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ABSTRACT

This paper proposes the Phy-DRL: a physics-regulated deep reinforcement learning
(DRL) framework for safety-critical autonomous systems. The Phy-DRL has
three distinguished invariant-embedding designs: i) residual action policy (i.e.,
integrating data-driven-DRL action policy and physics-model-based action policy),
ii) automatically constructed safety-embedded reward, and iii) physics-model-
guided neural network (NN) editing, including link editing and activation editing.
Theoretically, the Phy-DRL exhibits 1) a mathematically provable safety guarantee
and 2) strict compliance of critic and actor networks with physics knowledge about
the action-value function and action policy. Finally, we evaluate the Phy-DRL on a
cart-pole system and a quadruped robot. The experiments validate our theoretical
results and demonstrate that Phy-DRL features guaranteed safety compared to
purely data-driven DRL and solely model-based design while offering remarkably
fewer learning parameters and fast training towards safety guarantee.

1 INTRODUCTION

1.1 MOTIVATIONS

Machine learning (ML) technologies have been integrated into autonomous systems, defining learning-
enabled autonomous systems. These have succeeded tremendously in many complex tasks with
high-dimensional state and action spaces. However, the recent incidents due to the deployment
of ML models overshadow the revolutionizing potential of ML, especially for the safety-critical
autonomous systems Zachary & Helen (2021). Developing safe ML is thus more vital today. In the
ML community, deep reinforcement learning (DRL) has demonstrated breakthroughs in sequential
decision-making in broad areas, ranging from autonomous driving Kendall et al. (2019) to games
Silver et al. (2018). This motivates us to develop a DRL-based safe learning framework for achieving
safe and complex tasks of safety-critical autonomous systems
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Figure 1: Phy-DRL Framework, applied to a quadruped robot.

Despite the tremendous suc-
cess of DRL in many
autonomous systems for
complex decision-making,
applying DRL to safety-
critical autonomous sys-
tems remains a challenging
problem. It has a deep
root to the action policy of
DRL being parameterized
by deep neural networks
(DNN), whose behaviors
are hard to predict Huang
et al. (2017) and verify Katz
et al. (2017), raising the first
safety concern. The second safety concern stems from the purely data-driven DNN that DRL adopts
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for powerful function approximation and representation learning of action-value function, action
policy, and environment states Mnih et al. (2015); Silver et al. (2016). Specifically, recent studies
revealed that purely data-driven DNN applied to physical systems can infer relations violating physics
laws, which sometimes leads to catastrophic consequences (e.g., data-driven blackout owning to
violation of physical limits Zachary & Helen (2021)).

1.2 CONTRIBUTIONS

To address the aforementioned safety concerns, we propose the Phy-DRL: a physics-regulated deep
reinforcement learning framework with enhanced safety assurance. Depicting in Figure 1, Phy-DRL
has three novel (invariant-embedding) architectural designs:

• Residual Action Policy, which integrates data-driven-DRL action policy and physics-model-
based action policy.

• Safety-Embedded Reward, in conjunction with the Residual Action Policy, empowers the
Phy-DRL with a mathematically provable safety guarantee and fast training.

• Physics-Knowledge-Enhanced Critic and Actor Networks, whose neural architectures
have two key components: i) NN input augmentation for directly capturing hard-to-learn
features, and ii) NN editing, including link editing and activation editing, for guaranteeing
strict compliance with available knowledge about the action-value function and action policy.

1.3 RELATED WORK AND OPEN PROBLEMS

Residual Action Policy. The recent research on DRL for controlling autonomous systems has
shifted to integrating data-driven DRL and model-based decision-making, leading to a residual action
policy diagram. In this diagram, the model-based action policy can guide the exploration of DRL
agents during training. Meanwhile, the DRL policy learns to effectively deal with uncertainties
and compensate for the model mismatch of the model-based action policy. The aims of existing
residual frameworks Rana et al.; Li et al. (a); Cheng et al. (2019b); Johannink et al. (2019) mainly
focus on stability guarantee, with the exception being Cheng et al. (2019a) on safety guarantee.
Moreover, physics models are nonlinear, which poses difficulty in empowering analyzable and
verifiable behavior. Furthermore, the model knowledge has not yet been explored to regulate the
construction of DRL towards safety guarantee. In summary, the open problems in this domain are
Problem 1.1. How to design a residual action policy to be a best-trade-off between the model-based
action policy and the data-driven-DRL action policy?
Problem 1.2. How can the knowledge of the physics model be used to construct a DRL’s reward
towards a safety guarantee?

Safety-Embedded Reward. A safety-embedded reward is crucial for DRL to search for policies
that are safe. To achieve a safety guarantee, control Lyapunov function (CLF) is the potential
safety-embedded reward Perkins & Barto (2002); Berkenkamp et al. (2017); Chang & Gao (2021);
Zhao et al. (2023; 2024). Meanwhile, the seminal work Westenbroek et al. (2022) discovered that
if DRL’s reward is CLF-like, the systems controlled by a well-trained DRL policy can retain a
mathematically-provable stability guarantee. Moving forward, the question of how to construct such
a CLF-like reward for achieving a safety guarantee remains open, i.e.,
Problem 1.3. What is the systematic guidance for constructing the safety-embedded reward (e.g.,
CLF-like reward) for DRL?

Knowledge-Enhanced Neural Networks. The critical flaw of purely data-driven DNN, i.e., violation
of physics laws, motivates the emerging research on physics-enhanced DNN. Current frameworks
include physics-informed NN Wang & Yu; Willard et al. (2021); Jia et al. (2021); Lu et al. (2021);
Chen et al. (2021); Xu & Darve (2022); Karniadakis et al. (2021); Wang et al. (2020); Cranmer
et al. (2020) and physics-guided NN architectures Muralidhar et al. (2020); Masci et al. (2015);
Monti et al. (2017); Horie et al.; Wang (2021); Li et al. (b). Both use compact partial differential
equations (PDEs) for formulating training loss functions and/or architectural components. These
frameworks improve consistency degree with prior physics knowledge but remain problematic in
applying to DRL. For example, we define DRL’s reward in advance. The critic network of DRL is to
learn or estimate the expected future reward, also known as the action-value function. Because the
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action-value function involves unknown future rewards, its compact governing equation is unavailable
for physics-informed networks and physics-guided architectures. In summary, only partial knowledge
about the action-value function and action policy is available, which thus motivates the open problem:
Problem 1.4. How do we develop end-to-end critic and actor networks that strictly comply with
partially available physics knowledge about the action-value function and action policy?

1.4 SUMMARY: ANSWERS TO PROBLEM 1.1–PROBLEM 1.4

The proposed Phy-DRL answers Problem 1.1–Problem 1.4 simultaneously. As shown in Figure 1,
the residual diagram of Phy-DRL simplifies the model-based action policy to be an analyzable and
verifiable linear one, while offering fast training towards safety guarantee. Meanwhile, the linear
model knowledge (leveraged for computing model-based policy) works as a model-based guidance for
constructing the safety-embedded reward for DRL towards mathematically provable safety guarantee.
Lastly, the proposed NN editing guarantees the strict compliance of critic and actor networks with
partially available physics knowledge about the action-value function and action policy.

2 PRELIMINARIES

Table 1 in Appendix A summarizes notations that are used throughout the paper.

2.1 DYNAMICS MODEL OF REAL PLANT

The generic dynamics model of a real plant can be described by
s(k + 1) = A · s(k) +B · a(k) + f(s(k),a(k)), k ∈ N (1)

where f(s(k),a(k)) ∈ Rn is the unknown model mismatch, A ∈ Rn×n and B ∈ Rn×m denote
known system matrix and control structure matrix, respectively, s(k) ∈ Rn is the system state,
a(k) ∈ Rm is the applied control action. The available model knowledge pertaining to real plant (1)
is represented by (A, B).

2.2 SAFETY DEFINITION

The considered safety problem stems from safety regulations or constraints on system states, which
motives the following definition of safety set X.

Safety Set: X ≜
{
s ∈ Rn|v ≤ D · s− v ≤ v, D ∈ Rh×n, v,v,v ∈ Rh

}
. (2)

where D, v, v and v are given in advance for formulating h safety conditions. Considering the safety
set, we present the definition of a safety guarantee.
Definition 2.1. Consider the safety set X in Equation (2) and its subset Ω. The real plant (1) is said
to be safety guaranteed, if for any s(1) ∈ Ω ⊆ X, then s(k) ∈ Ω ⊆ X, ∀k > 1 ∈ N.
Remark 2.2 (Role of Ω). The subset Ω is called the safety envelope, whose details will be explained in
Section 5. The Ω will bridge many (i.e., high-dimensional) safety conditions in safety set Equation (2)
and one-dimensional safety-embedded reward. Meanwhile, Definition 2.1 indicates that safety
guarantee means the Phy-DRL successfully searches for a policy that renders Ω invariant (i.e.,
operating from any initial sample inside Ω, system state never leaves Ω at any time).

3 DESIGN OVERVIEW: INVARIANT EMBEDDINGS

In this paper, an ‘invariant’ refers to a prior policy, prior knowledge, or a designed property indepen-
dent of DRL agent training. As shown in Figure 1, the proposed Phy-DRL can address Problem 1.1–
Problem 1.4 because of three invariant-embedding designs. Specifically, 1) residual action policy,
which integrates data-driven action policy with an invariant model-based action policy that completely
depends on prior model knowledge (A, B). ii) Safety-embedded reward, whose off-line-designed
inequality (shown in Equation (8)) for assistance in delivering the mathematically provable safety
guarantee is also completely independent of agent training. iii) Physics-knowledge-enhanced DNN,
whose NN editing embeds the prior invariant knowledge about the action-value function and action
policy to the critic and actor networks, respectively. The following Section 4, Section 5 and Section 6
detail the three designs, respectively.
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4 INVARIANT EMBEDDING 1: RESIDUAL ACTION POLICY

Showing in Figure 1, the applied control action a(k) from Phy-DRL is given in the residual form:

a(k) = adrl(k)︸ ︷︷ ︸
data-driven

+ aphy(k)︸ ︷︷ ︸
invariant: model-based

, (3)

where the adrl(k) denotes a date-driven action from DRL, while the aphy(k) is a model-based action,
computed according to the invariant policy:

aphy(k) = F · s(k), (4)

where the computation of F is based on the model knowledge (A,B), carried out in Section 5.

The developed Phy-DRL is based on actor-critic architecture in DRLLillicrap et al. (2016); Schulman
et al.; Haarnoja et al. (2018) for searching an action policy adrl(k) = π(s(k)) that maximizes the
expected return from the initial state s(k):

Qπ(s(k),adrl(k)) = Es(k)∼ρ, adrl(k)∼π

[ ∞∑
t=k

γt−k · R (s(t),adrl(t))

]
, (5)

where ρ represents the initial state distribution, R(·) maps a state-action to a real-value reward,
γ ∈ [0, 1] is the discount factor. The expected return (5) and action policy π(·) are parameterized by
the critic and actor networks, respectively.

5 INVARIANT EMBEDDING 2: SAFETY-EMBEDDED REWARD

The current safety formula (2) is not ready for constructing the safety-embedded reward yet, since
it has multiple safety conditions while the reward R (·) in Equation (5) is one-dimensional. To
bridge the gap, we introduce the following safety envelope, which converts multi-dimensional safety
conditions into a scalar value.

Safety Envelope: Ω ≜
{
s ∈ Rn| s⊤ ·P · s ≤ 1, P ≻ 0

}
. (6)

The following lemma builds a connection: safety envelope is a subset of the safety set (also required
in Definition 2.1). Its formal proof appears in Appendix C.
Lemma 5.1. Consider the sets defined in Equation (2) and Equation (6). We have Ω ⊆ X, if[

D
]
i,:
·P−1 ·

[
D
⊤]

:,i
≤1 and [D]i,: ·P

−1 ·
[
D⊤

]
:,i
=

{
≥ 1, [d]i=1

≤ 1, [d]i=−1
, i∈{1, 2, . . . , h} (7)

where D = D
Λ

, D = D
Λ , and d, Λ and Λ are defined below for i, j ∈ {1, 2, . . . , h}:

[d]i≜


1, [v+v]i>0

1, [v+v]i<0

−1, otherwise
, [Λ]i,j≜


0, i ̸=j
[v+v]i , [v+v]i>0

[v+v]i , [v+v]i<0

[v+v]i , otherwise

, [Λ]i,j≜


0, i ̸=j
[v+v]i , [v+v]i>0

[v+v]i , [v+v]i<0

[−v − v]i , otherwise

.

Referring to model knowledge (A,B), Equation (6) and Equation (4), the proposed reward is

R(s(k),adrl(k)) = s⊤(k) ·A⊤ ·P ·A · s(k)− s⊤(k + 1) ·P · s(k + 1)︸ ︷︷ ︸
≜ r(s(k), s(k+1)): invariant property P − A

⊤·P·A ≻ 0

+ w(s(k),adrl(k)), (8)

where the sub-reward r(s(k), s(k + 1)) is safety-embedded, and we define:

A
∆
= A+B · F. (9)

Remark 5.2 (Sub-rewards). In Equation (8), the safety-embedded sub-reward r(s(k), s(k + 1)) is
critical for keeping a system safe, such as avoiding car crashes, and preventing car sliding and
slipping in an icy road. The sub-reward w(s(k),adrl(k)) aims at high-performance operations, such
as minimizing energy consumption of resource-limited robots Yang et al. (2022), which can be
optional in some time- and safety-critical environments.
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Moving forward, we present the following theorem, which states the conditions on matrices F, P
and reward for safety guarantee, whose proof is given in Appendix D.1.
Theorem 5.3 (Mathematically Provable Safety Guarantee). Consider the safety set X (2), the
safety envelope Ω (6), and the system (1) under control of Phy-DRL. The matrices F and P involved
in the model-based action policy (4) and the safety-embedded reward (8) are computed according to

F = R ·Q−1, P = Q−1, (10)

where R and Q−1 satisfy the inequalities (7) and[
α ·Q Q ·A⊤ +R⊤ ·B⊤

A ·Q+B ·R Q

]
≻ 0, with a given α ∈ (0, 1). (11)

Given any s(1) ∈ Ω, the system state s(k) ∈ Ω ⊆ X holds ∀k ∈ N (i.e., the safety of system (1) is
guaranteed), if the sub-reward r(s(k), s(k+1)) in (8) satisfies r(s(k), s(k+1)) ≥ α− 1, ∀k ∈ N.
Remark 5.4 (Solving Optimal R and Q). Equation (4), Equation (8) and Equation (9) imply that
the designs of model-based action policy and safety-embedded reward equate the computations of F
and P. While Equation (10) shows the computations depend on R and Q only. So, the remaining
work is obtaining R and Q. There are multiple toolboxes for solving R and Q from linear matrix
inequalities (LMIs) (7) and (11), such as MATLAB’s LMI Solver Boyd et al. (1994). What we are
more interested in is finding optimal R and Q that can maximize the safety envelope. We note the
volume of a safety envelope (6) is proportional to

√
det (P−1), the interested optimal problem is

thus a typical analytic centering problem, formulated as given a α ∈ (0, 1),

argmin
Q, R

{
log det

(
Q−1

)}
= argmax

Q, R

{
log det

(
P−1

)}
, subject to LMIs (7) and (11) (12)

from which, optimal R and Q can be solved via CVX toolbox Grant et al. (2009).
Remark 5.5 (F is given). Equation (12) also works in the scenario of a given model-based action
policy (i.e., F), which is carried out in Section 7.2 as an example.
Remark 5.6 (Provable Stability Guarantee). Following the same proof path of Theorem 5.3, Phy-
DRL also exhibits the mathematically provable stability guarantee, which is presented in Appendix E.
Remark 5.7 (Fast Training). The proof path of Theorem 5.3 is leveraged to reveal the driving factor
of Phy-DRL’s fast training towards safety guarantee, which is presented in Appendix D.2.
Remark 5.8 (Obtaining (A, B)). For a system with an available nonlinear dynamics model, the
model knowledge (A, B) can be directly obtained by simplifying the nonlinear model to a linear
one. While for a system whose dynamics model is not available, (A, B) can be obtained via system
identification Oymak & Ozay (2019), as used in social systems Mao et al. (2022).

6 INVARIANT EMBEDDING 3: PHYSICS-KNOWLEDGE-ENHANCED DNN

⋯
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Figure 2: Physics-Knowledge-Enhanced DNN architecture.

The Phy-DRL is built on the actor-
critic architecture, where a critic
and an actor network are used
to approximate the action-value
function (i.e., Q (s(k),adrl(k)) in
Equation (5)) and learn an action
policy (i.e., adrl(k) = π (s(k))),
respectively. We note from Equa-
tion (5) that the action-value func-
tion is a direct function of our
defined reward but involves un-
known future rewards. So, some
invariant knowledge exists that the
critic and/or actor networks shall
strictly comply with, which moti-
vates Problem 1.4. To address this problem, as shown in Figure 1, we develop physics-enhanced critic
and actor networks for Phy-DRL. The proposed networks are built on physics-knowledge-enhanced
DNN, whose architecture is depicted in Figure 2. The DNN has two innovations in neural architecture:

5



Published as a conference paper at ICLR 2024

i) Neural Network (NN) Input Augmentation described by Algorithm 1, and ii) Physics-Model-Guided
NN Editing described by Algorithm 2. To understand how Algorithm 1 and Algorithm 2 address
Problem 1.4, we describe the ground-truth models of action-value function and action policy as

Q (s,adrl) = AQ︸︷︷︸
weight matrix

· m(s,adrl, rQ)︸ ︷︷ ︸
node-representation vector

+ p(s,adrl)︸ ︷︷ ︸
unknown model mismatch

∈ R, (13)

π (s) = Aπ︸︷︷︸
weight matrix

· m(s, rπ)︸ ︷︷ ︸
node-representation vector

+ p(s)︸︷︷︸
unknown model mismatch

∈ Rlen(π(s)), (14)

where the vectors m(s,adrl, rQ) and m(s, rπ) are, respectively, augmentations of input vectors [s;adrl]
and s, which embraces all the non-missing and non-redundant monomials of a Taylor series. One
motivation behind the augmentations is that according to Taylor’s Theorem in Appendix G, the Taylor
series can approximate arbitrary nonlinear functions with controllable accuracy via controlling series
orders: rQ and rπ . The second motivation is our proposed safety-embedded reward r(s(k), s(k+1))
in Equation (8) is a typical Taylor series and is pre-defined. If using the Taylor series to approximate
the action-value function and an action policy, we can also discover hidden invariant knowledge.

Algorithm 2 needs inputs of knowledge sets KQ and Kπ. which include available knowledge about
governing Equation (13) and Equation (14), respectively. The two knowledge sets are defined below.

KQ≜{[AQ]i | no [m(s,adrl, rQ)]i in p(s,adrl), i ∈ {1, . . . , len(m(s,adrl, rQ))}}, (15)

Kπ≜
{
[Aπ]i,j

∣∣∣ no [m(s, rπ)]j in [p(s)]i, i∈{1, . . . , len(p(s))}, j∈{1, . . . , len(m(s, rπ))}
}
. (16)

Remark 6.1 (Toy Examples: Obtaining Knowledge Sets). Due to the page limit, an example for
obtaining KQ via Taylor’s theorem is presented in Appendix H. This example is about obtaining
Kπ . According to the dynamics and control of vehicles, the throttle command of traction control for
preventing sliding and slipping depends on longitudinal velocity (denoted by v) and angular velocity
(denoted by w) only Rajamani (2011); Mao et al. (2023). For simplification, we let s = [v, w, ζ]⊤,
where ζ denotes yaw. While action policy π (s) ∈ R2, with [π (s)]1 and [π (s)]2 denote the throttle
command and steering command, respectively. By Algorithm 1 with r⟨t⟩ = rπ = 2 and y⟨t⟩ = s,
we have m(s, rπ) = [1, v, w, ζ, v2, vw, vζ, w2, wζ, ζ2]⊤. Considering Equation (14), the m(s, rπ),
in conjunction with the knowledge “[π (s)]1 depends on w and v only", leads to the information: 1)
[p(s)]1 in Equation (14) in this example does not have monomials: 1, ζ, vζ, wζ, and ζ2, and 2)

Aπ =

[
0 w1 w2 0 w3 w4 0 w5 0 0
w6 w7 w8 w9 w10 w11 w12 w13 w14 w15

]
,

where w1, . . . , w15 are learning weights. Referring to Equation (16), we then have Kπ =
{[Aπ]1,1 = 0, [Aπ]1,2 = w1, . . . , [Aπ]1,10 = 0}.

With knowledge sets at hand, we can introduce two design aims for addressing Problem 1.4.
Aim 6.2. Given KQ (15), consider the critic network built on physic-knowledge-enhanced DNN in
Figure 2, where x = (s,adrl) and y = Q̂ (s,adrl) (i.e., y approximates Q (s,adrl)). The end-to-end
input/output of the critic network strictly complies with available knowledge about the governing
Equation (13), i.e., if [AQ]i ∈ KQ, then y does not have monomials [m(s,adrl, rQ)]i.
Aim 6.3. Given Kπ (16), consider the actor network built on physic-knowledge-enhanced DNN in
Figure 2, where x = s and y = π̂ (s) (i.e., y approximates π (s)). The end-to-end input/output of the
actor network strictly complies with available knowledge about the governing Equation (14), i.e., if
[Aπ]i,j ∈ Kπ , then [y]i does not have monomials [m(s, rπ)]j .

Algorithm 2, in conjunction with Algorithm 1, is able to deliver Aim 6.2 and Aim 6.3. It is formally
stated in Theorem 6.4, whose proof appears in Appendix J.
Theorem 6.4. If the critic and actor networks are built on physics-knowledge-enhanced DNN
(described in Figure 2), whose NN input augmentation and NN editing are described by Algorithm 1
and Algorithm 2, respectively, then Aim 6.2 and Aim 6.3 are achieved.

Finally, we refer to the toy example in Remark 6.1 for an overview of NN editing. For the end-to-end
mapping [y]1 = [π̂ (s)]1, given Kπ and output of Algorithm 1, the link editing of Algorithm 2
removes all connections with node representations 1, ζ, vζ, wζ, ζ2 and maintain link connections
with v, w,v2, vw and w2. Meanwhile, the action editing of Algorithm 2 guarantees the usages of
action functions in all PhyN layers do not introduce monomials of ζ to the mapping [y]1 = [π̂ (s)]1.
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Algorithm 1 NN Input Augmentation ▷ Aim at representation vectors to embrace all the non-missing and non-redundant

monomials of the Taylor series.

1: Input: augmentation order r⟨t⟩, input y⟨t⟩; ▷ t indicates layer number, e.g, t = 2 denotes the second NN layer.
2: Generate index vector of input: i← [1; 2; . . . ; len(y⟨t⟩)];
3: Initialize augmentation vector: m(y⟨t⟩, r⟨t+1⟩)← y⟨t⟩;
4: for _ = 2 to r⟨t⟩ do
5: for i = 1 to len(y⟨t⟩) do
6: Compute temp: ta← [y⟨t⟩]i · [y⟨t⟩]

[
[i]i : len(y⟨t⟩)

]; ▷ Capture hard-to-learn nonlinear representations, in the

form of monomials of the Taylor series, such as the 2nd-order monomials of sub-reward r(s(k), s(k + 1)) in
Equation (8).

7: if i == 1 then
8: Generate temp: t̃b ← t̃a;
9: else if i > 1 then
10: Generate temp: t̃b ←

[
t̃b; t̃a

]
; ▷ Avoid missing and redundant monomials.

11: end if
12: Update index entry: [i]i ← len(y⟨t⟩);

13: Augment: m(y⟨t⟩, r⟨t+1⟩)←
[
m(y⟨t⟩, r⟨t⟩); t̃b

]
;

14: end for
15: end for ▷ Line 4–Line 15 generate node-representation vector that embraces all the non-missing and non-redundant monomials of the

Taylor series. One illustration example is in Figure 8 in Appendix F.
16: Output: m(y⟨t⟩, r⟨t⟩)←

[
1; m(y⟨t⟩, r⟨t+1⟩)

]
. ▷ Controllable Model Accuracy: The algorithm provides one option of

approximating the ground-truth models (13) and (14) via Taylor series. According to Taylor’s Theorem (Chapter 2.4 Königsberger (2013)),
the networks have controllable model accuracy by controlling augmentation orders r⟨t⟩ (see Appendix G for further explanations).

Algorithm 2 Physics-Model-Guided Neural Network Editing ▷ Perform on deep PhyN, and each layer needs

Algorithm 1 for generating node-representation vectors. Detailed explanations of Algorithm 2 appear in Appendix I

1: Input: Network type set T =
{
‘Q′, ‘π′}, knowledge sets KQ (15) and Kπ (16), number of PhyNs pQ and pπ , origin input x,

augmentation orders rQ and rπ , model matrices AQ and Aπ , terminal output dimension len(y).
2: Choose network type ϖ ∈ T;
3: Specify augmentation order of the first PhyN: r⟨1⟩ ← rϖ ;
4: for t = 1 to pϖ do
5: if t == 1 then
6: Generate node-representation vector m(x, r⟨1⟩) via Algorithm 1; ▷ Corresponding to m(s, adrl, rQ) and m(s, rπ) in the

ground-truth models (13) and (14), because r⟨1⟩ ← rϖ .
7: Generate raw weight matrix via gradient descent algorithm: W⟨1⟩; ▷ Raw weight matrix usually responds to a fully-connected NN

layer, which can violate physics knowledge.

8: Generate knowledge matrix K⟨1⟩: [K⟨1⟩]i,j ←
{
[Aϖ]i,j , [Aϖ]i,j ∈ Kϖ

0, otherwise
; ▷ Include all elements in knowledge set.

9: Generate weight-masking matrix M⟨1⟩: [M⟨1⟩]i,j ←
{
0, [Aϖ ]i,j ∈ Kϖ

1, otherwise
;

10: Generate activation-masking vector a⟨1⟩: [a⟨1⟩]i ←
{
0, [M⟨1⟩]i,j = 0, ∀j ∈ {1, . . . , len(m(x, r⟨1⟩))}
1, otherwise

;

11: else if t > 1 then
12: Generate raw weight matrix via gradient descent algorithm: W⟨t⟩; ▷ Raw weight matrix usually responds to a fully-connected

NN layer, which can violate physics knowledge.
13: Generate node-representation vector m(y⟨t−1⟩, r⟨t⟩) via Algorithm 1;

14: Generate knowledge matrix: K⟨t⟩ ←

 O(len(y⟨t⟩)−len(y))×len(m(y⟨t−1⟩,r⟨t⟩))

0len(y) Ilen(y) Olen(y)×(len(m(y⟨t−1⟩,r⟨t⟩))−len(y)−1)


;

15: Generate weight-masking matrix M⟨t⟩:

[M⟨t⟩]i,j ←

0,
∂[m(y⟨t⟩,r⟨t⟩)]j
∂[m(x,r⟨1⟩)]v

̸=0 and [M⟨1⟩]i,v =0, v∈{1, . . . , len(m(x, r⟨1⟩))}

1, otherwise
;

16: Generate activation-masking vector a⟨t⟩ ←
[
a⟨1⟩; 1len(y⟨t⟩)−len(y)

]
;

17: end if
18: Generate uncertainty matrix U⟨t⟩ ←M⟨t⟩ ⊙W⟨t⟩;
19: Compute output: y⟨t⟩ ← K⟨t⟩ ·m(y⟨t−1⟩, r⟨t⟩) + a⟨t⟩ ⊙ act

(
U⟨t⟩ ·m

(
y⟨t−1⟩, r⟨t⟩

))
;

20: end for
21: Output: ŷ ← y⟨p⟩.
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Figure 3: Blue: area of IE samples defined in Equation (18). Green: area of EE samples defined in
Equation (19). Rectangular area: safety set. Ellipse area: safety envelope.

7 EXPERIMENTS

7.1 CART-POLE SYSTEM

We take the cart-pole simulator provided in Open-AI Gym Brockman et al. (2016). Its mechanical
analog is shown in Figure 11 in Appendix K, characterized by pendulum’s angle θ and angular
velocity ω ∆

= θ̇, and cart’s position x and velocity v ∆
= ẋ. Phy-DRL’s action policy is to stabilize the

pendulum at equilibrium s∗ = [x∗, v∗, θ∗, ω∗]⊤ = [0, 0, 0, 0]⊤, while constraining system state to

Safety Set: X =
{
s ∈ R4

∣∣− 0.9 ≤ x ≤ 0.9, − 0.8 < θ < 0.8
}
. (17)

To demonstrate the robustness of Phy-DRL, we intentionally create a large model mismatch for
obtaining a model-based action policy of Phy-DRL. Specifically, as explained in Appendix K.1, the
physics-model knowledge represented by (A, B) is obtained through ignoring friction force, and
letting cos θ ≈ 1, sin θ ≈ θ and ω2 sin θ ≈ 0. The system trajectories in Figure 12 in Appendix K.4
show that the sole model-based action policy does not guarantee safety.

The computations of F, P and A are presented in Appendix K.1–Appendix K.3. Meanwhile, for
the high-performance sub-reward in Equation (8), we let w(s(k),adrl(k)) = −a2drl(k). Finally, to
validate our theoretical results and present experimental comparisons, we define two safe samples:

Safe Internal-Envelope (IE) Sample ≜ s̃: if s(1) = s̃ ∈ Ω, then s(k) ∈ Ω,∀k ∈ N. (18)

Safe External-Envelope (EE) Sample ≜ s̃: if s(1) = s̃ ∈ X, then s(k) ∈ X \ Ω,∃k ∈ N. (19)

We consider a CLF (control Lyapunov function) reward, proposed in Westenbroek et al. (2022), as
R(·) = s⊤(k) · P · s(k) − s⊤(k + 1) · P · s(k + 1) + w(s(k),a(k)), where the P is the same as
the one in the Phy-DRL’s safety-embedded reward. We mainly compare our Phy-DRL with purely
data-driven DRL having the CLF reward for testing. Both models are trained for 75000 steps and have
the same configurations of critic and actor networks, presented in Appendix K.5. The performance
metrics are the areas of IE and EE samples. Figure 3 shows that i) Phy-DRL successfully renders
the safety envelope invariant, demonstrating Theorem 5.3 (r(s(k), s(k + 1)) ≥ α− 1 holds in final
training episode), and ii) the safety areas of the sole model-based policy and the purely data-driven
DRL are much smaller. Additional comparisons with incorporating a model for model-based DRL
(with the proposed CLF reward) and our Phy-DRL for state prediction are presented in Appendix K.7.

7.2 QUADRUPED ROBOT

In this experiment, action policies’ missions are concurrent safe center-gravity management, safe
lane tracking alone x-axis, and safe velocity regulation. We define safety constraints as:

X={ŝ |CoM z-height−0.24m| ≤ 0.13m, |yaw| ≤ 0.17 rad, |CoM x-velocity−rx| ≤ |rx|}, (20)
Targeted Equilibrium: ŝ∗ = [0; 0; 0.24m; 0; 0; 0; rx; 0; 0; 0; 0; 0], (21)

where the ŝ denotes the robot’s state vector (given in Equation (74) in Appendix L.2), the rx denotes
the desired CoM x-velocity. The system state of the model (1) is expressed as s = ŝ− ŝ∗.

The designs of model-based policy and reward appear in Appendix L.3 and the training details are
presented in Appendix L.6 and Appendix L.7. To demonstrate the performance of trained Phy-DRL,
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Figure 4: Phase plots of models running different environments, given different velocity commands.

we consider the comparisons of four policies:
– Phy-DRL policy, whose network configurations are summarized in the model PKN-15 in Table 2 in
Appendix L.6. Its total number of training steps is only 106.
– DRL policy, denoting a purely data-driven action policy trained in standard DRL. Its network
configurations are summarized in the model FC MLP in Table 2. Its reward for training is the CLF
proposed in Westenbroek et al. (2022) and given in Equation (84), where the P is the same as the one
in the Phy-DRL’s safety-embedded reward. Its number of training steps is large as 107.
– PD policy, denoting a default proportional-derivative controller developed in Da et al. (2021).
– Linear policy, which is the sole model-based action policy equation 4 used in Phy-DRL.

We compare the four policies in four testing environments: a) rx = 1 m/s and snow road, b) rx = 0.5
m/s and snow road, c) rx = −1.4 m/s and wet road, and d) rx = −0.4 m/s and wet road. The
links to demonstration videos are available at Appendix L.9, with Figure 4 showing that Phy-DRL
successfully constraints the robot’s states to a safety set. Given more reasonable velocity commands in
environments b) and d), Phy-DRL can also successfully constrain system states to the safety envelope.
The Linear and PD policies can only constrain system states to a safety envelope in environment
d). The DRL policy violates the safety requirements in all environments, which implies that purely
data-driven DRL needs more training steps to search for a safe and robust policy. Meanwhile,
Appendix L.4, Appendix L.6, and Appendix L.7 show that Phy-DRL features remarkably better
velocity-regulation performance, fewer learning parameters, and fast and stable training.

8 CONCLUSION AND DISCUSSION

This paper proposes Phy-DRL: a physics-regulated deep reinforcement learning framework for
safety-critical autonomous systems. Phy-DRL exhibits a mathematically provable safety guarantee.
Compared with purely data-driven DRL and solely model-based design, Phy-DRL features fewer
learning parameters and fast and stable training while offering enhanced safety assurance.

We recall the computation of matrix P (used in defining reward and safety envelope) depends on a
linear model. However, if the linear model’s mismatch is large, no safe policies may exist to render
the safety envelope – defined by P – invariant. How to address safety concerns induced by faulty P
constitutes our future research. We also note the derived condition of safety guarantee in Theorem 5.3
is not yet ready for a practical testing procedure due to the necessary full coverage testing within the
domain Ω. Transforming the theoretical safety conditions into practical and efficient ones will be
another future research.
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9 REPRODUCIBILITY STATEMENT

The code to reproduce our experimental results and supplementary materials are available at https:
//github.com/HP-CAO/phy_rl.

The experimental settings are described in Appendix K.5, Appendix K.6, and Appendix L.8.
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A NOTATIONS THROUGHOUT PAPER

Table 1: Notation

Rn set of n-dimensional real vectors
N set of natural numbers
len(s) length of vector s
[x]i i-th entry of vector x
[x]i:j a sub-vector formed by the i-th to j-th entries of vector x
[W]i,: i-th row of matrix W
[W]i,j element at row i and column j of matrix W
P ≻ 0 matrix P is positive definite
P ≺ 0 matrix P is negative definite
⊤ matrix or vector transposition
In n× n-dimensional identity matrix
1n n-dimensional vector of all ones
0n n-dimensional vector of all zeros
⊙ Hadamard product
[x ; y] stacked (tall column) vector of vectors x and y
act activation function
Om×n m× n-dimensional zero matrix
⊞ an element in knowledge set
∗ a learning element
X \ Ω complement set of Ω with respect to X
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B AUXILIARY LEMMAS

Lemma B.1 (Schur Complement Zhang (2006)). For any symmetric matrix M =

[
A B
B⊤ C

]
, then

M ≻ 0 if and only if C ≻ 0 and A−BC−1B⊤ ≻ 0.

Lemma B.2. Corresponding to the set X defined in Equation (2), we define:

X̂ ≜
{
s ∈ Rn| − 1h ≤ d ≤ D · s, and D · s ≤ 1h

}
. (22)

The sets X = X̂ if and only if D = D
Λ

and D = D
Λ , where d, Λ and Λ are defined in Lemma 5.1.

Proof. The condition of set defined in Equation (2) is equivalent to

[v + v]i ≤ [D]i,: · s ≤ [v + v]i , i ∈ {1, 2, . . . , h}, (23)

based on which, we consider three cases.

Case One: If [v + v]i > 0, we obtain from Equation (23) that [v + v]i > 0 as well, such that the
Equation (23) can be rewritten equivalently as

[D]i,: · s
[v + v]i

=
[D]i,: · s
[Λ]i,i

≤ 1, and
[D]i,: · s
[v + v]i

=
[D]i,: · s
[Λ]i,i

≥ 1 = [d]i, i ∈ {1, 2, . . . , h}, (24)

which is obtained via considering the second items of [Λ]i,j and [Λ]i,j and the first item of [d]i,
presented in Lemma 5.1.

Case Two: If [v + v]i < 0, we obtain from Equation (23) that [v + v]i < 0 as well, such that the
Equation (23) can be rewritten equivalently as

[D]i,: · s
[v + v]i

=
[D]i,: · s
[Λ]i,i

≤ 1, and
[D]i,: · s
[v + v]i

=
[D]i,: s

[Λ]i,i
≥ 1 = [d]i, i ∈ {1, 2, . . . , h}, (25)

which is obtained via considering the third items of [Λ]i,j and [Λ]i,j and the second item of [d]i,
presented in Lemma 5.1.

Case Three: If [v + v]i > 0 and [v + v]i < 0, the Equation (23) can be rewritten equivalently as

[D]i,: · s
[v + v]i

=
[D]i,: s

[Λ]i,i
≤ 1, and

[D]i,: · s
[−v − v]i

=
[D]i,: · s
[Λ]i,i

≥ −1 = [d]i, i ∈ {1, 2, . . . , h}, (26)

which is obtained via considering the fourth items of [Λ]i,j and [Λ]i,j and the third item of [d]i,
presented in Lemma 5.1.

We note from the first items of [Λ]i,j and [Λ]i,j in Lemma 5.1 that the defined Λ and Λ are diagonal
matrices. The conjunctive results (23)–(26) can thus be equivalent described by

D · s
Λ

≤ 1h and
D · s
Λ

≥ d ≥ −1h,

substituting D = D
Λ

and D = D
Λ into which, we obtain −1h ≤ d ≤ D · s, and D · s ≤ 1h, which is

the condition for defining the set X̂ in Equation (22). We thus conclude the statement.
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C PROOF OF LEMMA 5.1

In light of Lemma B.2 in Appendix B, we have X = X̂. Therefore, to prove Ω ⊆ X, we consider the
proof of Ω ⊆ X̂, which is carried out below. The X̂ defined in Equation (22) relies on two conjunctive
conditions: −1h ≤ d ≤ D · s and D · s ≤ 1h, based on which the proof is separated into two cases.

Case One: D · s ≤ 1h, which can be rewritten as [D · s]i ≤ 1, i ∈ {1, 2, . . . , h}.

We next prove that max
s∈Ω

{[
D · s

]
i

}
=

√[
D ·P−1 ·D⊤

]
i,i
, i ∈ {1, 2, . . . , h}. To achieve this, let

us consider the constrained optimization problem:

max
{[
D · s

]
i

}
, subject to s⊤ ·P · s ≤ 1, i ∈ {1, 2, . . . , h}.

Let s∗ be the optimal solution. Then, according to the Kuhn-Tucker conditions, we have[
D
]⊤
i,:

− 2λ ·P · s∗ = 0, λ · (1− (s∗)⊤ ·P · s∗) = 0,

which, in conjunction with λ > 0, lead to

2λ ·P · s∗ =
[
D
]⊤
i,:
, (27)

(s∗)⊤ ·P · s∗ = 1. (28)

Multiplying both left-hand sides of Equation (27) by (s∗)⊤ yields 2λ · (s∗)⊤ ·P · s∗ = (s∗)⊤ ·
[
D
]⊤
i,:

,
which, in conjunction with Equation (28), results in

2λ = (s∗)⊤ ·
[
D
]⊤
i,:
> 0. (29)

Multiplying both left-hand sides of Equation (27) by P−1 leads to 2λ ·s∗ = P−1 ·
[
D
]⊤
i,:

, multiplying

both left-hand sides of which by
[
D
]
i,:

, we arrive in

2λ ·
[
D
]
i,:

· s∗ =
[
D
]
i,:

·P−1 ·
[
D
]⊤
i,:
. (30)

Substituting Equation (29) into Equation (30), we obtain (s∗)⊤ ·
[
D
]⊤
i,:

·
[
D
]
i,:

· s∗ =
[
D
]
i,:

·

P−1 ·
[
D
]⊤
i,:

, from which we can have (s∗)⊤ ·
[
D
]⊤
i,:

=
√[

D
]
i,:

·P−1 ·
[
D
]⊤
i,:
> 0, which with

Equation (29) indicate:

2λ =

√[
D
]
i,:

·P−1 ·
[
D
]⊤
i,:
. (31)

We note that the Equation (27) is equivalent to s∗ = 1
2λ ·P−1 ·

[
D
]⊤
i,:

, substituting Equation (31) into

which results in s∗ = 1√
[D]

i,:
·P−1·[D]

⊤
i,:

· P−1 ·
[
D
]⊤
i,:

, multiplying both sides of which by
[
D
]
i,:

means

max
s∈Ω

{[
D · s

]
i

}
= max

s∈Ω

{[
D
]
i,:

· s
}
=

[
D
]
i,:

· s∗ =

[
D
]
i,:

·P−1 ·
[
D
]⊤
i,:√[

D
]
i,:

·P−1 ·
[
D
]⊤
i,:

=

√[
D
]
i,:

·P−1 ·
[
D
⊤]

:,i
, i ∈ {1, 2, . . . , h}

which means

max
s∈Ω

{[
D · s

]
i

}
≤ 1 if and only if

[
D
]
i,:

·P−1 ·
[
D
⊤]

:,i
≤ 1, i ∈ {1, 2, . . . , h}, (32)

which further implies that

D · s ≤ 1h, if
[
D
]
i,:

·P−1 ·
[
D
⊤]

:,i
≤ 1, i ∈ {1, 2, . . . , h}. (33)
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Case Two: −1h ≤ d ≤ D · s, which includes two scenarios: [d]i = 1 and [d]i = −1, referring to d

in Lemma 5.1. We first consider [D · s]i ≥ −1, which can be rewritten as [D̂ · s]i ≤ −[d]i = 1, i ∈
{1, 2, . . . , h}, with D̂ = −D. Following the same steps to derive Equation (32), we obtain

max
s∈Ω

{[
D̂ · s

]
i

}
≤ 1 if and only if

[
D̂
]
i,:

·P−1 ·
[
D̂
⊤]

:,i
< 1, i ∈ {1, 2, . . . , h},

which with D̂ = −D indicate that

min
s∈Ω

{[D · s]i} ≥ −1 iff [D]i,: ·P
−1 ·

[
D⊤

]
:,i
< 1, [d]i = −1, i ∈ {1, 2, . . . , h}. (34)

We next consider [d]i = 1. We prove in this scenario, min
s∈Ω

{[D · s]i} =

√[
D ·P−1 ·D⊤

]
i,i

. To

achieve this, let us consider the constrained optimization problem:

min {[D · s]i} , subject to s⊤ ·P · s ≤ 1.

Let ŝ∗ be the optimal solution. Then, according to the Kuhn-Tucker conditions, we have

[D]
⊤
i,: + 2λ̂ ·P · ŝ∗ = 0, λ̂ · (1− (ŝ∗)⊤ ·P · ŝ∗) = 0,

which, in conjunction with λ̂ < 0, leads to

2λ̂ ·P · ŝ∗ = − [D]
⊤
i,: , (35)

(ŝ∗)⊤ ·P · ŝ∗ = 1. (36)

Multiplying both left-hand sides of Equation (35) by (ŝ∗)⊤ yields 2λ̂ ·(ŝ∗)⊤ ·P · ŝ∗ = −(ŝ∗)⊤ · [D]
⊤
i,:,

which, in conjunction with Equation (36), results in

2λ̂ = −(ŝ∗)⊤ · [D]
⊤
i,: < 0. (37)

Multiplying both left-hand sides of Equation (35) by P−1 leads to 2λ̂·ŝ∗ = −P−1 ·[D]
⊤
i,:, multiplying

both left-hand sides of which by [D]i,:, we arrive in

2λ̂ · [D]i,: · ŝ
∗ = − [D]i,: ·P

−1 · [D]
⊤
i,: . (38)

Substituting Equation (37) into Equation (38), we obtain −(ŝ∗)⊤ · [D]
⊤
i,: · [D]i,: ŝ

∗ = − [D]i,: ·P−1 ·
[D]
⊤
i,:, which together with Equation (37) indicate the solution:

2λ̂ = −(ŝ∗)⊤ · [D]
⊤
i,: = −

√
[D]i,: ·P−1 · [D]

⊤
i,:. (39)

We note that the Equation (35) is equivalent to ŝ∗ = − 1
2λ̂

·P−1 · [D]
⊤
i,:, substituting Equation (39)

into which results in ŝ∗ = 1√
[D]i,:·P−1·[D]⊤i,:

P−1 · [D]
⊤
i,:, multiplying both sides of which by [D]i,:

means

min
s∈Ω

{[D · s]i} = min
s∈Ω

{
[D]i,: · s

}
= [D]i,: · ŝ

∗ =
[D]i,: ·P−1 [D]

⊤
i,:√

[D]i,: ·P−1 · [D]
⊤
i,:

=

√
[D]i,: ·P−1 ·

[
D⊤

]
:,i
, i ∈ {1, 2, . . . , h},

which means

min
s∈Ω

{[D · s]i} ≥ 1 iff [D]i,: ·P
−1 ·

[
D⊤

]
:,i

≥ 1, [d]i = 1, i ∈ {1, 2, . . . , h}. (40)

Summarizing Equation (34) and Equation (40), with the consideration of d presented in Lemma 5.1,
we conclude that

min
s∈Ω

{[D · s]i} ≥ [d]i iff [D]i,: ·P
−1 ·

[
D⊤

]
:,i

=

{
≥ 1, if [d]i = 1

≤ 1, if [d]i = −1
, i ∈ {1, 2, . . . , h},
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which, in conjunction with the fact that D · s and d are vectors, implies that

D · s ≥ d ≥ −1h, if [D]i,: ·P
−1 ·

[
D⊤

]
:,i

=

{
≥ 1, if [d]i = 1

≤ 1, if [d]i = −1
, i∈{1, 2, . . . , h}. (41)

We now conclude from Equation (33) and Equation (41) that D · s ≤ 1h and D · s ≥ d ≥ −1h hold,
if for any i ∈ {1, 2, . . . , h},[

D
]
i,:

·P−1 ·
[
D
⊤]

:,i
≤ 1 and [D]i,: ·P

−1 ·
[
D⊤

]
:,i

=

{
≥ 1, if [d]i = 1

≤ 1, if [d]i = −1.

Meanwhile, noticing the D · s ≤ 1h and D · s ≥ d ≥ −1h is the condition of forming the set X̂ in
Equation (22), we can finally obtain Equation (7).
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D THEOREM 5.3

D.1 PROOF OF THEOREM 5.3

We note that Q = Q⊤ and the F = R ·Q−1 is equivalent to the F ·Q = R, substituting which into
Equation (11) yields [

α ·Q Q · (A+B · F)⊤
(A+B · F) ·Q Q

]
≻ 0. (42)

We note Equation (42) implies α > 0 and Q ≻ 0. Then, according to the auxiliary Lemma B.1 in
Appendix B, we have

α ·Q−Q · (A+B · F)⊤ ·Q−1 · (A+B · F) ·Q ≻ 0. (43)

Since P = Q−1, multiplying both left-hand and right-hand sides of Equation (43) by P we obtain

α ·P− (A+B · F)⊤ ·P · (A+B · F) ≻ 0,

which, in conjunction with A defined in Equation (9), leads to

αP−A
⊤ ·P ·A ≻ 0. (44)

We now define a function:

V (s(k)) = s⊤(k) ·P · s(k). (45)

With the consideration of function in Equation (45), along the real plant (1) with Equation (3) and
Equation (4), we have

V (s(k + 1))

= (B · adrl(k) + f(s(k),a(k)))
⊤ ·P · (B · adrl(k) + f(s(k),a(k)))

+ 2s⊤(k) ·A⊤ ·P · (B · adrl(k) + f(s(k),a(k))) + s⊤(k) · (A⊤ ·P·A) · s(k) (46)

< (B · adrl(k) + f(s(k),a(k)))
⊤ ·P · (B · adrl(k) + f(s(k),a(k)))

+ 2s⊤(k) ·A⊤ ·P · (B · adrl(k) + f(s(k),a(k))) + α · V (s(k)), (47)

where the Equation (47) is obtained from its previous step via considering Equation (45) and
Equation (44). Observing Equation (46), we obtain

−r(s(k), s(k + 1)) = V (s(k + 1))− s⊤(k) · (A⊤ ·P ·A) · s(k)

= (B · adrl(k) + f(s(k),a(k)))
⊤ ·P · (B · adrl(k) + f(s(k),a(k)))

+ 2s⊤(k) ·A⊤ ·P · (B · adrl(k) + f(s(k),a(k)) (48)

where r(s(k), s(k + 1)) is defined in Equation (8). Substituting Equation (48) into Equation (47)
yields

V (s(k + 1)) < α · V (s(k))− r(s(k), s(k + 1)),

which further implies that

V (s(k + 1))− V (s(k)) < (α− 1) · V (s(k))− r(s(k), s(k + 1)). (49)

Since 0 < α < 1, we have α − 1 < 0. So, the (α − 1) · V (s(k)) − r(s(k), s(k + 1)) ≥ 0 means
V (s(k)) ≤ r(s(k),s(k+1))

α−1 . Therefore, if r(s(k),s(k+1))
α−1 ≤ 1, we have

V (s(k)) ≤ 1, and (α− 1) · V (s(k))− r(s(k), s(k + 1)) ≥ 0, (50)

where the second inequality, in conjunction with Equation (49), implies that there exists a scalar θ
such that

V (s(k + 1))− V (s(k)) < θ, with θ > 0. (51)
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The result in Equation (51) can guarantee the safety of real plants. To prove this, let’s consider the
worst-case scenario that the V (s(k)) is strictly increasing with respect to time k ∈ N. So, starting from
system state s(k) satisfying V (s(k)) ≤ r(s(k),s(k+1))

α−1 ≤ 1, V (s(k)) will increase to V (s(q)) =
r(s(q),s(q+1))

α−1 ≤ 1, where q > k ∈ N. Meanwhile, we note that the (α−1) ·V (s(k))− r(s(k), s(k+
1)) ≤ 0 is equivalent to V (s(k)) ≥ r(s(k),s(k+1))

α−1 , and also in conjunction with Equation (49) implies

that V (s(k + 1))− V (s(k)) < 0. These mean that if V (s(q)) = r(s(q),s(q+1))
α−1 ≤ 1 is achieved, the

V (s(k)) will start decreasing 1. We thus conclude here that in the worst-case scenario, if starting
from a point not larger than r(s(k),s(k+1))

α−1 , i.e., V (s(k)) ≤ r(s(k),s(k+1))
α−1 ≤ 1, we have

V (s(k)) ≤ 1, ∀k ∈ N. (52)

We now consider the other case, i.e., 1 ≥ V (s(k)) > r(s(k),s(k+1))
α−1 . Recalling that in this case

V (s(k + 1)) − V (s(k)) < 0, which means V (s(k)) is strictly decreasing with respect to time k,
until V (s(q)) ≤ r(s(q),s(q+1))

α−1 < 1, q > k ∈ N. Then, following the same analysis path of the worst
case, we can conclude Equation (52) consequently. In other words,

V (s(k)) ≤ 1, ∀k ∈ N, if V (s(1)) ≤ 1,

which, in conjunction with Equation (6) and Equation (45), lead to

s(k) ∈ Ω, ∀k ∈ N, if s(1) ∈ Ω. (53)

This proof path is illustrated in Figure 5.

Finally, we note from Lemma 5.1 that the condition in Equation (7) is to guarantee that Ω ⊆ X, which
with Equation (53) result in s(k) ∈ Ω ⊆ X, ∀k ∈ N, if s(1) ∈ Ω, which completes the proof.

Safety Envelope

𝑟 𝐬 𝑘 , 𝐬 𝑘 + 1

𝛼 − 1

Figure 5: Illustration of the proof path of Theorem 5.3.

D.2 EXTENSION: EXPLANATION OF FAST TRAINING TOWARD SAFETY GUARANTEE

The experimental results demonstrate that compared with purely data-driven DRL, our proposed
Phy-DRL has much faster training toward safety guarantee, which can be explained by Equation (44),

1In practice, the control command at one control period should not drive the system to escape the safety
envelop Ω from V (s(q)) = r(s(q),s(q+1))

α−1
.
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Equation (45), and Equation (46). Specifically, because of them and 0 < α < 1, we have

V (s(k + 1))− V (s(k))

≤ V (s(k + 1))− α · V (s(k))

= (B · adrl(k) + f(s(k),a(k)))
⊤ ·P · (B · adrl(k) + f(s(k),a(k)))

+ 2s⊤(k) ·A⊤ ·P · (B · adrl(k) + f(s(k),a(k))) + s⊤(k) · (A⊤ ·P·A−P) · s(k). (54)

The (off-line designed) model-based property in Equation (44) implies that Equation (54) has a
constant negative term, i.e., s⊤(k) · (A⊤ ·P·A− α ·P) · s(k) < 0. As depicted by Figure 6, the
s⊤(k) · (A⊤ ·P·A− α ·P) · s(k) < 0 can be understood that it puts a global attractor insides
safety envelope, which generate attracting force toward safety envelope. Obviously, because of the
always-existing attracting force, system states under the control of Phy-DRL are more likely and
quickly to stay inside the safety envelope, compared with purely data-driven DRL frameworks.

In summary, the driving factor of Phy-DRL’s fast training toward safety guarantee is the concurrent
safety-embedded reward and residual action policy.

Goal: Safety Guarantee

System states do not leave safety envelope! 

DRL: Training

Phy-DRL: Training

:  Global Attractor, due to 

         Generating attracting force toward safety envelope!

( ) 0   −   s A P A P s

Safety Envelope 

Figure 6: Explanation of Phy-DRL’s fast training: the root reason is the (off-line designed) model-
based property in Equation (44), which generates always-existing attracting force toward the safety
envelope.
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E EXTENSION: MATHEMATICALLY-PROVABLE SAFETY AND STABILITY
GUARANTEES

We first present the definition of a stability guarantee.

Definition E.1. The real plant (1) is said to be stability guaranteed, if given any s(1) ∈ Rn, then
lim
k→∞

s(k) = 0n.

The relation between safety guarantee and stability guarantee is presented in Appendix E.1.

E.1 SAFETY VERSUS STABILITY

Safety Set

(a)

Equilibrium Point

Safety Set

(b)

Equilibrium Point

Safety Set

(c)

Equilibrium Point

Figure 7: Explanations of safety and stability via phase plots: (a) only stability is guaranteed, (b) only
safety is guaranteed, (c) both safety and stability are guaranteed.
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According to Definition 2.1 and Definition E.1, the phase plots in Figure 7 well depict the relation
between safety and stability:

• Figure 7 (a): Only Stability is guaranteed. Operating from any initial condition (inside or
outside the safety set), the system state will converge to the equilibrium (zero). But safety is
not guaranteed, since operating from an initial condition inside the safety set, the system
will leave the safety set later.

• Figure 7 (b): Only Safety is guaranteed. Operating from any initial condition inside the
safety set, the system state never leaves the safety set but does not converge to the equilibrium
point.

• Figure 7 (c): Both Safety and Stability are guaranteed. Operating from any initial condition
inside the safety set, the system state never leaves the safety set and converges to the
equilibrium.

E.2 PROVABLE SAFETY AND STABILITY GUARANTEES

Thanks to the residual action policy and safety-embedded reward, the proposed Phy-DRL exhibits
mathematically-provable safety and stability guarantees, which is formally stated in the following
theorem.
Theorem E.2 (Mathematically-Provable Safety and Stability Guarantees). Consider the safety
set X (2), the safety envelope Ω (6), and the system (1) under control of Phy-DRL. The matrices F and
P involved in the model-based action policy (4) and the safety-embedded reward (8) are computed
according to Equation (11), where R and Q−1 satisfies the inequalities (7) and (11). Both the safety
and stability of the system (1) are guaranteed, if the sub-reward r(s(k), s(k + 1)) in Equation (8)
satisfies r(s(k), s(k + 1)) > (α− 1) · s⊤(k) ·P · s(k).

Proof. This proof is straightforward and is based on the Proof of Theorem 5.3 in Appendix D.1. If
(α− 1) · V (s(k))− r(s(k), s(k + 1)) < 0, we obtain from Equation (49) that

V (s(k + 1)) < V (s(k)) , ∀k ∈ N,

which implies that V (s(k)) is strictly decreasing with respect to time k ∈ N. The Phy-DRL in this
condition thus stabilizes the real plant (1). Additionally, because of V (s(k))’s strict decreasing,
we obtain Equation (53) via considering the Equation (6). In light of Lemma 5.1, the condition
Equation (7) is to guarantee that Ω ⊆ X, which with Equation (53) result in s(k) ∈ Ω ⊆ X, ∀k ∈ N,
if s(1) ∈ Ω. We thus conclude that in this condition, both safety and stability are guaranteed, which
completes the proof.
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F NN INPUT AUGMENTATION: EXPLANATIONS AND EXAMPLE

Line 16 shows that Algorithm 1 finally stacks vector with one. This operation means a PhyN node
will be assigned to be one, and the bias will be thus treated as link weights associated with the nodes
of ones.

As an example shown in Figure 8, the NN input augmentation empowers PhyN to capture well core
nonlinearities of physical quantities such as kinetic energy (≜ 1

2mv
2) and aerodynamic drag force

(≜ 1
2ρv

2CDA), that drive the state dynamics of physical systems and then represent or approximate
physical knowledge in form of the polynomial function.

Line 6–Line 13 of Algorithm 1 guarantee that the generated node-representation vectors embrace all
the non-missing and non-redundant monomials of a polynomial function. One such example is shown
in Figure 8. In this example, the [x]21 · [x]22 is generated only by [x]1 · ([x]1 · [x]22), not including
others (see e.g., [x]2 · ([x]2 · [x]21)). Meanwhile, it can be straightforward to verify from the compact
example in Figure 8 that all the generated monomials are non-missing and non-redundant.

zero order 1st Order 2nd Order 3rd Order

Figure 8: An example of Algorithm 1 in TensorFlow framework, where the input x ∈ R3 and the
augmentation order r = 3.
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G CONTROLLABLE MODEL ACCURACY

The Taylor’s Theorem offers a series expansion of arbitrary nonlinear functions, as shown below.

Taylor’s Theorem (Chapter 2.4 Königsberger (2013)): Let g : Rn → R be a r-times
continuously differentiable function at the point o ∈ Rn. Then there exists hα : Rn → R,
where |α| = r, such that

g(x) =
∑
|α|≤r

∂αg(o)

α!
(x− o)

α
+

∑
|α|=r

hα(x)(x− o)α, and lim
x→o

hα (x) = 0, (55)

where α = [α1; α2; . . . ; αn], |α| =
n∑

i=1

αi, α! =
n∏

i=1

αi!, xα =
n∏

i=1

xαi
i , and ∂αg =

∂|α|g
∂x

α1
1 ·...·∂x

αn
n

.

Given hα(x) is finite and ∥x− o∥ < 1, the error
∑
|α|=r

hα(x)(x− o)α for approximating the ground

truth g(x) will drop significantly as the order r = |α| increases and lim
|α|=r→∞

hα(x)(x− o)
α
= 0.

This allows for controllable model accuracy via controlling the order r.
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H EXAMPLE: OBTAINING KNOWLEDGE SET KQ

We use a simple example to explain how KQ is derived from Equation (5), according to Taylor’s
theorem Königsberger (2013). For simplification, we let s(k) ∈ R,adrl(k) ∈ R, and rQ = 2. By
Algorithm 1 with r⟨t⟩ = rQ and y⟨t⟩ = [s(k), s(k + 1), adrl(k)]

⊤, we have

m(s(k),adrl(k), rQ) = [1, s(k), s(k+1), adrl(k), s
2(k), s(k) · s(k+1), s(k) · adrl(k), s

2(k+1),

s(k+1) · adrl(k), a
2
drl(k)]

⊤. (56)

Observing Equation (5), we can also denote the action-value function as Qπ(R (s(k),adrl(k))) ≜
Qπ(s(k),adrl(k)). For our reward, we let

R(s(k),adrl(k)) = s⊤(k) ·A⊤ ·P ·A · s(k)− s⊤(k + 1) ·P · s(k + 1). (57)

Right now, according to Taylor’s theorem in Appendix G, expanding the action-value function
Qπ(R (s(k),adrl(k))) around the R (s(k),adrl(k)), we have

Qπ(R (s(k),adrl(k))) = b+ w1 · R (s(k),adrl(k)) + w2 · R2 (s(k),adrl(k)) + . . .︸ ︷︷ ︸
≜p(s(k),adrl(k))

= AQ ·m(s(k),adrl(k), rQ) + p(s(k),adrl(k)). (58)

Recalling Equation (56), Equation (57), and Taylor’s theorem in Appendix G, we then conclude from
Equation (58) that

• Weight matrix AQ =
[
b 0 0 0 w1 · [P ]1,1 2w1 · [P ]1,2 0 w1 · [P ]2,2 0 0

]
,

where b and w1 are learning parameters.
• The unknown p(s(k),adrl(k)) does not include any monomial in Equation (56). So, the

elements of KQ in this example are all entries of AQ, i.e., KQ = {[AQ]1, · · · , [AQ]10}.
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I PHYSICS-MODEL-GUIDED NEURAL NETWORK EDITING: EXPLANATIONS

I.1 ACTIVATION EDITING

For the edited weight matrix W⟨t⟩, if its entries in the same row are all in the knowledge set, the
associated activation should be inactivated. Otherwise, the end-to-end input/output of DNN may not
strictly preserve the available physics knowledge due to the additional nonlinear mappings induced
by the activation functions. This thus motivates the physics-knowledge preserving computing, i.e.,
Line 19 of Algorithm 2. Figure 9 summarizes the flowchart of NN editing in a single PhyN layer:

• Given the node-representation vector from Algorithm 1, the original (fully-connected)
weight matrix is edited via link editing to embed assigned physics knowledge, resulting in
W⟨t⟩.

• The edited weight matrix W⟨t⟩ is separated into knowledge matrix K⟨t⟩ and uncertainty
matrix U⟨t⟩, such that W⟨t⟩ = K⟨t⟩ +U⟨t⟩. Specifically, the K⟨t⟩, generated in Line 8 and
Line 14 of Algorithm 2, includes all the parameters in the knowledge set. While the M⟨t⟩,
generated in Line 9 and Line 15, is used to generate uncertainty matrix U⟨t⟩ (see Line 18)
to include all the parameters excluded from knowledge set. This is achieved by freezing the
parameters of W⟨t⟩ that are included in the knowledge set to zeros.

• The K⟨t⟩, M⟨t⟩ and activation-masking vector a⟨t⟩ (generated in Line 10 and Line 16) are
used by activation editing for the physical-knowledge-preserving computing of output in
each PhyN layer. The function of a⟨t⟩ is to avoid the extra mapping (induced by activation)
that prior physics knowledge does not include.

Physics-guided NN Editing: Algorithm 2

Original
Weight Matrix

A𝐜𝐭𝐢𝐯𝐚𝐭𝐢𝐨𝐧−𝐌𝐚𝐬𝐤𝐢𝐧𝐠 𝐕𝐞𝐜𝐭𝐨𝐫
𝐚 𝒕

Link Editing Activation Editing

=

Uncertainty Matrix 𝐔 𝒕Knowledge Matrix 𝐊 𝒕

+
𝐲 𝑡 = 𝐊 𝑡 ⋅ 𝔪 𝐲 𝑡−1 , 𝑟 𝑡 + 𝐚 𝑡 ⊙act 𝐔 𝑡 ⋅ 𝔪 𝐲 𝑡−1 , 𝑟 𝑡

Physical-Knowledge-Preserving Computing

𝐖 𝑡

Node-Representation Vector: Algorithm 1

𝔪 𝐲 t−1 , 𝑟 𝑡

⊞ ∗ ⋯ ∗
∗ ⊞ ⋯ ∗
⋮ ⋮ ⋮ ⋮
⊞ ∗ ⋯ ∗

⊞ 0 ⋯ 0
0 ⊞ ⋯ 0
⋮ ⋮ ⋮ ⋮
⊞ 0 ⋯ 0

0 ∗ ⋯ ∗
∗ 0 ⋯ ∗
⋮ ⋮ ⋮ ⋮
0 ∗ ⋯ ∗

e.g. 

Figure 9: Flowchart of NN editing in single PhyN layer, where ⊞ and ∗ denote a parameter included
in and excluded from knowledge set, respectively.

I.2 KNOWLEDGE PRESERVING AND PASSING

The flowchart of NN editing operating in cascade PhyNs is depicted in Figure 10. Lines 5-9 of
Algorithm 2 means that Aϖ = K⟨1⟩ +M⟨1⟩ ⊙Aϖ, leveraging which and the setting r⟨1⟩ = rϖ, the
ground-truth model (13) and (14) can be rewritten as

y = (K⟨1⟩ +M⟨1⟩ ⊙Aϖ) ·m(x, r) + p(x)

= K⟨1⟩ ·m(x, r⟨1⟩) + (M⟨1⟩ ⊙Aϖ) ·m(x, r⟨1⟩) + p(x). (59)

where we define:

y ≜

{
Q (s,adrl) , ϖ = ‘Q′
π (s) , ϖ = ‘π′

, x ≜

{
[s;adrl] , ϖ = ‘Q′
s, ϖ = ‘π′

, r ≜

{
rQ, ϖ = ‘Q′
rπ, ϖ = ‘π′

.

We obtain from Line 19 of Algorithm 2 that the output of the first PhyN layer is

y⟨1⟩ = K⟨1⟩ ·m(x, r⟨1⟩) + a⟨1⟩ ⊙ act
(
U⟨1⟩ ·m

(
x, r⟨1⟩

))
. (60)

Recalling that K⟨1⟩ includes all the entries of Aϖ while the U⟨1⟩ includes remainders, we conclude
from Equation (59) and Equation (60) that the available physics knowledge pertaining to the ground-
truth model has been embedded to the first PhyN layer. As Figure 10 shows the knowledge embedded
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in the first layer shall be passed down to the remaining cascade PhyNs and preserved therein, such
that the end-to-end critic and actor network can strictly comply with the physics knowledge. This
knowledge passing is achieved by the block matrix K⟨p⟩ generated in Line 14, thanks to which, the
output of t-th PhyN layer satisfies

[y⟨t⟩]1:len(y)=K⟨1⟩ ·m(x, r⟨1⟩)︸ ︷︷ ︸
knowledge passing

+[a⟨t⟩ ⊙ act
(
U⟨t⟩ ·m(y⟨t−1⟩, r⟨t⟩)

)
]1:len(y)︸ ︷︷ ︸

knowledge preserving

, ∀t∈{2, . . . , p}. (61)

Meanwhile, the U⟨t⟩ = M⟨t⟩ ⊙W⟨t⟩ means the masking matrix M⟨t⟩ generated in Line 15 is to
remove the spurious correlations in the cascade PhyNs, which is depicted by the cutting link operation
in Figure 10.
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𝐲 1

𝐲 2
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1

𝐌𝐚𝐭𝐫𝐢𝐱: Pass and Preserve Knowledge 𝐊 2 ,𝐌 2 : 𝐖 𝟐 ← 𝐊 𝟐 +𝐌 𝟐 ⊙𝐖 𝟐  
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A

Figure 10: Example of NN editing, i.e., Algorithm 2. (i) Parameters excluded from the knowledge set
are formed by the grey links, while the parameters included in the knowledge set are formed by the
red and blue links. (ii) Cutting black links is to avoid spurious correlations. Otherwise, the links can
lead to violation of physics knowledge about the governing Equation (13) and Equation (14).
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J PROOF OF THEOREM 6.4

Let us first consider the first PhyN layer, i.e., the case t = 1. Line 8 of Algorithm 2 means that
the knowledge matrix K⟨1⟩ includes parameters included in knowledge sets, whose corresponding
entries in the masking matrix M⟨1⟩ (generated in Line 9 of Algorithm 2) are frozen to be zeros.
Consequently, both M⟨1⟩⊙Aϖ and U⟨1⟩ = M⟨1⟩⊙W⟨1⟩ excludes all the parameters of knowledge
matrix K⟨1⟩. We thus conclude that M⟨1⟩ ⊙Aϖ ·m(x, r⟨1⟩) + p(x) in the ground-truth model (59)
and a⟨1⟩ ⊙ act

(
U⟨1⟩ ·m

(
x, r⟨1⟩

))
in the output computation in Line 21 are independent of the term

K⟨1⟩ ·m(x, r⟨1⟩).

Moreover, the activation-masking vector (generated in Line 10 of Algorithm 2) indicates that if all
the entries in the i-th row of masking matrix are zeros (implying all the entries in the i-th row of
weight matrix are included in the knowledge set Kϖ), the activation function corresponding to the
output’s i-th entry is inactive. Finally, we arrive in the conclusion that the input/output of the first
PhyN layer strictly complies with the available physics knowledge pertaining to the ground truth (59),
i.e., if the [Aϖ]i,j ∈ Kϖ, the [y⟨1⟩]i does not have monomials [m (x, rϖ)]j .

We next consider the remaining PhyN layers. Considering Line 19 of Algorithm 2, we have

[y⟨p⟩]1:len(y)

= [K⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)]1:len(y) + [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

= Ilen(y) · [m(y⟨p−1⟩, r⟨p⟩)]2:(len(y)+1) + [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y) (62)

= Ilen(y) · [y⟨p−1⟩]1:len(y) + [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y) (63)

= [y⟨p−1⟩]1:len(y) + [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

= [K⟨p−1⟩ ·m(y⟨p−2⟩, r⟨p−1⟩)]1:len(y) + [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

= Ilen(y) · [m(y⟨p−2⟩, r⟨p−1⟩)]2:(len(y)+1) + [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

= Ilen(y) · [y⟨p−2⟩]1:len(y) + [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

= [y⟨p−2⟩]1:len(y) + [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

= . . .

= [y⟨1⟩]1:len(y) + [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

= [K⟨1⟩ ·m(x, r⟨1⟩)]1:len(y) + [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

= K⟨1⟩ ·m(x, r⟨1⟩) + [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y), (64)

where Equation (62) and Equation (63) are obtained from their previous steps via considering the
structure of block matrix K⟨t⟩ (generated in Line 14 of Algorithm 2) and the formula of augmented
monomials: m(y, r) =

[
1; y; [m(y, r)](len(y)+2):len(m(y,r))

]
(generated via Algorithm 2). The

remaining iterative steps follow the same path.

The training loss function is to push the terminal output of Algorithm 2 to approximate the real output
y, which in light of Equation (64) yields

ŷ = K⟨1⟩ ·m(x, r⟨1⟩) + [a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
]1:len(y)

= K⟨1⟩ ·m(x, r⟨1⟩) + a⟨p⟩ ⊙ act
(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
, (65)

where Equation (65) from its previous step is obtained via considering the fact len(ŷ) = len(y) =
len(y⟨p⟩). Meanwhile, the condition of generating a weight-masking matrix in Line 15 of Algorithm 2
removes all the node-representations’ connections with the parameters of knowledge set included
in K⟨1⟩. Therefore, we can conclude that in the terminal output computation in Equation (65), the
term a⟨p⟩ ⊙ act

(
U⟨p⟩ ·m(y⟨p−1⟩, r⟨p⟩)

)
does not have influence on the computing of knowledge

term K⟨1⟩ ·m(x, r⟨1⟩). Thus, the Algorithm 2 strictly embeds and preserves the available knowledge
pertaining to the physics model of ground truth in Equation (59).
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K EXPERIMENT: CART-POLE SYSTEM

𝒎𝒄

𝒎𝒑

𝜽

𝟐𝒍

𝑭

𝒙

friction force 

Figure 11: Mechanical analog of inverted pendulums.

K.1 PHYSICS-MODEL KNOWLEDGE

To have the model-based action policy, the first step is to obtain system matrix A and control structure
matrix B in a real plant (1). In other words, the available model knowledge about the dynamics of
the cart-pole system is a linear model:

s̄(k + 1) = A · s̄(k) +B · ā(k), k ∈ N. (66)

We refer to the dynamics model of cart-pole system described in Florian (2007) and consider the
approximations cos θ ≈ 1, sin θ ≈ θ and ω2 sin θ ≈ 0 for obtaining (A,B) as

A =

 1 0.0333 0 0
0 1 −0.0565 0
0 0 1 0.0333
0 0 0.8980 1

 , B = [0 0.0334 0 − 0.0783]
⊤
. (67)

K.2 SAFETY KNOWLEDGE

Considering the safety conditions in Equation (17) and the formula of safety set in Equation (2), we
have

s =

 x
v
θ
ω

, D =

[
1 0 0 0
0 0 1 0

]
, v =

[
0
0

]
, v =

[
0.9
0.8

]
, v =

[
−0.9
−0.8

]
, (68)

based on which, then according to the Λ, Λ and d defined in Lemma 5.1, we have

d =

[
−1
−1

]
, Λ = Λ =

[
0.9 0
0 0.8

]
(69)

from which and D given in Equation (68), we then have

D =
D

Λ
= D =

D

Λ
=

[
10
9 0 0 0
0 0 5

4 0

]
. (70)
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K.3 MODEL-BASED ACTION POLICY AND DRL REWARD

With the knowledge given in Equation (69) and Equation (70), the matrices F and P are ready to be
obtained through solving the centering problem in Equation (12). We let α = 0.98. By the CVXPY
toolbox Diamond & Boyd (2016) in Python, we obtain

Q =

 0.66951866 −0.69181711 −0.27609583 0.55776279
−0.69181711 9.86247186 0.1240829 −12.4011146
−0.27609583 0.1240829 0.66034399 −2.76789607
0.55776279 −12.4011146 −2.76789607 32.32280039

 ,
R = [ −6.40770185 −18.97723676 6.10235911 31.03838284 ] ,

based on this, we then have

P = Q−1 =

 4.6074554 1.49740096 5.80266046 0.99189224
1.49740096 0.81703147 2.61779592 0.51179642
5.80266046 2.61779592 11.29182733 1.87117709
0.99189224 0.51179642 1.87117709 0.37041435

 , (71)

F = R ·P = [ 8.25691599 6.76016534 40.12484514 6.84742553 ] , (72)

A = A+B · F =

 1 0.03333333 0 0
0.27592037 1.22590363 1.2843559 0.2288196

0 0 1 0.03333333
−0.64668827 −0.52946156 −2.24458365 0.46370415

 . (73)

With these solutions and letting w(s(k),a(k)) = −a2drl(k), the model-based action policy (4) and the
safety-embedded reward (8) are then ready for the Phy-DRL.

K.4 SOLE MODEL-BASED ACTION POLICY: FAILURE DUE TO LARGE MODEL MISMATCH

The trajectories of the cart-pole system under the control of sole model-based action policy, i.e.,
a(k) = aphy(k) = F · s(k), are shown in Figure 12. The system’s initial condition lies in the safety
envelope, i.e., s(1) ∈ Ω. Figure 12 shows the sole model-based action policy cannot stabilize the
system and cannot guarantee its safety. This failure is due to a large model mismatch between the
simplified linear model (66) and the real system having nonlinear dynamics. While Figure 3 shows
the Phy-DRL successfully overcomes the large model mismatch and renders the system safe and
stable, tested with many initial conditions s(1) ∈ X.
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Figure 12: System trajectories of the cart-pole system: unstable and unsafe.
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K.5 CONFIGURATIONS: NETWORKS AND TRAINING CONDITIONS

In this case study, the goal of action policy is to stabilize the pendulum at the equilibrium s∗ =
[x∗, v∗, θ∗, ω∗]⊤ = [0, 0, 0, 0]⊤, while constraining system state to the safety set in Equation (17).
We convert the measured angle θ into sin(θ) and cos(θ) to simplify the learning process. Therefore,
the observation space can be expressed as

s = [x, v, sin(θ), sin(θ), ω]⊤.

We also added a terminal condition to the training episode that stops the running of the cart-pole
system when a violation of safety occurs for both DRL and Phy-DRL in training, depicted as follows:

β(s(k)) =

{
1, if |x(k)| ≥ 0.9 or |θ(k)| ≥ 0.8

0, otherwise.

Specifically, the running of the cart-pole system (starting from an initial condition) during training is
terminated if either its cart position or pendulum angle exceeds the safety bounds or the pendulum
falls. During training, we reset episodes of the system running from random initial conditions inside
the safety set if the maximum step of system running is reached, or β(s(k)) = 1.

The development of Phy-DRL is based on the DDPG algorithm. The actor and critic networks in
the DDPG algorithm are implemented as a Multi-Layer Perceptron (MLP) with four fully connected
layers. The output dimensions of critic and actor networks are 256, 128, 64, and 1, respectively. The
activation functions of the first three neural layers are ReLU, while the output of the last layer is the
Tanh function for the actor-network and Linear for the critic network. The input of the critic network
is [s;a], while the input of the actor-network is s.

K.6 TRAINING

For the code, we use the Python API for the TensorFlow framework Kingma & Ba and the Adam
optimizer Abadi et al. for training. This project is using the settings: 1) Ubuntu 20.04, 2) Python 3.7,
3) TensorFlow 2.5.0, 4) Numpy 1.19.5, and 5) Gym 0.20.

For Phy-DRL, we let discount factor γ = 0.4, and the learning rates of critic and actor networks are
the same as 0.0003. We set the batch size to 200. The total training steps are 106, and the maximum
step number of one episode is 1000. Each weight matrix is initialized randomly from a (truncated)
normal distribution with zero mean and standard deviation, discarding and re-drawing any samples
more than two standard deviations from the mean. We initialize each bias according to the normal
distribution with zero mean and standard deviation.

K.7 TESTING COMPARISONS: MODEL FOR STATE PREDICTION?

We perform testing comparisons of two Phy-DRLs (with and without a model inside for state
prediction) and two DRLs (with and without a model inside for state prediction). The two DRLs use
the same CLF reward as R(·) = s⊤(k) ·P ·s(k)−s⊤(k + 1) ·P ·s(k+1)+w(s(k),a(k)) (proposed
in Westenbroek et al. (2022)), where the P is the same as the one in the Phy-DRL’s safety-embedded
reward. The model used for state prediction is the one in Equation (66). The testing results are
presented in Figure 13. We note in Figure 13 that

• mf-Phy-DRL, denotes a policy trained via our Phy-DRL that does not adopt the model in
Equation (66) for state prediction.

• mb-Phy-DRL, denotes a policy trained via our Phy-DRL that adopts the model in Equa-
tion (66) for state prediction.

• mf-DRL, denotes a policy trained via DRL that does not adopt the model in Equation (66)
for state prediction.

• mb-DRL, denotes a policy trained via DRL that adopts the model in Equation (66) for state
prediction.

Besides, all the training models of mf-Phy-DRL, mb-Phy-DRL, mf-DRL and mb-DRL have the same
configurations of critic and actor networks, presented in Appendix K.5. The performance metrics are
the areas of IE and EE samples, defined in Equation (18) and Equation (19), respectively.

34



Published as a conference paper at ICLR 2024

1.0 0.5 0.0 0.5 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(a) mf-Phy-DRL (5 · 104)

1.0 0.5 0.0 0.5 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(b) mb-Phy-DRL (5 · 104)

1.0 0.5 0.0 0.5 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(c) mf-DRL (5 · 104)

1.0 0.5 0.0 0.5 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(d) mb-DRL (5 · 104)

1.0 0.5 0.0 0.5 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(e) mf-Phy-DRL (7.5 · 104)

1.0 0.5 0.0 0.5 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(f) mb-Phy-DRL (7.5 · 104)

1.0 0.5 0.0 0.5 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(g) mf-DRL (7.5 · 104)

1.0 0.5 0.0 0.5 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(h) mb-DRL (7.5 · 104)

1.0 0.5 0.0 0.5 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(i) mf-Phy-DRL (105)

1.0 0.5 0.0 0.5 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(j) mb-Phy-DRL (105)

1.0 0.5 0.0 0.5 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(k) mf-DRL (105)

1.0 0.5 0.0 0.5 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(l) mb-DRL (105)

1.0 0.5 0.0 0.5 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(m) mf-Phy-DRL (2 · 105)

1.0 0.5 0.0 0.5 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(n) mb-Phy-DRL (2 · 105)

1.0 0.5 0.0 0.5 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(o) mf-DRL (2 · 105)

1.0 0.5 0.0 0.5 1.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(p) mb-DRL (2 · 105)

Figure 13: Blue: area of IE samples defined in Equation (18). Green: area of EE samples defined in
Equation (19). Rectangular area: safety set. Ellipse area: safety envelope. (a)-(d): all the policies are
obtained via training for 5 · 104 steps. (e)-(h): all the policies are obtained via training for 7.5 · 104
steps. (i)-(l): all the policies are obtained via training for 105 steps. (m)-(p): all the policies are
obtained via training for 2 · 105 steps.
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Observing Figure 13, we conclude that

• Our Phy-DRL that does not adopt a model for state prediction can quickly complete training
(only 5 · 104 steps) for rendering safety envelope invariant. While our Phy-DRL that adopts
a model for state prediction is slightly slow, 7.5 · 104 training steps can complete the safety
task.

• Safety areas of DRL policies are much smaller than our Phy-DRL policies. Even increasing
training to 2 · 105 steps, mf-DRL and mb-DRL policies cannot render the safety envelope
invariant, i.e., provide a safety guarantee.

• Incorporating our linear model into DRL for state prediction does not improve system
performance, a root reason was revealed in Janner et al. (2019) that the performance of
model-based RL is constrained by modeling errors or model mismatch. Specifically, if a
model has a large model mismatch with the nonlinear model of real system dynamics, relying
on the model for state prediction (in model-based RL) may lead to potential sub-optimal
performance and safety violations.
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L EXPERIMENT: QUADRUPED ROBOT

x

y
z

CoM

CoM

Figure 14: Quadruped robot: 3D single rigid-body model.

The developed package for training the robot via DRL is built on a Python-based framework for
the A1 robot from Unitree, released in GitHub. The original framework includes a simulation
based on Pybullet, an interface for direct sim-to-real transfer, and an implementation of the Convex
MPC Controller for basic motion control. For the quadruped robot, the outputs of the designed
action policies are the desired positional acceleration and rotational accelerations. The computed
accelerations are then converted to the low-level motors’ torque control.

L.1 OVERVIEW: BEST-TRADE-OFF BETWEEN MODEL-BASED DESIGN AND DATA-DRIVEN
DESIGN

In the following sections, we demonstrate that the residual action policy of Phy-DRL is a best-
trade-off between the model-based policy and the data-driven DRL policy for safety-critical control.
Specifically, Appendix L.2 explicitly shows the dynamics of quadruped robot is highly nonlinear,
directly leveraging which for designing an analyzable and verifiable model-based action policy
is extremely hard. While Appendix L.3 shows the residual action policy of Phy-DRL allows the
model-based design to be simplified to be an analyzable and verifiable linear one, while offering fast
and stable training (see Appendix L.6 and Appendix L.7).

L.2 REAL SYSTEM DYNAMICS: HIGHLY NONLINEAR!

The dynamics model of the robot is based on a single rigid body subject to forces at the contact patches
Di Carlo et al. (2018). Referring to Figure 14, the considered robot dynamics is characterized by the
position of the body’s center of mass (CoM) p = [px; py; pz] ∈ R3, the CoM velocity v ≜ ṗ ∈ R3,
the Euler angles ẽ = [ϕ; θ;ψ] ∈ R3 with ϕ, θ and ψ being roll, pitch and yaw angles, respectively,
and the angular velocity in world coordinates w ∈ R3. The robot’s state vector is

ŝ = [CoM x-position; CoM y-position; CoM z-height; roll; pitch; yaw; CoM x-velocity;

CoM y-velocity; CoM z-velocity; angular velocity w ∈ R3]. (74)

Before presenting the body dynamics model, we introduce the set of foot states
{Left Front (LF),Right Front (RF),Left Rear (LR),Right Rear (RR)}, based on which we define the
following two footsteps for describing the trotting behavior of the quadruped robot:

Step1 ≜ {LF=1,RF=0,LR=0,RR=1}, Step2 ≜ {LF=0,RF=1,LR=1,RR=0}, (75)

where ‘0’ indicates that the corresponding foot is a stance, and ‘1’ denotes otherwise. The considered
walking controller lifts two feet at a time by switching between the two stepping primitives in the
following order:

Step1 → Step2 → Step1 → Step2 → Step1 → Step2 → Step1 → Step2 → . . .→ repeating → . . .
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According to the literature Di Carlo et al. (2018), the body dynamics of quadruped robots can be
described by

d

dt

 p
ẽ
v
w


︸ ︷︷ ︸

≜ ŝ

=

 O3 O3 I3 O3

O3 O3 O3 R(ϕ, θ, ψ)
O3 O3 O3 O3

O3 O3 O3 O3

 ·

 p
ẽ
v
w

+ B̂σ(t) · aσ(t) +

 03

03

03

g̃


︸ ︷︷ ︸

≜ c

+f(ŝ), (76)

where g̃ = [0; 0;−g] ∈ R3 with g being the gravitational acceleration, f(ŝ) denotes model mismatch,
the R(ϕ, θ, ψ) = Rz(ψ) ·Ry(θ) ·Rx(ϕ) ∈ R3×3 with Ri(α) ∈ R3×3 being the rotation of angle α
about axis i. The aσ(t) ∈ R9, σ (t) ∈ S ≜ {Step1,Step2}, in the dynamics Equation (76) are the
switching action commands, i.e.,

aStep1 = [fRF; fLR] ∈ R6, aStep2 = [fLF; fRR] ∈ R6, (77)

where the fLF, fRF, fRR, fLR ∈ R3 are the ground reaction forces. While the B̂σ(t) ∈ R12×6 denote
the corresponding switching control structure matrices:

B̂Step1 =

 O3 O3

O3 O3
1
m · I3 1

m · I3
I−1 (ϕ, θ, ψ) · [rRF]× I−1 (ϕ, θ, ψ) · [rLR]×

 , (78a)

B̂Step2 =

 O3 O3

O3 O3
1
m · I3 1

m · I3
I−1 (ϕ, θ, ψ) · [rLF]× I−1 (ϕ, θ, ψ) · [rRR]×

 , (78b)

where I (ϕ, θ, ψ) ∈ R3 is the robot’s inertia tensor, rLF, rRF, rLR, rRR ∈ R3 denote the four foots’
positions relative to CoM position, and [rσ]× is defined as the skew-symmetric matrix:

[ro]× =

 0 −[ro]z [ro]y
[ro]z 0 −[ro]x
−[ro]y [ro]x 0

 , o ∈ {LF,RF,LR,RR}.

L.3 SIMPLIFYING MODEL-BASED DESIGNS

To have the model knowledge represented by (A, B) pertaining to robot dynamics (76), we make
the following simplifications.

R(ϕ, θ, ψ) = I3, B̃ ≜

 O3 O3

O3 O3

I3 O3

O3 I3

 , (79)

where the R(ϕ, θ, ψ) = I3 is obtained through setting the zero angels of roll, pitch and yaw, i.e.,
ϕ = θ = ψ = 0.

Referring to the matrices in Equation (78), with the simplifications in Equation (79) at hand and the
ignoring of unknown model mismatch of the ground-truth model, we can obtain a simplified linear
model pertaining to robot dynamics (76):

d

dt


p̃˜̃e
ṽ
w̃


︸ ︷︷ ︸

≜ s̃

=

 O3 O3 I3 O3

O3 O3 O3 I3
O3 O3 O3 O3

O3 O3 O3 O3


︸ ︷︷ ︸

≜ Ã

·


p̃˜̃e
ṽ
w̃

+ B̃ · ũσ(t), (80)

where ũStep1 ≜ [fRF; fLR] ∈ R6 and ũStep2 ≜ [fLF; fRR] ∈ R6.
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In light of the equilibrium point s∗ in Equation (21) and s̃ given in Equation (80), we define s ≜ s̃−s∗.
It is then straightforward to obtain a dynamics from Equation (80) as ṡ = Ã · s+ B̃ · uσ(t), which
transforms to a discrete-time model via sampling technique:

s(k + 1) = A · s(k) +B · ũσ(k)(k)︸ ︷︷ ︸
≜ aphy(k)

, with A = I12 + T · Ã and B = T · B̃, (81)

where T = 0.001 sec is the sampling period.

Considering the safety conditions in Equation (20), we obtain the safety set defined in Equation (2),
where

D=

 0 0 0 0 0 1 0 0 0 0⊤3
0 0 1 0 0 0 0 0 0 0⊤3
0 0 0 0 0 0 1 0 0 0⊤3

, v=[
0
0.24
rx

]
, v=

[
0.17
0.13
|rx|

]
, v=

[ −0.17
−0.13
−|rx|

]
, (82)

We now obtain the following model-based solutions, which satisfy the LMIs in Equation (7) and
Equation (11).

P =



0.016 0 0.023 0 0 0.102 0.003 0
0 0.015 0.001 0 0 0.002 0 0.001

0.023 0.001 226.355 0.078 0.082 55.206 0.017 0.003
0 0 0.078 0.641 −0.001 0.118 0 0
0 0 0.082 −0.001 0.638 0.125 0 0

0.102 0.002 55.206 0.118 0.125 247.803 0.045 0.003
0.003 0 0.017 0 0 0.045 1.065 0
0 0.001 0.003 0 0 0.003 0 0.03

−0.211 −0.008 −314.163 −0.73 −0.789 −483.681 −0.168 −0.021
0 0 0.006 0.042 0 0.004 0 0
0 0 0.003 0 0.042 0.003 0 0

0.002 0 1.249 0.003 0.003 5.547 0 0

−0.211 0 0 0.002
−0.008 0 0 0

−314.163 0.006 0.003 1.249
−0.73 0.042 0 0.003
−0.789 0 0.042 0.003

−483.681 0.004 0.003 5.547
0 0 0 0

−0.168 0 0 0
−0.021 0 0 0
3229.212 −0.049 −0.018 −10.901
−0.049 0.017 0 0
−0.018 0 0.017 0
−10.901 0 0 0.169



,

F =


−0.1 0 0 0 0 0 −40 0 0 0 0 0
0 −0.1 0 0 0 0 0 −30 0 0 0 0
0 0 −100 0 0 0 0 0 −10 0 0 0
0 0 0 −100 0 0 0 0 0 −10 0 0
0 0 0 0 −100 0 0 0 0 0 −10 0
0 0 0 0 0 −100 0 0 0 0 0 −30

 ,
with which and matrices A and B in Equation (81), we are able to deliver the model-based policy (4)
and safety-embedded reward (8).

L.4 TESTING EXPERIMENT: VELOCITY TRACKING PERFORMANCE

The velocity trajectories of the four models (defined in Section 7.2) running in Environments 1-4
are shown in Figure 15. Observing the Figure 15, we straightforwardly discover that the trained
Phy-DRL can lead to much better performance of velocity regulation or tracking, compared with
solely model-based action policies and purely data-driven DRL’s action policy.
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(b) Velocity Reference 0.5 m/s, Friction Coefficient 0.44
Reference
Linear
PD

DRL
Phy-DRL

0 1000 2000 3000 4000 5000 6000 7000 8000
Time Steps

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

Ve
lo

cit
y

(c) Velocity Reference -1.4 m/s, Friction Coefficient 0.6
Reference
Linear
PD

DRL
Phy-DRL

0 1000 2000 3000 4000 5000 6000 7000 8000
Time Steps

0.4

0.2

0.0

0.2

0.4

0.6

Ve
lo

cit
y

(d) Velocity Reference -0.4 m/s, Friction Coefficient 0.6
Reference
Linear
PD

DRL
Phy-DRL

Figure 15: Velocity trajectories of quadruped robot in four different environments defined in Sec-
tion 7.2.

L.5 SAFETY-EMBEDDED REWARDS

For the aim of a mathematically-provable safety guarantee, the reward that is most similar to ours
is the CLF reward proposed in Westenbroek et al. (2022). We also perform the comparisons. To
simplify the comparisons, we do not consider the high-performance sub-reward, which means both
rewards degrade to

Ours : R(s(k),adrl(k)) = s⊤(k) · (A⊤ ·P ·A) · s(k)− s⊤(k + 1) ·P · s(k + 1), (83)

CLF Reward : R(s(k),adrl(k)) = s⊤(k) ·P · s(k)− s⊤(k + 1) ·P · s(k + 1). (84)

L.6 PHYSICS-KNOWLEDGE-ENHANCED CRITIC NETWORK

To apply the NN editing, we first obtain the available knowledge about the actor-value function and
action policy. Referring to Equation (5), the action-value function can be re-denoted by

Qπ(s(k),adrl(k)) = Qπ(R (s(k),adrl(k))). (85)

According to Taylor’s theorem in Appendix G, expanding the action-value function in Equation (85)
around the (one-dimensional real value) R (s(k),adrl(k)), and recalling Equation (83), we conclude
the action-value function does not include any odd-order monomials of [s(k)]i, i = 1, . . . , 12, and is
independent of adrl(k). The critic network shall strictly comply with the knowledge. This knowledge
compliance can be achieved via our proposed NN editing. We do not obtain the invariant knowledge
about action policy in this example. In other words, according to our analysis, the action policy
depends on all the elements of the system state s(k). So, in this example, we only need to design a
physics-knowledge-enhanced critic network.
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The architecture of the considered physics-knowledge-enhanced critic network in this example is
shown in Figure 16, where the PhyN architecture is given in Figure 2 (b). We compare the performance
of physics-knowledge-enhanced critic networks with fully-connected multi-layer perceptron (FC
MLP). Figure 16 shows that different critic networks can be obtained by only changing the output
dimensions n. We here consider three models: physics-knowledge-enhanced critic network with
n = 10 (PKN-10), physics-knowledge-enhanced critic network with n = 15 (PKN-15), and physics-
knowledge-enhanced critic network with n = 20 (PKN-20). The parameter numbers of all network
models are summarized in Table 2.

NN Editing

PhyN
𝒓 𝟏 = 2

PhyN
𝒓 𝟑 = 1

PhyN
𝒓 𝟐  = 2

Physics-Knowledge-Enhanced Critic Network

𝐝𝐢𝐦𝐞𝐧𝐭𝐢𝐨𝐧 = 𝒏 𝐝𝐢𝐦𝐞𝐧𝐭𝐢𝐨𝐧 = 𝒏𝐈𝐧𝐩𝐮𝐭 𝐎𝐮𝐭𝐩𝐮𝐭

Figure 16: Considered physics-knowledge-enhanced critic network.

The trajectories of episode reward of the four models in Table 2 are shown in Figure 17, which,
in conjunction with Table 2, show that except for the smallest knowledge-enhanced critic network
(i.e., model PKN-10), other networks (i.e., models PKN-15 and PKN-20) outperform the very large
FC MLP model, viewed from perspectives of parameter numbers, episode reward and stability of
training. This, on the other hand, implies that the physics-knowledge-enhanced critic network can
avoid significant spurious correlations via NN editing.

Table 2: Model Parameters

Layer 1 Layer 2 Layer 3 Layer 4

Model ID #weights #bias #Weights #bias #weights #bias #weights #bias #sum

PKN-10 1710 10 650 10 10 1 − − 2391
PKN-15 2565 15 2025 15 15 1 − − 4636
PKN-20 3420 20 4600 20 20 1 − − 8081
FC MLP 2304 128 16384 128 16384 128 128 1 35585

L.7 REWARD COMPARISONS

We next compare the two rewards in Equation (83) and Equation (84) from the perspectives of design
differences and experiments. To have a fair experimental comparison, we compare the two rewards in
the same Phy-DRL package. In other words, we use two Phy-DRL models to train the robot; the only
difference is their reward: one is our proposed reward in Equation (83) while the other one is the CLF
reward in Equation (84).

L.7.1 COMPARISON: DESIGN DIFFERENCES

Along the ground-truth model of real plant (1) with the consideration of Equation (3), Equation (4)
and Equation (9), we have

s⊤(k + 1) ·P · s(k + 1)

= (B · adrl(k) + f(s(k),a(k)))
⊤ ·P · (B · adrl(k) + f(s(k),a(k)))

+ 2s⊤(k) ·A⊤ ·P · (B · adrl(k) + f(s(k),a(k))) + s⊤(k) · (A⊤ ·P·A) · s(k). (86)
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Figure 17: Trajectories of episode reward in training: smoothing rate 0.15 and 3 random seeds.
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Table 3: Episode Numbers

Ours CLF Reward

Model ID PKN-15 PKN-20 PKN-15 PKN-20

Episode Number: average 351 348 376 409

We next define two invariants and one unknown:

invariant-1 ≜ s⊤(k) ·A⊤ ·P ·A · s(k), (87)

invariant-2 ≜ s⊤(k) ·
(
P−A

⊤ ·P ·A
)
· s(k). (88)

unknown ≜ (B · adrl(k) + f(s(k),a(k))
⊤ ·P · (B · adrl(k) + f(s(k),a(k)))

+ 2s⊤(k) ·A⊤ ·P · (B · adrl(k) + f(s(k),a(k))) . (89)

We note the formulas in Equation (87) and Equation (88) are named as ‘invariants’, because all the
terms in their right-hand sides (i.e., designed matrices A and P) are known to us and their properties
are not influenced by training. While the formula in Equation (89) is defined as ‘unknown’ since the
terms in its right-hand side are unknown to us due to the unknown model mismatch f(s(k),a(k))
and unknown data-driven action policy adrl(k) during training.

Using the definitions in Equation (87)-Equation (89), the formula in Equation (86) is rewritten as

s⊤(k + 1) ·P · s(k + 1) = unknown + invariant-1,

by which and recalling Equation (87)-Equation (89), the two rewards in Equation (83) and Equa-
tion (84) are equivalently rewritten as

Ours: R(s(k),adrl(k)) = invariant-1 − s⊤(k + 1) ·P · s(k + 1) = −unknown, (90)

CLF Reward: R(s(k),adrl(k)) = s⊤(k) ·P · s(k)− s⊤(k + 1) ·P · s(k + 1)

= invariant-2 − unknown. (91)

Observing the formulas in Equation (90) and Equation (91), we discover a critical difference between
our proposed reward in Equation (83) and the CLF reward in Equation (84): our reward decouples
invariant and unknown for learning (i.e., data-driven DRL only learn the unknown), while the CLF
reward mixes invariant and unknown (i.e., data-driven DRL learn both unknown and invariant).

L.7.2 COMPARISON: TRAINING

We next present the training behavior. We note our reward in Equation (90) and the CLF reward in
Equation (91) have different scales. To present fair comparisons, we process the raw episode reward
via unionization. Specifically, the proceeded episode reward called the united episode reward, is
defined as

R(m) ≜
R(m)

minr=1,2,... {|R(r)|}
, (92)

where R(m) denotes the raw episode reward at the episode index m.

We consider two models, PKN-15 and PKN-20, whose network configurations are summarized in
Table 2. Each model has three seeds. For all the training of DRL and Phy-DRL, we set the maximum
step number of an episode as 10200, while an episode will terminate if the |CoM height| ≤ 0.12 m
(robot falls). The two models’ averages of episode number over the 106 training steps and the three
random seeds are presented in Table 3. The smaller average value therein means the more successful
running time of the robot or the fewer times the robot falls. Meanwhile, the trajectories of the
processed episode rewards are shown in Figure 18, observing which and Table 3, we can discover
that our proposed reward leads to much more stable and safe training. The root reason can be that our
reward decouples invariant and unknown and only lets data-driven DRL learn the unknown defined
in Equation (89).
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Figure 18: Trajectories of united episode reward: smoothing rate 0.15 and 3 random seeds.
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L.8 TRAINING

For the code, we use the Python API for the TensorFlow framework Kingma & Ba and the Adam
optimizer Abadi et al. for training. This project is using the settings: 1) Ubuntu 22.04, 2) Python 3.7,
3) TensorFlow 2.5.0, 4) Numpy 1.19.5, and 5) Pybullet.

For Phy-DRL, the observation of the policy is a 12-dimensional tracking error vector between the
robot’s state vector and the mission vector. The agent’s actions offset the desired positional and lateral
accelerations generated from the model-based policy. The computed accelerations are then converted
to the low-level motors’ torque control.

The policy is trained using DDPG algorithm Lillicrap et al. (2016). The actor and critic networks
are implemented as a Multi-Layer Perceptron (MLP) with four fully connected layers. The output
dimensions of the critic network are 256, 128, 64, and 1. The output dimensions of actor networks
are 256, 128, 64, and 6. The input of the critic network is the tracking error vector and the action
vector. The input of the actor network is the tracking error vector. The activation functions of the
first three neural layers are ReLU, while the output of the last layer is the Tanh function for the actor
network and Linear for the critic network.

We let discount factor γ = 0.2, and the learning rates of critic and actor networks are the same as
0.0003. We set the batch size to 300. The maximum step number of one episode is 10200. Each
weight matrix is initialized randomly from a (truncated) normal distribution with zero mean and
standard deviation, discarding and re-drawing any samples more than two standard deviations from
the mean. We initialize each bias according to the normal distribution with zero mean and standard
deviation.

L.9 LINKS: DEMONSTRATION VIDEOS

Environment 1): velocity command: rx = 1 m/s and snow road. A demonstration video is available
at https://www.youtube.com/watch?v=tspPMbZwfig&t=1s.

Environment ii): velocity command: rx = 0.5 m/s and snow road. A demonstration video is
available at https://www.youtube.com/watch?v=BK8k92jahfI&t=21s.

Environment iii): velocity command: rx = −1.4 m/s and wet road. A demonstration video is
available at https://www.youtube.com/shorts/gbC-CwqGj78.

Environment iv):velocity command: rx = −0.4 m/s and wet road. A demonstration video is
available at https://www.youtube.com/shorts/UwQYRveLJUs.
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