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ABSTRACT

Federated learning (FL) is a learning paradigm that enables collaborative training of
models using decentralized data. Recently, the utilization of pre-trained weight ini-
tialization in FL has been demonstrated to effectively improve model performance.
However, the current pre-trained models have become increasingly parameter-rich.
The sheer scale of model parameters introduces substantial communication rounds
challenges during their adaptation to FL. To address these communication cost
issues and elevate the performance of pre-trained model adaptation in FL, we
propose an innovative model interpolation-based local training technique called
“Local Superior Soups.” Our method promotes local training across different clients,
encouraging the exploration of a connected low-loss basin within a few communi-
cation rounds through regularized model interpolation. This approach serves as a
facilitator for pre-trained model adaptation in FL. We demonstrated its effectiveness
and efficiency across diverse widely-used FL datasets.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) has emerged as a promising methodology for
leveraging the power of private data without the need for centralized data governance. However, data
heterogeneity in FL poses significant challenges to the design of efficient training for global conver-
gence. With the emergence of the pre-training and fine-tuning paradigm in various applications (He
et al., 2019; Hu et al., 2022), recent studies (Nguyen et al., 2022; Chen et al., 2022) have attempted to
address the problem of FL under data heterogeneity with pre-trained initialization. Although pre-
trained federated learning can speed up convergence compared to random initialization, it still requires
a significant number of communication rounds between the server and clients, often amounting to
hundreds of rounds (Nguyen et al., 2022). Existing pre-trained models Radford et al. (2021); Touvron
et al. (2023) often have an enormous parameter scale, and following the neural scaling law (Kaplan
et al., 2020), there is a continuous trend toward increasing model parameters. Deploying models
with such a large parameter size in FL introduces significant communication overhead. This greatly
hampers the flexibility and scalability of model updates. Reducing FL communication overhead can
be approached by reducing the scale of model parameters involved in distributed training (Zhang
et al., 2023) or reducing communication rounds (McMahan et al., 2017). Comparing with reducing
model parameters, reducing communication rounds typically leads to a more efficient reduction of
network congestion (Hegde et al., 2023), decreased energy consumption on client devices (Luo et al.,
2021), and a lower risk of privacy breaches (Zhu et al., 2019). In this paper, we focus on reducing
communication rounds in FL with pre-trained model as initialization.

Typically, increasing the number of local training steps can effectively reduce communication rounds.
However, there is an upper limit to the extent of local training step increments. This limitation arises
due to the presence of data heterogeneity, where the optimization consistency among different clients
deteriorates with the increasing number of local steps. This optimization inconsistency leads to dis-
crepancy between local and global models and decelerates the convergence rate of FL. The discrepancy
is often referred to as client drift (Karimireddy et al., 2020). Previously, some FL methods (Karim-
ireddy et al., 2020; Sun et al., 2023) attempted to introduce proximal terms to regularize local training,
aiming to reduce local overfitting and mitigate the issue of client drift. While these methods can
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accelerate convergence, they restrict the progress of each local training steps towards the optimal
solution, impeding the attainment of FL with more aggressive communication round reductions.
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Figure 1: Illustration on isolated (left) and connected
low-loss valley with larger regions in dark red (right).

Furthermore, these client drift mitigation meth-
ods can alleviate local overfitting to some extent
but still cannot guarantee that the globally aggre-
gated models perform well. This situation arises
when individual local clients become trapped in
isolated low-loss valleys. More specifically, as
illustrated in Figure 1, two models from clients
‘A’ and ‘B’, even if their optimal model distance
is small, still result in a poorly performing aggre-
gated global model. Moreover, the preceding FL methods aimed at minimizing communication rounds
exclusively address scenarios involving random initialization, lacking a customized approach tailored
to pre-trained models. Recent proposed centralized fine-tuning methods (e.g., model soups (Wortsman
et al., 2022) and DiWA (Ramé et al., 2022b) – a greedy model selection version of model soups) based
on model interpolation (averages of a large number of model weights) are effective approaches to seek
large connected low-loss region, which are promising for applying in FL to reduce communication
rounds. These methods can prevent individual clients from being trapped in isolated low-loss valleys
by positioning global model centrally within a larger low-loss region by overlapping the low-loss
regions among clients, as shown in Fig. 1 (right). However, their training efficiency is exceedingly
low, requiring the complete retraining of numerous models, leading to significant computational
overhead on clients and intolerable communication costs when applied in FL, due to two aspects:
Firstly, they involve a time-consuming model selection phase within the model pool, which consists
of all candidate models available for weight interpolation. Secondly, model soups entail an extensive
number of model training iterations, lacking prior guidance and relying on brute-force, random, and
often redundant training. Many of the trained models end up unused.

To enjoy the connected low-loss valley benefits of model soups-based methods (Wortsman et al.,
2022; Ramé et al., 2022b) without burdening local training, we propose an efficient and local
model interpolation-based method, called Local Superior Soups (LSS). To address the first is-
sue, we propose a sequential random model interpolation method during training. This elimi-
nates the need for subsequent model selection steps and ensures that the models slated for inter-
polation reside within the same low-loss valley during training (Sec. 3.3.1). For the second is-
sue, we introduce two quantifiable indicators of candidate model quality: diversity (Sec. 3.3.2)
and affinity (Sec. 3.3.3). Specifically, the diversity indicator quantifies the diversity among
models in the model pool with their pairwise model distance, where larger distances denote
higher diversity, signifying better model quality. As illustrated in Figure 2 (left), a low-loss
region can be effectively covered with only a few candidate models positioned near its periph-
ery. Thus, we propose incorporating diversity metric as a regularization term during training to
maximize the expansion of low-loss regions, thereby increasing the utilization of trained models.
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Figure 2: Illustration on diversity (left) and affinity
(right) regularization.

The affinity indicator measures the affinity of
each candidate model in the model pool to the
initial model. Smaller distances indicate greater
affinity, indicating better model quality. This
affinity is also incorporated as a regularization
term during training to prevent the expansion
of low-loss regions from deviating too far from
the shared initialization point, thus reducing the
likelihood of overlapping connected regions (as
depicted in right side of Fig. 2). These two in-
dicators facilitate the efficient inclusion of mod-
els into the model pool, preventing the wasteful
training of models that may ultimately go unused. In experiments, we found that our proposed method
greatly reduces communication rounds, and we achieved the performance of models fused after
multiple rounds of communication in other FL methods with only a few rounds of communication.

In summary, our contributions are as follows:
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(1) We reveal the importance of regularizing local client models in the connected low-loss valleys
for reducing communication rounds when initializing FL with pre-trained models. (2) We introduce
an innovative and efficient model soups-based method for FL, called Local Superior Soups (LSS)
that eliminates the need for time-consuming model selection and redundant model training in the
existing soups-based approaches, while expanding connected low-loss valleys of client models for
faster convergence. (3) In experimental evaluations, LSS demonstrates a significant reduction in
communication rounds, achieving superior performance with only a few rounds of communication,
exceeding baseline FL methods significantly in four datasets and two types of distribution shifts.

2 RELATED WORK

2.1 HETEROGENEOUS FEDERATED LEARNING

FL struggles with Non-IID data, leading to various proposed algorithms. FedProx (Li et al., 2020) uses
proximal term to regularize local training, preventing client divergence. Scaffold (Karimireddy et al.,
2020) adds variance reduction to combat "clients-drift." MOON (Li et al., 2021a) employs mode-level
contrastive learning to stabilize local training. Personalized FL (Tan et al., 2021) targets high local
performance on Non-IID data. FedBN (Li et al., 2021b) applies local batch normalization to mitigate
feature shift before model averaging. Recent one-shot communication round FL methods utilize
server-side techniques like prediction ensembles (Guha et al., 2019) or generating data (Zhang et al.,
2022a; Heinbaugh et al., 2023) for centralized training, improving aggregated model performance.
Few-round communication round FL, based on meta-learning (Park et al., 2021), may not align with
practical FL scenarios due to data partition concerns.

2.2 FINE-TUNING AND MODEL INTERPOLATION

Fine-tuning leverages pre-trained models to enhance task performance (Choshen et al., 2022).
FedFTG (Zhang et al., 2022b) proposes knowledge distillation for global model fine-tuning in
FL. Personalized FL employs fine-tuning to adapt global models to local ones, e.g., FedBABU (Oh
et al., 2022), FTFA, and RTFA (Cheng et al., 2021). However, this focus on local performance ne-
glects global generalization. Inspired by linear mode connectivity (Nagarajan & Kolter, 2019; Frankle
et al., 2020), Model Soups (Wortsman et al., 2022) combines runs with varied hyper-parameters.
DiWA (Ramé et al., 2022b) extends this concept, emphasizing diverse hyper-parameter training.
Soups-based methods (Wortsman et al., 2022; Ramé et al., 2022b) aggregate diverse models for better
generalizability. Some methods induce diversity through high learning rates (Maddox et al., 2019),
cosine similarity minimization (Wortsman et al., 2021), tempered posteriors (Izmailov et al., 2019),
or auxiliary dataset-trained model soups (Ramé et al., 2022a). We depict the difference of different
model ensemble-based methods in our appendix 7.

3 METHOD

The structure of this Section is as follows: firstly, we provide the problem definition and corresponding
notions to be used (Sec. 3.1); secondly, we reveal the dilemma for existing federated learning methods
on reducing communication rounds (Sec. 3.2); finally, we propose a regularized model interpolation-
based method as a solution, provide corresponding analysis (Sec. 3.3), and present the overall
algorithm flow.

3.1 NOTIONS AND PROBLEM DEFINITION

Notions. Let X be the input space of data, Y be the label space. Consider a FL setting with M clients,
τ local steps and R communication rounds. Let D := {Di}Mi=1 be a set of M training domain, each
of which is a distribution over the input space X . For each client, we have access to n training data
points in the form of Di = (xi

j , y
i
j)

n
j=1 ∼ Di, where yij denotes the target label for input xi

j . Let
f ∈ Rm represents the parameter for the global model, ℓi : Rm → R denotes the local objective
function at client i, and P denotes a distribution on the entire set of clients.

Problem definition. We aim to address the challenge of optimizing the global performance on D
of aggregated models fine-tuned from different clients with data heterogeneity, while minimizing
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communication rounds between the clients and the server in data Non-IID setting. In terms of global
performance, we perform empirical risk minimization (ERM) on the sampled data Di for i ∈ [M ],

L(f) =
M∑
i=1

piLi(f), where Li(f) =
1

|Di|
∑
ξ∈Di

ℓi(f, ξ) and
M∑
i=1

pi = 1. (1)

3.2 LOCAL STEPS EFFECT ON FL CONVERGENCE UNDER DATA HETEROGENEITY

In this section, we present the tool to understand how communication rounds and data heterogeneity
affect the FL convergence bound. Formally, we present the error term and posit the following
assumptions for the purpose of analysis.

Our analysis follows the assumptions and convergence bound in (Wang et al., 2021b), which is
restated as follows. The formal statements are detailed in Appedinx B.1.
Theorem 3.1 (Convergence Rate for Convex Local Functions, Theorem 1 in Wang et al. (2021b)).
Under Convexity and Smoothness Assumption on β-smooth loss function, Bounded Variance of
Stochastic Gradient and Bounded Variance of Local and Global Gradient assumptions, when the
client learning rate is chosen properly, we have

E
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1

τR
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τ∑
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L(f (r,k)
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(2)

Here, d := ∥f (0,0) − f⋆∥ refers to the distance between initialization f (0,0) and the global optimum
f⋆, σ bounds variance of stochastic gradient by E[∥gi(f (r,k))−∇Li(f

(r,k))∥2|f (r,k)] ≤ σ2, and ζ
bounds variance of local and global gradient by maxi supf

∥∥∇Li(f
(r,k))−∇L(f (r,k))

∥∥ ≤ ζ.

How to reduce communication rounds under data heterogeneity? Increasing local fine-tuning
steps seems to be a straightforward technique to reduce communication costs. Nevertheless, this
approach cannot reduce the an error term in the convergence rate (see the 4th term of the RHS of
Eq. 2), which remains unaltered by increasing local steps. Moreover, increasing local update steps
in the presence of Non-IID client data exacerbates the inconsistency in local objectives, further
magnifying this error term. Here, we provide a more detailed explanation, specifically identifying the
conditions under which increasing iteration steps can effectively reduce communication rounds.
Proposition 3.1. Under the data heterogeneity setting, when the total number of gradient computa-
tions across all clients (K = MτR) is fixed and the local steps τ satisfies

τ ≤ σ

ζ

√
σ

dβ

K
1
2

M2
, (3)

the error upper bound Eq.2 will be dominated by the second term O(1/
√
K).

We provide the proof for Proposition 3.1 in Appendix B.2. Accordingly, increasing the bound in
Eq. 11 and meeting the aforementioned condition for local steps allows us to reduce communication
rounds. From the above inequation, we can observe that although increasing the number of local
training steps can reduce communication rounds, there is a limit to the number of steps that can be
added. This limit is primarily determined by the error term introduced by local updates.

Why connected low-loss valley + pre-trained initialization can achieve extreme communication
rounds reduction? Our analysis indicates that for substantial communication efficiency in federated
learning, it is not enough to just increase local training steps. The focus should be on minimizing
the error term from local updates, particularly the last term in Formula 2. This term, influenced by
gradient dissimilarity (ζ), distance to optimal weights (d), and the Lipschitz constant (β), remains
significant even as training steps increase. Prior research suggests (Nguyen et al., 2022) that pre-
training initialization reduces ζ by aligning client updates, and overparameterized models typically
position the optimal solution close to the initialization point (Chizat et al., 2019; Li & Banerjee,
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2021), decreasing d. And we argue that local training that connects low-loss regions can reduce β.
Consequently, a combination of pre-training and our proposed connectivity preserving local training
can effectively lower error terms from local updates, increasing the limit of local training steps and
thus reducing communication rounds. More experimental support see our Appendix.

Algorithm 1: LSS (Local Training) Pseudo-code
Require: fp pre-trained model (R = 1) or global aggregated model (R > 1); L loss function; D

dataset; dist distance function; τ iteration steps; η learning rate; λa affinity coefficient; λd

diversity coefficient; n number of averaged models.
1: LSS Local Training :
2: M← {fp}
3: for pi = 1 to n do
4: fpi

← Averaging(M)
5: M←M∪ {fpi

} # sequential training with newly added model
6: for t = 1 to τ do
7: fs ← RandomInterpolation(M) # connectivity preserving
8: Lreg(fpi

) = L(fs,D) + λa · dist(fpi
, fp)− λd · dist(fpi

,M)
9: fpi

← fpi
− η∇fpi

Lreg(fpi
)

10: Inference:
11: f ← Averaging(M)

3.3 OUR SOLUTION: LSS ALGORITHM

In this part, we first present the shortcomings of the previous model soups method applied in FL.
Secondly, we propose our three targeted improvements, i.e. random model interpolation (Sec. 3.3.1),
diversity term (Sec. 3.3.2), and affinity regularization term (Sec. 3.3.3). Finally, we present the
complete algorithm process and detailed implementation in local client training.

Limitation of previous model soups methods. Previous model soups methods (Wortsman et al.,
2022) can induce a trained model located in a connected low-loss valley, but their training efficiency is
exceedingly low, due to two aspects: Time-Consuming model selection phase: Firstly, these methods
involve a time-consuming model selection phase, which consists of all candidate models available
for weight interpolation. This phase aims to choose models that reside within the same low-loss
valleys. During this selection process, significant computational resources are consumed to identify
suitable models for interpolation, adding to the overall training time and complexity. Extensive and
redundant model training: Secondly, model soups entail an extensive number of model training
iterations, lacking prior guidance and relying on brute-force, random, and often redundant training.
Many of the trained models end up unused, further exacerbating the computational inefficiency.

3.3.1 RANDOM INTERPOLATION CONSERVING CONNECTED LOW-LOSS REGION.

To address the time-consuming model selection issue of the previous soups-based method, we propose
a sequential random model interpolation method during training. We differ from model soups and
SWA methods in that our approach explicitly maintains the connectivity of each averaged model,
at the cost of increased GPU memory usage during the forward propagation process. We have
provided a detailed comparison of the computational overhead and GPU memory costs of various
baseline methods in the Appendix. This innovative approach streamlines the training process by
eliminating the need for subsequent model selection steps within the model pool (i.e., local models
to be interpolated), which traditionally consumes a considerable amount of computational resources
and time. Instead, our method integrates the model selection and interpolation phases seamlessly
into the local training process. This integration ensures that the models selected for interpolation
are inherently aligned within the same low-loss valley. In each training round, random interpolation
weights are assigned to the models within the model pool. Forward and backward propagation are
performed using the interpolated model, updating the weights of the currently active model (i.e., the
newly added model ) (corresponding to Algorithm 1 Line 7), while previously added model weights
remain fixed.
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3.3.2 DIVERSITY TERM.

The diversity term is proposed to address the redundant model training issue of the previous soups-
based methods by encouraging low-loss region expansion. In particular, the diversity indicator
assesses the variability among models within the model pool by summing the distances between pairs
of models. Greater distances between models indicate a higher degree of diversity, which correlates
with enhanced model quality. This diversity metric is integrated into the FL local training process
as a regularization term to facilitate the extensive enlargement of low-loss regions, consequently
maximizing the effectiveness of trained models. The diversity term (in Algorithm 1 Line 8) measures
the distance between the current training model and other models that will be averaged, and we hope
that this distance to be large. The diversity loss can be defined as

ℓdiversity = dist(f,M) =
1

N

N∑
n=1

dist(f, fn). (4)

Here, fn belongs to local interpolated model poolM and N is the number of local candidate models.
The candidate models (i.e., model soups ingredients) are models to be interpolated in local training,
and the model pool is the set of local candidate models (see Algorithm 1 Line 5). We use the ℓ2 norm
to measure the distance between model weights.

3.3.3 AFFINITY TERM.

The affinity term is proposed to control the expansion of low-loss regions and prevent local candidate
model training divergence. The affinity indicator assesses the level of alignment between each
candidate model within the model pool and the initial global model by calculating the cumulative
distances between each candidate model and the initialization model. Smaller distances between
models signify a stronger affinity, indicating higher model quality. To ensure the controlled expansion
of low-loss regions and reduce the probability of overlapping connected regions, this affinity metric
is integrated into the training process as a regularization term. The affinity term (in Algorithm 1 Line
8) measures the distance between the candidate model and the initial model weights, with the aim of
minimizing this dissimilarity (maximize this loss term) to ensure that the distance remains relatively
small. The affinity loss can be defined as

ℓaffinity = dist(f, fp). (5)

Here, fp is a pre-trained model in the first communication round (R = 1). Moreover, it encourages
each local model to lie in a close zone in the parameter space, which is beneficial for subsequent
server aggregation, especially under data heterogeneity. We use l2 distance for the dist(, ) metric for
both Eq. 4 and Eq. 5.

3.3.4 OVERALL PIPELINE.

We outline LSS as follows: We begin with the initialization of the client’s local model with the
pretrained global model. Then we will refine the local model using affinity and diversity loss. This
step is performed for a few local update steps. Finally, after updating local model, we aggregate them
in the server following the common averaging operation in FedAvg (McMahan et al., 2017). The
flow of LSS for local updating (Step 2 described in Sec 3.1) can be found in Algorithm 1.

In conclusion, our method aims to minimize the distance between the local fine-tuned model and
the pre-trained initialized global model while maximizing the distance between the model soups
ingredients (i.e., the models to be averaged). Our fine-tuned models find large low-loss regions on
their respective local datasets while ensuring parameters close to the pre-trained initialization. It
is intuitive that the parameters of our fine-tuned models can be more easily aligned with those of
models fine-tuned on similar datasets, thereby improving communication efficiency.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Dataset. Our experimental section considers two scenarios of Non-IID settings, namely label shift
and feature shift. The label shift scenario investigates datasets such as FMNIST (Xiao et al., 2017)
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Table 1: Label shift test accuracy after R = 1 and R = 3 communication rounds. We primarily compared two
categories of methods: conventional FL methods and state-of-the-art local weight averaging-based fine-tuning
methods that enhance domain generalization.

FMNIST CIFAR-10
Method Accuracy (R = 1) ↑ Accuracy (R = 3) ↑ Accuracy (R = 1) ↑ Accuracy (R = 3) ↑
FedAvg 2017 35.54(1.71) 90.04(0.32) 58.34(0.86) 66.74(0.76)
FedProx 2020 33.48(1.52) 89.28(0.36) 56.74(0.92) 63.21(0.83)
MOON 2021a 36.01(1.66) 91.28(0.30) 58.96(1.24) 67.04(1.12)
FedBN 2021b 34.20(1.73) 89.87(0.47) 57.04(0.75) 64.51(0.67)
FedFomo 2021 33.94(1.65) 88.41(0.69) 55.01(0.89) 62.69(0.75)
FedRep 2021 36.20(1.52) 91.07(0.23) 57.73(0.82) 66.23(0.73)
FedBABU 2022 36.18(1.43) 91.31(0.26) 60.14(1.06) 67.16(0.87)
SWA 2018 55.82(1.02) 91.03(0.19) 59.07(1.28) 67.45(1.15)
SWAD 2021 58.66(0.87) 91.22(0.16) 60.54(1.15) 67.65(0.97)
Soups 2022 60.11(0.64) 91.56(0.24) 61.00(1.04) 67.63(0.94)
DiWA 2022b 63.21(0.54) 91.88(0.13) 61.32(1.26) 68.05(1.10)
LSS 72.66(0.73) 92.45(0.21) 65.96(1.50) 75.16(1.07)

Table 2: Feature shift test accuracy after R = 1 and R = 3 communication rounds. LSS consistently
outperforms other methods on both datasets across under feature shift settings.

Digit-5 DomainNet
Method Accuracy (R = 1) ↑ Accuracy (R = 3) ↑ Accuracy (R = 1) ↑ Accuracy (R = 3) ↑
FedAvg 2017 46.36(2.08) 80.48(0.81) 18.76(3.52) 29.43(2.01)
FedProx 2020 44.01(1.92) 77.83(0.68) 17.27(3.22) 27.18(2.29)
MOON 2021a 50.11(1.72) 83.02(0.64) 19.61(3.54) 31.27(2.34)
FedBN 2021b 46.02(1.93) 81.42(0.71) 18.16(3.09) 28.65(1.89)
FedFomo 2021 41.87(2.13) 76.21(0.98) 15.10(3.82) 25.69(2.38)
FedRep 2021 47.43(1.73) 82.02(0.63) 18.89(2.60) 30.42(1.84)
FedBABU 2022 48.02(1.81) 83.20(0.79) 19.44(2.43) 32.06(1.88)
SWA 2018 54.13(0.72) 85.33(0.62) 22.07(2.55) 35.90(1.61)
SWAD 2021 57.02(0.71) 86.84(0.64) 21.98(2.61) 36.73(1.57)
Soups 2022 59.71(0.82) 87.07(0.58) 22.75(2.85) 38.02(1.40)
DiWA 2022b 61.54(0.83) 88.83(0.69) 24.88(2.54) 38.32(1.50)
LSS 72.86(1.64) 92.97(0.65) 27.86(2.85) 41.35(1.46)

and CIFAR10 (Krizhevsky et al., 2009), while feature shift involves Digit5 and DomainNet. Further
information on the specific datasets can be found in the appendix. In the label shift scenario, we
partitioned the dataset into five clients and the data for each client are sampled following Dirichlet
distributions with coefficient α = 1.0, yielding imbalanced label distributions. In the feature shift
scenario, we utilized five clients for Digit5 (Ganin & Lempitsky, 2015; Li et al., 2021b) and five
clients for DomainNet (Peng et al., 2019). Additional results on an extended number of clients are
presented in the appendix.

Model. In terms of models, we used the ImageNet pre-trained ResNet50 (He et al., 2016) as the
base model for the DomainNet dataset, while for other datasets, we used the pre-trained ResNet-18
trained on ImageNet (Deng et al., 2009). We also present the experimental results based on the vision
transformer (ViT) model (Dosovitskiy et al., 2021) with parameter-efficient fine-tuning.

Baselines. We compare LSS against the vanilla FL method - FedAvg (McMahan et al., 2017) and
several advanced FL algorithms designed for Non-IID settings, including FedProx (Li et al., 2020),
MOON (Li et al., 2021a), FedBN (Li et al., 2021b), FedFomo (Zhang et al., 2021), FedRep (Collins
et al., 2021) and FedBABU (Oh et al., 2022). Additionally, we make comparisons with top-performing
weight/model-averaging-based domain generalization methods including SWA (Izmailov et al., 2018),
SWAD (Cha et al., 2021), Soups (Wortsman et al., 2022) and DiWA (Ramé et al., 2022b) by adapting
them to FL. In particular, the specific approach is to modify the local client training in the FedAvg
framework to a corresponding fine-tuning approach. For more details, please refer to the appendix.

Evaluation and implementation details. Unless otherwise specified, the model performance in the
experiments below refers to the global model performance after aggregation on the server side. Our
training optimizer uses the Adam optimizer with a learning rate of 5e−4 and a training batch size of
64. For commonly used FL methods, due to the significant increase in local update steps that leads to
worse convergence, we set their local update steps to 8. For SWA, SWAD, and our method, we take
more local update steps, with each model being averaged trained 8 steps, and the default number of
models to be averaged is 4. For the Model Soups method and DiWA, we train 32 models with 8 steps.
Additional details of experiment implementations are included in the Appendix.
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Figure 3: Convergence comparison of our proposed LSS with FedAvg. LSS achieves high accuracies much
earlier (around 6 to 8 rounds) than FedAvg, which takes hundreds of communication rounds.
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Figure 4: ViT + LoRA evaluation on Digit5.

0 1 2 3 4
Affinity Coefficient

62.0
62.5
63.0
63.5
64.0
64.5
65.0
65.5
66.0

Ac
cu

ra
cy

 (
%

)

Affinity Varies
DivCoeff = 0
DivCoeff = 3

(a)

0 1 2 3 4
Diversity Coefficient

62.0
62.5
63.0
63.5
64.0
64.5
65.0
65.5
66.0

Ac
cu

ra
cy

 (
%

)

Diversity Varies
AffCoeff = 0
AffCoeff = 3

(b)
Figure 5: Ablation on the affinity & diversity losses.

4.2 PERFORMANCE COMPARISON

Results on label shift. To demonstrate the effectiveness of LSS on label shift scenario, we conduct
comparison experiments on FMNIST and CIFAR-10 datasets. We consider fine-tuning with an
extremely limited number of communication rounds (i.e.R = 1 and R = 3). Table 1 reports the test
accuracy with the format of mean (std) for all compared algorithms. All experiments are repeated
3 runs with different random seeds. In Table 1, LSS achieves the best accuracy on all settings of
both datasets, which validates that LSS is efficient and effective in fine-tuning FL for label shift
Non-IID. Notably, with just one round of communication, LSS can double the accuracy of the best
Non-IID FL baseline method. Surprisingly, the simple extension of model-averaging-based domain
generalization methods onto FedAvg (McMahan et al., 2017) (the 2nd big row in Table 1) perform
very well, especially when the number communication round is small. The superior performance
using local weight averaging-based fine-tuning is likely because it significantly reduces the gradient
variance of local and global variance (see 3.2). We further provide results on different levels of label
shift in the supplementary material.

Results on feature shift. Table 2 evaluates on feature shift scenario using Digits-5 and DomainNet
datasets. Similar to the previous experiment setting for Table 1, we repeat all the algorithms with
3 random seeds. Consistent with the observation in Table 2, LSS is the top-performing method
under all the settings for both datasets. We also observe better performance achieved by adapting
model-averaging-based domain generalization methods (the 2nd big row in Table 2) in FL than the
existing Non-IID FL methods (the 1st big row in Table 2), which further verifies the effectiveness of
model averaging to obtain better global model while improving communication efficiency.

Convergence plots. We also evaluate the strength of faster convergence using the proposed LSS
compared with FedAvg (McMahan et al., 2017) on CIFAR-10 (label shift) and Digtis-5 (feature shift).
Fig. 3 depicts the testing accuracies at early and late phases regarding the number of communication
rounds to reach convergence. First, by looking at the final testing accuracies on Fig. 3 (b) and
(d), LSS achieves better performance. Second, Fig. 3 (a) and (c) show that LSS almost meets the
targeted performance at the very early stage (i.e.around 6 to 8 rounds), whereas FedAvg requests over
hundreds of communication rounds.

Parameter-Efficient Tuning with ViT. We also deployed the Vision Transformer (ViT) (Dosovitskiy
et al., 2021) in FL learning. On Digits-5 dataset, we evaluate the ViT model with a resolution of
224 and a patch size of 16, which was pretrained on the ImageNet-21k dataset. Due to the large
number of parameters in ViT, we used a parameter-efficient fine-tuning method called LoRA (Hu
et al., 2022) to train it for all the methods. For more details about our ViT architecture and LoRA
training, please refer to the appendix. It can be observed in Fig. 4 that our method is applicable to
pre-trained ViT models, demonstrating that our approach can be combined with parameter-efficient
fine-tuning methods to further enhance the communication efficiency of FL.
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Figure 6: Ablation studies on the impact of the number of averaged models on communication efficiency and
performance variance. We evaluated the influence of varied model quantities on global and averaged local model
performance, as well as generalization on the worst client.

4.3 ABLATION STUDIES

We conducted ablation experiments on the main components (i.e., affinity, diversity term and averaged
model quantity) of our proposed method and evaluated their performance on the CIFAR dataset, with
the performance metric being the global model performance at communication round R = 1.

Investigation on regularization losses. In order to examine the importance of affinity loss and
diversity loss, as well as the influence of their corresponding coefficients, we adjust one coefficient
within a range of 0 to 4 while maintaining the other at a constant value. By comparing the performance
with and without loss term, we observe that adding affinity and diversity terms can enhance the
model’s performance. Additionally, we observe that the two terms complement each other, and
selecting appropriate coefficients can achieve significant performance improvement (e.g., adjusting
the affinity coefficient to 3 as shown in Fig. C.1 and diversity coefficient to 3 as shown in Fig. 5(b)).

Investigation on the number of averaged models. To investigate the impact of the averaged model
quantity on enhancing communication efficiency and reducing gradient variance between local and
global, we experiment with varied model quantities and evaluate their influence on global model
performance, averaged local model performance1, and worst out-of-distribution (OOD) generalization
performance on the other clients. Fig. 6 shows that increasing the number of averaged models can
improve the model’s OOD generalization ability and enhance the performance of the aggregated
model. This similar upward trend confirms the validity of our analysis linking OOD generalization
and local-global variance. We provide a more detailed analysis on connecting our proposed LSS
and OOD generalization in appendix C. Additionally, we can observe that increasing the number of
models in our method can improve both pre-aggregation and post-aggregation model performance.

5 CONCLUSION

We propose an efficient method, Local Superior Soups (LSS), to reduce communication rounds in
FL with pre-trained initialization, addressing the challenge of data heterogeneity. By employing
sequential model interpolation, connectivity preservation, and two regularization terms (diversity and
affinity), the method allows for an increase in local training steps and a reduction in communication
rounds while avoiding client drift. This approach, tailored for pre-trained model adaptation in FL,
offers training and inference efficiency, making it suitable for practical deployment in edge computing
scenarios. As the first step towards understanding and developing model soups-based methods in
pre-trained models in FL, this study conducts experiments on benchmark datasets. Our method attain
superior performance with a only few rounds of communication and surpasses the performance of
standard FL methods significantly across four datasets and under two distribution shift scenarios.
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Roadmap of Appendix The appendix is organized as follows. We list the notations table in Section A.
We provide the theoretical proof of the convergence analysis in Section B. We present the theoretical
intuition of our proposed two loss term C. Next, we provide more detailed related work in Sec. D We
present more experiment details and results in Sec. E.

A NOTATION TABLE

Table 3: Important notations used in the paper.
Notations Description

f model parameters
l learning procedure
m feature dimension
n number of samples
x a sample
y a label
D set of training domain
L loss function
M number of clients
N number of averaged models
R total communication rounds
X input space of data
Y label space
λ coefficient for local training regularization term
τ local training steps

B CONVERGENCE ANALYSIS

B.1 FORMAL RESTATEMENT OF CONVERGENCE THEOREM

Standard FL (McMahan et al., 2017) employs a server to coordinate the following iterative distributed
training:

Step 1 In each global round of training r ∈ [R], the server broadcasts its current global model
weight f (r−1)

g to all the clients;
Step 2 The selected client c copies the current server model weight fr,0

c ← fg, performs τ local
step updates, then sends fr,L

c − f
(r−1)
g back to the server;

Step 3 The server aggregates the updates from all clients {fr,τ
c −f

(r−1)
g }Cc=1 to form the new server

model using the weighted averaging in Eq 1:

Note that the initialization f (0,0) ,with the subscription indicating model at 0-th communication
round and 0-th local step, is a pre-trained model (e.g. using public datasets) in our problem. This
work focus on improving Step 2 to explore a larger low-loss region in local clients.

Formally, we present the convergence results (Theorem 1 in Wang et al. (2021a) and ours) and
specify the following formal assumptions: 1) Convexity and Smoothness Assumption on β-smooth
loss function, 2) Bounded Variance of Stochastic Gradient Assumption and 3) Bounded Variance of
Local and Global Gradient Assumption).
Assumption B.1. (Convexity and Smoothness). Li is convex and β-smooth for all i ∈ [M ], i.e.,

∥∇Li(w)−∇Li(v)∥ ≤ β∥w − v∥,
for all w, v in its domain and i ∈ [M ].
Assumption B.2. (Bounded variance of stochastic gradient). Each client can achieve an unbiased
stochastic gradient with σ2-uniformly bounded variance for all k ∈ [0, τ), namely

E[gi(f (r,k)
i )|f (r,k)

i ] = ∇Li(f
(r,k)
i ), E[∥gi(f (r,k)

i )−∇Li(f
(r,k)
i )∥2|f (r,k)

i ] ≤ σ2. (6)

13



Under review as a conference paper at ICLR 2024

Assumption B.3. (Bounded variance of local and global gradient). The difference of local gradient
∇Li(f) and the global gradient ∇L(f) is bounded in ℓ2 norm, namely

max
i

sup
f

∥∥∥∇Li(f
(r,k)
i )−∇L(f (r,k)

i )
∥∥∥ ≤ ζ. (7)

Following Wang et al. (2021a), we have the main theorem on converngence rate as follows. For
the complete proof, please refer to Wang et al. (2021a). The main theorem on convergence rate as
follows.
Theorem B.1 (Theorem 1, Convergence Rate for Convex Local Functions Wang et al. (2021a)).
Under the aforementioned assumptions, we have

E

[
1

τR

R−1∑
r=0

τ∑
k=1

L(f (r,k)
)− L(f⋆)

]
≤ d2

2ητR
+

ησ2

M
+ 4τη2βσ2 + 18τ2η2βζ2. (8)

Further, when the client learning rate is chosen as

η = min

{
1

4β
,

M
1
2 d

τ
1
2R

1
2σ

,
d

2
3

τ
2
3R

1
3 β

1
3σ

2
3

,
d

2
3

τR
1
3 β

1
3 ζ

2
3

}
, (9)

we have

E

[
1

τR

R−1∑
r=0

τ∑
k=1

L(f (r,k)
)− L(f⋆)

]
≤ 2βd2

τR
+

2σd√
MτR

+
5β

1
3σ

2
3 d

4
3

τ
1
3R

2
3

+
19β

1
3 ζ

2
3 d

4
3

R
2
3︸ ︷︷ ︸

errors from local updates & Non−IID data

.

(10)

Here, d := ∥f (0,0) − f⋆∥ refers to the distance between initialization and the global optimum f⋆.

B.2 PROOF OF LEMMA 1

Lemma 1. Under the data heterogeneity setting, when the total number of gradient computations
across all clients (K = MτR) is fixed and the local steps τ satisfies

τ ≤ σ

ζ

√
σ

dβ

K
1
2

M2
, (11)

the error upper bound Eq.equation 11 will be dominated by the second term O(1/
√
K).

Taking local steps can save total communication rounds compared to synchronous SGD. To be
more specific, as suggested in Wang et al. (2021a), when the total number of gradient evalua-
tions/computations across all clients (K = MτR) is fixed and the local steps τ satisfies:

τ ≤ min

 σ

dβ

K
1
2

M2
,
σ

ζ

√
σ

dβ

K
1
2

M2

 . (12)

When the upper bound of local steps (Eq.(12)) becomes larger, there will be more communication
savings. Therefore, the quantity in Eq.(12) represents the largest savings in communication rounds.
Next, we show the error upper bound under the data heterogeneity setting.

Proof. Under high data heterogeneity, we have ζ ≥ σ, and:

1 ≤ σ

ζ

√
σ

dβ

K
1
2

M2
≤

√
σ

dβ

K
1
2

M2
≤ σ

dβ

K
1
2

M2
(13)

Therefore, we have Lemma 1:

τ ≤ σ

ζ

√
σ

dβ

K
1
2

M2
, (14)
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This Lemma 1 indicates that when client data are Non-IID, the side effects of the error term in the
Theorem B.1 will be further exacerbated, therefore, increasing the local iteration steps effectively
reduces the communication rounds.

Why connected low-loss valley + pre-trained initialization can achieve extreme communication
rounds reduction? Based on the analysis above, we find that simply increasing the number of
local training steps is insufficient for achieving extreme communication efficiency. The key lies in
reducing the error term introduced by local updates. Importantly, to achieve a significant reduction
in communication rounds, our primary focus should be on decreasing the last term of the RHS
of Formula 2. This is because, under the extreme communication round reduction condition (e.g.,
R = 1), the denominators of the first three terms all involve the local training steps τ . As τ approaches
infinity, the influence of these error terms can be eliminated, but the last error term remains. This
term is mainly affected by three factors: local and global gradient dissimilarity ζ, distance between
initialized and optimal weights d, and the Lipschitz constant β related with smoothness. Previous
research (Nguyen et al., 2022) has shown that FL training based on pre-training initialization can better
align updates from different clients, reducing the ζ term, which represents the difference between
local and global gradients. Additionally, due to the characteristics of existing overparameterized
models (Chizat et al., 2019; Li & Banerjee, 2021), the optimal solution is typically near the initialized
point, leading to a very small d term. As for the smoothness β term, intuitively, if clients are
trapped in isolated low-loss valleys, this situation reflects the non-smoothness of the local model
function. By encouraging the regularization of training to find connected low-loss regions, we can
effectively reduce the potential maximum value of the β term during the training process. Through
the above analysis, we conclude that pre-training initialization combined with our regularization
training that encourages the search for connected regions can reduce the error terms introduced by
local updates, thus increasing the upper limit of local training steps and achieving the goal of reducing
communication rounds.

C THEORETICAL INTUITIONS.

C.1 DECOMPOSITION OF GENERALIZATION BOUND

Connecting ζ with out-of-distribution error. ensemble is a category of the promising method
that ensembles trained models to improve generalizability as demonstrated in centralized settings
via reducing model discrepancy (Izmailov et al., 2018). To reduce the variance ζ of local and global
gradients that is resulted by data heterogeneity, we aim to adapt ensemble to FL. Intuitively, local
client training that can reduce the error on the worst domain (client) in FL will reduce the variance ζ.

In the following, we detail how to reduce ζ with OOD error with a bias-variance-covariance-locality
(BVCL) decomposition analysis. ensemble can be defined as: fWA ≜ 1/N

∑N
n=1 fn. We have

the following decomposition of ensemble’s expected test error. Bias-variance-covariance-locality
decomposition. The expected generalization error on domain T of fWA over the joint distribution
(LN

S ≜ {l(N)
S }NN=1) of N learning procedure on domain S is:

ELN
S
ET (fWA(L

N
S )) = E(x,y)∼pT

[
bias2(x, y) +

1

N
var(x) +

N − 1

N
cov(x)

]
+O(∆̄2), (15)

Here, cov refers to the covariance of predictions made by two member models. The first component
is the same bias as that of each individual member. The variance of ensemble is split into two parts:
the variance of each member divided by the number of members (N ) and a covariance term. The last
locality term enforces constraints on the weights to ensure the functional ensembling approximation
remains valid. In summary, combining N models reduces variance by a factor of N , but introduces
the covariance and locality terms which must be controlled to ensure low OOD error.

In the analysis presented in Ramé et al. (2022b), the authors proposed a BVCL decomposition based
on the approximation of functional ensembling (i.e., averaged prediction instead of parameter) by WA.
The expected generalization error on domain T of fWA over the joint distribution (LN

S ≜ {l(N)
S }NN=1)

of N learning procedure on domain S is:

ELN
S
ET (fWA(L

N
S )) = E(x,y)∼pT

[
bias2(x, y) +

1

N
var(x) +

N − 1

N
cov(x)

]
+O(∆̄2), (BVCL)
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Definition C.1 (Bias). For x ∈ X and y ∈ Y , we define the bias of OOD prediction as,

bias(x, y) = y − ElS [f(x, lS)]. (16)

Definition C.2 (Variance). For x ∈ X , we define the variance of prediction as

var(x) = EfS

[
(f(x, lS)− ElS [f(x, lS)])

2
]
. (17)

Definition C.3 (Covariance). For x ∈ X , we define the covariance of prediction produced by two
different learning procedures lS and l′S as

cov(x) = ElS ,l′S
[(f(x, lS)− ElS [f(x, lS)]) (f(x, l

′
S)− ElS [f(x, lS)])] . (18)

Definition C.4 (Locality). For any averaged models fi (for i ∈ [N ]), i is the index of an averaged
model, N is the total number of averaged models, we define the locality of all averaged models as

∆̄2 = ELN
S
∆2

LN
S

with ∆LN
S
=

N
max
i=1
∥fi − fWA∥2 . (19)

Following the definitions of the terms in the BCVL generalization bound, we discuss the insights
of reducing the bound via the proposed strategy. Our method is based on WAFT, which enjoys the
benefit of reducing prediction variance by averaging the predictions of multiple models. The diversity
term in our proposed method reduces the covariance term by encouraging functional diversity in the
parameter space. The affinity term in our proposed method reduces the locality term to ensure the
approximation of weight averaging (WA) to prediction ensembling.

Analysis on variance. One can see that an increase in the number of averaged models can directly
lead to a reduction in variance. The straightforward averaging M models, as seen in the vanilla WAFT
method, diminishes variance by a factor of M . However, this approach also introduces covariance
and locality terms, which necessitate meticulous management on adding new averaged models to
guarantee minimal out-of-distribution (OOD) error.

Analysis on covariance. The covariance term represents the predictive covariance between two
member models whose weights are averaged. It increases when the predictions of different averaged
models are highly correlated. In the worst-case scenario where all predictions are identical, the
covariance is equal to the variance, rendering the benefits of weight averaging ineffective Ramé
et al. (2022b). Conversely, when the covariance is lower, the advantages of weight averaging over
individual models become more pronounced. Therefore, it is crucial to address covariance by
promoting functional diversity among the averaged models. Our proposed method incorporates a
diversity term that aims to reduce this covariance.

Analysis on locality. The locality term, which represents the expected squared maximum distance
between weights and their average, constrains the weights to be close and ensures the approximation.
The affinity term in our proposed method encourages the reduction of this locality term.

Overall, to reduce WA’s error in OOD, we need to seek a good trade-off between diversity and locality.
Our solution achieves this balance through two optimizable loss terms, the diversity term, and the
affinity term. Besides, the direct combination of M models, as in the vanilla WAFT method, reduces
variance by a factor of M but introduces covariance and locality terms that need to be carefully
managed in order to ensure low OOD error.

It is worth noting that, from an implementation perspective, unlike the model soups method (see
Fig. 7 middle), which requires retraining a large number of candidate models for model selection
and interpolation, our method only selects a few models (typically 3 to 5) for sequential random
interpolation training in order to maintain connectivity. This significantly reduces the time cost of
local training. Furthermore, unlike model ensembles (see Fig. 7) that require storing multiple model
weights and integrating predictions during inference, our method only needs to retain an averaged
weight during the final inference stage. This greatly reduces the memory footprint and enhances the
inference speed on the client side.
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Figure 7: Comparison on model ensemble, model soups, and superior soups.

D MORE RELATED WORK

D.1 HETEROGENEOUS FEDERATED LEARNING

FL performance downgrading on Non-IID data is a critical challenge. A variety of FL algorithms have
been proposed to handle this heterogeneous issue. From an optimization perspective: FedProx (Li
et al., 2020) adds L2 norm to the client model and the previous server model to regularize them. This
helps to prevent the client models from diverging too far from the server model. Scaffold (Karimireddy
et al., 2020) adds a variance reduction term to mitigate the “clients-drift.” MOON (Li et al., 2021a)
uses mode-level contrastive learning to stabilize local training by making the client models more
robust to changes in the data distribution. In addition, personalized FL (Tan et al., 2021) is another
approach to achieving high local testing performance on Non-IID data. For aggregation perspective:
FedBN (Li et al., 2021b) uses local batch normalization to alleviate the feature shift before averaging
models. For extreme communication efficient: In recent years, there have been some FL methods
based on one-shot communication rounds. These methods typically use additional techniques on
the server-side, such as using prediction ensembles (Guha et al., 2019) instead of weight ensembles
or generating data (Zhang et al., 2022a; Heinbaugh et al., 2023) from local models for centralized
training, to improve the performance of the aggregated model. These methods are orthogonal to our
client training-based approach. There are also works on few-round communication rounds in FL
based on meta-learning frameworks (Park et al., 2021), but the data partition used in the experimental
setup may not be suitable for practical FL scenarios.

D.2 FINE-TUNING AND MODEL INTERPOLATION

Fine-tuning aims to achieve improved performance on the given task by leveraging the learned
knowledge of the pre-trained model. Choshen et al. (2022) empirically study the impact of fine-tuning
from a pre-trained model in FL and unsurprisingly find that starting from a pre-trained model reduces
the training time required to reach a target error rate and enables the training of more accurate models
than starting from random initialization. Zhang et al. (2022b) propose a knowledge distillation
approach for fine-tuning the global model, called FedFTG. In addition, fine-tuning in FL has been
widely used in personalized FL to address Non-IID problems by having each user adapt the global
model to personalized local models using their own data. For example, FedBABU (Oh et al., 2022)
splits the model into body and head, then fine-tuning the head part for personalization. Cheng et al.
(2021) propose FTFA and RTFA that start with a pre-trained model and then fine-tunes a small subset
of model parameters using the FedAvg (McMahan et al., 2017) algorithm. However, this line of
work focuses on optimizing local performance and ignores the generalization of global data. This
can lead to a performance drop when we further update the global model from the updated local
models. Weight averaging and model recycling are not only efficient ways to aggregate machine

17



Under review as a conference paper at ICLR 2024

learning models but also present promising benefits of improving model generalizability. Inspired by
the linear mode connectivity property of neural networks trained with stochastic gradient descent
(SGD) (Nagarajan & Kolter, 2019; Frankle et al., 2020), Model Soups (Wortsman et al., 2022)
proposes to combine many independent runs with varied hyper-parameter configurations. Similarly,
DiWA (Ramé et al., 2022b) utilizes this idea of Model Soups while theoretically analyzing the
importance of training different models with diverse hyper-parameters within mild ranges. Soups-
based methods (Wortsman et al., 2022; Ramé et al., 2022b) rely on aggregating diverse models to
improve model generalizability. To induce greater diversity, some methods such as (Maddox et al.,
2019) using a high constant learning rate, (Wortsman et al., 2021) minimizing cosine similarity
between weights, (Izmailov et al., 2019) using a tempered posterior and model Ratatouille (Ramé
et al., 2022a) averages diverse model trained from auxiliary datasets.

E EXPERIMENT DETAILS

E.1 EXPERIMENTAL SETUP DETAILS

Dataset. We validate the effectiveness of our proposed method with four datasets, FMNIST Xiao et al.
(2017), CIFAR-10 Krizhevsky et al. (2009), Digit-5 Ganin & Lempitsky (2015); Li et al. (2021b),
and DomainNet Peng et al. (2019). The Fashion-MNIST (FMNIST) dataset is a dataset of Zalando’s
article images consisting of a training set of 60, 000 examples and a test set of 10, 000 examples.
Each example is a 28 × 28 grayscale image of a piece of clothing. The dataset is divided into 10
classes: t-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot. The
CIFAR-10 dataset is a popular dataset for machine learning research. It consists of 60, 000 32× 32
color images divided into 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. The dataset is split into 50, 000 training images and 10, 000 test images. The Digit-5 dataset is
a collection of five popular digit datasets, MNIST Deng (2012) (55000 samples), MNIST-M (55000
samples), Synthetic Digits Ganin & Lempitsky (2015) (25000 samples), SVHN (73257 samples),
and USPS (7438 samples). Each digit dataset includes a different style of 0-9 digit images. The
DomainNet dataset is a large-scale dataset of images collected from six different domains: clipart,
infograph, painting, quickdraw, real, and sketch. The dataset contains 600, 000 images, each labeled
with one of 345 object categories. The images in the DomainNet dataset are of high quality and are
diverse in terms of their content and style.

Model. We used the pre-trained models from the timm repo 1, which are a collection of state-of-the-art
deep learning models for computer vision tasks. For our proposed LSS, we use Adam optimizer with
a learning rate of 5e−4 , momentum 0.9, and weight decay 5e−4. The default number of averaged
models is 4. Each model updates 8 epoch then aggregates with the others. The default affinity term
coefficient is 3 and diversity term coefficient is 3. We set the batch size to 64 by default. For vision
transformer (ViT) Dosovitskiy et al. (2021) model, we adopt ViT base model with 224× 224 image
size and 16× 16 input patch size. The ViT is a neural network architecture for image classification
that uses a self-attention mechanism to learn the relationships between pixels in an image. ViT
has been shown to achieve state-of-the-art results on a variety of image classification benchmarks,
including ImageNet and CIFAR-10.

Training Details. We implement all the methods in PyTorch, and we run all the experiments on an
NVIDIA Tesla V100 GPU. Unless otherwise specified, the model performance in the experiments
below refers to the global model performance after aggregation on the server side. For commonly
used FL methods, due to the significant increase in local update steps that leads to worse convergence,
we set their local update steps to 8.

Applying WAFT to FL Local Update. For SWA Izmailov et al. (2018), SWAD Cha et al. (2021),
and our method LSS, we take more local update steps, with each model being averaged trained 8
steps, and the default number of models to be averaged is 4. For the Model Soups Wortsman et al.
(2022) method and DiWA Ramé et al. (2022b), we trained 32 models and each model trained 8 steps.
The hyper-parameter configuration for model selection includes learning rate ([1e−4, 5e−4, 1e−5]),
batch size ([32, 64, 128]), dropout rate ([0.0, 0.1, 0.3]), and weight decay [5e−4, 5e−5, 5e−6]. Each
run randomly select one of the hyper-parameter options. From each run of WAFT method, we take

1https://github.com/huggingface/pytorch-image-models
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the weights of the epoch with maximum accuracy on the validation dataset, which follows the training
distribution.

E.2 EXTENDED EXPERIMENT RESULTS

Arbitrarily increasing local steps cannot reduce communication rounds.

From Table 4, we can see that simply increasing local steps does not always lead to improved model
performance. For FedAvg on the CIFAR10 dataset, increasing local steps beyond 8 actually results in
a decrease in model performance.

Table 4: FedAvg with different local steps: Label shift test accuracy after R = 1 communication
rounds (CIFAR-10 with 5 Clients).

Method Accuracy (τ = 1) ↑ Accuracy (τ = 4) ↑ Accuracy (τ = 8) ↑ Accuracy (τ = 12) ↑ Accuracy (τ = 16) ↑
FedAvg 2017 34.03(2.84) 49.08(1.51) 58.34(0.86) 55.76(0.82) 53.21(0.80)

Computational and memory costs comparison.

In Table 5, we provide detailed information on computational overhead and memory usage for
various methods. Since the computational overhead and memory usage of FedAvg and other used
FL methods are nearly identical, we only present the data for FedAvg here. Similarly, as the
computational overhead and memory usage for SWA and SWAD, as well as for Soups and DiWA,
are also nearly the same, we only show the data for SWA and Soups methods. It can be observed that
our method requires more memory compared to other soups-based methods. However, the overall
computational time for a single client’s communication round is faster in our approach. This is
because other soups-based methods require training a large number of models repeatedly to achieve
good model performance. For instance, Soups needs to train 32 models, whereas our method only
requires training 4 models. If the number of models trained by Soups is reduced to just 4, it only
brings about a 5% improvement compared to FedAvg with a communication round of 1.

Table 5: Computational and memory costs of different types of method (ResNet-18).
Costs FedAvg 2017 SWA 2018 Soups 2022 LSS (M = 2) LSS (M = 4)
MACs (G) 1.82 1.82 1.82 2.73 4.55
Train Time Per Epoch (s) 2.66 2.73 2.66 12.27 20.43
Train Time Per Round (s) 21.28 433.31 683.52 100.98 169.77

LSS encourages smoothness (reducing β). In Table 6, we provide the performance degradation of
trained models evaluating under varying levels of random noise. Generally, a smaller performance
degradation indicates a more robust model, which to some extent reflects the smoothness of the
trained model. We can observe that our method exhibits greater robustness to noise perturbation.

Table 6: Smoothness of the trained model. Evaluated trained model performance drop on a testset
with added ℓ0 norm random noise. CIFAR-10 dataset Dirichlet distribution α = 1.0 and α = 0.1:
Label shift test accuracy after R = 1

CIFAR-10 (4/255) CIFAR-10 (8/255)

Method Accuracy (R = 1) ↓ Accuracy (R = 3) ↓ Accuracy (R = 1) ↓ Accuracy (R = 3) ↓
FedAvg 2017 1.30 1.17 3.06 2.93
LSS 0.89 0.76 2.37 1.85

LSS improves flatness of loss landscape. The sharpness measure utilized in the Table 7 computes the
median of the dominant Hessian eigenvalue across all training set batches through the Power Iteration
algorithm (Yao et al., 2020). This metric signifies the maximum curvature of the loss landscape,
commonly employed in the literature on flat minima (Kaddour et al., 2022) to indicate sharpness. As
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demonstrated in the presented table, it is clear that our proposed method results in flatter minima
compared to FedAvg.

Table 7: Loss landscape flatness quantification with Hessian eigenvalue.

FedAvg ↓ LSS (M = 2) ↓ LSS (M = 3) ↓ LSS (M = 4) ↓
Hessian Eigenvalue 193.18 147.20 136.67 119.14

Evaluation with more clients. To assess the effectiveness of our method in larger-scale client
scenarios, we conducted an expanded experiment involving 50 clients. From the Table 8, we can
observe that our proposed method maintains a significant advantage across different client scales,
particularly when the number of communication rounds is small (R = 1).

Table 8: Different client numbers (5 Clients and 50 Clients): Label shift test accuracy after R = 1
and R = 3 communication rounds.

CIFAR-10 (5 Clients) CIFAR-10 (50 Clients)
Method Accuracy (R = 1) ↑ Accuracy (R = 3) ↑ Accuracy (R = 1) ↑ Accuracy (R = 3) ↑
FedAvg 2017 58.34(0.86) 66.74(0.76) 49.32(0.93) 68.39(0.61)
LSS 65.96(1.50) 75.16(1.07) 56.72(0.53) 73.32(0.46)

Evaluation with ViT. To validate the effectiveness of our method across different network architec-
tures, we conducted an expanded experiment using the Vision Transformer (ViT) model based on
the Transformer architecture. Upon observing the Table 9, it is evident that our method consistently
enhances the communication efficiency of federated learning with ViT model architectures.

Table 9: Different Network Architecture (ResNet-18 and ViT): Label shift test accuracy after R = 1
and R = 3 communication rounds.

CIFAR-10 (ResNet-18) CIFAR-10 (ViT Base)
Method Accuracy (R = 1) ↑ Accuracy (R = 3) ↑ Accuracy (R = 1) ↑ Accuracy (R = 3) ↑
FedAvg 2017 58.34(0.86) 66.74(0.76) 60.35(0.82) 69.38(0.51)
LSS 65.96(1.50) 75.16(1.07) 67.48(0.70) 76.81(0.47)

Evaluation with different Non-IID level. To further comprehensively validate the effectiveness of
our method under different levels of data heterogeneity, we conducted experiments on the CIFAR-10
dataset by adjusting the coefficients α of the Dirichlet distribution. We examined the performance of
our method in scenarios with greater distribution variations. Based on the Table 10, it is evident that
our method maintains a significant advantage in scenarios with larger data heterogeneity.
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Table 10: Different Non-IID level (Dirichlet distribution α = 1.0 and α = 0.1): Label shift test
accuracy after R = 1 and R = 3 communication rounds.

CIFAR-10 (α = 1.0) CIFAR-10 (α = 0.1)
Method Accuracy (R = 1) ↑ Accuracy (R = 3) ↑ Accuracy (R = 1) ↑ Accuracy (R = 3) ↑
FedAvg 2017 58.34(0.86) 66.74(0.76) 18.30(2.25) 45.85(1.24)
LSS 65.96(1.50) 75.16(1.07) 26.70(1.62) 50.02(0.82)
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