̂h(s) = Jπh(Q̂h − α log πh)(s) where Jπhf(s) = Ea∼πh(·|s)[f(s, a)]

• Bellman residual: lh(s, a) := Q̂h(s, a)− (T soft
h Q̂h+1)(s, a)

• Entropy: H(π(·|s)) = −Ea∼π(·|s)[log π(·|s)]

Then for all x ∈ S, we have

V̂1(x)− V soft,π′

1 (x) =

H∑
h=1

Eπ′

[
(Jπh − Jπ

′

h)Q̂h(sh) + α(H(πh(·|sh))−H(π′
h(·|sh))) | s1 = x

]
+

H∑
h=1

Eπ′

[
Q̂h(sh, ah)− (T soft

h Q̂h+1)(sh, ah) | s1 = x
]
.

Proof.

V̂h(x)− V soft,π′

h (x) = Jπh(Q̂h − α log π)(x)− Jπ
′

h (Qsoft,π′

h − α log π′)(x)

= JπhQ̂h(x)− Jπ
′

h Qsoft,π′

h (x) + α(H(πh(·|x))−H(π′
h(·|x)))

= JπhQ̂h(x)− Jπ
′

h Q̂h(x) + Jπ
′

h Q̂h(x)− Jπ
′

h Qsoft,π′

h (x) + α(H(πh(·|x))−H(π′
h(·|x)))

= Jπ
′

h (Q̂h −Qsoft,π′

h)(x) + JπhQ̂h(x)− Jπ
′

h Q̂h(x) + α(H(πh(·|x))−H(π′
h(·|x)))

= Jπ
′

h (lh + T soft
h Q̂h+1 − r − PhV

soft,π′

h+1)(x) + JπhQ̂h(x)− Jπ
′

h Q̂h(x) + α(H(πh(·|x))−H(π′
h(·|x)))

= Jπ
′

h (lh + Ph(V̂h+1 − V soft,π′

h+1))(x) + JπhQ̂h(x)− Jπ
′

h Q̂h(x) + α(H(πh(·|x))−H(π′
h(·|x)))

= Jπ
′

h lh(x) + Jπ
′

h Ph(V̂h+1 − V soft,π′

h+1)(x) + JπhQ̂h(x)− Jπ
′

h Q̂h(x) + α(H(πh(·|x))−H(π′
h(·|x))).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Using recurrence relations and the boundary condition V̂H+1 = V soft,π′

H+1 ≡ 0, we can derive that

V̂1(x)− V soft,π′

1 (x) =

H∑
h=1

(
h−1∏
k=1

Jπ
′

k Pk

)
Jπ

′

h lh(x)

+

H∑
h=1

(
h−1∏
k=1

Jπ
′

k Pk

)(
(Jπh − Jπ

′

h)Q̂h(x) + α (H(πh(·|x))−H(π′
h(·|x)))

)
.

This completes the proof.

Theorem 4 (Suboptimality bound for entropy-regularized MDP via squared Bellman residuals).
Fix horizon H. Let {Q̂h}Hh=1 be the soft value estimates. Define {πQ̂,h}Hh=1 as the Boltzmann policy

induced by {Q̂h}Hh=1. Let {π∗
h}Hh=1 be the optimal policy.

For functions f, g : S× A → R, define the step-h squared Bellman residual:

∆h(f, g)(s, a) =
(
f(s, a)− T soft

h g(s, a)
)2

.

Then we have

V soft,π∗

1 (x)− V
soft,πQ̂

1 (x) ≤
√
H


√√√√Eπ∗

[
H∑

h=1

∆h(Q̂h, Q̂h+1)(sh, ah)

∣∣∣∣ s1 = x

]
+

√√√√EπQ̂

[
H∑

h=1

∆h(Q̂h, Q̂h+1)(sh, ah)

∣∣∣∣ s1 = x

] .

Proof.

V soft,π∗

1 (x)− V
soft,πQ̂

1 (x) = V soft,π∗

1 (x)− V̂1(x) + V̂1(x)− V
soft,πQ̂

1 (x)

=

H∑
h=1

Eπ∗

[
T soft
h Q̂h+1(sh, ah)− Q̂h(sh, ah) | s1 = x

]
︸ ︷︷ ︸

1⃝

+

H∑
h=1

EπQ̂

[
Q̂h(sh, ah)− T soft

h Q̂h+1(sh, ah) | s1 = x
]

︸ ︷︷ ︸
2⃝

+

H∑
h=1

Eπ∗

[(
Jπ

∗

h − J
πQ̂

h

)
Q̂h + α

(
H(π∗

h(·|sh))−H(πQ̂,h(·|sh))
)
| s1 = x

]
︸ ︷︷ ︸

3⃝

.

Since πQ̂ is the Boltzmann policy induced by {Q̂h}Hh=1—a property that satisfies Equation B.4—we
can deduce that 3⃝ ≤ 0. The remainder of the proof follows the same reasoning as that of Theorem 2.

C RELATED PRELIMINARIES

In this section, we present the detailed parameters and settings of the experiments.

C.1 ALGORITHM

TD3 In our paper, we utilize TD3 as a representative of deterministic policies. TD3, an Actor
- Critic algorithm, is widely adopted as a baseline in various decision - making scenarios and has
given rise to a multitude of variants, which have established new state - of - the - art (SOTA) results
on numerous occasions. Different from the traditional policy gradient method DDPG (Lillicrap
et al., 2015), TD3 makes use of two heterogeneous critic networks, denoted as Qθ1,2 , to alleviate the
problem of over - optimization in Q - learning. Thus, the loss function of the critics is

LQ(θi) = Ea,s,r,s′
[
(y −Qθi(s, a))

2
]

for ∀i ∈ {1, 2}.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Where y = r + γminj=1,2 Qθ̃j
(s′, πϕ(s

′)), θ̃ denotes the target network parameters. The actor is
updated according to the Deterministic Policy Gradient:

∇ϕJ(ϕ) = Es [∇aQθ1(s, πϕ(s))∇ϕπϕ(s)] .

SAC We select SAC as a representative of stochastic policies and combine it with SWD in the
main experiment. SAC is devised to maximize expected cumulative rewards while also boosting
exploration via the maximum entropy principle. The actor strives to learn a stochastic policy that
outputs a distribution over actions, where the critics estimate the value of taking a specific action
in a given state. This enables a more diverse range of actions, facilitating better exploration of the
action space. In traditional reinforcement learning, the objective is to maximize the expected return.
However, SAC introduces an additional term that maximizes the entropy of the policy, encouraging
exploration. The objective function for optimizing the policy is given by:

J(π) = Est,at
[r(st, at) + αH(π(·|st))]

where H(π(·|st)) denotes the entropy of the policy, and α is a temperature parameter that balances
the trade-off between the immediate reward and the policy entropy. The training procedure of SAC
involves two main updates: updating the value function and updating the policy. The value function
is updated by minimizing the following loss:

L(Q) = E(s,a,r,s′)∼D

[
1

2
(Q(s, a)− (r + γV (s′)))

2
]

where γ is the discount factor, dictating the weight assigned to future rewards. V (s′) denotes the
value function of the next state, which is typically approximated using a separate neural network.
The policy is updated by maximizing the following objective:

J(π) = Est∼D [Eat∼π [Q(st, at)− α log π(at|st)]]
Here, −α log π(at|st) represents the entropy of the policy, which serves to promote exploration.

SimBa We adopt SimBa (Lee et al., 2025a) as our SAC network architecture, which is specifically
designed for reinforcement learning (RL) scenarios. Distinctive for embedding a ”simplicity bias,”
SimBa not only mitigates overfitting but also enables parameter scaling in deep RL—addressing
two key challenges in large-scale RL model training. Concretely, SimBa comprises three core com-
ponents: (i) an observation normalization layer that standardizes input data using running statistics,
ensuring stable data distribution for subsequent layers; (ii) a residual feedforward block that estab-
lishes a direct linear pathway from input to output, facilitating gradient propagation and preserving
low-complexity feature representations; and (iii) a layer normalization module that regulates feature
magnitudes, preventing excessive value drift during training.

Prioritized Experience Replay We adopt Prioritized Experience Replay (PER) (Schaul et al.,
2016) to bias sampling toward transitions that are expected to yield larger learning progress. Instead
of drawing mini-batches uniformly from the replay buffer, PER assigns each transition i a priority
pi based on its temporal-difference (TD) error and samples proportionally:

δi =
∣∣ri + γ V̂ (s′i)−Q(si, ai)

∣∣, pi =
(
δi + ε

)α
, P (i) =

pi∑
j pj

,

where ε > 0 avoids zero priorities, α ∈ [0, 1] controls the degree of prioritization (α = 0 recovers
uniform sampling). To correct the sampling bias introduced by P (i), PER uses importance-sampling
(IS) weights

wi =
(

1
N P (i)

)β
, w̃i =

wi

maxj wj
,

where N is the buffer size and β ∈ [0, 1] is annealed toward 1 during training.

Gradient Magnitude-based neuron activity assessment We employ GraMa (Liu et al.,
2025)—a gradient-magnitude-driven, architecture-agnostic metric— as our plasticity metric.
Specifically, for each individual neuron (or predefined parameter group), GraMa calculates the mag-
nitude of gradients computed over mini-batches and maintains a normalized score for each layer;
crucially, higher scores correspond to greater neural plasticity.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Given an input distribution D, let |∇hi
ℓL(x)| denote the gradient magnitude of neuron i in layer ℓ

under an input x ∈ D, and let Hℓ represent the number of neurons in layer ℓ. The learning capacity
score for each individual neuron by leveraging the normalized average of its corresponding layer ℓ,
as formulated below:

Gi
ℓ =

Ex∈D

[
|∇hi

ℓL(x)|
]

1
Hℓ

∑
k∈Hℓ

Ex∈D

[
|∇hk

ℓL(x)|
]

GraMa (Gradient Magnitude-based neuron activity assessment) identifies neuron i in layer ℓ as in-
active if Gi

ℓ ≤ τ , where τ denotes the predefined inactivity threshold.

Double DQN We adopt Double Deep Q-Network (DDQN) (Hasselt et al., 2016) as our reinforce-
ment learning (RL) baseline, specifically chosen for both pixel-based input scenarios and tasks with
long time horizons. By decoupling action selection from target value estimation, DDQN effectively
mitigates the overestimation bias inherent in standard DQN, ensuring more stable and accurate value
learning. Concretely, while standard DQN maximizes the estimated value using the same network,
DDQN utilizes the online network with parameters θ to select the optimal action and the target
network with parameters θ− to evaluate that action.

C.2 RELATIONSHIP AND COMPLEMENTARITY WITH EXISTING WORK

Prior research on plasticity loss has predominantly centered on NTK-based methods, which we
classify into three core categories based on their underlying mechanisms:

(1) Reset-based methods (leveraging random initialization properties): These approaches capi-
talize on a key characteristic of over-parameterized neural networks: randomly initialized networks
exhibit full-rank Neural Tangent Kernel (NTK) matrices. To mitgate plasticity loss, they period-
ically reset network parameters to refresh the NTK and restore the model’s capacity for learning.
Representative examples include:

• ReDo (Sokar et al., 2023): Employs activation-driven reinitialization to reset critical net-
work components

• ReGraMa (Liu et al., 2025): Utilizes gradient information to guide parameter reinitializa-
tion, targeting degraded NTK structures

• S&P (Ash & Adams, 2020): Introduces controlled noise into network parameters to reac-
tivate dormant plasticity

• Plasticity Injection (Nikishin et al., 2023b): Under the premise of keeping the output
unchanged, thoroughly refresh the final linear layer.

(2) Implicit NTK regularization methods: This category focuses on detecting early signs of NTK
rank deficiency—such as unconstrained parameter norm growth—and implementing targeted con-
straints to avert rank collapse. Key strategies within this framework are:

• Reducing Churn (Tang & Berseth, 2024): Suppresses off-diagonal elements of the NTK
matrix to minimize gradient correlations, while dynamically adjusting step sizes in rein-
forcement learning (RL) settings to preserve NTK integrity

• Auxiliary-loss-based representation stabilization (Moalla et al., 2024): Integrates addi-
tional loss terms to stabilize feature representations, indirectly safeguarding NTK rank

(3) Architecture-based methods: These approaches address plasticity loss at the network design
level, either by constructing inherently larger and more robust architectures or by dynamically ex-
panding parameter counts during training to prevent NTK rank collapse. Notable instances include:

• Hyperspherical Normalization for Scalable Deep RL (Lee et al., 2025b): Designs archi-
tectures with built-in stability, leveraging hyperspherical normalization to maintain NTK
full-rank properties

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• Forget-and-Grow Strategy for Deep RL Scaling (Kang et al., 2025): Implements dy-
namic parameter expansion to sustain NTK rank and preserve plasticity

Our work is fundamentally orthogonal to these NTK-based paradigms. Unlike existing methods—
which tackle plasticity loss through architectural modifications, explicit NTK regularization, or pa-
rameter resetting—we adopt a novel gradient dynamics perspective: our core objective is to mit-
igate the temporal distribution shift in the replay buffer, a primary driver of gradient magnitude
decay and subsequent plasticity loss. Theoretically, our distribution-aware sampling strategy does
not overlap with NTK-based plasticity preservation techniques; instead, it offers a complementary
approach to addressing the root causes of plasticity loss in deep learning systems.

D APPROXIMATE BUCKET-BASED SAMPLING

Efficient Approximation via Bucket Sampling To mitigate the computational overhead of re-
calculating weights for the entire replay buffer, we exploit the monotonic age property of our
weighting scheme. Since the weights are strictly determined by the temporal age of transitions, we
propose a bucket-based approximation method:

1. Partitioning: We divide the N transitions in the buffer into B sequential buckets (where
B ≪ N).

2. Approximation: Leveraging the monotonicity, we estimate the total weight of each bucket
using the weight of its median sample, significantly reducing calculation redundancy.

3. Hierarchical Sampling: We first sample a bucket according to the approximated proba-
bility distribution, then uniformly sample a transition within that bucket.

As shown in Table 1, this approach reduces the sampling complexity from O(N) to O(B). With
B = 2000 and a buffer size of N = 106, this yields a theoretical 500× speedup in the weight
computation phase, rendering the overhead negligible.

Table 1: Computational complexity comparison. N denotes the buffer size (106), M the batch size,
and B the number of buckets (2000).

Method Complexity Scale Dependency
Uniform Sampling O(M) Independent of Buffer
Exact SWD O(N +M) Linear w.r.t Buffer
Approximate SWD O(B+M) Linear w.r.t Buckets

Empirical Validation We validate the efficiency and effectiveness of this approximation on the
Humanoid-run task. As presented in Table 2, the Approximate SWD method matches the wall-
clock training time of Uniform sampling (approx. 8.7 hours) while preserving the performance gains
of the exact method, achieving a high episode return of 224.9± 17.5.

Table 2: Runtime and performance comparison on Humanoid Run. The approximate method
retains performance while significantly reducing training time.

Method Wall-Clock Time Episode Return
Uniform 8.65 h 190.46± 7.99
Exact SWD 10.43 h 229.01± 37.43
Approximate SWD 8.70 h 224.93 ± 17.47

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E EXPERIMENTAL DETAILS

E.1 STRUCTURE

TD3 In this paper, we adopt the official network architecture of Twin Delayed Deep Deterministic
Policy Gradient (TD3) for baseline comparison, with detailed layer-wise configurations provided in
Table 3.

Table 3: Network Structures of the Twin Delayed Deep Deterministic Policy Gradient (TD3)

Network Component Actor Network Critic Network†

Fully Connected Layer (state dim) → (256) (state dim + action dim) → (256)
Activation ReLU ReLU
Fully Connected Layer (256) → (128) (256) → (128)
Activation ReLU ReLU
Output Fully Connected Layer (128) → (action dim) (128) → (1)
Activation Tanh‡ None

†: TD3 adopts two identical critic networks (Critic 1 & Critic 2) for delayed Q-value update, both following
the above structure;

‡: Tanh activation constrains the actor’s output action to the range [−1, 1], consistent with standard continuous
action space settings.

Double DQN We adopt the Nature CNN network architecture, the detailed specifications of which
are presented in Table 4 and Table 5. Our implementation refers to the official code repository1 to
ensure consistency with the original design.

Table 4: Architecture of the Nature CNN Encoder used in Double DQN. The input consists of 4
stacked frames of size 84× 84.

Layer Input Channels Kernel Size / Stride Output Channels Activation
Conv1 4 8× 8 / 4 32 ReLU
Conv2 32 4× 4 / 2 64 ReLU
Conv3 64 3× 3 / 1 64 ReLU

Table 5: Architecture of the Double DQN Q-Network. The input is the flattened feature vector from
the Encoder.

Layer Configuration Activation
Input (Flatten) 3136 units (7× 7× 64) -
FC1 Linear(3136 → 512) ReLU
Output Linear(512 → |A|) -

SAC In this paper, we adopt the same configuration of SimBa as used in the Soft Actor-Critic
(SAC) algorithm, with detailed network structures provided in Table 6, Table 7, and Table 8. Our
implementation refers to the official SimBa code repository2 to ensure consistency with the original
design.

1https://github.com/google-deepmind/dqn
2https://github.com/SonyResearch/simba

22

https://github.com/google-deepmind/dqn
https://github.com/SonyResearch/simba

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 6: Architecture of the SimBa Residual Block
Layer/Operation Input/Output Dimensions Activation Function
Layer Normalization (hidden dim) → (hidden dim) None
Fully Connected (Expansion) (hidden dim) → (4×hidden dim) ReLU
Fully Connected (Compression) (4×hidden dim) → (hidden dim) None
Residual Connection Input ⊕ Block Output∗ None

∗: ”⊕” denotes element-wise addition between the original input and the block output.

Table 7: Architecture of the SimBa Encoder
Component Structure & Dimension Flow
Input Projection (Fully Connected) (input dim) → (hidden dim)
Residual Block Stack × num blocks† (each block follows Table 6)
Final Layer Normalization (hidden dim) → (hidden dim)

†: ”num blocks” denotes the number of stacked residual blocks, configurable based on task requirements.

Table 8: Network Structures of the SimBa-SAC Framework
Component Actor Network Critic Network
Input Dimension (state dim) (state dim + action dim)
SimBa Encoder hidden dim=128; num blocks=1 hidden dim=512; num blocks=2
Fully Connected (128) → (action dim) (512) → (1)
Output Activation Tanh‡ None

‡: Tanh activation is used to constrain the action output within the range [−1, 1], consistent with standard SAC
implementations.

E.2 IMPLEMENTATION DETAILS

Our codes are implemented with Python 3.10 and JAX. All experiments were run on NVIDIA
GeForce GTX 3090 GPUs. Each single training trial ranges from 10 hours to 21 hours, depend-
ing on the algorithms and environments.

TD3 Implementation Our TD3 implementation refers to CleanRL3, an efficient and reliable
repository for reinforcement learning (RL) algorithm implementations.

Notably, for all OpenAI MuJoCo experiments, we directly use the raw state and reward signals
from the environment without any normalization or scaling. To facilitate exploration, an exploration
noise sampled from N (0, 0.1) is added to the action selection process of all baseline methods. The
discount factor is set to 0.99, and the Adam optimizer is adopted for all algorithms.

Table 9 presents the complete hyperparameters of TD3 used in our experiments; to reproduce the
learning curves reported in the main text, we recommend using random seeds 1 to 5.

Double DQN Implementation Our Double DQN implementation builds upon the CleanRL repos-
itory4, recognized for its high-fidelity and reproducible reference algorithms. To ensure experimen-
tal fairness, we strictly align our configuration with standard Atari benchmarks.

The detailed hyperparameters are presented in Table 10. Notably, for the Arcade Learning Environ-
ment (ALE) tasks, we incorporate the bucket-based approximate sampling mechanism from SWD to
enhance efficiency.

3https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/td3_continuous_
action.py

4https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari.py

23

https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/td3_continuous_action.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/td3_continuous_action.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari.py

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 9: Hyperparameters of the TD3 Algorithm
Hyperparameter TD3 Configuration

Actor Learning Rate 10−4

Critic Learning Rate 10−3

Discount Factor 0.99
Batch Size 128
Replay Buffer Size 106

SWD-Specific Hyperparameters
Linear Decay Steps 100, 000
Minimum Weight (min weight) 0.1

Table 10: Hyperparameters of Our Double DQN Implementation
Hyperparameter Value
General Training
Optimizer Adam
Learning Rate 1× 10−4

Discount Factor (γ) 0.99
Buffer Size 1× 106

Batch Size 32
Learning Starts 80, 000 steps
Train Frequency 4 steps
Total Timesteps 10 M

Exploration (Epsilon-Greedy)
Start Epsilon (εstart) 1.0
End Epsilon (εend) 0.01
Exploration Fraction 0.10 (1× 106 steps)

Target Network
Target Update Frequency 1000 steps
Target Update Rate (τ) 1.0 (Hard Update)

SWD-Specific Hyperparameters
Linear Decay Steps 80, 000
Minimum Weight 0.1
Number of Buckets 2000

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

SAC Implementation Our Soft Actor-Critic (SAC) implementation is also based on the CleanRL
repository, specifically referencing the continuous action SAC implementation5.

Table 11: Hyperparameters of Our SAC Implementation (with SimBa Encoder)
Hyperparameter SAC (with SimBa Encoder)

Optimizer AdamW (weight decay = 10−2)
Policy (Actor) Learning Rate 1× 10−4

Q-Network (Critic) Learning Rate 1× 10−4

Discount Factor 0.99
Batch Size 256
Warmup Steps (for Policy Update) 5000
Target Q-Network Update Rate (τ) 0.005
Target Q-Network Update Interval 1 (step)
Policy (Actor) Update Interval 2 (steps, policy frequency)
Entropy Target −|A| (|A| = action space dimension)
SimBa Encoder (Actor): Hidden Dim / Blocks 128 / 1
SimBa Encoder (Critic): Hidden Dim / Blocks 512 / 2

SWD-Specific Hyperparameters
Linear Decay Steps 80, 000
Minimum Weight (min weight) 0.1

PER-Specific Hyperparameters
Prioritization Exponent (α) 0.6
Importance Sampling Exponent (β) 0.4
Beta Increment Rate 1× 10−6

The hyperparameters for our SAC (equipped with the SimBa encoder) are detailed in Table 11.

E.3 SAC LEANRING CURVE

0 2 4 6 8
Steps ×105

0

200

400

600

Ep
is

od
e

Re
tu

rn

SAC+SWD
SAC+PER
SAC

(a) Dog Run

0 2 4 6 8
Steps ×105

0

200

400

600

800

1000

Ep
is

od
e

Re
tu

rn

SAC+SWD
SAC+PER
SAC

(b) Dog Walk

0 2 4 6 8
Steps ×105

0

50

100

150

200

250

Ep
is

od
e

Re
tu

rn

SAC+SWD
SAC+PER
SAC

(c) Humanoid Run

0 2 4 6 8
Steps ×105

0

200

400

600

800

Ep
is

od
e

Re
tu

rn

SAC+SWD
SAC+PER
SAC

(d) Humanoid Walk

Figure 9: SAC leanrning curve on DMC tasks

5https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sac_continuous_
action.py

25

https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sac_continuous_action.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sac_continuous_action.py

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

F ADDITIONAL EXPERIMENTS

F.1 SWA

In this section, we provide detailed information about our ablation experiments. First, we present
the algorithmic details of SWA, which are summarized in Algorithm 2.

We adopt the detailed parameter settings of Soft Actor-Critic (SAC), as presented in Ta-
ble 11—specifically, we use the same Linear decay steps T and minimum weight wmin as specified
therein.

Algorithm 2 SWA

Require: Linear decay steps T , minimum weight wmin, Current time t, timestamps {ti}|D|
i=1

1: for i = 1 to |D| do
2: agei = t− ti
3: wi = min

(
1, wmin + agei

T

)
4: end for
5: pi =

wi∑|D|
j=1 wj

for i = 1, . . . , |D|

6: I ∼ Categorical({pi}|D|
i=1, B)

7: return B = {(si, ai, ri, s′i, di)}i∈I

F.2 ABLATION STUDY OF UPDATE-TO-DATA

0 2 4 6 8
Steps ×105

0

50

100

150

200

250

Ep
is

od
e

Re
tu

rn

SAC+SWD
SAC

(a) UTD=1

0 2 4 6 8
Steps ×105

0

50

100

150

200

250

300

Ep
is

od
e

Re
tu

rn

SAC+SWD
SAC

(b) UTD=2

0 2 4 6 8
Steps ×105

0

50

100

150

200

250

300

Ep
is

od
e

Re
tu

rn

SAC+SWD
SAC

(c) UTD=5

Figure 10: Sensitivity analysis regarding the UTD. Data represents the mean ± std of five experi-
mental runs conducted on the Humanoid Run.

We adopt SAC (Soft Actor-Critic) as the backbone algorithm and aim to optimize the Update-to-
Data (UTD) ratio. This optimization enables faster policy iteration, thereby better leveraging the
advantages of SWD. As illustrated in Figure 10, with the increase in the UTD ratio, SWD consistently
outperforms the uniform sampling baseline.

F.3 PARAMETER SENSITIVITY ANALYSIS

To assess the robustness of our proposed method, we conducted an extensive grid search to evaluate
the sensitivity of SWD to its two primary hyperparameters: the linear decay steps (T) and the
minimum weight threshold (wmin).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

We constructed a 5× 5 hyperparameter grid, varying Tdecay from 20, 000 to 100, 000 and wmin from
0.02 to 0.10. Experiments were performed on the Humanoid Run task, with each of the 25 con-
figurations averaged over 5 random seeds (totaling 125 independent runs). The results, summarized
in Table 12, indicate that SWD maintains stable performance across a wide range of hyperparameter
settings. While optimal performance fluctuates slightly, the method does not exhibit drastic failure
modes within the tested range, demonstrating its robustness to hyperparameter selection.

Table 12: Parameter Sensitivity Analysis. Grid search results on Humanoid Run (Mean ± Std).
The best performance is marked in bold.

Decay Steps Minimum Weight Threshold (wmin)

(Tdecay) 0.02 0.04 0.06 0.08 0.10

20,000 229.7 ±26.4 240.9 ±37.1 234.9 ±15.0 217.9 ±38.6 226.1 ±23.7

40,000 231.4 ±44.4 224.5 ±34.4 231.3 ±30.8 227.0 ±23.1 225.5 ±22.5

60,000 217.4 ±40.2 231.2 ±29.9 240.5 ±55.0 215.7 ±27.9 240.7 ±35.3

80,000 233.6 ±42.9 231.8 ±35.7 225.2 ±42.6 220.9 ±17.6 231.3 ±54.4

100,000 224.0 ±32.1 201.8 ±31.9 217.0 ±48.5 241.6 ±38.4 229.2 ±29.5

F.4 IMPACT OF DECAY STRATEGY

We further investigate the influence of the weight decay schedule on performance. To this end,
we compare our default Linear Decay against Exponential and Polynomial variants. The specific
formulations are defined as follows:

• Linear (Ours): w(t) = max(wmin, 1 − t/T), providing a constant rate of importance
reduction.

• Exponential: w(t) = max(wmin, exp(−t/τ)), where τ = 1, modeling rapid initial for-
getting.

• Polynomial: w(t) = max(wmin, (1−t/T)p), where p = 2, penalizing older samples more
aggressively than the linear approach.

The empirical results on Humanoid-run are summarized in Table 13. Our proposed Linear Decay
strategy significantly outperforms alternative schedules. Notably, both Exponential and Polynomial
decay perform worse than the SAC baseline, suggesting that overly aggressive weight reduction
disrupts the learning stability required for high-dimensional control tasks.

Table 13: Performance comparison of different decay strategies on Humanoid Run. The relative
difference is calculated with respect to our Linear Decay method.

Decay Strategy Episode Return vs. Linear SWD

Linear Decay (Ours) 229.01 ± 37.43 –
SAC (Baseline) 190.46 ± 7.99 −16.8%

Exponential Decay (τ = 1) 187.04 ± 29.85 −18.3%

Polynomial Decay (p = 2) 132.91 ± 11.12 −42.0%

27

	Introduction
	Related Work
	Preliminaries
	Theory Analysis: The Rank Loss and Gradient Attenuation
	Neural Tangent Kernel (NTK) Degeneration
	Gradient Attenuation

	Sample Weight Decay (SWD)
	Experiments
	Performance Evaluation
	Ablation Study
	The Effect in Alleviating Plasticity Loss
	Compatibility Against Higher Update-to-Data Ratios
	Comparison with Other Methods Designed to Address Plasticity Loss
	Other Results

	Conclusion
	The Use of Large Language Models (LLMs)
	Proof
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of theorem 3
	Entropy Regularized MDP

	Related Preliminaries
	Algorithm
	Relationship and Complementarity with Existing Work

	Approximate bucket-based sampling
	Experimental Details
	Structure
	Implementation Details
	SAC leanring curve

	Additional Experiments
	SWA
	Ablation Study of Update-to-Data
	Parameter Sensitivity Analysis
	Impact of Decay Strategy

