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ABSTRACT

Long-horizon sparse-reward tasks, such as goal-conditioned or robot manipula-
tion tasks, remain challenging in offline reinforcement learning due to the credit
assignment problem. Hierarchical methods have been proposed to tackle this
problem by introducing sub-goal planning guided by value functions, which in
principle can shorten the effective planning horizon for both high-level and low-
level planners, and thereby avoiding the credit assignment problem. However, we
demonstrate that the sub-goal selection mechanism is unreliable, as it relies on
value functions suffering from generalization noise, which misguides value esti-
mation and thus leads to sub-optimal sub-goals. In this work, to provide more
reliable sub-goals, we novelly introduce a reliability-driven decision mechanism,
and propose Reliability-Driven HRL (RD-HRL) as the solution. The reliability-
driven decision mechanism provide decision-level targets for high-level policy,
thereby providing noise-immune decision spaces for them, ensuring the reliabil-
ity of sub-goals (which are termed as action-level targets in this paper). Com-
prehensive experimental results demonstrate that our approach RD-HRL outper-
forms baseline methods across multiple benchmarks, highlighting the compet-
itive advantages of RD-HRL. Our code is anonymously available at https:
//anonymous.4open.science/r/RD-HRL-243D.

1 INTRODUCTION

Reinforcement Learning (RL) (Kaelbling et al., 1996; Wiering and Van Otterlo, 2012; Li, 2017;
Sutton et al., 1999) has achieved remarkable success in many tasks, but it still faces significant
challenges in long-horizon sparse-rewards situations (Lee et al., 2022; Shin and Kim, 2023; Wang
et al., 2020). In such tasks, the agent often receives meaningful feedback only upon reaching dis-
tant goals, which makes credit assignment and exploration particularly difficult (Zhou et al., 2020;
Pignatelli et al., 2023). A common solution is Hierarchical Reinforcement Learning (HRL) (Pateria
et al., 2021), which decomposes complex tasks into a hierarchy of sub-tasks to address the issue.
Specifically, HRL is composed of a high-level policy and a low-level policy, where the high-level
policy proposes intermediate sub-goals with a value function, while the low-level policy learns how
to reach these sub-goals. By structuring the decision-making process in stages, HRL alleviates the
learning difficulties faced by agents in long-horizon sparse-reward situations (Barto and Mahadevan,
2003; Nachum et al., 2018).

However, the value function which is used to propose sub-goals is often subject to generalization
errors in practice, leading to unreliable sub-goals. Consider a simple scenario presented in Fig-
ure 1 (a), where the agent starts from state st and aims to reach the goal g. Intuitively, the optimal
path should include s1t+H , as is shown in the blue dotted line from Figure 1 (b). However, the value
estimation of s1t+H relies on cross-trajectory Bellman backup (i.e., generalized Bellman backup
from region z = {s1k, s2k}), where the generalized signal is often attenuated and unreliable (Zhang
et al., 2024), as is shown in Figure 1 (c). This may leads to the underestimated value of the optimal
sub-goal s1t+H , leading to the high-level policy to select a suboptimal sub-goal s2t+H instead, which
eventually results in a suboptimal trajectory, as is shown in the orange dotted line in Figure 1 (c). For
the sake of simplicity, we designate regions analogous to z, which facilitate the connection across
different trajectories, as transition regions.

Intuitively, if we can prevent the high-level policy from comparing sub-goal candidates whose value
signals are unreliable, and restrict its decision space to local regions that do not require such gener-
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Current State
Transition Regions

Goal Sub-Optimal Trajectory
Optimal TrajectoryStates

(a) (c)

Bellman Backup
Bellman Backup (Generalized)

(b)

Figure 1: The dataset contains two trajectories, τ1 and τ2, as is shown in (a). Note that, τ2 success-
fully reached the goal point g, yet τ2 contains a sub-optimal sub-trajectory; meanwhile, τ1 fails to
reach the goal, but τ1 provides an optimal sub-trajectory from st to s1k. In (b), we show the optimal
trajectory with blue dotted line, which contains the key transition { s1k → s2k }; in (c), we show that
existing HRL methods tend to plan sub-optimal trajectories (the orange dotted line) and the attenuate
generalized Bellman backup.

alization, the impact of generalization error can be substantially reduced. Building on this insight,
we propose Reliability-Driven HRL (RD-HRL), which augments HRL with a reliability-driven
decision mechanism. The reliability-driven decision mechanism selects decision-level targets for
the high-level policy from transition regions Z = {z}, thereby confining the high-level decision
space to areas without generalization requirements and decoupling sub-goal selection from cross-
trajectory value estimates. Note that for better presentation, we define the sub-goals generated by
the reliability-driven mechanism for the high-level policy as decision-level target, and define the
sub-goals assigned by the high-level policy to the low-level policy as action-level target. In this
way, we decompose action-level target (i.e., sub-goals) planning into two reliable subproblems: (1)
providing suitable decision-level targets through the reliability-driven decision mechanism, and (2)
producing reliable action-level targets conditioned on decision-level targets.

Specifically, the reliability-driven decision mechanism is composed of the Transition Region Ex-
traction (TRE) module, the Target Identification (TI) module and the Target Evaluation (TE) mod-
ule. The TRE module filters transition regions from the offline dataset, providing the candidates
of decision-level target for the TI module; the TE module estimates the low-noise value of tran-
sition regions for the TI module; the TI module selects proper transition regions as decision-level
targets for the high-level policy with the help of the TE module. Combining the reliability-driven
decision mechanism with the HRL framework, we propose RD-HRL for better decision-making in
long-horizon sparse-reward tasks. In summary, the contribution of our work can be summarized as:

• We propose a method Reliability-Driven HRL (RD-HRL), which novelly augments HRL
with a reliability-driven decision mechanism to provide decision-level target from tran-
sition regions for the high-level policy, thereby disentangling the high-level policy from
generalization error, providing reliable action-level target (i.e., sub-goals).

• We propose the Target Evaluation (TE) module for reliable decision-level target genera-
tion, and theoretically proved that our proposed TE module can effectively reduce value
noise in long-horizon sparse-reward scenarios. Experimental results further demonstrate
the importance of Temporal Abstracted Value Function.

• We conduct extensive experiments to validate the effectiveness of RD-HRL, along with
in-depth ablation studies to verify the impact of its key designs.

2 PRELIMINARIES
2.1 OFFLINE GOAL-CONDITIONED REINFORCEMENT LEARNING

Offline goal-conditioned reinforcement learning (offline GCRL) is the most representative task
in long-horizon sparse-reward scenarios, which can be formulated as a Markov Decision Process
(MDP) (Sutton and Barto, 2018) M = {S,A,P, γ,R, g} with a dataset D, where S is the state
space, A is the action space, P(st+1|st,at) is the transition function, γ represents the discount fac-
tor, g represents the goal, R(st,at, g) is a goal-conditioned reward function, which is commonly
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formulated as:

rt = R(st,at, g) =

{
1, ||ϕ(st)− g||2 ≤ ϵ,

0, otherwise,
(1)

where rt represents the reward received at time t, ϵ represents a given threshold, ϕ(·) maps a state
from the state space to the goal space. Following Liu et al. (2022), we assume the goal space is
identical to the state space, thus we omit ϕ(·) in this paper.

At each step t, the agent responds to the state of the environment st and goal g by action at according
to policy πθ parameterized by θ, and gets an instant reward rt. The interaction history is formulated
as a trajectory τ = {(st,at, rt)|t ≥ 0}, which further consists D as D ≜ {(st,at, rt, st+1)|t ≥ 0}.
Our goal is learning πθ to maximize the expected discounted accumulated reward without directly
interacting with the environment, i.e.,

πθ = argmax
θ

Eτ∼πθ
[
∑
t≥0

γtrt] . (2)

2.2 HIERARCHICAL REINFORCEMENT LEARNING

Hierarchical Reinforcement Learning (HRL) has been widely used for long-horizon sparse-reward
tasks, which generally consists of a high-level policy πh

θh
(gh

t |st, ĝ) and a low-level policy
πl
θl
(at|st, gh

t ), in which ĝ represents the goal for the high-level policy, πh generates action-level
targets that are easier to achieve for πl, and πl provides the action to be taken. Under the general
setting, the task goal g is taken as ĝ. Formally, πh

θh
(gh

t |st, ĝ) and πl
θl
(at|st, gh

t ) can be learned with
advantage weighting regression (AWR) objectives (Qing et al., 2024; Wang et al., 2023; Eysenbach
et al., 2023; Park et al., 2024a; Osa et al., 2019; Pateria et al., 2021; Bai et al., 2024):

Lθh = E[exp(β ·Ah(st+H , st, ĝ)) · logπh
θh
(st+H |st, ĝ)], (3)

Lθl = E[exp(β ·Al(at, st, st+H)) · logπl
θl
(at|st, st+H)], , (4)

where A represents the advantage signal, and Ah(st+H , st, ĝ) is approximated as V (st+H , ĝ) −
V(st, ĝ), Al(at, st, st+H) is approximated as V(st+1, st+H)− V (st, st+H), V (st, ĝ) is the value
of st conditioned on goal ĝ, β represents the subsumed temperature (Park et al., 2024a) , H is
a hyper-parameter, which is also known as waysteps. As discussed in Section 1, existing HRL
methods relies on value functions affected by generalization noise to select action-level targets,
which makes the optimal action-level targets challenging (Park et al., 2024a; Liu et al., 2022).

3 METHODOLOGY

To improve the action-level target selection and enhance performance in long-horizon sparse-reward
tasks, we propose a novel method called RD-HRL. Built based on HRL, RD-HRL introduces a
reliability-driven decision mechanism, which is composed of an Transition Region Extraction (TRE)
module, Target Identification (TI) module, and a Target Evaluation (TE) module, as it is illustrated in
Figure 2. The TRE module extracts transition regions from offline trajectories, serving as the candi-
date spaces where critical decision-level targets are likely to reside. TI selects a decision-level target
from these candidate regions, which acts as a reliable intermediate target to facilitate the high-level
policy in generating action-level targets. TE evaluates and refines the selected decision-level targets,
enabling the optimization of their selection and ensuring reliable guidance for the overall decision-
making process. Finally, the high-level policy provides generalization-noise-immune action-level
targets for the low-level policy to take actions. In the following, we will first give the details of
TRE, TI, and TE of the reliability-driven decision mechanism. Subsequently, we will discuss how
to incorporate the reliability-driven decision mechanism with HRL to enhance the decision-making
in long-horizon sparse-reward tasks. The pseudo code of RD-HRL can be found in Appendix B.

3.1 COMPONENTS OF RELIABILITY-DRIVEN DECISION MECHANISM

In this section, we describe the three essential novel components of our reliability-driven decision
mechanism: the Transition Region Extraction (TRE) module, the Target Identification (TI)
module, and the Target Evaluation (TE) module.

3
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action

(a) (b) (c)

Current State
Transition Regions

Goal Planning Horizon
Future TrajectoryStates TI TI ModuleLow-level Policy

High-level Policy

Figure 2: Framework of RD-HRL. (a) Overview of datasets, and transition regions filtered by the
Transition Region Extraction (TRE) module. (b) The Transition Identification (TI) module provide
gTI as the decision-level target; (c) The high-level policy and low-level policy. During evaluating,
the TI module predicts z1 as the decision-level target gTI , as shown in (b); then, gTI is provided to
the high-level policy πh to generate the action-level target for the low-level policy πl.

The Transition Region Extraction (TRE) module is responsible for extracting transition regions
from the offline dataset, thereby supplying the TI module with the candidate set for decision-level
target. Formally, a transition region represents a set of all states within a block, where the block
corresponds to the part where two or more trajectories are much closer to each other, for instance, z
in Figure 1 (a), z1, z2 and z3 in Figure 2 (a). We form the TRE module with a simple yet effective
strategy: first discretize the dataset into blocks, and then filter out the transition regions from these
blocks. Given a dataset D, we first perform K-Means clustering (Sculley, 2010) over the states in
D:

C = K-Means({s|s ∼ D}, N), (5)

where N represents the number of clusters, |C| = N and each c ∈ C represents a cluster. For
notational simplicity, we denote the cluster ID of state st as cst

, 0 ≤ cst
≤ N .

We then identify transition regions among these blocks. Intuitively, transition regions connect dif-
ferent trajectories. Thus, we propose the Future Diversity Index (FDI) as a metric for quantifying
the diversity of reachable futures from a region, thereby identifying transition regions. Formally, the
FDI with respect to a cluster c is defined as:

FDI(c) =
|{cst+1

|st ∈ c and st ∈ τ}| − 2

N
, τ ∼ D. (6)

The underlying reason is that, by connecting more trajectories, transition regions typically admit a
larger set of possible future directions. Note that we subtract 2 in the numerator because, for any
given cluster c, there must exist st s.t. cst+1 = c and must exist st′ s.t. cst′+1

̸= c, where st and st′

denote two arbitrary states within cluster c, st ̸= st′ . In other words, any cluster necessarily admits
at least two possible future clusters: transitioning to other clusters, or remaining in the current one.
Further, clusters with higher FDIs are considered as transition regions Z . In our paper, we consider
any cluster c with FDI(c) > 0 as one of the transition regions. Formally, we haveZ = {c | FDI(c) >
0}. In this paper, we determine the optimal number of clusters using Within-Cluster Sum of Squares
(WCSS) (Edwards and Cavalli-Sforza, 1965; Brusco and Steinley, 2007; Duong et al., 2013), please
refer to Appendix C for details.

The Target Identification (TI) module is responsible for selecting z ∈ Z as the decision-level
target. Without loss of generality, we can model TI as any arbitrary neural network parameterized
by θTI , represented as TIθTI

(gTI |st, g), where st is the state at time t, g represents the overall task
goal, and gTI is the decision-level target. Given the current state st and the overall task goal g, the
TI module selects z ∈ Z as the decision-level target gTI for the high-level policy. By providing
decision-level target for the high-level policy, the introduction of the TI module naturally restricts the
decision space of the high-level policy to regions without generalization demands, thereby providing
intermediate guidance for the high-level policy and addressing the generalization noise.

The Target Evaluation (TE) module is responsible for providing accurate evaluation of the
decision-level targets for the TI module. Represented as TEθTE

(s, g), the TE module estimates

4
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values only for s ∈ z, z ∈ Z , rather than for all s ∈ D. Our TE module performs updates only
within the transition regions, abstracting the intermediate fine-grained RL steps into a single macro-
step, thereby providing the temporal abstraction of value update. More importantly, by learning
solely with respect to z ∼ Z , our TE module naturally avoids generalization noise, providing reli-
able learning guidance for the TI module.
3.2 RELIABLE DECISION MAKING WITH RD-HRL
We now can couple the reliability-driven decision mechanism with HRL as RD-HRL for reliability-
driven decision-making. Given the current state st and the overall task goal g, the procedure of
RD-HRL is given by:

gTI ∼ TIθTI
(·|st, g), gh ∼ πh

θh
(·|st, gTI), at ∼ πl

θl
(·|st, gh), (7)

where gTI is the decision-level target given by the TI module for high-level policy, gh is the action-
level target given by the high-level policy for low-level policy, and at is the action to be taken with
respect to the current state st and task goal g.

Having established a basic understanding of the decision-making process in RD-HRL, we proceed to
introduce the training objective of RD-HRL. Given transition regions Z filtered by the TRE module,
we first learn the TE module with transition regions Z . Specifically, we first denote the skeleton of
τ with Z as τ̂ = {..., zi, zi+1, ...}. Similar to previous work Park et al. (2024a), our TE module can
be optimized by:

LθTE
= Eτ∼D[||TEθTE

(st1 , g)− (rt1,t2 + γd(st1 ,st2 ))TE ¯θTE
(st2 , g)||2], (8)

where z1, z2 ∈ τ̂ , st1 ∈ z1, st2 ∈ z2, ¯θTE denotes the parameters of the target TE module, and
rt1,t2 is designed as:

rt1,t2 =

{
1, ∃ s ∈ [z1, z2], ||st − g|| ≤ ϵ,

0, otherwise.
(9)

Note that since the transition region zi spans across trajectories, st1 st2 could be in different trajec-
tories. For the sake of simplicity, we assume st1 ∈ τ , there must ∃ st′2 ∈ z2, st′2 ∈ τ and st′2 ∼ st2 .
Therefore, d(st1 , st2) can be approximated by t′2 − t1. The advantages of the Trajectory Evaluation
(TE) module arise from two aspects. First, states st1 and st2 may originate from different trajec-
tories, which enables direct cross-trajectory propagation of value signals rather than generalization,
there by overcoming generalization error. Second, by focusing exclusively on transition regions, the
TE module requires only a limited number of value updates, thereby mitigating the accumulation of
errors incurred in each update.

Given transition regions Z as well as the TE module, we then provide the learning procedure of the
TI module. Similar to previous works (Park et al., 2024a; Osa et al., 2019; Pateria et al., 2021; Bai
et al., 2024), the TI module can be optimized with an AWR-style objective, as follows:

LθTI
= Ez∈Z,sz∈z[exp(βd(st,sz) ·ATI(sz, st, g)) · log(TIθTI

(sz|st, g))], (10)

where z is a transition region sampled from Z , sz is a state sampled from z within the same tra-
jectory as st, ATI represents the advantage function, which can be formulated as TEθTE

(sz, g) −
TEθTE

(st, g). d(st, sz) represents the temporal distance between st and sz . Different from learn-
ing the TE module, for the TI module, we carefully select sz ∈ z from the same trajectory as st to
avoid decision-level uncertainty. Therefore, supposing st ∈ τst , we have ∃ st′ ∈ τst s.t. st′ = sz;
then, we have d(st, sz) = t′ − t. Note that we introduced a weight raised to the power of d(st, sz)
in Lθπ

m
, as the distance between st and sz (i.e., t′ − t) is not always 1.

With respect to the conventional HRL components, we first optimize the value function VθV (s, g).
Specifically, with a trajectory τ being represented as τ = {(st,at, rt, st+1)}0≤t≤T , the value
function V can be optimized by:

LθV = Eτ∼D[||VθV (st, g)− (rt + γVθ̄V (st+1, g))||2], (11)

where γ is the discount factor, rt = 1||st+1−g||≤ϵ, θ̄V denotes the parameters of the target value
function Park et al. (2024a); Florence et al. (2022).

After learning the value function, following previous works (Qing et al., 2024; Wang et al., 2023;
Eysenbach et al., 2023; Park et al., 2024a; Osa et al., 2019; Pateria et al., 2021; Bai et al., 2024),
the high-level policy πh

θh
(st+H |st, sz) and the low-level policy πl

θl
(at|st, st+H) are learned with

Equation (3) and Equation (4), respectively. Note that for the learning of πh
θh
(st+H |st, sz), we

replace g with sz ∈ z, z ∈ Z , as we are now conditioning on transition regions rather than g.
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Table 1: The average normalized score of different HRL methods on various environments, with ±
denoting the standard deviation. The mean and standard deviation are computed over 50 random
seeds. We emphasize in bold scores within 3 percent of the maximum per task (≥ 0.97*MAX).
The results marked as ”-” indicates that the authors of the corresponding work did not provide
corresponding results, nor did they provide the corresponding code.

Datasets PlanDQ MSCP V-ADT DTAMP HD-DA HILP HILP-Plan HIQL DiffuserLite RD-HRL
antmaze-medium-diverse 93.0 ± 2.6 88.9 ± 2.2 52.6 ± 1.4 88.7 ± 3.7 88.7 ± 8.1 43.5± 7.6 49.2 ± 5.1 86.8 ± 4.6 87.6 ± 2.0 94.6±2.5
antmaze-medium-play 92.1±1.7 91.3 ± 1.3 62.2 ± 2.5 93.3 ± 0.9 85.8 ± 2.4 45.6 ± 4.0 46.6 ± 10.4 84.1 ± 10.8 88.8 ± 3.2 94.0±1.2
antmaze-large-diverse 86.0 ± 3.5 83.4 ± 3.2 36.4 ± 3.6 78.0 ± 8.8 83.6 ± 5.8 46.0 ± 12.7 64.5 ± 10.2 88.2 ± 5.3 75.2 ± 3.5 91.3±4.3
antmaze-large-play 85.3±6.3 86.5 ± 1.1 16.6 ± 2.9 80.0 ± 3.3 80.7 ± 6.1 49.0 ± 8.8 58.8 ± 11.2 86.1 ± 7.5 69.4 ± 6.5 95.3±2.1
antmaze-ultra-diverse 70.0 ± 4.5 55.1 ± 7.3 - 59.2 ± 3.1 52.2 ± 6.9 21.2 ± 11.2 59.2 ± 12.7 52.9 ± 17.4 69.3 ± 2.5 81.1±6.3
antmaze-ultra-play 71.5±3.3 36.0 ± 14.3 - 49.9 ± 7.1 59.1 ± 5.5 22.2 ±11.4 50.8 ± 9.6 39.2 ± 14.8 63.7 ± 4.2 72.9±5.1
kitchen-partial 75.0 ± 7.1 36.9 ± 3.3 46.0 ± 1.6 63.4 ± 8.8 73.3 ± 1.4 63.9 ± 5.7 59.7 ± 5.1 65.0 ± 9.2 71.4 ± 1.2 69.6±7.4
kitchen-mixed 71.7 ± 2.7 44.5 ± 5.3 46.8 ± 6.3 74.4 ± 1.4 71.7 ± 2.7 55.5 ± 9.5 51.9 ± 8.3 67.7 ± 6.8 64.8 ± 1.8 72.9±1.7
CALVIN 45.0 ± 19.8 49.9 ± 11.5 - 51.3 ± 2.9 44.6 ± 11.7 12.1 ± 5.1 14.5 ± 2.5 43.8 ± 39.5 52.1 ± 1.1 68.8±9.7

4 EXPERIMENT
In this section, we conduct experiments to evaluate the performance of RD-HRL and analyze the
impact of its key design. The computational resources and hyper-parameters details are available in
Appendix F.

4.1 EXPERIMENTAL SETUP

Benchmarks. We evaluate RD-HRL on long-horizon goal-conditioned tasks and robotic manipula-
tion tasks, which serve as canonical benchmarks for long-horizon sparse-reward problems (Liu et al.,
2022). For long-horizon goal-conditioned tasks, we adopt conventional antmaze-{medium, large}-
{diverse, play} (Todorov et al., 2012; Brockman et al., 2016), as well as antmaze-ultra-{diverse,
play} (Zhang et al.), which feature expanded and more complex maze layouts (requiring extended
temporal reasoning with increased spatial challenges) as our benchmarks. For robotic manipulation
tasks, we adopt Kitchen (Gupta et al., 2020) and CALVIN (Mees et al., 2022) as our benchmarks.

Baselines. We take methods that adopt states H-steps further as action-level targets, such as SOTA
methods HIQL (Park et al., 2024a), PlanDQ (Chen et al., 2024a), MSCP (Wu et al., 2024), V-
ADT (Ma et al., 2023), DTAMP (Hong et al., 2023), HD-DA (Chen et al., 2024b). We also take the
methods with median-based action-level target selection methods as baselines, such as HILP (Park
et al., 2024b) and HILP-Plan (Park et al., 2024b). Besides, we also take the method that uses three-
layer hierarchical design, DiffuserLite (Dong et al., 2024), as one of the baselines.

4.2 OVERALL RESULTS

The results are shown in Table 1. Note that we emphasize in bold scores within 3% of the maximum
per task (≥0.97*MAX), following previous work (Li et al., 2024). Overall, RD-HRL achieves top-
3% performance on 8 out of 9 tasks.

With respect to the goal-conditioned tasks, RD-HRL achieves top-3% performance on all of the 6
tasks, demonstrating the effectiveness of RD-HRL on tasks with low-dimensional goal spaces. Es-
pecially on antmaze-ultra-{play, diverse}, which are more complex than antmaze-{medium, large}-
{play, diverse}, RD-HRL outperforms our backbone method HIQL by 85.9% and 53.3%, demon-
strating the superior performance of RD-HRL over conventional HRL methods on tasks with low-
dimensional goal spaces.

For manipulation tasks, RD-HRL achieves the top-3% performance across all benchmarks except
for the kitchen-partial task. We believe that the poor performance on the kitchen-partial task arises
because the dataset lacks trajectories of completion across subtasks, preventing our method from
identifying transition regions. Notably, on CALVIN, our method outperforms HIQL by 57%. Given
the high dimensionality of the manipulation tasks, these results verify RD-HRL’s effectiveness in
high-dimensional spaces.

To demonstrate the advantages of RD-HRL more intuitively, we further visualize the decision-level
target gTI provided by the TI module on antmaze-ultra-diverse, please refer to Appendix E for
details. We additionally evaluate RD-HRL against flat GCRL approaches, please refer to Appendix
G.2 for details.

4.3 ABLATION STUDY

In this subsection, we conduct further experiments to investigate the key designs of RD-HRL. Specif-
ically, we design the following variants for ablation studies:

6
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Table 2: Ablation results of RD-HRL-TRE, RD-HRL-HP, RD-HRL-TE, RD-HRL-CU and RD-
HRL. We mark the best results of each task with bold.

Datasets HIQL RD-HRL-TRE RD-HRL-HP RD-HRL-TE RD-HRL-CU RD-HRL
antmaze-medium-diverse 86.8 ± 4.6 85.3 ± 2.2 59.1±11.9 90.7±1.9 92.8±3.1 94.6±2.5
antmaze-medium-play 84.1 ± 10.8 85.8 ± 5.2 66.7±7.3 86.8±3.2 91.4±2.7 94.0±1.2
antmaze-large-diverse 88.2 ± 5.3 89.2± 2.6 59.0±8.1 87.9±4.2 89.4±1.3 91.3±4.3
antmaze-large-play 86.1 ± 7.5 84.8 ± 4.9 54.5±7.3 85.8±1.3 90.2±4.3 95.3±2.1
antmaze-ultra-diverse 52.9 ± 17.4 59.8 ± 7.4 27.8±3.3 35.3±4.4 68.1±2.5 81.1±6.3
antmaze-ultra-play 39.2 ± 14.8 52.9 ± 9.2 32.6±9.2 57.8±4.9 66.0±2.1 72.9±5.1

• RD-HRL-TRE: learning the TI module with state at t+ 2H rather than z ∼ Z;

• RD-HRL-HP: removing high-level planner πh and directly providing gTI to πl;

• RD-HRL-TE: replacing TE with V ;

• RD-HRL-CU: removing cross-trajectory updating of value from the TE module.

The results are summarized in Table 2. By analyzing the results in Table 2, we can easily conclude
the following key findings:

(1) The benefits of transition regions Z extracted by the TRE module extend beyond merely
enabling larger H . Recall that we propose the Target Identification (TI) module, which provides
transition regions extracted by the TRE module as decision-level target gTI for the high-level policy
πh. In this part, we conduct experiments to validate the effectiveness of learning decision-level
target gTI from the transition regions Z .

Specifically, we further propose variant RD-HRL-TRE, which replaces Z as {st+2H}, and report
the results in Table 2. As can be observed, (1) RD-HRL outperforms RD-HRL-TRE on all of the
antmaze tasks, suggesting that the proposed transition region in our method indeed enables reliable
action-level target, leading to improved performance. (2) RD-HRL-TRE outperforms HIQL on most
tasks, indicating that increasing H may enhance performance to some extent.

(2) The Target Identification (TI) module goes beyond merely being a higher-level replacement
of πh. The Target Identification (TI) module delivers decision-level target to the high-level policy.
One might curious whether TI merely stands as a higher-level replacement of the high-level policy,
and whether it would instead be possible to pass such target directly to the low-level policy?

We believe the answers to the aforementioned questions are negative. We answer these via the
variant RD-HRL-HP, in which we remove the high-level policy, and directly provide the decision-
level target to the low-level policy. The results are summarized in Table 2. Comparison between
RD-HRL-HP with RD-HRL reveals a significant performance drop. This is particularly evident in
the antmaze-ultra-{diverse, play} environments, where performance declines by 65.2% and 55.3%,
respectively. We attribute this to that the Target Identification (TI) module goes beyond being just
a higher-level replacement of πh. The decision-level target gTI provided by the TI module may be
unreachable for low-level policy; in such cases, the high-level policy is required to decompose gTI .

(3) The advantages of Trajectory Evaluation (TE) Module stem both form the direct cross-
trajectory value update and the temporal abstraction. As an ablation, we first propose RD-
HRL-TE by replacing the TE module with V in RD-HRL to examine its contribution. As is shown
in Table 2, RD-HRL-TE exhibits a certain performance degradation, which is more pronounced in
complex environments such as antmaze-ultra-{diverse, play}. This demonstrates that the TE module
can handle long-horizon scenarios better than the original value function V . Moreover, despite the
performance decline, we can see that RD-HRL-TE still achieves results comparable to or better
than HIQL in 5 out of the 6 environments, further highlighting the advantages of the TI module
introduced by RD-HRL.

We believe the advantages of the TE module stem from the two critical components: the deter-
ministic cross-trajectory value update and temporal abstraction. To assess the contribution of these
components, we introduce a variant termed RD-HRL-CU, in which the deterministic cross-trajectory
value update is ablated while temporal abstraction is preserved. The corresponding results are re-
ported in Table 2. As can be observed, on the one hand, RD-HRL-CU exhibits a certain degree
of performance degradation compared with RD-HRL, with a notable drop of 16.1% on antmaze-
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ultra-diverse. This directly demonstrates the advantage conferred by the directly cross-trajectory
value update. On the other hand, RD-HRL-CU still consistently outperforms RD-HRL-TE across
all datasets, providing empirical evidence that the retained temporal abstraction contributes substan-
tially to its effectiveness. We attribute this to the fact that temporal abstraction reduces the frequency
of value updates, thereby mitigating the cumulative errors incurred by stepwise updates. Please refer
to Appendix D for theoretical proof.

4.4 FURTHER INVESTIGATIONS

4.4.1 COMPARISON BETWEEN HORIZON ENLARGEMENT AND RD-HRL

RD-HRL adopts the Target Identification (TI) module to provide decision-level target gTI for high-
level policy πh. To some extent, this may be regarded as equivalent to extending H , since the
decision-level target gTI is typically more long-term than high-level targets gh. Moreover, discus-
sions in Section 4.3 indicate that increasing H may enhance performance. Thus, a question arises:
Is the improved performance due to the larger H?

To verify this conjecture, we tested the performance of HIQL under different H and summarized
the results alongside RD-HRL’s performance in Figure 3. As can be observed, both on antmaze-
ultra-play and antmaze-ultra-diverse, with the waysteps H increasing, the performance of HIQL
improves, reaching its peak at H = 50. In other words, increasing H can improve the performance
of HIQL at early stages. Yet, note that our RD-HRL still outperforms HIQL under H = 50. After
H = 50, the performance decreases as H gets larger. We attribute this phenomenon to the fact
that as H continues to increase, the action-level targets gh of HIQL become increasingly difficult
for st to achieve, consequently leading to performance degradation. As a brief recap, although
increasing H does improve the performance, the TI module we introduced is fundamentally what
gives RD-HRL its competitive advantage.
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(b) antmaze-ultra-diverse
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RD-HRL

Figure 3: On antmaze-ultra-{play, diverse} environments, RD-HRL’s performance is compared with
HIQL using different waysteps H . While the choice of waysteps H affects HIQL’s performance,
RD-HRL consistently maintains its leading position.

4.4.2 EXTENDING TRANSITION REGIONS BEYOND EUCLIDEAN SETTINGS

While the results in Table 2 already demonstrate the feasibility of RD-HRL, specifically the TRE
module, in Euclidean-space tasks, many robotic manipulation tasks involve non-Euclidean state
spaces, which are harder to tackle. To verify the generality of our method across these distinct
geometrical settings, we further compare RD-HRL and RD-HRL-TRE on kitchen-partial, kitchen-
mixed, and CALVIN. The corresponding results are shown in Table 3.

Table 3: Comparison of RD-HRL and RD-HRL-TRE
on manipulation tasks.

Datasets RD-HRL-TRE HIQL RD-HRL

kitchen-partial 67.6± 3.2 65.0± 9.2 69.6± 7.4
kitchen-mixed 69.1± 5.4 67.7± 6.8 72.9± 1.7
CALVIN 35.5± 2.0 43.8± 39.5 68.8± 9.7

It can be observed that in non-Euclidean
robotic manipulation tasks, directly us-
ing st+2H as a decision-level target yields
only limited performance gains over RD-
HRL. This highlights the critical role of
the transition region in such tasks. More-
over, the performance degradation of RD-
HRL-TRE on certain benchmarks (e.g.,
CALVIN) further substantiates the neces-
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sity and effectiveness of the TRE module. Therefore, we conclude that extracting the transition
region remains feasible and beneficial in non-Euclidean tasks.

4.5 SUPPLEMENTARY EXPERIMENTS AND ANALYSIS
Beyond the aforementioned experiments, we performed supplementary studies, such as decision
process visualizations and hyperparameter analyses, to validate the effectiveness of RD-HRL. Please
refer to Appendix G for details.

5 RELATED WORKS

RD-HRL belongs to the narrow class of hierarchical reinforcement learning (HRL) methods. In a
broader sense, it is also related to option-based RL methods.

The narrow class of HRL methods are commonly designed as a two-level structure where a high-
level planner selects sub-goals over a fixed horizon for low-level planners (Pateria et al., 2021; Barto
and Mahadevan, 2003; Botvinick, 2012), such as PlanQD (Chen et al., 2024a), HIRO (Nachum
et al., 2018) and HD (Chen et al.). Such a commonly adopted design alleviates the credit assignment
problem, while making sub-goal selection coarse and rigid. To address this, G-ADT Ma et al.
(2024) selects states with the highest attainable value rather than the expected value to promote
exploration; DTAMP (Hong et al., 2023) generates the shortest sub-goal paths to improve planning
efficiency; RIS (Chane-Sane et al., 2021) and HILPs (Park et al., 2024b) choose intermediate states
from value functions and Hilbert space (Young, 1988) representations, respectively. It is worth
noting that although some methods adopt fixed-level hierarchical designs with three or more layers
(DiffuserLite (Dong et al., 2024) or HAC (Levy et al., 2019) for example), all these methods still
rely on noisy value functions for sub-goal selection, resulting in unreliable sub-goals.

Option-based methods exploit task semantics to decompose an overall task into semantically mean-
ingful sub-tasks. For example, DDO (Fox et al., 2017) employs a policy-gradient method under
behaviour cloning to discover reusable segments (i.e., sub-tasks) from datasets, where each seg-
ment can further contain finer-grained ones. Clustering-based approaches, such as Evans and
Şimşek (2023), represent the dataset as a graph and apply Louvain clustering (Blondel et al., 2008)
for discretisations, treating sub-clusters as low-level action candidates and higher-level clusters as
high-level policies, thereby achieving layer-by-layer decomposition without predefining the num-
ber of options. Similarly, FraCOs (Cannon and Şimşek, 2025) identifies frequently recurring sub-
sequences within successful trajectories as callable options to build multi-level skill hierarchies,
while (Hu et al., 2022) improves the efficiency of hierarchical discovery through causal graphs of
environmental variables. Despite their ability to achieve semantical decompositions, option-based
HRL methods often incur substantial training and planning costs, which motivates the development
of a low-cost HRL approach with reliable sub-goals.

More generally, RD-HRL can be viewed as related to trajectory-stitching methods, while distin-
guishing itself by providing reliable action-level targets through a reliability-driven decision mech-
anism. Please refer to Appendix H and J for detailed discussion.

6 CONCLUSION AND DISCUSSION
In this paper, we analyze the shortcomings of existing HRL methods when dealing with long-horizon
sparse-reward tasks: they select action-level targets (i.e., sub-goals) based on conventional value
functions that affected by generalization noise, which leads to sub-optimal trajectories. As the
solution, we propose RD-HRL, which introduces the novel reliability-driven decision mechanism
to select decision-level target from transition regions for high-level policy, thereby restricting the
decision space of high-level policy to local regions without generalization requirements, yielding
reliable action-level targets. Theoretical analysis and experimental results demonstrate the superior
performance of our method RD-HRL.

Limitations and Future Directions. Although our work has demonstrated promising performance
on long-horizon sparse-reward tasks, the current learning process for transition regions Z remains
relatively naive, relying exclusively on clustering. The decoupled execution of Z extraction and
policy learning inhibits flexible end-to-end joint optimization of regions and policies, thereby con-
straining the method’s overall performance, especially in high-dimensional observational tasks (e.g.,
vision-based tasks). Developing an end-to-end method based on RD-HRL could further extend its
applicability, representing a crucial direction for future enhancements.
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We have taken multiple steps to ensure the reproducibility of our results. The main text provides
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execution environment, and pre-processing scripts in an anonymous repository, enabling researchers
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employ Large Language Models (LLMs) for grammar checking in our paper.

B PSEUDO CODE OF RD-HRL

Algorithm 1 Training

1: Extract transition regions Z with the TRE module.
2: Initialize VθV , TEθTE

, TIθTI
, πh

θh
, πl

θl
.

3: while not converged do
4: # Learning of TIθTI

, πh
θh

, πl
θl

.
5: Update θTI with Equation (10).
6: Update θh with Equation (3).
7: Update θl with Equation (4).
8: # Learning of VθV , TEθTE

.
9: Update θV with Equation (11).

10: Update θTE with Equation (8).
11: end while

Algorithm 2 Evaluating

1: Initialize environment env, obtain current state st and goal g.
2: done← False.
3: while not done do
4: # Obtain decision-level target gTI with TIθTI

(gTI |st, g).
5: gTI

t ← TIθTI
(·|st, g).

6: # Obtain action-level target gh with πh
θh
(gh|st, gTI).

7: gh
t ← πh

θh
(·|st, gTI

t ).
8: # Obtain action a with πl

θl
(at|st, gh).

9: at ← πl
θl
(·|st, gh

t ).
10: # Interact with environment env.
11: new state st+1, reward, done← env(at).
12: end while

C DETERMINE OF NUMBER OF CLUSTERS N

Many studies have proposed pioneering methods for determining the optimal number of clusters in
K-Means (Kodinariya et al., 2013; Shi et al., 2021; Zhang et al., 2020). In this paper, we determine
the optimal number of clusters by computing the inflection point of the Within-Cluster Sum of
Squares (WCSS) (Edwards and Cavalli-Sforza, 1965; Brusco and Steinley, 2007; Duong et al., 2013)
of various numbers of clusters, in which WCSS is defined as:

WCSS =
∑
Ci∈C

∑
s∈Ci

||s− µi||2, (12)

where C is the set of clusters and Ci ∈ C. WCSS calculates the sum of squared distances from all
samples to their respective cluster centroids; a smaller WCSS value indicates that the samples are
closer to their cluster centers, signifying better clustering performance. Consequently, the optimal
cluster number can be conveniently selected by evaluating WCSS values across varying cluster
numbers.

Specifically, for each dataset, we define its candidate set for the number of clusters N as
{N1, N2, ..., Nn}, where N1 < N2 < ... < Nn. For a fixed dataset, as N increases, the decrease
in WCSS is inevitable because each cluster becomes smaller, thereby reducing the distance between
samples and their cluster centroids. However, this process is not linear. When the number of clus-
ters N is smaller than the optimal number of clusters N̂ , WCSS decreases more rapidly; whereas
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when N exceeds N̂ , the rate of WCSS reduction slows down. Consequently, the optimal number
of clusters N̂ can be determined by detecting the point where the WCSS reduction rate exhibits a
notable transition. In our paper, we select N as N̂ which has the maximum third-order derivative,
as it represents where the WCSS trend exhibits a significant change.

D THEORETICAL PROOF FOR THE ADVANTAGE OF THE TARGET EVALUATION
MODULE

Proposition 1. The Target Evaluation module yields lower accumulated noise.

Proof of Proposition 1. Under long-horizon sparse-reward settings, the credit assignment issue
tends to propagate noise in value function updates. Let us hypothesize that, for the ground-truth
value V (st), every update incorporates a Gaussian noise scaled by β. Assuming the value function
after N -step updates is V (st−N ), we can now quantitatively analyze the noise introduced by N -step
updates by calculating the entropy of V (st−N ) and V (st). In other words, h(V (st−N )) - h(V (st))
quantifies the amount of noise introduced. For ease of presentation, we omit the condition g and
parameters θ in this proof.

First of all, we need the analytical form of V (st−N ). For a state st, we have:

V (st) = γV (st+1) + rt + βV (st+1)ϵt, (13)

where ϵt is an independent Gaussian noise, ϵ ∼ N(0, 1). As γ and β are fixed parameters, we denote
γ = αβ. Then, we have V (st−N ) for N ≥ 2:

V (st−N ) = γV (st−N+1) + rt−N + βV (st−N+1)ϵt−N (14)
= αβV (st−N+1) + rt−N + βV (st−N+1)ϵt−N (15)
= (αβ + βϵt−N ) · V (st−N+1) + rt−N (16)
= (αβ + βϵt−N )[(αβ + βϵt−N+1) · V (st−N+2) + rt−N+1] + rt−N (17)
= (αβ + βϵt−N )(αβ + βϵt−N+1) · V (st−N+2) + (αβ + βϵt−N ) · rt−N+1 + rt−N

(18)
= (αβ + βϵt−N )(αβ + βϵt−N+1)(αβ + βϵt−N+2) · V (st−N+3) (19)
+ (αβ + βϵt−N+1) · rtN+2(αβ + βϵt−N )(αβ + βϵt−N+1) · rt−N+1 (20)
+ rt−N (21)

= ... (22)

= V (st)Π
N−1
k=0 (αβ + β · ϵt−N+k) (23)

+

N−1∑
j=1

[rt−j ·ΠN−j−1
k=0 (αβ + βϵt−N+k)] (24)

+ rt−N (25)

≈ V (st)Π
N−1
k=0 (αβ + β · ϵt−N+k). (26)

Note that as we are considering the long-horizon sparse-reward settings, we consider r = 0 for
simplicity.

The Gaussian process with multiplicative noise leads to computational complexity. For simplicity,
since the logarithmic transformation log(·) is injective, which does not affect the differential entropy
of the distribution, given Equation (26), we have:

log(V (st−N )) = log(V (st)) +

N−1∑
k=0

log(αβ + β · ϵt−N+k) (27)

= log(V (st)) +N ((N − 1)αβ, (N − 1)β2). (28)

Assuming V (st) = N (µt, σ
2
t ), we have V (st−N ) = N (µt + (N − 1)αβ, σ2

t + (N − 1)β2). Then
we have the differential entropy of log(V (st)) and log(V (st+N )) as:
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h(log(V (st))) =
1

2
log(2πeσ2

t ) + log(µt)−
1

2
(
σt

µt
)2, (29)

h(log(V (st+N ))) =
1

2
log(2πe(σ2

t +(N−1)β2))+ log(µt+(N−1)αβ)− 1

2

σ2
t + (N − 1)β2

(µt + (N − 1)αβ)2
.

(30)

With Equation (29) and Equation (30), we have the information of noise introduced by the plain
value function V :

ηV = h(log(V (st+N )))− h(log(V (st))). (31)

Meanwhile, with our temporal abstracted value function TE, the steps required to update from
TE(st) to TE(st+N ) required N ′ ≪ N steps, as the temporal abstracted value function TE is
learned on the sketleon of trajectories. Although, similarly, we have the information of noise intro-
duced by our temporal abstracted module TE as:

ηTE = h(log(TE(st+N )))− h(log(V (st))), (32)

where h(log(TE(st+N ))) is the differential entropy of logged updated temporal abstracted module
TE. Then we have:

ηTE − ηV = [h(log(TE(st+N )))− h(log(V (st)))]− [h(log(V (st+N )))− h(log(V (st)))] (33)
= h(log(TE(st+N )))− h(log(V (st+N ))) (34)

=
1

2
log(2πe(σ2

t + (N ′ − 1)β2)) + log(µt + (N ′ − 1)αβ)− 1

2

σ2
t + (N ′ − 1)β2

(µt + (N ′ − 1)αβ)2

(35)

− (
1

2
log(2πe(σ2

t + (N − 1)β2)) + log(µt + (N − 1)αβ)− 1

2

σ2
t + (N − 1)β2

(µt + (N − 1)αβ)2
)

(36)

=
1

2
log(2πe(σ2

t + (N ′ − 1)β2))− 1

2
log(2πe(σ2

t + (N − 1)β2)) (37)

+ log(µt + (N ′ − 1)αβ)− log(µt + (N − 1)αβ) (38)

+
1

2

σ2
t

(µt + (N − 1)αβ)2
− 1

2

σ2
t

(µt + (N ′ − 1)αβ)2
(39)

+
1

2

(N − 1)β2

(µt + (N − 1)αβ)2
− 1

2

(N ′ − 1)β2

(µt + (N ′ − 1)αβ)2
. (40)

As N ′ ≪ N , we have:

1

2
log(2πe(σ2

t + (N ′ − 1)β2))− 1

2
log(2πe(σ2

t + (N − 1)β2)) < 0, (41)

log(µt + (N ′ − 1)αβ)− log(µt + (N − 1)αβ) < 0, (42)

1

2

σ2
t

(µt + (N − 1)αβ)2
− 1

2

σ2
t

(µt + (N ′ − 1)αβ)2
< 0. (43)

For the last factor, we define
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f(N) =
N − 1

(µt + (N − 1)αβ)2
, N ≥ 0. (44)

Then we have:

∂f

∂N
=

(µt + (N − 1)αβ)2 − 2αβ(µt + (N − 1)αβ)(N − 1)

(µt + (N − 1)αβ)4
(45)

=
(µt + (N − 1)αβ)− 2αβ(N − 1)

(µt + (N − 1)αβ)3
(46)

=
µt − αβ(N − 1)

(µt + (N − 1)αβ)3
. (47)

Note that γ = αβ is set close to 1 in RL, and under the sparse reward setting, we have 0 ≤ µt ≪ N ,
thus ∂f

∂N < 0, f(N) is monotonically decreasing. Further, with N ′ < N , we have:

1

2

(N − 1)β2

(µt + (N − 1)αβ)2
− 1

2

(N ′ − 1)β2

(µt + (N ′ − 1)αβ)2
=

β2

2
(f(N)− f(N ′)) < 0. (48)

Considering Equation (40), Equation (41), Equation (42), Equation (43) and Equation (48) together,
we now have ηTE − ηV < 0. In conclusion, the Target Evaluation (TE) module yields lower noise.

E ANALYSIS OF DECISION-LEVEL AND ACTION-LEVEL TARGET PREDICTION

To better illustrate the Target Identification (TI) module in RD-HRL, taking antmaze-ultra-diverse as
an example, we show how the decision-level target steers the agent toward the final target in Figure 6,
and show how the high- and low-level policies accomplish the decision-level target in Figure 5. We
have also visualised trajectories in the dataset, and the filtered transition regions Z of antmaze-ultra-
diverse in Figure 4. As can be observed in Figure 6, the TI module generates decision-level targets
gTI from transition regions Z , guiding the high- and low-level policy towards the task goal. Diving
into Figure 5, we can observe that the agent achieves an action-level target under the guidance of
high-level policy; after the agent achieves the decision-level target, the TI module produces new
decision-level targets.

F EXPERIMENTAL ENVIRONMENT AND HYPERPARAMETERS

RD-HRL is trained using Flax under JAX (Sapunov, 2023) on an Ubuntu 22.04 LTS server, with
4 × NVIDIA A40 (Ampere architecture, 48GB VRAM each), 72-core processor (dual-socket Intel
Xeon Platinum), and 503GB memory.

We design the TI module, TE module, value function, high-level and low-level policy as MLPs. The
hyper-parameters are summarized in Table 4, please refer to Table 4 for details.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 PRELIMINARY ATTEMPT IN VISUAL SCENARIOS

RD-HRL has demonstrated significant advantages in goal-conditioned tasks and robotic manipula-
tion tasks. Nevertheless, scaling RD-HRL to visual scenarios is a promising idea.

We believe this can be solved in two ways: (1) As we discussed in Section 6, we could try to de-
sign the pipeline as an end-to-end process. In this scenario, filtering transition regions could be
performed on task-relevant embeddings generated by a jointly-learned encoder. Or, more generally,
(2) we could attempt to use a general large models to understand high-dimensional observations
and generate universal embeddings, then perform clustering on these embeddings. However, these
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Figure 4: Trajectories in
dataset (upper) and ex-
tracted transition regions
(lower).

Initial State

Current State Goal

Histroy Trajectory

Future Trajectory

Action-level Target

Decision-level Target

Figure 5: After the low-level policy achieved the decision-level target,
the TI module produces decision-level targets by sampling from further
transition regions.

Table 4: Detail of Hyper-parameters. We set the other hyperparameters to be consistent with those
in HIQL Park et al. (2024a).

Hyperparameter Value
Value discounts 0.99
Goal dimensions 10 (kitchen, CALVIN), 29 (Antmaze)
Training steps 1000000
Batch size 1024
TI module dimensions (256, 256)
TI module dimensions (512, 512, 512)
Policy MLP dimensions (256, 256)
Value MLP dimensions (512, 512, 512)
Representation MLP dimensions (512, 512, 512)
Activation GELU
Optimizer Adam
Learning rate 0.0003
Target network decay rate 0.005

embeddings might be task-agnostic, and this approach suffers from the drawbacks of separate exe-
cution discussed in Section 6. Therefore, we believe solution (1) is a more promising direction. We
will leave solution (1) as our future work.

Nevertheless, in this section, we present an preliminary attempt to apply RD-HRL to more challeng-
ing visual scenarios. Specifically, we proposed the following variants and evaluated their perfor-
mance on a visual environment, procgen-500 (Park et al., 2024a):
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GoalInitial State Current State Decision-level TargetAction-level Target Histroy Trajectory Future Trajectory

Figure 6: By generating decision-level targets, TI module coordinates the high-level and low-level
planning processes.

• RD-HRLe: Uses embeddings from DINOv2 (Oquab et al.) for discretization and filtering of
trajectory-adjacent regions. DINOv2 is a pretrained Vision Transformer (ViT) (Han et al.,
2022) model. The results of RD-HRLe serve to validate the performance of RD-HRL in a
general embedding scenario.

• RD-HRLe+: Uses embeddings from HIQL for discretization and filtering of transition re-
gions. As a HRL method, the encoder of HIQL produces task-relevant embedding; there-
fore, the results of RD-HRLe+ preliminarily verify the performance of RD-HRL in a task-
relevant embedding scenario. Note that we use PCA (Maćkiewicz and Ratajczak, 1993)
to reduce the size of HIQL’s embedding to match that of DINOv2’s embedding before
performing transition regions extraction.

• RD-HRL: After flattening the raw RGB observations, we apply PCA to reduce their size to
match that of DINOv2’s embeddings before performing transition regions extraction.

The results are summarized in Table 5. Note that Performance (train) refers to the performance
on the environment levels used for training the policy, whereas Performance (test) refers to the
performance on the environment levels used for testing the policy.

Table 5: Results of RD-HRLe, RD-HRLe+ and RD-HRL on visual task procgen-500.

Methods RD-HRL RD-HRLe RD-HRLe+

Performance (train) 3.5 ± 2.2 11.5 ± 5.1 13 ± 3.9
Performance (test) 0 2 ± 1.7 7.5 ± 4.3

It can be observed that both at the train level and the test level, when the transition region extraction is
performed directly on the observation space, it is hard for RD-HRL to complete the tasks. However,
when the transition region extraction is performed directly on the general embeddings (RD-HRLe),
RD-HRL achieves a certain success rate, indicating that general embeddings can help alleviate the
limitations of RD-HRL in high-dimensional observation scenarios. Moreover, RD-HRLe+ achieves
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Table 6: The average normalized score of different GCRL methods on various environments, with
± denoting the standard deviation. The mean and standard deviation are computed over 50 random
seeds. We emphasize the best scores of each task in bold.

Datasets GCBC GC-POR GC-IQL RD-HRL
antmaze-medium-diverse 67.3±10.1 74.8 ± 11.9 63.5 ± 14.6 94.6±2.5
antmaze-medium-play 71.9±16.2 71.4 ± 10.9 70.9 ± 11.2 94.0±1.2
antmaze-large-diverse 20.2±9.1 49.0 ± 17.2 50.7 ± 18.1 91.3±4.3
antmaze-large-play 23.1±15.6 63.2 ± 16.1 56.5 ± 14.4 95.3±2.1
antmaze-ultra-diverse 14.4±9.7 29.8 ± 13.6 21.6 ± 15.2 81.1±6.3
antmaze-ultra-play 20.7±9.7 31.0 ± 19.4 29.8 ± 13.6 72.9±5.1
kitchen-partial 38.5±11.8 18.4 ± 14.3 39.2 ± 13.5 69.6±7.4
kitchen-mixed 46.7±20.1 27.9 ± 17.9 51.3 ± 12.8 72.9±1.7
CALVIN 17.3±14.8 12.4 ± 18.6 7.8 ± 17.6 68.8±9.7

better results than RD-HRLe, demonstrating that task-relevant embeddings can further address this
limitation.

In summary, although this is only a rough initial validation, the results offer preliminary support for
our future work aimed at enhancing RD-HRL’s capability in high-dimensional settings, demonstrat-
ing the feasibility of our future work.

G.2 COMPARISON OF RD-HRL WITH FLAT GCRL METHODS

We additionally evaluate RD-HRL against conventional GCRL approaches, including GCBC (Ding
et al., 2019), GC-POR (Xu et al., 2022), and GC-IQL (Kostrikov et al.; Park et al., 2024a). The
results are summarized in Table 6. As can be observed, RD-HRL outperforms the baselines on all
of the 9 tasks, demonstrating the advantages of RD-HRL.

G.3 HOW ABOUT APPLYING THE TARGET EVALUATION (TE) MODULE ON HIGH-LEVEL
PLANNER, INSTEAD OF THE ADDITIONAL TI MODULE?

We introduce a TI module trained with a Target Evaluation (TE) module that provides low-noise
value estimates for decision-level target selection, yielding promising results. However, such a
design raises a natural question: Can the TE module be applied directly to the high-level planner
in a standard two-level HRL architecture, and obviate the TI module?

Before addressing this question further, we would like to clarify a crucial point: the TE module and
TI module are complementary components that operate synergistically, the TE module is fundamen-
tally designed to estimate the value of transition regions, not for any states in the dataset. However,
the high-level planner requires V (s, g) for any s ∈ S and any g ∈ G, which is a capability that
exceeds the scope of the TE module.

Nevertheless, we conducted experiments and propose variant RD-HRL-TI, which directly applies
the TE module to the high-level policy πh. Results are summarized in Table 7. As can be observed,
compared to HIQL, directly applying the TE module to πh brings only a negligible performance
improvement, which is far inferior to applying the TE module to the TI module. This suggests that
combining the TE module with the TI module is a more reasonable design.

Table 7: Comparison among HIQL, RD-HRL and RD-HRL-TI.

Datasets HIQL RD-HRL-TI RD-HRL

antmaze-ultra-play 39.2± 14.8 40.0± 8.9 72.9± 5.1
antmaze-ultra-diverse 52.9± 17.4 54.7± 4.2 81.1± 6.3
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G.4 HOW SENSITIVE IS RD-HRL TO THE NUMBER OF CLUSTERS?

To further explore the impact of cluster number N on RD-HRL, we evaluate RD-HRL with various
values of N . The results are summarized in Table 8. As shown, the performance improved as the
number of clusters increased, peaking at N=60. Further increasing the number of clusters led to a
performance decline. We believe this is because: (a) With fewer clusters, the divisions of clusters
were too rough, preventing the TI module from accurately learning the accurate decision-level target.
(b) As the number of clusters grew, their size decreased. This resulted in more clusters having high
FDI, which obscured the advantage of true transition regions over other regions.

Table 8: Performance of RD-HRL with various N .

Datasets N = 10 N = 20 N = 40 N = 60 N = 80 N = 100
antmaze-ultra-play 53.3 ± 7.3 52.8 ± 2.2 66.2 ± 3.9 72.9 ± 5.1 59.1 ± 1.2 55.7 ± 2.8
antmaze-ultra-diverse 52.0 ± 9.2 69.2 ± 1.1 77.0 ± 2.9 81.1 ± 6.3 73.1 ± 2.6 59.7 ± 3.3

G.5 IS THE TRAINING OVERHEAD INCURRED BY THE TI MODULE AND THE TE MODULE
JUSTIFIABLE?

To evaluate the acceptability of these additional computational costs introduced by the TI module
and the TE module, we measured the training time consumption of HIQL and RD-HRL across
different datasets, as is summarised in Table 9. It can be observed that the introduction of the TI
module and the TE module indeed brings about a decline in training efficiency; however, even for
the slowest learning speed of 82 iterations per second with a batch size of 32 on antmaze-ultra-play,
RD-HRL only requires 3.4 hours to learn 106 steps, meaning RD-HRL remains efficient.

In summary, although the introduction of the TI module and the TE module increases computational
overhead, the overall execution time of RD-HRL remains within an acceptable range, thanks to the
efficiency of the JAX framework.

Table 9: Comparison of training effiency of HIQL and RD-HRL.

Datasets HIQL RD-HRL RD-HRL
(iterations/s) (iterations/s) (1M steps/h)

antmaze-ultra-play 257 82 3.4
antmaze-ultra-diverse 261 84 3.3
antmaze-large-play 249 87 3.2
antmaze-large-diverse 253 79 3.5
antmaze-medium-play 255 88 3.1
antmaze-medium-diverse 262 83 3.3

kitchen-mixed 311 129 2.1
kitchen-partial 315 132 2.1

CALVIN 326 125 2.2

G.6 INVESTIGATIONS OF ALTERNATIVES OF K-MEANS

To explore clustering methods beyond K-Means (Ahmed et al., 2020), we experimented with
the density-based method DBSCAN (Deng, 2020) and the graph-augmented method HDB-
SCAN (McInnes et al., 2017), and visualized their clustering results in Figure 7. As is shown,
the clustering results of both DBSCAN and HDBSCAN turned out to be chaotic, making it impossi-
ble for us to infer transition regions or conduct further experiments based on those cluster methods.
We believe this is because that DBSCAN and HDBSCAN assume that clusters consist of density-
connected regions, but trajectory data typically form sparse and non-uniform structures, making
density-based assumptions unreliable.
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(a) DBSCAN (b) HDBSCAN

Figure 7: Cluster results of antmaze-ultra-diverse with DBSCAN and HDBSCAN.

Table 10: Comparison of HGCBC and RD-HGCBC.

Dataset HGCBC RD-HGCBC

antmaze-ultra-diverse 39.4 42.0
antmaze-ultra-play 38.2 49.8

G.7 APPLICATION OF RD-HRL ON HGCBC

To verify whether the reliability-driven decision mechanism proposed in RD-HRL can also benefit
other methods, we incorporate the reliability-driven decision mechanism into HGCBC and propose
RD-HGCBC. The results are summarized in Table 10. As shown, RD-HGCBC achieves clear im-
provements on both antmaze-ultra-play and antmaze-ultra-diverse, with a particularly notable gain
of 30.4% on antmaze-ultra-play. This demonstrates the applicability of the RD framework to other
algorithms.

G.8 THE IMPACT OF THE FDI THRESHOLDING OF THE PERFORMANCE OF RD-HRL.

We have also evaluated how different FDI thresholding choices affect model performance, and we
summarize the results in Table 11. As can be observed, as the FDI threshold becomes more per-
missive, the model’s performance gradually degrades. The drop is particularly pronounced when
the FDI × N decreases from 3 to 2. This is because most non–transition regions have two future
clusters; thus, when we relax the FDI threshold from 3 to 2, the model is exposed to a large number
of noisy transition regions, which leads to the observed performance degradation.

Table 11: The impact of the FDI thresholding.

FDI * N + 2 1 2 3

antmaze-ultra-play 56.6 60.3 72.9
antmaze-ultra-diverse 62 64.3 81.1
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G.9 ANALYSIS OF TRANSITION REGIONS IN MANIPULATION TASKS

We further visualize the transition regions extracted from the kitchen-mixed environment in Figure 8
to demonstrate the soundness of RD-HRL in manipulation tasks. As is shown, the frames in which
the robot arm is positioned between the table and the cabinet are marked as transition regions. This
is because the trajectories in kitchen-mixed follow a consistent ordering: the agent typically manipu-
lates the kettle and microwave on the table first, then moves on to the light switch and burner bottom
in the middle, and finally opens or slides the cabinet doors at the top. Consequently, the intermediate
frames, where the arm is located between the table and the cabinet, serves as a state that connects
tasks on the table (kettle and microwave) with tasks on the top (light switch, burner bottom or the
cabinet doors). This illustrates that our method effectively identifies transition regions in manipu-
lation tasks. Furthermore, the results in Table 1 provide evidence of our method’s performance on
manipulation benchmarks.

G.10 ANALYSIS OF SELECTED TRANSITION REGIONS AND DOWNSTREAM TASK SUCCESS

We computed the probability distribution over the transition regions selected by TI across 3,500
trajectories, and we also measured the normalized score associated with each selected transition
region. The results are summarized in Figure 9, in which the the horizontal axis represents the
IDs of the 18 extracted transition regions, labeled sequentially from 0 to 17; the vertical axis shows
the probability of being selected after passing through a given transition region and the average
normalized score obtained after passing through that transition region, respectively.

It can be observed that the transition regions chosen by the TI module correspond to high success
rates, demonstrating that the TI module’s selection of transition regions is positively correlated with
downstream task success. In addition, transition region 14 provides a representative example of a
low-return transition region. Its extremely low selection probability indicates that our method is
capable of avoiding transition regions that yield low success rates for the current state. In other
words, TI’s selection of transition regions is closely related to the success of downstream tasks.

G.11 IMPACT OF FDI ON TRANSITION REGIONS EXTRACTION

Theoretically, by connecting more trajectories, transition regions typically admit a larger set of pos-
sible future directions. To further illustrate the role of FDI in identifying transition regions, we
visualize the transition regions selected under different FDI values as is shown in Figure 10. In sum-
mary, using FDI×N > 0 (i.e., FDI > 0) as the selection criterion yields more reasonable transition
regions.

G.12 EXTENDING RD-HRL TO ONLINE REINFORCEMENT LEARNING

We have also transferred the RD-HRL to HAC (Levy et al., 2019) and propose RD-HAC. The results
are summarized in Figure 11. As shown, in the early and middle stages (700k - 1500k steps),
RD-HAC exhibits a significant advantage. (During the first 0–700k steps, the replay buffer is still
sparsely populated. As a result, the RD mechanism cannot yet fully demonstrate its advantages.) As
exploration progresses (after 1500k steps), the performance of RD-HAC and HAC becomes similar.
However, RD-HAC achieves the best success rate of 91% at 1200k steps, whereas HAC reaches
its best success rate of 89% at 1900k steps, demonstrating that the RD mechanism still shows its
advantage in the online setting.

We believe this stems from RD’s high-level understanding of the environment and its efficient use
of samples. In the early and middle stages, the replay buffer collected by HAC during exploration
is insufficient to support a thorough understanding of the environment, leading to the possibility
of suboptimal decisions. In contrast, in RD-HAC, by extracting transition regions, the introduced
RD mechanism enables it to have a comprehensive understanding of the environment even with
a limited number of samples. As a result, RD-HAC outperforms HAC in the early and middle
stages. However, as the samples collected by HAC during exploration become more abundant, the
performance of HAC should improve faster, making the advantages brought by RD may no longer
be as pronounced.
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Figure 8: Example of transition regions in kitchen-mixed.
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Figure 9: Probability of transition regions and normalized scores achieved after each transition
region in antmaze-ultra-diverse.

(a) FDI × N > 0 (b) FDI × N > −1 (c) FDI × N > −2

Figure 10: transition regions extracted with different FDI thresholds.

H THE STITCHING CAPABILITY OF RD-HRL

Prior work has suggested that an optimal value function can naturally achieve trajectory stitching, as
it implicitly organizes the dataset into a graph structure (Char et al., 2022). However, this optimality
assumption is often unrealistic, especially in long-horizon sparse-rewards tasks (Wen et al., 2024;
Kazemnejad et al., 2024). Consequently, the cumulative noise and generalization noise of flat value
functions hinder existing HRL methods from performing reliable policy-level trajectory stitching.

Fortunately, by introducing both the TI module and the TE module, RD-HRL provides a principled
guarantee of trajectory stitching. On the one hand, the TI module constructs a decision domain for

Figure 11: Comparison of HAC and RD-HAC on ant-four-rooms.
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the high-level and low-level policies that is free from accumulated errors and generalization noise.
Within the local decision domain partitioned by the decision-level targets, the conventional value
function remains optimal for the high-level and low-level policies. On the other hand, the TE module
provides the TI module with a decision basis that is likewise robust against accumulated errors and
generalization noise. Overall, the design of RD-HRL enables each policy to make decisions guided
by (locally) optimal value functions, thereby ensuring reliable policy-level stitching.

I DISCUSSION OF UNRELIABLE SUB-GOALS

A large body of work can serve as indirect support for unreliable sub-goals. Take Figure 1 as an ex-
ample, unreliable sub-goals arise from unreliable value functions, which in turn stem from the value
functions’ reliance on generalization. This introduces indirect supervision signals for s1t+H in effect.
For instance, in pseudo-labeling approaches (Pham et al., 2021; Rizve et al., 2021; Li et al., 2023),
pseudo-labels are regarded as generalized supervisory signals, and numerous studies employ consis-
tency regularization to reinforce the dominance of direct supervision in model learning (Abuduweili
et al., 2021; Wu et al., 2022), or use thresholding of pseudo-labels to directly discard low-confidence
generalized signals (Guo and Li, 2022). This implies that the signals from direct samples are more
reliable than those from indirect samples (pseudo labels).

J DISCUSSION OF RD-HRL AND OTHER STITCHING METHODS

As is discussed in Appendix H, our method is also analogous to trajectory stitching methods in a
broader sense. Here, we provide a detailed analysis of trajectory stitching methods and discuss in
detail the differences and connections between RD-HRL and these methods.

To better leverage offline data and approach the dataset’s optimal policy, many works focus on tra-
jectory stitching. Some methods operate at the dataset level for data augmentation. For example,
BATS (Char et al., 2022) trains a tabular MDP on collected data and uses learned dynamics models to
generate short connecting trajectories, which are then used to train the policy. To overcome the lim-
itations of Bellman completeness, MBRCSL (Zhou et al.) applies dynamic programming to stitch
together segments from distinct trajectories without relying on Bellman completeness. Other ap-
proaches focus on stitching subsequences to construct higher-quality trajectories, such as TS (Hep-
burn and Montana, 2022), which searches for candidate next states that lead to higher returns. In
addition, Venkatraman et al. enhances multi-modal data modeling by imposing batch constraints on
out-of-distribution (OOD) data, combined with diffusion to achieve embedding-level augmentation.

Other methods enable trajectory stitching at the policy level by introducing additional policy de-
signs. Focusing on the stitching ability of value or Q-functions, COG-RL (Singh et al., 2020) em-
ploys model-free dynamic programming based on Q-learning to stitch together different skills, while
QCS (Kim et al., 2024) builds on this idea by introducing an assistance function as a regularization
term to improve Q-guided stitching. With the rise of sequential decision-making approaches, sev-
eral works have attempted trajectory stitching through the Decision Transformer (DT) (Chen et al.,
2021). For example, EDT (Wu et al., 2023) enhances stitching by learning maximum achievable
returns. ADT (Ma et al., 2024) further combines a hierarchical learning framework, where higher
levels provide value or goal prompts to lower levels to improve stitching. However, ADT still does
not explicitly design for stitching, instead relying on the value function for implicit stitching. Simi-
larly, QDT (Yamagata et al., 2023) augments DT’s stitching capability by leveraging Q-networks to
relabel the return-to-go (RTG).

Our method RD-HRL broadly falls into the policy-level stitching category. Similar to existing fixed-
level HRL methods, the stitching ability of policy-level stitching also relies on the value function,
which is highly susceptible to the noise introduced by long-horizon sparse-reward setting, as is
discussed in Section 1. The noise immunity provided by the TI module and the TE module distin-
guishes RD-HRL from these methods.
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