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Abstract

Self-supervised learning is an effective way for label-free model pre-training,1

especially in the video domain where labeling is expensive. Existing self-supervised2

works in the video domain use varying experimental setups to demonstrate their3

effectiveness and comparison across approaches becomes challenging with no4

standard benchmark. In this work, we first provide a benchmark that enables5

a comparison of existing approaches on the same ground. Next, we study five6

different aspects of self-supervised learning important for videos; 1) dataset size, 2)7

complexity, 3) data distribution, 4) data noise, and, 5) feature analysis. To facilitate8

this study, we focus on six different methods along with six different network9

architectures and perform an extensive set of experiments on five different datasets10

with an evaluation of two different downstream tasks. We present several interesting11

insights from this study which span across different properties of pretraining and12

target datasets, pretext-tasks, and model architectures among others. Furthermore,13

we extend these findings to Video Foundation models (ViFMs). Finally, we put14

some of these insights to the real test and propose an approach that requires a limited15

amount of training data and outperforms existing state-of-the-art approaches which16

use 10x pretraining data. We believe this work will pave the way for researchers to17

a better understanding of self-supervised representation learning in videos.18

1 Introduction19

Deep learning models require a large amount of labeled data for their training. Obtaining annotations20

at large-scale needs a lot of effort and it becomes even more challenging as we shift from image21

to video domain. There are several interesting directions focusing on this issue such as domain22

adaptation (74), knowledge distillation (20), semi-supervised learning (77), self-supervision (31) and23

weakly-supervised learning (56), which attempts to rely on the knowledge learned from existing24

source datasets and transfer to new target datasets with minimal labels. Among these approaches,25

self-supervised learning use pretext task as supervisory signal and does not require any labels on26

source datasets which makes it more favorable.27

In recent years, we have seen great progress in self-supervised learning (SSL) in video domain28

(75; 32; 78; 69; 49; 10). More recently, the focus is more towards context-based learning which29

involves modifying input data such that to derive a classification (73; 13; 75; 32), reconstruction30

(78; 10) or generative (67; 58; 24; 63; 46) signal which can be used as a learning objective. The31

main focus of these works is designing a pretext task that is computationally inexpensive and which32

provides a strong supervisory signal such that the model learns meaningful spatio-temporal features.33
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Figure 1: Overview of proposed benchmark. We study five different aspects in this benchmark
study. Starting from left, 1) we show the analysis of effect of dataset size vs training time. As the
dataset size increases, variation in performance decreases even with longer training time, 2) We show
the effect of task complexity (C1, C2, C3 - Different complexities). Bottom figure shows use case of
how complexity increases for the RotNet task, and, top figure shows how the performance varies for
the R21D network, 3) With different data distribution shifts, the third sub-figure shows the impact
of target data distribution on the source data, 4) We look into another data distribution shift due to
introduction of noise. We see how non-contrastive tasks are more robust than contrastive ones even
with increasing levels of severity of noise. The bottom part shows an example for each type of noise.
Clips are provided in supplementary, and, 5) Finally, we further analyze whether the features learn
orthogonal information. In this sub-figure, we show that using different architectures as teachers can
substantially improve performance even in a low-data regime.

Despite this great progress, it is non-trivial to compare these approaches against each other due34

to a lack of standard protocols. These methods are evaluated under different conditions and there35

is no standard benchmark to evaluate the fair effectiveness of these methods. A recent study (62)36

attempts to take a step towards this direction, but it is mainly focused on downstream learning, without37

exploring the self-supervision aspect which is one of the main goals in our study. In this work, we38

present a benchmark where important self-supervised pre-training parameters are kept consistent39

across methods for a fair comparison. With the help of this benchmark, we study several critical40

aspects which are important for self-supervised learning; 1) effect of pretraining dataset size, 2) task41

complexity, 3) generalization under distribution shift, 4) robustness against data noise, 5) properties42

of learned features. Fig. 1 provides an overview.43

The proposed benchmark includes a large-scale assessment of context-based representative self-44

supervised methods for video representation learning. We analyze two different factors: 1) learning45

objective which includes contrastive vs non-contrastive, and 2) data transformation that comprises46

three categories namely, spatial, temporal, and spatio-temporal. We study six different pretext tasks47

with six different models and perform our experiments on five different action recognition datasets48

and evaluate these approaches on two different downstream tasks, action recognition, and video49

retrieval. Furthermore, we extend the study to recently developed video foundation models.50

We observe some interesting insights in this benchmark; 1) Contrastive tasks are fast learners but are51

less robust against data noise, 2) there is no direct relation that increase in pretext task complexity52

leads to better understanding of spatio-temporal representation learning, 3) temporal based pretext53

tasks are more difficult to solve than spatial and spatio-temporal, 4) spatio-temporal task can solve54

the pretext task independent of data distribution shifts, and finally, 5) we empirically show that55

these pretext tasks learn complementary features across factors such as model architecture, dataset56

distributions, dataset size, and pretext task. Our contributions are threefold:57

• We present a benchmark for self-supervised video representation learning to compare58

different pretext tasks under a similar experimental setup.59

• We perform extensive analysis on 5 important factors for self-supervised learning in videos;60

1) dataset size, 2) task complexity, 3) distribution shift, 4) data noise, and, 5) feature analysis.61

• Finally, we put some of our insights from this study to test and propose a simple approach62

that outperforms existing state-of-the-art methods on video action recognition with a limited63
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amount of pretraining data. Additionally, based on our findings, we put down a set-up recipe64

for future self-supervised learning algorithms to build upon.65

2 Related Work66

Self-supervised learning There are several works in the domain of self-supervised learning for67

video representation learning (31; 55). These approaches can be grouped into two main categories on68

the basis of pretext task: 1) context-based (34; 71; 3; 19; 73; 61; 76; 13; 30; 69; 49; 10; 16; 23; 50),69

and 2) cross-modal (48; 53; 1). Cross-modal approaches use multiple modalities such as audio, video,70

optical flow, and camera positions, and rely on consistencies across these modalities. Context-based71

learning exploits data transformations to derive supervisory signals for training the model. Context-72

based pretraining tasks have evolved a lot in the past few years. Our work explores the domain of73

how much variation in learned representations under different transformations. In contrast to other74

approaches, context-based approaches exploit the spatial and temporal information independently by75

several transformations (43; 19; 75; 7; 73; 49; 69). Recent works have started to transform the spatial76

and temporal domain together (34; 42; 61; 78; 10). Incorporating multiple modalities improves77

performance, but, it’s not available for all datasets, especially large-scale datasets. In this work, we78

restrict our focus to single-modality (RGB) approaches.79

Self-supervised benchmarking There are some prior efforts focusing on benchmarking self-80

supervised learning in the image domain. In (21), the authors provide a detailed analysis of image-81

based self-supervised learning approaches and study how dataset size scaling affects the learned82

representations. Similarly in (35), the authors analyze how different model architectures play a role83

in visual self-supervised learning. In both these works, the authors did not focus on the importance84

of various pretext tasks themselves but only showed how certain pretext tasks can be improved.85

Therefore, their main focus was on downstream tasks rather than pretext learning. We, on the other86

hand, study different pretext tasks and analyze how various aspects affect feature learning. Moreover,87

these works are focused on the image domain, whereas we focus on the video domain. In recent88

work, (18), a study was performed to better understand unsupervised learning in the video domain. It89

explored the use of several pre-text tasks from the image domain and applied them to videos. We are90

not merely focusing on down-stream tasks and our attention is on the self-supervised aspect which91

includes factors such as data subset size, task complexity, dataset distribution, and noise robustness.92

3 Self-Supervised Configurations93

We first describe the pretext tasks used in our study along with their categorization followed by details94

of this benchmark including network architectures, datasets, downstream tasks and evaluations.95

3.1 Tasks categorization96

We analyze two different aspects of video pretext tasks: 1) transformations applied to data, and 2)97

learning objectives. Data transformations include, spatial-based (S), temporal-based (T) and spatio-98

temporal (ST). Spatial transformations include reshuffling of spatial patches, temporal consistent99

data augmentation, or rotation of images/patches. Temporal tasks involve permutation classification100

of frames/clip, order verification, clips sampling at different paces, or, contrastive learning from101

temporal triplets. Spatio-temporal tasks include those in which we modify both of these parameters102

simultaneously. This includes dilated sampling and simultaneous frame reconstruction, shuffling spa-103

tial and temporal domains, or, speed prediction, and contrastive visual features. Learning objectives104

can be either contrastive (11) or non-contrastive such as (78).105

Following this categorization, we select at least two representative pretext tasks from each trans-106

formation category, one contrastive and one non-contrastive. We study the following pretext tasks:107

RotNet (Rot) (32), Video Clip Order Prediction (VCOP) (75), Playback Rate Prediction (PRP) (78),108

Spatiotemporal Contrastive Video Representation Learning (CVRL) (49), Temporal Discriminative109

3



Learning (TDL) (69) and Relative Speed Perception network (RSPNet) (10). The description of tasks110

are provided in the supplementary (Section C).111

3.2 Benchmark details112

This section standardizes the conditions used by our benchmark to compare different pretext tasks.113

Further explanation for using these conditions are outlined in the supplementary.114

Datasets: We experiment with two different dataset types, 1) where appearance is more important,115

and 2) where time is more important. For appearance based, we use Kinetics-400 (33), UCF101 (57),116

and HMDB51 (38), where appearance is more important (recognize activity with a single frame) than117

temporal aspect, and for temporal aspect, we use Something Something-V2 (22) and Diving48 (39),118

where temporal information plays a significant role (require few frames to recognize activity). More119

details are in the supplementary.120

Spatio-temporal architectures: We consider three different network capacities, 1) small-capacity, 2)121

medium-capacity, and large-capacity. For small capacity networks, we use ShuffleNet V1 2.0X (79),122

whereas for medium capacity we focus on R(2+1)D (65) (R21D). We do not include large capacity123

networks in our main benchmark in the interest of computational efficiency; additional results for124

such a model, VideoSwin (41) is shown in the supplementary.125

Downstream tasks: We show results and analysis on two different downstream tasks - action126

recognition and clip retrieval. These two tasks are the most prominent in the field of self-supervised127

learning in videos. Full finetuning is performed as opposed to linear probing to adapt models.128

Evaluation and Analysis:We use top-1 accuracy for action recognition and top-K for Clip retrieval.129

For robustness performance, we calculate the relative robustness score (Rs) using original accuracy130

on clean test set (Ac) and perturbed accuracy on noisy test set(Ap) as Rs =
Ac−Ap

Ac
. Centered Kernel131

alignment (CKA) (44) maps illustrates model behaviours. More details in supplementary.132

4 Benchmark Analysis133

In this section, we perform analysis across the following five aspects:134

Effect of pretraining dataset size: In self-supervised learning, a natural question to ask is whether135

dataset size plays any role in the performance of downstream tasks. It is important to study if136

the increase in the size of the pretraining dataset will proportionally reciprocate in performance137

improvement. Also, a general trend is to train models for a very long duration at the pre-training138

stage. We investigate if the longer duration actually impacts the gain in performance. We look across139

different stages of training for multiple architectures and across different pretext tasks.140

Impact of task complexity: Some of the existing works show that increasing complexity leads to141

better representation learning, and if the complexity is decreased, the network will optimize to142

suboptimal solutions. We analyze this aspect in more detail with several tasks and different models.143

Effect of data distribution: Existing self-supervised methods perform evaluations on K400 and144

UCF101 datasets. Both these datasets fall into the same visual category with heavy appearance bias.145

However, we divert our attention towards datasets where the temporal dimension plays an important146

role such as SSv2 and Diving48.147

Robustness of SSL tasks: We study the robustness qualities of SSL methods against data noise (26).148

We analyze which factors play a key role in robustness of these methods against such domain shifts.149

Feature analysis: Finally, we look into feature space and analyze whether the learned representations150

are complementary in nature when models are trained under different protocols.151

4.1 Effect of dataset-size152

We first analyze the effects of pre-training data size variation. The network trains on four subsets153

of the K400: 10k, 30k, 50k, and 100k. The number of videos per class is the same. The smaller154

pre-training dataset is a subset of the bigger pre-training dataset size (i.e. 10k ⊂ 30k and so on). We155

look into three aspects regarding dependence on pre-train subset size: a) behavior of different pretext156

tasks with the increase in pre-train dataset subset, b) performance across the different capacity of157

backbones, and, c) the effect of training time across different pretext tasks.158
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Table 1: Evaluation of different
pretext tasks on different subset
size on R21D network (%).

Non-Contrastive Contrastive
Subset Rot VCOP PRP CVRL TDL RSPNet

10k 37.6 46.3 17.5 55.9 31.1 70.9
30k 36.2 50.4 42.7 56.9 30.9 76.4
50k 41.2 51.5 46.2 61.2 30.2 78.0

Table 2: Performance at differ-
ent stages of training for all pre-
text tasks on R21D (50k)(%).

Non-Contrastive Contrastive
Epochs Rot VCOP PRP CVRL TDL RSPNet

50 35.4 52.2 24.1 55.7 32.1 75.0
100 37.3 52.3 34.8 58.5 31.3 76.1
150 40.7 51.3 46.7 60.2 31.5 76.5
200 40.9 52.8 45.0 60.5 30.2 77.4

Table 3: Complexity Varia-
tion. TC: Task complexity. Re-
sults are shown on UCF101 with
ShuffleNet/R21D backbone.

TC ↓ S T ST
C1 20.1/48.3 41.6/56.8 24.2/38.9
C2 20.2/58.3 41.8/54.8 18.1/44.4
C3 16.6/41.2 40.6/55.6 21.9/46.2

Observations: From Table 1, we observe that apart from TDL each pretext task performance159

improves with an increase in subset size. If we look into specific pretext task transformation category160

(Table 1), the most gain with an increase in data is for spatio-temporal tasks ( 13%), whereas the161

least gain is for temporal pretext tasks ( 3%). Analyzing the effect of the duration of training across162

different tasks, in Table 2, the performance gain is minimal (<1.5%) after training for more than163

100 epochs. Comparing contrastive and non-contrastive approaches, the gain in contrastive-based164

approaches is on average 1% compared to 5% for non-contrastive tasks beyond 100 epochs of training.165

166

Inference: (i) Spatio-temporal pretext tasks improve most with increment in dataset size and are167

most dependent on it than others since it involves transformation along both axes: appearance168

(spatial) and motion (temporal). (ii) Contrastive tasks are fast learners against non-contrastive and169

reach their potential in a relatively shorter duration.170

4.2 Impact of change in task complexity171

Next, we study the effect of task complexity. In this aspect, we analyze only non-contrastive tasks as172

it is non-trivial to define task complexity for contrastive-based approaches. We analyze three different173

complexities (C1, C2, C3) for each task. The variation in complexity for each task is briefly discussed174

as follows: a) RotNet: vary the number of rotations between 2 to 4, b) VCOP: increase the number of175

shuffle clips from 3 to 5, and, c) PRP: modify the dilation sampling rates from 2 to 4 classes. We176

investigate the following aspects here: a) does an increase in complexity means better spatio-temporal177

features learned at the pre-training stage? b) does the capacity of architecture plays any role?178

Observations: From Table 3, comparing across rows we observe ShuffleNet performance doesn’t179

improve much or degrade significantly if the complexity of the task is increased. CKA maps show180

the structure transforms from staggering grids to a multi-block pattern indicating saturation with an181

increase in complexity. In between different categories of transformation, performance improves182

with complexity for the bigger model in the case of the spatio-temporal task. Between ShuffleNet183

and R21D, R21D gives staggering grids against dark block patterns for ShuffleNet which shows the184

model can still learn better features. CKA maps are provided in the supplementary.185

Inference: (i) Increase in pretext task complexity doesn’t always reciprocate to better spatio-186

temporal feature learning. It is dependent on the pretext task and also the model capacity. (ii) If187

higher complexity improves features learning, the model should also have the capacity, otherwise the188

task will be too difficult for the model to learn meaningful representations.189

4.3 Effect of dataset distribution190

Shifting our focus to datasets that have more hidden cues in the temporal aspect, we add pre-training191

on SSv2 and finetuning on Diving48 to our experiments. We answer the following questions in192

this section; a) does the categorization of pretext-task matter on source (pre-training) and target193

(downstream) datasets? b) what is the impact of source dataset when the pretext task focuses only on194

a single task either spatial or temporal?195

Observations: Looking into Figure 2, we observe that spatio-temporal pretext task outperforms196

other pretext tasks on both target (downstream) datasets UCF101 and DV48 by a margin of 15-40%197

and 10-13% respectively whether the source datasets is K400 or SSv2. Comparing, spatial and198

temporal-based pretext tasks, we see that they are majorly dependent on source datasets. Looking199

at Figure 2, performance is better on both target datasets if source dataset has the same underlying200
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(a) UCF101 (b) DV48

Figure 2: Effect of different dataset distribu-
tions: Here, S, T, and ST mean spatial(CVRL),
temporal(VCOP), and, spatio-temporal(RSPNet)
respectively. X-axis shows source dataset and Y-
axis shows Top-1 accuracy.

Non-Contrastive Contrastive
Rot VCOP PRP CVRL TDL RSP Avg.

R21D 10.7 19.0 70.1 78.4 26.7 68.8 45.6
Shuffle 28.3 28.4 22.8 51.9 43.5 28.6 33.9

Table 4: Robustness analysis on the rel-
ative decrease in % performance across
different pretext tasks on noisy UCF101
dataset. The performance is averaged over
4 noises.

properties as the pre-text task is trying to learn. Furthermore, the spatial task is more dependent on201

the source dataset, since the relative drop on both UCF101 and DV48 for CVRL is significant (40%202

and 30% respectively) when the source dataset is SSv2 against K400. However, in the case of the203

temporal task, the drop is 15% and 10% respectively when the source dataset is K400 against SSv2.204

Inference: (i) Spatio-temporal pretext task learns better features independent of source and target205

data distribution. (ii) Spatial and temporal pre-text tasks are better learners when source data206

distribution belongs to spatial and temporal respectively. (iii) Temporal pretext task prevails when207

target data is temporal, whereas, spatial is dependent on source data distribution.208

4.4 Robustness of SSL tasks209

Similar to OOD datasets, introducing noise also shifts the distribution of datasets. We evaluate210

models on different types of noises introduced in (54) with different severity levels on the UCF101211

test dataset. Specifically, we probe into four different types of appearance-based noises: Gaussian,212

Shot, Impulse, and Speckle (26). Here we look into the following aspects: a) how robust different213

categorizations of pretext tasks are? b) is the network’s architecture dependent on the noise in the214

dataset? In the main paper, we only discuss one severity level and have provided a detailed analysis215

of multiple severity levels in the supplementary.216

Observations: From Table 4, we observe that the relative drop in performance for contrastive tasks217

is more than non-contrastive tasks for both R21D and ShuffleNet backbone. The most and least218

robust models are RotNet-R21D and PRP-R21D with 10.7% and 70.1% relative decrease.219

Inference: Contrastive approaches are less robust to noise as compared with non-contrastive.220

4.5 Feature analysis221

We further analyze the learned features by these pretext tasks under different configurations. We222

specifically focus on understanding the complementary nature of these features. We employ knowl-223

edge distillation (15) as a tool to study this aspect. It is based on the idea that distilled knowledge224

from the ensemble of teacher networks makes the student model stronger. The loss function for225

multi-teacher knowledge distillation is: LKD = LCE +LKL1
+LKL2

+ ...+LKLn
, where LCE is226

the cross-entropy loss for hard labels and LKLn
is the KL-Divergence loss for soft labels from teacher227

n. We use our benchmark models as teachers in different combinations to analyze whether a student228

learns orthogonal information on four different axes: 1) different architectures as the teacher within a229

dataset size, 2) teachers with different complexities in a pretext task, 3) models from multiple source230

datasets, and, 4) same architecture as teachers from multiple pretext tasks. Figure 3 summarizes the231

observations for each aspect. More details are in supplementary.232

Observations: Although teacher network performance improves with subset, gain in complemen-233

tary information reduces beyond 30k (Figs. 4(a) & 4(b)). However, distillation does help in the234

reduction of training time with a significant improvement in performance which is evident from235

Fig. 3(a). Independent of the pretext tasks category smaller architecture learns complementary236

information and outperforms the teacher whereas bigger architecture it’s task-dependent. Irrespective237

of task category whether transformation-based or contrastive, each task learns corresponding features238
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(A) Effect of dataset size (B) Task complexity (C) Out-of-Distribution (D) Pretext Task
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Figure 3: Feature analysis overview. This figure shows how KD as a tool is beneficial across
multiple scenarios. Brief details for each setup (Left to right): (A) Effect of dataset size: Teachers
(T1 and T2) are different architectures for a single subset. Student model (ST-Shuffle) CKA maps
shows it learns complementary information especially for 30k. (B) Task Complexity: Teachers are
multiple complexities across the same task. (C1, C2, C3 - different complexities as teachers.) We
observe in most of the scenarios, Student (ST) networks outperforms all teacher models which proves
learning of orthogonal information from multiple teachers. (C) Out-of-Distribution: Models from
different source datasets are teachers. Student model (ST) outperforms both teachers trained on two
different datasets. (D) Pretext Tasks: Spatial and temporal task networks are teachers, and, student
model (ST) learnt from two different categories of pretext tasks - spatial and temporal incorporate
knowledge from both and outperforms both of the teachers for both contrastive and non-contrastive.

(a) UCF101 (b) HMDB51 (c) UCF101 (d) HMDB51

Figure 4: Knowledge distillation using teachers trained on multiple subset sizes on RSPNet. Student:
ShuffleNet a) UCF101 and b) HMDB51. Here T1 is Teacher-1 (shufflenet) and T2 is teacher-2
(R21D). Top@5 Clip Retrieval - R21D on c) UCF101 and d) HMDB51, pre-trained on K400 and
SSv2 - 30k subset.

from both source datasets and outperforms the teacher. Student network outperforms standalone239

spatio-temporal network performance in both contrastive and non-contrastive domains.240

Inference: (i) Knowledge can be distilled from different architectures for a given subset size (Fig. 3241

(a)), (ii) Knowledge from different source datasets brings in complementary information (Fig. 3 (c)),242

and (iii) Orthogonal features are learned across different categories of pretext tasks (Fig. 3 (d)).243

5 Lessons Learned244

With all the analysis along studied axes, we learned a few lessons in-between these axes such as: (i)245

Contrastive tasks are fast learners but are also most susceptible to noise. (ii) An increase in dataset246

size or complexity does not help smaller models in learning better spatio-temporal features but these247

features are more robust to noise. (iii) Temporal tasks are relatively more difficult to learn since248

looking at the correlation between time of training, increase in dataset size, and complexity, the249

performance gain is minimal in each of this axis. It means this category of tasks is actually difficult250

to solve. (iv) Spatio-temporal pretext tasks improve with the increase in complexity and dataset size251

(if the model permits), and their behavior to learn better spatio-temporal features is independent of252

data distribution. Using these lessons, we further do more analysis in feature space. From there, we253

observe within an axis of comparison how models learn orthogonal information. Based on those254

observations, we analyze if we can push the performance for downstream tasks. We look into two255

downstream tasks: action classification and clip retrieval.256
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Table 5: Comparison with previous approaches pre-trained on K400. Ours ( ∗ best performing) is
RSPNet pretrained on 30k subset of K400. † - Different pre-training data. (%)

Approach Venue NxW/H Backbone Pre-training UCF101 HMDB51
Generative

VIMPAC (60) - 10x256 ViT-L HTM 92.7 65.9
VideoMAE (63) NeurIPS’22 16x224 ViT-B K400 91.3 62.6

MME (59) CVPR’23 16x224 ViT-B K400 96.5 78.0
MVD (70) CVPR’23 16x224 ViT-B IN1K+K400 97.0 76.4

EVEREST (28) - 16x224 ViT-B - 93.4 68.1
SCE (14) WACV’23 16x224 ResNet3D-50 K400 95.3 74.7
Context

PacePred (73) ECCV’20 16x112 R21D-18 K400 77.1 36.6
TempTrans (30) ECCV’20 16x112 R3D-18 K400 79.3 49.8

STS (68) TPAMI-21 16x112 R21D-18 K400 77.8 40.5
VideoMoCo (46) CVPR’21 16x112 R21D-18 K400 78.7 49.2

RSPNet (10) AAAI’21 16x112 R21D-18 K400 81.1 44.6
TaCo (6) - 16x224 R21D-18 K400 81.8 46.0

TCLR(13) CVIU’22 16x112 R21D-18 K400 88.2 60.0
CVRL (49) CVPR’21 32x224 R21D-18 K400 92.9 67.9

TransRank (16) CVPR’22 16x112 R21D-18 K200 87.8 60.1
Multi-Modal

AVTS (37) NeurIPS’18 25x224 I3D K400 83.7 53.0
GDT (47) † - 32x112 R21D IG65M 95.2 72.8

XDC (4) NeurIPS’20 32x224 R21D K400 84.2 47.1
Ours ∗ - 16x112 R21D-18 K400-30k 97.3 51.5

Clip retrieval For this downstream task, we generate feature vectors using pretrained weights. The257

nearest neighbor is found by measuring the cosine distance between test and train feature vectors. We258

show analysis on UCF101 and HMDB51, with different source data distributions, K400 and SSv2.259

Observations: Spatio-temporal task still outperform other categories independent of source data260

distribution similar to what we observe earlier. Contrastive learns better appearance features during261

the pre-training stage given both downstream datasets are appearance based. Temporal tasks have262

almost similar performance pre-trained on either of the source datasets, which shows even with an263

appearance-based dataset as a pre-train dataset, the task is not focusing much on spatial features.264

Action Classification For this task, the model is finetuned end-to-end on downstream datasets, on265

UCF101 and HMDB51. In Table 5, we obtain our best performing model via knowledge distillation266

discussed in previous section and we show our model outperforms previous state-of-the-art approaches.267

Observations: With only 30k videos compared to 200k+ videos used by other pretext tasks, we show268

that our model outperforms by a good margin on UCF101 against single and multi-modal approaches.269

We got competitive results on HMDB51 with a score of 51.5%.270

5.1 Surprising Findings271

We have multiple inferences from different axes of analysis. However, to club a few which are new272

and helpful for video self-supervised community, we list down those here:273

Dataset size and Training time Dependency: Against the conventional belief that a lot of training data274

is a must to achieve the best performance, we demonstrate that beyond a certain amount of training275

data, additional data provides diminishing returns for SSL in terms of performance improvement. This276

finding has significant implications, as it allows for a substantial reduction in the training data and277

there is almost a 10x reduction in training time which is particularly advantageous in computationally278

demanding video processing tasks. Furthermore, we show how KD as a tool, outperforms the original279

approach (100% data) using almost 90% less data further optimizing resource utilization by 80%.280

Robustness to real-world noise: To our surprise, contrastive tasks are more susceptible to noise than281

non-contrastive. A smaller network tends to be more robust in some scenarios than a bigger network.282

We believe these findings are novel and not known to the community as there is no existing study283

exploring these aspects and are helpful where robustness is necessary for real-world deployment.284
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Table 6: Analysis on ViFMs. Zero-shot classifi-
cation accuracy on UCF-101. I:Image, V: Video.

ViFM Type. Pretraining Data Frames x Rate Accuracy
ViFi-CLIP (51) I K-400 32 x 2 77.3

X-CLIP (45) I K-400 8 x 8 71.6
EZ-CLIP (2) I K-400 8 x 8 70.5
ViCLIP (72) V InternVid-10M 8 x 8 75.5

LanguageBind (80) V VIDAL-10M 8 x 8 69.9

Table 7: Knowledge Distillation between different
ViFM pairs as teachers, and R21D as the student.

ViFM X-CLIP ViFi-CLIP EZ-CLIP ViCLIP LanguageBind
X-CLIP X 83.2 88.7 88.2 87.6

ViFi-CLIP X X 88.0 86.6 86.6
EZ-CLIP X X X 85.0 86.9
ViCLIP X X X X 85.4

LanguageBind X X X X X

Complementary knowledge: Improvement in performance with KD from different data distributions285

and categories of tasks brings out a recipe for a new SSL task. This involves utilizing a multi-teacher286

multi-student setup, where each teacher specializes in spatial and temporal tasks and is trained on a287

mixture of data sources. Our analysis indicates this would provide a strong learning scenario.288

5.2 Recommendations289

Looking into several factors, here we provide a few recommendations to set up the recipe for SSL: 1)290

Training speed: If training time is a concern, contrastive tasks can help in reducing the pretraining291

time, but they could be less robust against data noise. 2) Data distribution: It is always better to use a292

spatio-temporal pretext task irrespective of the data distribution. However, if that is not an option, the293

pretext task should always be aligned with the nature of the pretraining dataset. 3) Model capacity: If294

model capacity is limited, there is no benefit of increasing pretraining dataset size and using complex295

pretext tasks. 4) Robustness: If best performance is the goal, we should use a non-contrastive as296

opposed to a contrastive pretext task. 5) Performance: Pretext tasks learn complementary features297

across model architectures, pretraining datasets, pretext tasks, and tasks complexity, therefore, this298

complementary knowledge can be distilled to obtain strong spatio-temporal features.299

5.3 Extension of findings to Video Foundation Models (ViFMs)300

In this section, we extend the study to ViFMs (Tables 6 and 7). We select both image-based (2; 45; 51)301

which are image foundation models extended to videos and video-based (80; 72) which are trained302

from scratch on videos. ViFMs are all trained with contrastive pretraining objective. More details303

about architectures are in supplementary.304

Dataset size: An increase in dataset size or complexity does not help smaller models in learning305

better spatio-temporal features (Table 6). ViCLIP and LanguageBind, despite using a significantly306

larger pretraining dataset, performs worse than models pretrained on the smaller Kinetics-400 dataset;307

A simple increase in the number of frames is outperforms models trained on larger datasets.308

Complementary knowledge: Improvement in performance in the case of KD from different ViFMs309

brings out a recipe for training a new foundational model. This involves utilizing a multi-teacher310

multi-student setup, where each teacher is a ViFM pretrained differently in terms of data sources,311

multi-stage pretraining, and pretraining objective. Our analysis (Table 7) indicates this would provide312

a powerful learning scenario.313

6 Conclusion314

In this study, we explore different parameters for self-supervised learning in the video domain. We315

set a benchmark which provides an intuitive task categorization and enables a better comparison of316

different pretext tasks. Such an analysis has never been explored for video understanding to the best317

of our knowledge. We presented several interesting insights which will open up new directions for the318

research community. We also demonstrate the usefulness of some of these insights where we obtain319

state-of-the-art performance on video action recognition using merely a 10% pretraining dataset when320

compared with existing methods. We believe this benchmark study will help the research community321

better understand self-supervised learning in the video domain.322
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