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ABSTRACT

Recent advances in large language models (LLMs) have showcased exceptional
performance in long-context tasks, while facing significant inference efficiency
challenges with limited GPU memory. Existing solutions first proposed the sliding-
window approach to accumulate a set of historical key-value (KV) pairs for reuse,
then further improvements selectively retain its subsets at each step. However, due
to the sparse attention distribution across a long context, it is hard to identify and
recall relevant KV pairs, as the attention is distracted by massive candidate pairs.
Additionally, we found it promising to select representative tokens as probe-Query
in each sliding window to accurately represent the entire context, an approach
that has been overlooked in the pursuit of effective KV cache eviction. Thus, we
propose ActQKV, a training-free, Activation-aware approach that dynamically
determines probe-Query and leverages it to retrieve the relevant KV pairs for
inference. Specifically, ActQKV monitors a token-level indicator, Activation Bias,
within each context window, enabling the proper construction of probe-Query
for retrieval at pre-filling stage. To accurately recall the relevant KV pairs and
minimize the irrelevant ones, we design a dynamic KV cut-off mechanism guided
by information density across layers at the decoding stage. Experiments on the
Long-Bench and∞ Benchmarks demonstrate its state-of-the-art performance with
competitive inference quality and resource efficiency. Our source code is available
at https://anonymous.4open.science/r/ActQKV-DDE1.

1 INTRODUCTION

With the emergence of large language models (LLMs) capable of handling extended context
lengths (Wang et al., 2024b; Achiam et al., 2023; Dubey et al., 2024), researchers are leverag-
ing their advanced information understanding and filtering abilities to tackle various downstream
tasks, including web-based search chatbot (Semnani et al., 2023) and document-level question an-
swering (QA) (Lewis et al., 2020). Inevitably, the context length has increased significantly, even
surpassing the models’ context limitations. However, the computational complexity of attention
mechanism (Vaswani, 2017) grows quadratically O(N2) with the context length N during inference.
Specifically, each token from context will be embedded into Query (Q) and interactive with Key (K)
and Value (V) embedded from all the N tokens using attention weights, making the whole time and
memory complexity O(N2) for the process. Even worse, during inference, new tokens are generated
one by one while each generation triggers a O(N2) computation, leading to an O(N2 +MN2) to
generate an output of length M . Therefore, efficiency is a critical challenge in the deployment of
long-context LLMs (Li et al., 2024a).

To handle this issue, the sliding window mechanism has been proposed to segment the input sequence
into content blocks and incrementally convert them into a key-value (KV) cache for reuse (Beltagy
et al., 2020). During inference, the model computes the KV vectors only for the current window and
integrates them with the existing KV cache, thereby reducing redundant KV computations, leading
to an O(N2 +MN) complexity. Building on this mechanism, recent works (Xiao et al., 2024a; Li
et al., 2024b; Hao et al., 2025; Fountas et al., 2025) focus on retrieving top-k relevant KV pairs in
conjunction with current tokens for preserving long-term contextual dependencies, where further
reduces the complexity to O(kN + kM). In this process, the queries from current window are
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Figure 1: Visualization of query vector status within probe-Query compared between ActQKV
and InfLLM: (a) Token-level similarity matrix, (b) Cosine similarity distribution across contexts.
We simply display the states of a question "Who is Sobe (Sister of Saint Anne)’s Grandchild?"
and the context from a window of size 256 in the last transformer layer. Our probe-Query shows
closer alignment with BGE-M3 (Chen et al., 2024) embeddings, while InfLLM exhibits uniform
similarity distribution neglecting anchor prioritization. We further conduct a quantitative verification
in Appendix D to analyze the effectiveness of the probe-Query in recovering the anchor distribution.

typically compressed as a probe-Query for relevant KV retrieval. However, this probe-Query setting
often fails to highlight those anchor tokens with critical activation signals, which are rare and essential
to represent long context within the sliding window.

To address this challenge, we first investigate the similarity relationship between the composition
of the probe-Query and KV cache. Under sparse attention patterns (see Fig. 1a), the query vectors
generated by InfLLM (the left) are disordered. In this scenario, each query vector influences
the semantics of probe-Query, which makes the combined representation nondescript. To clearly
demonstrate this nondescript (see Fig. 1b), the blue line employs a widely used mean pooling
technology along KV dimension to represent the probe-Query. It is evident that the probe-Query
fails to capture the distinctions because attention is distracted by all tokens instead of focusing on the
anchors. Therefore, such a nondescript probe-Query is hard to represent semantic of question and
unsuitable for effective KV retrieval.

Motivated by these observations, we argue that only a subset of anchor tokens within the context
window plays a dominant role in representing probe-Query for retrieval. In this paper, we propose
ActQKV, a training-free method that incorporates sliding window attention, which mainly involves
two stages: matching and recall of relevant KV pairs. In KV matching stage, we construct the
probe-Query for each context window to retrieve the relevant KV pairs in a streaming manner. To
effectively estimate the anchor tokens during inference, we employ a window-level activation-aware
strategy to monitor the fluctuation of query values for each token. Recognizing that the scarce outlier
features is a critical factor affecting model performance (Wang et al., 2024a; Wu et al., 2024), we
designate activated query vectors with prominent activation bias to dominate the representation of
probe-Query for accurate retrieval, as shown in red line of Fig. 1b. In KV recall stage, due to
the irregular distribution of KV pairs across layers, a fixed threshold often fails to yield optimal
retrieval results. In particular, the decoding stage, which is highly sensitive to factual correctness,
can be adversely affected by irrelevant KV pairs, potentially leading to hallucinations and degrading
the overall quality of the generated text. Therefore, we introduce a KV cut-off mechanism that
dynamically adjusts the number of selected pairs based on information density of each layer. Under a
constrained KV budget, this mechanism enhances the recall of relevant KV pairs while reduces the
introduction of irrelevant ones.

Our contributions are summarized as follows:
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• Motivated by attention distraction phenomenon, we introduce an activation-aware probe-Query
that efficiently emphasizes anchor tokens essential for accurately matching KV pairs. It is the first
exploration to extract long-context representations for KV retrieval within the query vector.

• To further eliminate irrelevant KV pairs and recall the relevant, we design a dynamic KV cut-off
mechanism guided by information density across layers during the decoding stage. This method
effectively enhances the model’s factual filtering ability for reasoning QA.

• Our ActQKV outperforms existing SOTA KV retrieval-based methods with just 2K KV budget on
two benchmarks, achieving up to a 16× KV reduction and 10.4% accuracy improvement compared
to using the full cache setting with a 2K budget on LongBench.

2 RELATED WORKS

KV cache retrieval (Adnan et al., 2024; Zhang et al., 2023; Xiao et al., 2025) has become a critical
optimization strategy aimed at reducing memory usage, minimizing inference latency and improving
overall throughput in long-context LLMs inference.

Recent studies employ a sliding window mechanism to address challenges in long-text inference,
where tokens outside the window are stored in the cache and only used when needed for the current
window. To accelerate the retrieval of essential KV, several approaches have proposed index-based
methods that organize and access the KV cache at the block or cluster level, enabling efficient
querying and extraction. InfLLM (Xiao et al., 2024a) maintains the full KV cache in blocks and
uses a hierarchical storage strategy to facilitate long-sequence processing. This framework employs
CPU-GPU memory orchestration, keeping essential KV and computational units in GPU memory
while offloading less frequently accessed units to CPU memory. Q-LLM (Li et al., 2024b) enhances
long-sequence processing by prioritizing memory related to task descriptions. This approach mimics
human reading behavior: first reading the question, then searching for the answer in the context.

In contrast to methods which use uniform KV block sizes, TokenSelect(Hao et al., 2025) is based
on the observation of sparsity in non-continuous attention patterns. It uses the Query-Key dot
product to assess the importance of each KV cache stored at the token level. For each query, they
dynamically calculates the importance of past KV caches per head at the token level and selects
the most important tokens through a soft voting mechanism across heads. EM-LLM (Fountas et al.,
2025) dynamically segments incoming tokens into episodic events, employing a hybrid retrieval
mechanism that combines semantic similarity matching with temporal context to efficiently access
relevant KV cache segments. Additionally, some researchers focus on KV cache budget allocation
across layers (Cai et al., 2024; Yang et al., 2024) and heads (Feng et al., 2024; Fu et al., 2025) due to
the hierarchical architecture of LLMs.

Most methods overlook the importance of probes for retrieval, especially given the fact that LLMs
are not optimized for retrieval tasks. Therefore, this realization inspires our further exploration of
probe-Query construction in this paper.

3 BACKGROUND

In this section, we introduce the two-stage inference of long-context LLMs using sliding window
attention (in Sec. 3.1), and then define the problem of KV Retrieval (in Sec. 3.2).

3.1 SLIDING WINDOW ATTENTION WITH KV CACHE

Given an input sequence X, the generation of the output sequence Y during LLMs inference can be
divided into two stages: pre-filling the input X and decoding the output Y.

To handle long sequences input of tasks, existing works (Xiao et al., 2024b;a; Li et al., 2024b) use
sliding window attention to process the text iteratively. In this mechanism, the lengthy input sequence
X is partitioned into T windows, denoted as W = {w1, . . . ,wT },W ∈ RT×m and m indicates
the window size (see Fig. 2(a)). To reduce computational costs, the model processes each window
sequentially and stores the historical key-value pairs in a cache (i.e., Kcache and Vcache) for future
reuse (see Fig. 2(b)).

3
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During t-th pre-filling step (t ≤ T ), the model utilizes the KV cache Kt−1
cache and Vt−1

cache from the
historical sequence W[: t−1] to compute the attention output Ot ∈ Rm×d for the current m window
tokens wt ∈ Rm as follows:

Ot = Attention
(
Qt,

[
Kt,Kt−1

cache

]
,
[
Vt,Vt−1

cache

])
, (1)

where the triplet Qt = {qt
i}mi=1, Kt = {kt

i}mi=1, Vt = {vt
i}mi=1 ∈ Rm×d represents the generated

attention vectors, each corresponds to m tokens with d hidden dimensions. To further save GPU
memory, current methods select partial KV cache K∗ and V∗ for inference, denoted as:

Ot = Attention
(
Qt,

[
Kt,K∗] , [Vt,V∗]) , (2)

where K∗ ⊆ Kt−1
cache and V∗ ⊆ Vt−1

cache.

During t-th decoding step (t > T ), the model generates the output sequence Y token-by-token.
Unlike pre-filling, the model uses only one single query vector qt ∈ R1×d along with corresponding
key and value vectors kt,vt ∈ R1×d to predict one next token yt ∈ Y in each step. Its corresponding
attention output ot ∈ R1×d can be computed as:

ot = Attention
(
qt,
[
kt,K∗] , [vt,V∗]) . (3)

After the t-th step, the newly generated key-value pairs will be stored in the cache (see Fig. 2(e)),
updating it as demonstrated below:

Kt
cache,V

t
cache = Kt−1

cache ∪Kt,Vt−1
cache ∪Vt, (4)

where ∪ denotes the concatenation operation and the tensors of cache can be saved in either CPU or
GPU memory. In general, saving in the CPU can significantly reduce the memory usage of the GPU.
Note that Kt = kt and Vt = vt are 1× d dimensions during decoding.

3.2 PROBLEM SETTING

During long-context inference in LLMs, the historical key-value pairs are essential for maintaining
long-range dependencies and overcoming window size limitations. Given a cache comprising Kt−1

cache
and Vt−1

cache, the objective of KV retrieval is to identify the top-k relevant subset K∗ and V∗ using the
probe-Query Qt

probe for the t-th inference step (Xiao et al., 2024a; Fountas et al., 2025; Hao et al.,
2025), as described below:

K∗,V∗ = Kt−1
cache[I

∗],Vt−1
cache[I

∗],

I∗ = arg max
I⊂[m],
|I|=k

∑
i∈I

(
Qt

probe ·K
t−1
cache[i]

⊤

∥Qt
probe∥ × ∥K

t−1
cache[i]∥

)
, [m] = {1, 2, . . . ,m},

(5)

where Qt
probe ∈ R1×d denotes the overall representation of window context wt and k is the number

of selected KV. These two factors significantly impact the factual relevance of the retrieved KV index
I∗ for each transformer layer inference.

4 METHODS

In this section, we first present the overall framework of our ActQKV, as illustrated in Fig. 2. We
then demonstrate our two-stage approach: the Activation-aware Probe-Query Construction for KV
matching (in Sec. 4.1)and the Dynamic KV Cut-off Mechanism for KV recall (in Sec. 4.2).

4.1 ACTIVATION-AWARE PROBE-QUERY

To identify the relevant KV pairs, we leverage the query vectors of each window to construct the
attention-aware probe-Query for retrieval. The primary distinction between our activation-aware
probe-Query and other representation methods lies in the emphasis on identifying anchor tokens that
effectively represent the entire context of the window for KV matching. The main challenge is to
accurately distinguish and activate these tokens.

4
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Figure 2: Illustration of our ActQKV. Sliding window attention stores historical KV pairs in a cache
and reuses them for subsequent window inference. Based on this, ActQKV first identifies the anchor
tokens within the window and then constructs the activation-aware probe-Query. This probe-Query is
subsequently used to retrieve the top-k relevant KV pairs from the cache during the pre-filling stage.
During the decoding stage, the cut-off mechanism dynamically adjusts the number of recalled KV
pairs based on the distribution of key-values at each layer, ensuring the inclusion of relevant pairs
while minimizing the influence of irrelevant ones. The cache can be stored in the CPU and transferred
to the GPU when needed. All our contributions are highlighted in red.

Formally, given a subset of context wt = {xt
1, . . . , x

t
m} extracted from a long sequence W, we

obtain the hidden states {zti}mi=1 = {f(xt
i)}mi=1 at each transformer layer, where m denotes the

window size and f denotes the function mapping tokens to corresponding states. Intuitively, hidden
states that deviate significantly from their statistical mean (i.e., z̄t) can be considered that they are
from anchor tokens compared to others. Specifically, token xt

1 is deemed more essential than xt
2 for

the quality of generation, as indicated by previous works (Wang et al., 2024a; Sun et al., 2024; Pang
et al., 2024), if:

∥z̄t − f(xt
1)∥ > ∥z̄t − f(xt

2)∥, (6)

where || · || is distance metrics.

Building on the aforementioned paradigm Eq. 6, we propose an Activation Bias to distinguish the
importance of each query vector within a window context. For the query vectors of the t-th pre-filling
window Qt = {qt

1, . . . ,q
t
m} in each layer, we first compute the token-level bias Φt = {ϕt

1, . . . , ϕ
t
m},

with Φt ∈ Rm×d, to estimate the energetic degree within Qt as follows:

ϕt
j =

(qt
j − z̄t)2

σ2
, (7)

where σ2 and z̄t ∈ R1×d represent the variance and mean of the query vectors respectively, computed
as follows:

σ2 =

∑t
i=1

∑m
j=1

(
qi
j − z̄t

)2
mt− 1

, z̄t =

∑t
i=1

∑m
j=1 q

i
j

mt
. (8)

Based on the above estimated degree, we can construct the probe-Query Qt
probe for KV matching by

reassigning the activated weights of each query vector according to the activation bias Φt:

Qt
probe =

m∑
j=1

∥ϕt
j∥1

∥Φt∥1
qt
j . (9)

Our object is to enhance the weight of query vectors for those anchor tokens. With this activated
probe-Query, we can match more precise KV pairs K∗ and V∗ that contain semantically relevant
information for pre-filling stage Eq. 2.
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4.2 DYNAMIC KV CUT-OFF MECHANISM

During the decoding stage, the quality of the predicted answer greatly depends on the top-k relevant
pairs K∗ and V∗. However, due to the sparse and irregular attention pattern across each layer, the
selection of k KV pairs is highly sensitive to the probe-Query Qt

probe = qt. Therefore, we propose a
KV cut-off mechanism to dynamically determine k based on information density assessment for L
transformer layers. Compared to the preset threshold, this mechanism dynamically removes redundant
KV pairs and improves the recall of relevant ones within a limited KV budget.

In the t-th decoding step, we first calculate the similarity scores Sℓ = {sℓ1, . . . , sℓn} between the probe-
Query Qt

probe and the cache of key vectors Kt−1
cache for the ℓ-th transformer layer, where n = |Kt−1

cache|.
The similarity scores are computed using cosine similarity as follows:

sℓi =
Qt

probe ·K
t−1
cache[i]

∥Qt
probe∥ × ∥K

t−1
cache[i]∥

. (10)

Then, we apply the softmax function to normalize them and convert them into probabilities.

Based on the similarity distribution Sℓ, we define the information density Θℓ for the ℓ-th layer using
the entropy function as follows:

Θℓ = −
n∑

i=1

es
ℓ
i∑n

j=1 e
sℓj

log

(
es

ℓ
i∑n

j=1 e
sℓj

)
, (11)

where a uniform distribution results in a higher information density Θℓ compared to more concentrated
distributions.

Now with the information density, we focus on dynamically assigning the budget instead of a fixed
value k for each layer. Given a total budget Bkv , we process from shallow to deep layers in the order
of transformer computation to avoid decoding delays. Consequently, for the ℓ-th layer in the t-th
decoding step, the budget Bℓ can be estimated as follows:

Bℓ =
Θℓ

Θℓ +
∑L

j=ℓ+1 Θ̄
j
× Bkv, (12)

where Bkv is initialized as L× k and updated by Bkv ← Bkv − Bℓ after processing the ℓ-th layer,
and Θ̄j denotes the mean Θℓ for the remaining unprocessed layers. In this part, we aim to assign a
larger budget to layers with higher information density, where many KV pairs are potentially relevant
to the probe-Query Qt

probe for the t-th decoding step. Conversely, for layers with lower density, the
relevant KV pairs with higher similarity are more prominent, making the irrelevant pairs more likely
to be discarded. Based on the above Eq. 12, the denominator, which adds Θℓ to the cumulative
average density

∑L
j=ℓ+1 Θ̄

j of the remaining layers, quantifies the overall contribution of both the
current and subsequent layers. A higher ratio indicates that the current layer holds a more significant
portion of the relevant KV pairs, justifying a larger allocation. Compared to using a fixed threshold
for retrieval, this dynamic KV cut-off mechanism eliminates redundant KV pairs and improves the
recall of relevant ones within the limited KV budget.

In summary, we present our two-stage method separately, where the activation-aware probe-Query
module guarantees the quality of historical KV pairs and the cut-off mechanism effectively utilizes
them. The entire process is depicted in Algorithm 1 as shown in Appendix C.

5 EXPERIMENTS

In this section, we first present the experimental setup of this paper (in Sec. 5.1). Then we demonstrate
the logical reasoning and factual retrieval ability of our ActQKV in long-context inference through
two widely-used benchmark (in Sec. 5.2). Finally, we conduct the ablation study (in Sec. 5.3) and
reveal the influence of our method (in Sec. 5.4).
5.1 EXPERIMENTAL SETUP

Datasets and Implementation Details. We utilize 21 tasks from two widely used long document
benchmarks: Long-Bench (Bai et al., 2023) and ∞-Bench (Zhang et al., 2024) for evaluation.
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Method LLaMA3-8B-inst Infinite Stream InfLLM QLLM TSLLM EMLLM ActQKV
KV Budget full context 2K 2K 2K 2K 2.5K 4K 2K

NarrativeQA 19.85 16.47 15.12 19.41 25.60 22.44 22.50 27.04
Qasper 42.36 32.01 31.72 41.27 39.12 40.74 44.95 40.42
MultiFieldQA 41.03 31.63 30.99 45.89 48.30 47.73 48.79 50.70
HotpotQA 47.38 34.73 35.26 44.97 49.91 50.33 49.19 51.37
2WikiMQA 39.20 29.22 30.59 36.27 39.63 31.38 38.08 42.07
Musique 22.96 13.50 13.64 19.73 25.03 24.53 25.19 33.40
GovReport 29.94 27.84 27.83 30.68 29.80 32.56 30.85 32.00
QMSum 21.45 19.91 20.14 21.36 22.23 23.50 22.77 23.06
MultiNews 27.51 27.36 27.37 27.87 27.85 27.92 27.28 27.26
Trec 74.00 - - 57.50 55.50 67.50 73.50 69.50
TriviaQA 90.50 88.07 87.35 88.03 87.70 92.22 90.91 85.68
SAMSum 42.30 36.93 35.97 34.86 34.97 42.16 43.24 40.10
PassageRetrieval 62.50 23.50 23.50 85.25 88.00 87.00 86.00 94.50
LCC 60.83 60.42 58.15 58.17 58.37 58.86 60.44 62.04
RepoBench-P 49.14 64.95 62.97 62.01 61.04 51.24 44.88 61.92

Average 44.73 36.18 35.76 43.98 46.20 46.67 47.24 49.40

Table 1: Long-Bench (avg. 31K tokens) (Bai et al., 2023). The comparison of results based on
LLaMA3-8B-inst (AI@Meta, 2024) are conducted from the works (Li et al., 2024b; Hao et al., 2025;
Fountas et al., 2025). Our results are highlighted in teal and best results are indicated in bold.

Specifically, Long-Bench has a 95% sequence length of 32K, while∞-Bench averages about 122K
in sequence length. We utilize LLaMA3-8B-inst (AI@Meta, 2024) and Qwen2.5-7B-Instruct (Team,
2024) as our base models with maximum input lengths of 8K and 32K, respectively. In each inference
step, we reuse only 2K KV pairs and store the remaining pairs in the Cache Management system,
following the settings of InfLLM. This approach consumes approximately 19 GB of VRAM in our
experiments. Inspired by previous works, we retain 64 attention sinks and 512 KV pairs from current
context, and adapt the task description into probe-Query. Consequently, the budget for retrieved KV
k is 1,472. These KV pairs are organized into 46 chunks, with each chunk containing 32 pairs. The
sliding window size is set to 256. More details about the datasets and experimental setup is available
in Appendix B.

Baseline Methods The objective of ActQKV is to effectively retrieve key-value pairs for long-
context inference in LLMs. To achieve this, we evaluate two prominent baseline methods: (a) static
KV selection and (b) KV retrieval. (a): Infinite (Lin et al., 2024) employs global and local attention
masks to broaden the attention scope, while Stream (Xiao et al., 2024b) ensures efficient inference by
retaining attention sinks and KV pairs from recent tokens. (b): InfLLM (Xiao et al., 2024b) searches
for KV pairs associated with the currently processed tokens, enabling the capture of long-distance
dependency relationships. QLLM (Li et al., 2024b) focuses on KV memory relevant to the task
description to process long sequences. TokenSelect (TSLLM) (Hao et al., 2025) incorporates the
token-level weight of KV cache per-head for KV retrieval. EMLLM (Fountas et al., 2025) integrates
key aspects of human episodic memory and event cognition into KV cache. Notably, all the methods
described above are training-free.

5.2 MAIN EXPERIMENT RESULTS

We first utilize Long-Bench to evaluate the long-context reasoning capabilities of ActQKV, and then
test the fact retrieval ability using∞-Bench. We report the results based on Llama-3-8B-Instruct, and
the others can be found in Appendix B and Appendix C.

Long-Bench. We present the results in Tab. 1. (1) ActQKV achieves an average score of 49.40,
surpassing the full context setting (31K tokens) by 4.67 points while utilizing only 2K tokens. This
highlights the efficiency of its key-value retrieval method in handling long-context inference with a
significantly smaller KV budget. (2) Compared to the static KV selection methods Infinite and Stream,
ActQKV excels in capturing critical information required for reasoning tasks. (3) In comparison to
SOTA KV retrieval methods such as TSLLM and EMLLM, our activation-aware retrieval approach
achieves the best results, with improvements of +5.8% and +4.6%, respectively. Notably, for tasks
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like 2WikiMQA and Musique, ActQKV shows substantial gains, demonstrating the effectiveness
of activation-aware retrieval in capturing long-term dependencies by recalling fewer KV pairs (e.g.,
only with 80% and 50% budget).

Method KV ∞-Bench (214K tokens)
Budget C.D. M.F. MC R.KV R.P R.N Avg.

InfLLM 2k 22.59 26.86 33.19 80.80 100.0 28.64 48.68
QLLM 2k 23.10 27.37 34.50 84.00 100.0 27.63 49.43
TSLLM 2.5k 27.41 28.29 45.85 40.00 100.0 97.29 56.47
EMLLM 8k 31.73 17.14 40.61 5.00 100.0 99.49 49.00
ActQKV 2k 42.86 29.43 38.22 46.20 100.0 93.90 58.43

Table 2: ∞-Bench (avg. 122K tokens) (Zhang et al., 2024). The results comparison based on
LLaMA3-8B-inst. Our results are highlighted in teal and the best are indicated in bold.

∞-Bench. Each sample in this benchmark has almost infinite length (avg. 122K), where the key
lies in whether factual evidence can be found from the context. As shown in Tab. 2, our ActQKV
obtains the best result 58.43 and outperforms the SOTA KV retrieval methods even with a smaller
KV budget. Especially compared to the token-level retrieval method TSLLM, our approach sets the
minimum retrieval unit as a chunk. Although larger chunks may seem less granular, our probe-Query
effectively compensates for this, enhancing 3.5% performance while simultaneously reducing both
time and space complexity from O(N) to O(m). This demonstrates that our method can efficiently
recall relevant KV pairs even with coarser granularity.

5.3 ABLATION STUDIES

Method KV LongBench Categories
Budget SQA MQA Sum FSL Ret Cod Avg.

InfLLM 2k 38.5 36.9 27.0 69.0 84.0 53.2 47.0
TSLLM 2.5k 37.0 35.4 28.3 67.3 87.0 51.2 46.7
EMLLM 8k 39.3 37.7 27.0 69.2 87.5 50.3 47.2
w/o DCM 2k 40.3 40.7 27.5 63.1 98.0 61.5 48.8
w/o APQ 2k 39.7 42.1 27.4 64.3 94.5 61.7 49.2
ActQKV 2k 39.4 42.3 27.4 65.1 94.5 62.0 49.4

Table 3: The ablation study of our method ActQKV, where Activated Probe-Query (APQ) for KV
matching and Dynamic Cut-off Mechanism (DCM) for KV recall. We use the mean pooling to
represent probe-Query in w/o DCM as same as InfLLM and QLLM.

In this subsection, we present ablation studies shown in Tab. 3 to evaluate two key components of
our method: the Activation-aware Probe-Query Qt

probe (APQ, see Sec. 4.1) and the Dynamic Cut-off
Mechanism (DCM, see Sec. 4.2).

When using APQ for key-value (KV) pair matching, our method attains a comparable score of 48.8,
especially getting the best result 98.0 in retrieval tasks. These results demonstrate that the APQ
component effectively captures the semantic context of the window for KV matching, outperforming
conventional mean pooling approaches. Moreover, the incorporation of DCM, which dynamically
determines the number of KV pairs to recall at each layer, further enhances the model’s ability of irrel-
evant information filtering. Overall, our approach employs a two-stage KV retrieval process following
the traditional information retrieval paradigms: first, an initial retrieval stage identifies potentially
relevant KV pairs; subsequently, a refined recall stage optimizes the selection process, achieving
a peak performance of 49.4. And the more analysis of model robustness and the effectiveness of
activation-aware functions are detailed in the Appendix D.
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Figure 3: Analysis of the top-k (avg. k=1,472) most relevant KV pairs for each inference step across
layers. We randomly select 50 samples from Long-Bench and filter out those with a length less than
8K. In each layer, we calculate 35,180 similarity scores generated by our ActQKV and InfLLM
respectively. Each score is calculated based on a probe-Query and a chunk containing 32 KV pairs.
The average perplexity is calculated based on the perplexity within the scores of each sample.

5.4 ANALYSIS OF RETRIEVED KV PAIRS

In this subsection, we compare the retrieved KV pairs from our ActQKV and InfLLM methods to
evaluate the specific impact of our proposed approach. To facilitate this comparison, we present the
distribution of cosine similarity scores and average perplexity in Fig. 3 and analyze the following:

Cosine Similarity. The box of cosine similarity clearly shows that ActQKV consistently achieves
higher similarity scores across most layers compared to InfLLM. This outcome can be attributed
to the activation-aware query (probe-Query) we introduced, which more effectively captures the
underlying semantic information of the window context for each inference step. Furthermore, the
enlargement of the box plots indicates that the distribution of similarities becomes more dispersed.
This suggests that our probe-Query covers a broader semantic space, thereby resulting in a more
robust KV retrieval process. The greater spread in the similarity values also reflects the model’s
ability to account for a wider range of relevant KV pairs, ultimately enhancing the precision and
adaptability of the retrieval process across different contexts.

Average Perplexity. With respect to average perplexity, ActQKV consistently shows lower perplex-
ity scores compared to InfLLM which maintains a value of around 46.0. This indicates that ActQKV
yields more coherent and predictable results across the all layers. Notably, in layers 0 and 13, we
notice significant differences, with ActQKV showing more variation than InfLLM. This suggests
that our retrieval method can flexibly adapt to the characteristics of different layers. By reducing
perplexity, ActQKV improves the ability to discriminate relevant KV pairs from irrelevant ones,
resulting in more coherent and less uncertain historical information for long-context inferences.

In addition, we provide extended experiments in the Appendix D, including (i) quantitative verification
of the probe–oracle alignment, (ii) cross-model comparisons on multiple benchmarks, and (iii)
ablations on activation-aware functions and dynamic KV recall. These results consistently validate
the robustness and generality of our proposed method across settings.

6 CONCLUSION

In this paper, we present ActQKV, a training-free method to KV retrieval efficiency for long-context
LLMs inference. The primary challenge in KV retrieval stems from the inherent vagueness of existing
probe-Query, which inadequately filter irrelevant KV pairs. To address this limitation, we develop
an activation-aware probe-Query construction strategy and a layer-wise KV cut-off mechanism to
effectively match and recall the relevant KV pairs. We hope this work can inspire the broader research
for LLMs representation methods, leading to improved long-context information filtering capabilities
akin to specialized embedding models.
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A THE COMPLEXITY OF LLMS INFERENCE

Mechanism Pre-filling Complexity Decoding Complexity Overall Complexity

Standard Attention O(N2) O(N2 +MN2) O(N2 +MN2)

Sliding Window with KV Cache O(N2) O(N2 +MN) O(N2 +MN)

KV Retrieval for Long-Context Inference O(kN) O(kN + kM) O(kN + kM)

Table 4: Complexity analysis of different methods. Our ActQKV is belong to the KV retrieval method
and the complexities are highlighted in teal.

In this section, we focus on the attention computation and analyze the complexity of exiting methods
shown in Tab. 4 as follows:

Standard Attention Mechanism. Under the standard attention mechanism, during the pre-filling
stage, each token in the input sequence undergoes attention calculations with all other tokens,
resulting in a time complexity of O(N2). In the decoding stage, as the context grows, the complexity
of generating each new token increases accordingly. When generating the t-th token, the length
of the context to be processed is N + t, so the total time complexity of the decoding stage is
O(
∑M

t=1 M(N + t)2), which is approximately O(N2M +M3). Since the decoding length M is
usually much smaller than the input sequence length N , the overall complexity can be simplified to
O(N2 +MN2).

Sliding Window Mechanism with KV Cache. The sliding window mechanism divides the input
sequence into several windows of fixed size, each with a size of m. During the pre-filling stage, the
processing complexity of the tokens within each window is O(m2), and the interaction complexity
between the KV caches of the windows is approximately O(N), so the overall time complexity is
O(Nm ×m2) = O(mN), which is equivalent to O(N2) when the window size m is constant and
linearly dependent on N. In the decoding stage, the decoding of each new token only needs to interact
with the m tokens in the current window and some tokens in the adjacent windows, resulting in a
total time complexity of O(MN). Overall, the time complexity can be simplified to O(N2 +MN).

KV Retrieval for Long-Context Inference. When using the method of Top-k retrieval combined
with the sliding window, the pre-filling stage divides the input sequence into windows of fixed
size. During the processing of the tokens in each window, only the interaction with the top k most
relevant key-value pairs is performed, so the complexity of the pre-filling stage is O(Nm × (m+ k)),
which can be approximated as O(kN) if the window size m and the retrieval range k meet certain
conditions. In the decoding stage, the prediction of each new token only needs to interact with the
top-k most relevant key-value pairs, with a time complexity of O(kM). Overall, the time complexity
is simplified to O(kN + kM).

B DETAILS IN LONG-BENCH AND∞-BENCH

Long-Bench (95% sequence length is 32K) focuses on tasks that involve reasoning, such as question
answering, summarization, few-shot learning, retrieval, and coding. The groups of datasets are
categorized as follows: Single-doc QA: NarrativeQA, Qasper, MultiFieldQA; Multi-doc QA:
HotpotQA, 2WikiMQA, Musique; Summarization: GovReport, QMSum, MultiNews; Few-shot
Learning: TREC, TriviaQA, SAMSum; Retrieval: PassageRetrieval; Code: RepoBench-P. And
∞-Bench (avg. length of 200K) emphasizes factual retrieval, covering domains such as code,
mathematics, multiple-choice questions, and general retrieval tasks. The statistics and evaluation
metrics of datasets are detailed in Tab. 5 and Tab. 6.

C IMPLEMENTATION DETAILS

All experiments were implemented using PyTorch and performed on two NVIDIA A800 80GB GPUs.
In all experiments in this paper, we use standard greedy decoding to ensure reliable results.
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Dataset ID Source Avg len Metric Language #data

Single-Document QA
NarrativeQA 1-1 Literature, Film 18,409 F1 English 200
Qasper 1-2 Science 3,619 F1 English 200
MultiFieldQA-en 1-3 Multi-field 4,559 F1 English 150

Multi-Document QA
HotpotQA 2-1 Wikipedia 9,151 F1 English 200
2WikiMultihopQA 2-2 Wikipedia 4,887 F1 English 200
MuSiQue 2-3 Wikipedia 11,214 F1 English 200

Summarization
GovReport 3-1 Government report 8,734 Rouge-L English 200
QMSum 3-2 Meeting 10,614 Rouge-L English 200
MultiNews 3-3 News 2,113 Rouge-L English 200

Few-shot Learning
TREC 4-1 Web question 5,177 Accuracy (CLS) English 200
TriviaQA 4-2 Wikipedia, Web 8,209 F1 English 200
SAMSum 4-3 Dialogue 6,258 Rouge-L English 200

Retrieval
PassageRetrieval-en 5-1 Wikipedia 9,289 Accuracy (EM) English 200

Code Completion
LCC 6-1 Github 1,235 Edit Sim Python/C#/Java 500
RepoBench-P 6-2 Github repository 4,206 Edit Sim Python/Java 500

Table 5: An overview of the dataset statistics in LongBench (Bai et al., 2023). Avg len (average
length) is computed using the number of words for the English (code) datasets and the number of
characters for the Chinese datasets. Accuracy (CLS) refers to classification accuracy, while Accuracy
(EM) refers to exact match accuracy.

Task Annotation # Ex. Avg Len

Ret.PassKey Auto 590 122.4K/2
Ret.Number Auto 590 122.4K/4
Ret.KV Auto 500 121.1K/22.7
En.MC Human 229 184.4K/5.3
Code.Debug Human 394 114.7K/4.8
Math.Find Auto 350 87.9K/1.3

Table 6: Data statistics of∞-Bench (Zhang et al., 2024). The columns indicate whether the annotation
was auto-generated or done by humans, the number of examples, and the average length (input/output)
in tokens.

Our framework integrates InfLLM’s representative token selection mechanism with activation-aware
probe queries, where top 4 tokens per KV chunk. We highlight two core innovations:

• KV Retrieval Enhancement:

similarity- based metrics
(

Mean-pooling(Qsliding-windows)︸ ︷︷ ︸
InfLLM

, representative-KV
)

⇒ similarity-based metrics
(

Activation(Qsliding-windows)︸ ︷︷ ︸
Our ActQKV

, representative-KV
)
(13)

• Dynamic Budget Allocation:

selection(top-k, similarity metrics)
⇒ dynamical-selection(information-density, top-k, similarity-metrics)

(14)

Overall Workflow: The overall pipeline of our ActQKV can be described as follows:
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Algorithm 1: Effective KV Retrieval for Long-context LLMs Inference
Input : L: Total number of transformer layers; Qt

probe: Probe-Query for the t-th step;
Kt−1

cache: Cache of key vectors for the t− 1-th step; Bkv: Initial KV budget (L× k)
Output : K∗ and V∗: Selected KV pairs for inference
for ℓ← 1 to L do

for i← 1 to n do

sℓi ←
Qt

probe·K
t−1
cache [i]

∥Qt
probe∥×∥Kt−1

cache [i]∥
;

end
Pℓ ← Softmax(Sℓ); Θℓ ← −

∑n
i=1 P (sℓi) logP (sℓi);

end
for ℓ← 1 to L do

Bℓ ← Θℓ

Θℓ+
∑L

j=ℓ+1
Θ̄j × Bkv; Bkv ← Bkv − Bℓ;

end
for ℓ← 1 to L do

Sort Kt−1
cache based on Pℓ in descending order; Select top Eℓ KV pairs; Add selected KV pairs to K∗ and

V∗;
end
return K∗, V∗;

D FURTHER ANALYSIS

D.1 QUANTITATIVE VERIFICATION

Table 7: Spearman correlation between Activated Probe-based Query and oracle block relevance
scores.

Probe Strategy Median ρ IQR
ActQKV (Activation Bias) 0.73 0.68–0.78
Mean Pooling (InfLLM-style) 0.54 0.49–0.59

We evaluate whether the activation-bias probe Qt
probe can faithfully recover the oracle anchor block

distribution across t = 1, . . . , 100 sampled queries. Let qi denote the i-th token embedding of the
t-th query and cj the embedding of the j-th context block, encoded using BGE-M3. The oracle
relevance score of block cj is defined as

soracle
j = max

i
cos(qi, cj), (15)

and sorting {cj} by soracle
j produces the oracle ranking.

For the probe distributions, we consider two variants. (ActQKV) The probe vector is constructed
using activation bias ϕi:

Qt
probe =

|W |∑
i=1

∥ϕi∥1∑|W |
k=1 ∥ϕk∥1

hi,Q
t
mean =

1

|W |

|W |∑
i=1

hi, (16)

where |W | is the number of tokens in the query. The relevance score of each block under a probe is

sprobe
j = cos(Qt, cj), (17)

where Qt denotes either Qt
probe or Qt

mean.

To measure the agreement between the oracle and probe distributions, we compute the Spearman
correlation directly on the scores:

ρ =

∑N
j=1

(
soracle
j − s̄oracle

) (
sprobe
j − s̄probe

)
√∑N

j=1

(
soracle
j − s̄oracle

)2∑N
j=1

(
sprobe
j − s̄probe

)2 , (18)
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where

s̄oracle =
1

N

N∑
j=1

soracle
j , s̄probe =

1

N

N∑
j=1

sprobe
j .

Across 100 queries, the ActQKV probe achieves a median correlation of 0.73, whereas mean pooling
attains 0.54, representing a 19% absolute improvement as shown in Tab. 7. This demonstrates that
the activation-bias probe more faithfully recovers the oracle anchor block distribution.

D.2 MODEL COMPARISON

SQA
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Ret Cod
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Performance Comparison: Qwen2.5-7B vs LLaMA3-8B

Models
Qwen2.5-7B (Avg: 46.1)
LLaMA3-8B (Avg: 49.4)

(a) Long-Bench (Bai et al., 2023).
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Performance Comparison: Qwen2.5-7B vs LLaMA3-8B

Models
Qwen2.5-7B (Avg: 49.8)
LLaMA3-8B (Avg: 58.4)

(b)∞-Bench (Zhang et al., 2024).

Figure 4: Performance comparison based on different models: LLaMA3-8B (AI@Meta, 2024) v.s.
Qwen2.5-7B (Team, 2024).

Method KV Budget Model SQA MQA Sum FSL Ret Cod Avg.

ActQKV 2k Mistral-v0.2-7B 28.40 25.20 27.02 59.60 46.75 46.45 38.02
Q-LLM 2k Mistral-v0.2-7B 20.14 19.97 26.32 57.00 49.67 50.21 35.06
InfLLM 2k Mistral-v0.2-7B 27.76 21.60 26.17 57.07 40.29 49.84 33.55

Table 8: LongBench Evaluation Results on Mistral-v0.2-7B. Comparative evaluation results on
Mistral-v0.2-7B with 2K KV cache budget. Our method achieves superior average performance
while maintaining competitive results across different task categories.

We conduct experiments on Long-Bench (Bai et al., 2023) and∞-Bench (Zhang et al., 2024) using
LLaMA3-8B (AI@Meta, 2024) and Qwen2.5-7B (Team, 2024), as illustrated in Fig. 4. And also,
the experiments using Mistral-v0.2-7B are shown in Tab. 8

For LLaMA3-8B (AI@Meta, 2024), the model achieves state-of-the-art (SOTA) performance across
tasks in both Long-Bench and∞-Bench, demonstrating its versatility, particularly in factual retrieval
and code-related tasks. In contrast, although Qwen2.5-7B (Team, 2024) does not match the perfor-
mance of LLaMA3-8B across all categories, it exhibits substantial improvements over the baseline.
The most significant performance drop is observed in the Retrieval tasks, where Qwen2.5-7B under-
performs relative to LLaMA3-8B. This highlights a challenge in handling retrieval-related aspects
of the benchmarks. Nevertheless, Qwen2.5-7B consistently outperforms the baseline in these tasks,
underscoring the effectiveness of our approach, even though it does not yet match the top-performing
model in retrieval. However, Qwen2.5-7B excels in code-related tasks, even surpassing LLaMA3-8B
in this domain. This demonstrates the model’s proficiency in handling complex, domain-specific
tasks, such as those encountered in RepoBench-P. While Qwen2.5-7B shows some weaknesses in
retrieval, its performance in other specialized areas is either competitive or superior.

Overall, while Qwen2.5-7B shows a decrease in retrieval task performance compared to LLaMA3-8B,
it still surpasses the baseline, confirming the efficacy of our method, ActQKV. And ur ActQKV
achieves the best experimental results with the Mistral-v0.2-7B model.
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D.3 THE EFFECTIVENESS OF ACTIVATION-AWARE FUNCTIONS

The Activation Bias defined in Eq. (6) establishes a theoretical foundation for our activation-aware
selection mechanism. To empirically validate its effectiveness, we conduct comprehensive ablation
studies to verify the numerical sensitivity of energetic degree Φt in Eq. (9) and information density
Θℓ in Eq. (12). Specifically, we try to reverse the implementation of Eq. (6) as follows:

• Energetic Degree Φt ← 1
Φt , and give higher weight for lower degree:

• Information Density Θℓ ← 1
Θℓ , and give more budget for lower density:

The results of ablation studies are shown as follows:

Method LongBench Accuracy (%)

SQA MQA FSL Cod Avg.

ActQKV 39.4 42.3 65.1 62.0 49.4
w/o APQ&DCM 38.5 36.9 64.0 59.7 47.0
Reverse Impl. 36.5 36.0 60.1 58.6 44.0

Table 9: Sensitivity of energetic degree Φt and information density Θℓ.

In Tab. 9, we can see that compared with ActQKV and foundation (w/o APQ&DCM), the results with
reverse implementation are worse. The significant performance degradation (12.3%) under reverse
implementation conditions further demonstrates the effectiveness of our methodological design.

D.4 DYNAMIC KV PAIRS RECALL
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Figure 5: Average number of relevant KV pairs recalled for each layer in decoding stage based on
LLaMA3-8B-inst (AI@Meta, 2024). We randomly select 50 samples from Long-Bench and filter out
those with a length less than 8K.

Our approach employs a layer-wise key-value cut-off mechanism and an activation-aware probe-
Query construction strategy to more effectively match and recall relevant KV pairs. As shown in
Fig. 5, we report the average number of relevant KV pairs recalled for each layer.

The results in Fig. 3 and Fig. 5 demonstrate that our method, ActQKV, adapts to the varying
distributions across layers, ensuring a robust and efficient retrieval process. Notably, in layer 13,
which exhibits the lowest perplexity of similarity scores and receives the smallest KV budget, our
method fully aligns with the objectives outlined in Eq. (12). This consistency allows LLMs to
effectively process long-context information for long-context inference.

While the per-layer variation appears modest ( 2%), we observe significant cumulative effects when
processing long sequences. For instance, in a 25K-token sample divided into 100 sliding windows,
the DCM module dynamically adjusts KV recall decisions across layers, ultimately producing
meaningfully distinct attention patterns compared to static approaches. This is evidenced by the 2.2%
average performance gain of our full method over the w/o DCM baseline in ablation studies.
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D.5 LATENCY PERFORMANCE

Method Sequence Length Latency (seconds) Speed

Input (K) Output Prefill Decoder Total Relative to Stream

Stream 10 71 3.15 10.46 13.74 1.00
InfLLM 10 71 7.76 6.76 14.61 0.94
ActQKV 10 71 8.64 18.78 27.50 0.50
Stream 100 71 33.01 11.48 44.57 1.00
InfLLM 100 71 61.76 8.75 70.59 0.63
ActQKV 100 71 91.05 21.62 112.76 0.40
Stream 500 71 162.89 10.50 173.69 1.00
InfLLM 500 71 307.76 9.83 317.67 0.55
ActQKV 500 71 474.60 25.58 500.27 0.35

Table 10: Latency comparison on different input lengths. Latency measurements were conducted on
NVIDIA A800 80GB GPUs with FP16 precision based on the transformers framework. Stream
serves as the latency baseline (Relative=1.0).

Benchmark results indicate that ActQKV consistently exhibits higher latency than InfLLM across
all evaluated sequence lengths, with total inference time approximately 1.6–1.9× that of the current
SOTA baseline. The additional overhead primarily arises from its core innovation—activation-aware
KV cache retrieval—which requires roughly 19GB of VRAM for long-context inputs. Nevertheless,
ActQKV delivers substantial gains in long-context reasoning accuracy, demonstrating the effective-
ness of our design. In latency-tolerant applications such as medical report analysis, this trade-off
between efficiency and performance may be well justified. Future research will investigate hybrid
architectures to mitigate inference overhead while preserving accuracy.

E USAGE OF LLMS

This manuscript utilized LLMs for manuscript polishing, code formatting, and as a backbone in
experiments. The LLM did not contribute to the research design, data analysis, or the substantive
content of the work. We use GPT-4o and DeepSeek-R1 to polish our paper.

F LIMITATIONS

Our method achieves promising performance to enhance the relevant KV pairs retrieval for long-
context LLMs inference. And we believe that the interpretability of the retrieved KV pairs requires
further exploration in future works. Unlike non-autoregressive architectures in embedding models,
the auto-regressive architecture of LLMs results in the semantics of current tokens being influenced
by historical KV pairs. When processing a long context all at once, this interaction makes it difficult
to separate the semantics from various events because the retrieved key-value pairs mostly show
historical information. This introduces challenges in interpreting the retrieval results. Meanwhile,
future work will focus on hybrid architectures to reduce inference time while preserving accuracy.
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