
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON ERRONEOUS AGREEMENTS OF CLIP IMAGE EM-
BEDDINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent research suggests that the failure of Vision-Language Models (VLMs) in
visual reasoning could be attributed to the CLIP image encoder ambiguously en-
coding distinct images into embeddings with high cosine similarity, namely er-
roneous agreements. In this paper, we show that they are not the sole issue,
as multimodal large language models (MLLMs) may extract distinct information
even from image embeddings with high cosine similarities. On Subset A of the
What’sUp benchmark, where the Left/Right image pairs are embedded by CLIP
with average cosine similarity greater than 0.99, CLIP’s performance is near ran-
dom guess. In contrast, LLaVA-1.5-7B, which uses the same image encoder as
CLIP, achieves nearly 100% accuracy. This discrepancy is also observed between
LLaVA-1.5-7B and CLIP-like models on similar benchmarks. To investigate this
performance gap, we conduct controlled experiments to test the effect of varying
evaluation methods, training data, and language processing choices. We find that
the CLIP image embeddings contain more extractable information than previously
suggested, but it is likely obscured by the inadequate vision-language alignment
of the CLIP’s paradigm. Motivated by this observation, we reconsider the LLaVA-
1.5 model on the MMVP benchmark, for which prior work showed that it could
not distinguish image pairs with high cosine similarity. We observe a performance
gain brought about by an alternative decoding algorithm, which attends more to
visual input. Further, we show that the accuracy significantly increases if the
model can take both images as input to emphasize their nuanced differences. Both
findings indicate that LLaVA-1.5 did not utilize extracted visual information suffi-
ciently. In conclusion, our findings suggest that while improving image encoders
could benefit VLMs, there is room to enhance the models with a fixed image en-
coder through better strategies for extracting and utilizing visual information.

1 INTRODUCTION

Despite the rapid development and success of Vision-Language Models (VLMs), recent work
pointed out that state-of-the-art VLMs (Radford et al., 2021; Zhai et al., 2023; Liu et al., 2024;
Google, 2023a;b; OpenAI, 2023) still struggle with some simple visual reasoning tasks (Li et al.,
2023d; Liu et al., 2023b; Tong et al., 2024c; Rahmanzadehgervi et al., 2024), where they were asked
to answer questions about the images, such as recognizing shapes and describing the object relation-
ships. These are basic tasks that VLMs should be able to solve before we deploy them to real-world
scenarios like home robots responding to spoken or written commands.

Recent work argued that the pretrained CLIP image encoder (Radford et al., 2021), which serves as
the “eyes” of many VLMs, could be the cause and cure for such visual shortcomings (Tong et al.,
2024c). In these VLMs, any input image is first encoded by the CLIP image encoder and then
used to calculate image-text similarity or as the input for a generative language model. Therefore,
any deficiency of the CLIP image encoder propagates into the VLMs. The deficiency found by the
authors is named erroneous agreements: Visually different images could be ambiguously encoded
with high cosine similarity in the embedding space. They claimed this suggested information loss
and caused VLMs’ failure in relevant visual reasoning tasks, such as the MMVP benchmark (Tong
et al., 2024c). This benchmark consists of selected, semantically distinct image pairs erroneously
agreeing in the CLIP image embedding space, and CLIP-based VLMs failed to answer questions
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regarding the visual semantic difference better than random chance. This criterion is adopted in
Taghipour et al. (2024) and similarly used in Tong et al. (2024b).

In this work, we provide evidence that VLMs face challenges beyond erroneous agreements. The
query-relevant visual information might still be present in the image embeddings despite the high
cosine similarity, but a better strategy is required to pull it out. For instance, in the What’sUp
benchmark (Kamath et al., 2023a) with paired, tightly controlled image pairs for evaluating VLM’s
spatial reasoning ability, the average cosine similarity of image pairs on three out of four subsets
is greater than 0.95 in CLIP image embedding space, reaching the similarity threshold in Tong
et al. (2024c). While CLIP’s accuracy in distinguishing these images is nearly random (about 50%),
LLaVA-1.5-7B (Liu et al., 2024) with the pretrained, frozen image encoder of CLIP-ViT-L/14-336px
still achieves beyond 80% in binary classification accuracies on all four subsets in What’sUp. Sim-
ilarly, on the COCO-spatial and GQA-spatial benchmark used in Kamath et al. (2023a), LLaVA-
1.5-7B surpasses CLIP-like models (including SigLIP (Zhai et al., 2023)) by a large margin. On the
more challenging MMVP and MMVP-VLM benchmark (Tong et al., 2024c), though its absolute
performance is poor, LLaVA-1.5 still outperforms CLIP-like models, showcasing a stronger ability
to extract information from given image embeddings.

What causes their discrepancy in extracting the given visual information? First, we unify the eval-
uation methods of CLIP and LLaVA and observe that the performance gap still exists. Then we
decompose their difference into three parts: training data, language processing choice, and model
paradigm (training and inference pipeline). Through ablation studies, we find that CLIP’s failure is
likely caused by the inadequate visual-language alignment of CLIP’s paradigm. This also implies
that the visual information extraction module in LLaVA-1.5, consisting of the two-layer MLP con-
nector and the language model, adopts an inherently different mechanism from CLIP’s paradigm.

The above results emphasize the importance of effective visual information extraction and highlight
LLaVA-1.5’s extracting ability. However, its poor performance on the MMVP benchmark remains a
mystery. We look into its failure and provide insight into future directions in the discussion section.
To help LLaVA-1.5 keep the visual information during decoding, we try an alternative decoding
algorithm, Multi-Modal Mutual-Information Decoding (M3ID) (Favero et al., 2024), leading to per-
formance gain (+6%). We further find that visual nuances are often extracted and aligned with the
correct semantics by LLaVA-1.5 rather than being discarded after visual encoding, but they did not
induce enough difference in outputs. To explore the amount of such visual formation, we reevaluate
LLaVA-1.5 with relaxed constraints, which allows for comparing the slight difference induced in the
outputs of two images. In this setting, its accuracy is significantly above random chance (+23.3%),
while the result in the original one-image setting is just around random chance (+0.3%), suggest-
ing insufficient visual information utilization in the original evaluation. In conclusion, despite the
erroneous agreements in the CLIP embedding space, visual nuances might still be extracted with
improved strategies. This underscores the potential to enhance model performance by employing
better extraction and utilization techniques with the same pretrained image encoder.

2 RELATED WORK

Benchmarking VLMs’ visual reasoning ability. Vision reasoning tasks underline VLMs’ visual
perception ability. Many recent challenging benchmarks on visual reasoning focus on assessing spe-
cific abilities of current VLMs like compositionality (Winoground (Thrush et al., 2022), ARO (Yuk-
sekgonul et al., 2023), SugarCrepe (Hsieh et al., 2024)), hallucination (POPE (Li et al., 2023d),
HallusionBench (Liu et al., 2023a), and VHILT (Rawte et al., 2024)), distinguishing image pairs
(MMVP (Tong et al., 2024c)), spatial understanding of VLMs (What’sUp (Kamath et al., 2023a)
and Embspatial-bench (Du et al., 2024)), and core visual perception abilities (BLINK (Fu et al.,
2024) for various aspects like visual correspondence and BlindTestbasic (Rahmanzadehgervi et al.,
2024) for recognizing basic patterns). State-of-the-art VLMs often fail unexpectedly on simple test
cases, performing significantly worse than human accuracy or even random guess. For our discus-
sion on erroneous agreements, we mainly consider the MMVP and What’sUp benchmark since their
image pairs exhibit this property in the CLIP embedding space. Nevertheless, findings on these
benchmarks reveal the relationship between vision encoders and VLMs, supporting the broader goal
of enhancing VLMs for general visual reasoning.
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Figure 1: An illustration of CLIP and LLaVA-1.5 model structures sharing the same pretrained
image encoder with an example test case from the Left/Right subset of What’sUp benchmark. We
find that the query-relevant nuances in the CLIP image embeddings may be extracted by LLaVA-1.5
despite erroneous agreements, and we note their performance gap on several similar benchmarks.

Exploring causes of the visual shortcomings of VLMs. Researchers are actively exploring the
root causes of VLMs’ failures on benchmarks above, mainly from the model perspective. (1) Vision
modality. Tong et al. (2024c) argued that the flawed CLIP image encoder adopted by many VLM
architectures could lead to downstream failure because of erroneous agreements. (Chandhok et al.,
2024) agreed that the image encoder is responsible for the information loss in spatial reasoning tasks
since CLIP’s performance is quite low. However, we find evidence that erroneous agreements do not
necessarily lead to VLM’s failure and that LLaVA is stronger at extracting information from simi-
lar visual embeddings than CLIP. (2) Language understanding. In CLIP, Kamath et al. (2023b);
Tong et al. (2024b) found that its text encoder could also lose relevant information during encoding.
In multimodal LLMs (MLLMs), the language model might not timely terminate answer genera-
tion (Yue et al., 2024), put false priority on the input text and format (Stan et al., 2024), or neglect
information like negation (Quantmeyer et al., 2024). Qiao et al. (2024) decoupled the perception
stage and reasoning stage of VLMs and found that they are often limited by reasoning ability. In
this paper, we perform an ablation study on the text encoder and find that CLIP-like models still fail
when equipped with a stronger text encoder. (3) Vision-language alignment. Others discussed the
importance of modality alignment, such as visual grounding (Rajabi & Kosecka, 2023). From the
language model side, Ye et al. (2024) pointed out that the MLLMs might utilize multimodal spu-
rious correlation in the training data due to the coarse-grained training objectives. Similarly, Yang
et al. (2024a) found that the model wrongly raised the probability of deceptive candidates. From the
image encoder side, Yang et al. (2024b) proposed the cross-modal Alignment and Correspondence
score of visual representations, which is linearly correlated to model performance. We abstractly
view the components of VLMs other than the vision part as visual information extraction and uti-
lization module and demonstrate their different abilities. (4) Other factors. Apart from the model,
others looked into the problem with training data (Udandarao et al., 2024) or downstream tasks, such
as the hardness of the visual query (Zhang et al., 2024).

Improving the visual reasoning ability of VLMs. Following the observations about VLM’s limi-
tation, researchers mainly focused on improving the model structure with better image encoders and
vision-languageconnectors (Luo et al., 2024a; Zeng et al., 2021; Yao et al., 2024; Kar et al., 2024;
Jiang et al., 2023; Zong et al., 2024; Xu et al., 2024; Tong et al., 2024a; Meng et al., 2024) or using
different training objectives with additional loss terms (Zhang et al., 2023; Zeng et al., 2024). From
the data-centric perspective, previous paper tried adding relevant instruction tuning data (Ranasinghe
et al., 2024; Chen et al., 2024), using long caption in pretraining (Zheng et al., 2024), hard negative
mining (Yuksekgonul et al., 2023; Paiss et al., 2023) or using synthesized images (Chatterjee et al.,
2024; Jiao et al., 2024).

Post-training techniques are also explored to improve the performance of off-the-shelf VLMs. Some
leveraged feedback from other models (Wang et al., 2024a; Luo et al., 2024b; Deng et al., 2024),
various text or visual prompting methods (Wan et al., 2024; Lei et al., 2024; Wu et al., 2024), or
multi-turn reflection (Huang et al., 2024; Wu et al., 2024; Wu & Xie, 2023; Kim et al., 2024b).
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Figure 2: Example for evaluating CLIP-like models on What’sUp benchmark. For two-way evalu-
ation, a test case consists of two similar images and two captions. The model chooses one caption
for each image, and it gets one point in pair accuracy only if choosing correctly for both images.

Without external feedback or changing the task format, others developed probability-based output
correction (Zhou et al., 2023), including hallucination-reducing decoding strategies (Chuang et al.,
2023; Yang et al., 2024a; Kim et al., 2024a;c; Favero et al., 2024). Besides decoding, visual attention
recalibration was proposed in response to the false priority put by VLMs (Woo et al., 2024). In this
work, we achieve performance gain on MMVP through a decoding algorithm, M3ID (Favero et al.,
2024), and test a new evaluation with relaxed constraints to show that current visual information
utilization in LLaVA-1.5 is insufficient.

3 ERRONEOUS AGREEMENTS

We begin by introducing the task setup and the concept of erroneous agreements. Using a toy ex-
ample, we demonstrate that information might still be extracted through alternative methods despite
erroneous agreements. This is further validated through LLaVA-1.5’s good performance on the
What’sUp benchmark (Kamath et al., 2023a), showing that erroneous agreements are not the sole
issue as it is possible for LLaVA-1.5 to extract distinct visual information from highly similar em-
beddings. We also notice a significant performance gap between LLaVA-1.5 and CLIP on What’sUp
and across several other benchmarks.

3.1 TASK SETUP

This paper focuses on the setup in which VLMs are asked to choose from several captions based
on a given image. For MLLMs, the image is accompanied by a question. Here, we use What’sUp
benchmark Kamath et al. (2023a), which was proposed for evaluating VLM’s spatial reasoning
ability. Every test case includes four captions (e.g., “A dog left of/right of/on/under a table”) and four
corresponding images photographed with minimal change except for the object spatial relationship.
For the convenience of calculating cosine similarity and comparing it to model performance, we
split each test case into two pairs: In the previous example, one pair consists of “A dog left of a
table” and “A dog right of a table” together with the ground truth images, and the other pair is the
remaining captions and images. This way, we get four subsets of the original benchmark.

For CLIP-like models, we calculate the matching score between images and texts. For CLIP with
image encoder fv and text encoder ft, this is the cosine similarity between its image embeddings
fv(v) and text embeddings ft(t), denoted as

SC(fv(v), ft(t)) =
fv(v)

⊤ft(t)

||fv(v)||||ft(t)||
(1)

As evaluation metrics, pair accuracy (Tong et al., 2024c; Kamath et al., 2023a) requires correct
matching for both images, while the accuracy for two images independently is called individual
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accuracy. An example from the What’sUp benchmark, together with the evaluation of CLIP, is
shown in Figure 2.

The concept of erroneous agreements stems from this evaluation setup for CLIP. Specifically, if
erroneous agreement happens for two different images v1 and v2, then

SC(fv(v1), fv(v2)) > τ (2)
where τ is a chosen threshold near 1 (e.g., τ = 0.95 is used in Tong et al. (2024c)). Intuitively, when
the cosine similarity is high, the two image embeddings point in nearly the same direction, and they
will be close in Euclidean distance after l2-normalization. From the view of captions, they will result
in highly similar image-text matching scores with any caption. From the image side, the margin is
small, so adding a slight noise in either embedding could reverse the preference over the captions,
which might result from a small perturbation in either v1 or v2. Hence, the difference between v1

and v2 cannot be stably extracted by the CLIP model, and the relevant information seems lost. If
this suggests the CLIP image encoder is “blind,” this will also undermine VLMs that use it as “eyes.”

This intuition is supported by the results on the MMVP benchmark designed to include image pairs
with a cosine similarity greater than 0.95 for CLIP embeddings but less than 0.6 for DINOv2 embed-
dings, along with the MMVP-VLM benchmark for CLIP-like models (Tong et al., 2024c). LLaVA-
1.5 and CLIP perform close to random chance on these two benchmarks, respectively. The authors
also demonstrated a correlation between CLIP model accuracy and LLaVA-1.5’s accuracy on differ-
ent visual patterns.

3.2 DO ERRONEOUS AGREEMENTS MEAN BLINDNESS?

We note that cosine similarity does not depict all aspects of vector pairs. One criticism of it as the
similarity metric is that it only captures the linear relationship of vectors. As an example, consider
the following image embeddings

fv(v1) = [10, 11, 12]⊤, fv(v2) = [12, 11, 10]⊤

While SC(fv(v1), fv(v2)) > 0.989, Spearman’s rank correlation coefficient can tell their sharp
difference: ρ = −1, showing that their order information is fully opposed. Therefore, the difference
in visual inputs might still be extracted through other means when erroneous agreements occur.

We show that this scenario happens in experiments. In many VLMs using CLIP image encoder as
their “eyes,” the output score is nonlinear, different from CLIP-like models. For instance, in LLaVA-
1.5 (Liu et al., 2024), the CLIP image embeddings first pass through a two-layer MLP and are then
used as input tokens for the transformer, Vicuna-1.5, which yields the token probability determining
the model response. We evaluate LLaVA-1.5-7B using the pretrained weights and design the ques-
tion format. (An illustration and an example are in Figure 1, and more details are in Appendix A.1.)
The results are shown in Table 1. Despite the high cosine similarity, LLaVA-1.5-7B’s individual
accuracy and pair accuracy are both quite high, showing that it can extract and align query-relevant
information from image embeddings and produce the correct answer. In other words, erroneous
agreements do not contribute to the failure of VLMs on their own.

Apart from this two-way evaluation, in Table 2, we report the results of the original evaluation,
which is a four-way classification for each image. Besides, we include the results on COCO-spatial
and GQA-spatial used in Kamath et al. (2023a) also for evaluating VLM’s spatial reasoning ability.
These benchmarks are in the format of an image paired with two captions differing only by a prepo-
sition. On all these benchmarks, LLaVA-1.5-7B wins CLIP-like models by a large margin, even
compared with the best model XVLM-COCO (Zeng et al., 2021) reported in the paper. We also find
that this performance gap relative to CLIP generalizes to some other MLLMs with different scales
and language models in Appendix B.5.

To see if LLaVA-1.5-7B shows better extraction ability on tasks other than recognizing spatial rela-
tionships, we compare it and CLIP on MMVP and MMVP-VLM (Tong et al., 2024c). There was no
direct comparison in the original paper: The MMVP benchmark is not in CLIP’s format, while the
MMVP-VLM benchmark is incompatible with MLLMs. So, we manually convert them into suit-
able formats without changing the content, and the evaluation of CLIP on MMVP-VLM is changed
to the method described in Section 3.1 accordingly. The results are shown in Table 3. Although
their absolute accuracy is low, there is a clear performance gap between CLIP-ViT-L/14-336px and
LLaVA-1.5-7B with the same image encoder.
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Table 1: The average cosine similarity of CLIP-ViT-L/14-336px embeddings and results of LLaVA-
1.5-7B model on four subsets of What’sUp. The individual accuracy and pair accuracy are in per-
centage points. The average cosine similarity of the CLIP-ViT-L/14-336px image embeddings for
image pairs is calculated for each category.

What’sUp Subset A What’sUp Subset B
Left/Right On/Under Left/Right Front/Behind

Indiv. Pairs Indiv. Pairs Indiv. Pairs Indiv. Pairs

CLIP-ViT-L/14-336px 49.0 1.9 61.7 23.3 54.9 10.8 51.5 7.8
LLaVA-1.5-7B 99.0 98.1 80.1 60.2 100 100 98.5 97.1
Avg. Embedding Cosine Sim. 0.995 0.971 0.955 0.902

Table 2: Results of varied vision-language models on What’sUp, COCO-spatial, and GQA-spatial
benchmark. We test the models on the four-way classification of each image. “Set of 4” is the
correctness for all four images in a set.

What’sUp Subset A What’sUp Subset B COCO-spatial GQA-spatial
Indiv. Pairs Set of 4 Indiv. Pairs Set of 4 One-obj. Two-obj. One-obj. Two-obj.

CLIP-ViT-L/14-224px 26.7 1.0 0.0 25.7 1.5 0.0 49.1 50.2 46.0 48.1
CLIP-ViT-L/14-336px 28.9 1.0 0.0 27.2 1.0 0.0 48.9 51.1 46.6 49.1
SigLIP-ViT-L/16-384px 26.7 0.0 0.0 28.7 2.0 0.0 50.3 48.6 47.8 48.7
XVLM-COCO 41.8 17.0 1.9 42.2 15.7 2.9 68.4 73.6 69.1 67.0
LLaVA-1.5-7B 62.1 41.3 14.6 74.0 61.8 23.5 96.0 82.3 96.0 90.7

Random chance 25.0 6.3 0.4 25.0 6.3 0.4 50.0 50.0 50.0 50.0

4 INVESTIGATE THE PERFORMANCE GAP

The above performance gap might be caused by various factors: evaluation methods, training data,
language processing choice, and model paradigm. Firstly, we used cosine-similarity-based evalua-
tion for CLIP-like models and model-response-based evaluation for LLaVA-1.5. Apart from this,
CLIP-like models and LLaVA-1.5 were trained on different data, adopted different language pro-
cessing techniques, and were in different VLM paradigms.

In this section, we design and conduct ablation studies to determine whether these factors contribute
to the failure of CLIP-like models. The ablation of evaluation methods is conducted first to determine
whether there is really a performance gap. Then, we control the training data and text encoder of
CLIP-like models to see if they cause the failure (See the illustration in Figure 3).

4.1 UNIFIED EVALUATION

One might first question the different evaluations performed on the CLIP-like models and LLaVA-
1.5. For the former, the evaluation is numeric-value based, while the latter is judged by its out-
put response as a conversation agent, following the practice in previous work (Tong et al., 2024c).
Hence, we test LLaVA-1.5 again using standard Multiple-Choice (MC) evaluation, where we rank
the perplexity of options (“A” and “B”) calculated based on the probability of output tokens. This is
similar to the CLIP-like models’ evaluation, where the image-text matching scores are ranked.

In Table 3, we observe that MC evaluation yields similar results on the MMVP benchmark and even
better results on MMVP-VLM. Thus, this does not count for their performance discrepancy. The
increase in results on MMVP-VLM is possibly related to the hallucination of MLLMs, where they
tend to follow their language prior during long answer generation and might gradually “forget” the
visual input.

4.2 TRAINING DATA

The web-crawled image-caption corpora used for pretraining models like CLIP generally contain
very few high-quality, unambiguous image-caption pairs with prepositions, as pointed out in Kamath
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Table 3: Results of CLIP and LLaVA-1.5 on the MMVP and MMVP-VLM benchmark. The last row
is the LLaVA-1.5-7B accuracy in the Multiple-Choice setting. Accuracy with an asterisk is obtained
on a converted version of the original benchmark.

MMVP MMVP-VLM
Indiv. Pairs Indiv. Pairs

CLIP-ViT-L/14-336px 54.7* 14.0* 58.1 20.7
LLaVA-1.5-7B 61.7 25.3 60.7* 28.2*
LLaVA-1.5-7B(MC) 61.3 25.3 63.7* 31.1*
Random chance 50.0 25.0 50.0 25.0

Training data

Text Encoder CLIP Image 

Encoder

Cosine Similarity

Two-Layer MLP 
Connector

LLaVA-1.5’s
Training data

LLaMA-2-chat

Converted Encoder

Replace

Replace

Evaluation method

Figure 3: Illustration for the CLIP paradigm and the ablation studies.

et al. (2023a). Equipped with the pretrained CLIP image encoder, LLaVA-1.5 was finetuned on
LCS-558K, a subset from LAION-CC-SBU with BLIP captions, and Instruction-following Data
Mixture (hereafter referred to as DataMix-665K) (Liu et al., 2024). These datasets were carefully
curated and thus of higher quality than web-crawled data. Besides, they are more relevant to the
spatial reasoning tasks: They have around 13K samples with phrases containing “left” or “right,”
accounting for around 1% of all data. This ratio is higher than that in LAION-2B (English), where
various prepositions, including other directions like top and bottom, represent less than 0.22% of the
training data (Kamath et al., 2023a). Hence, we hypothesized that LLaVA-1.5’s visual information
extraction ability benefits from these data.

To check the effect of training data, we use LLaVA-1.5’s training data to fine-tune CLIP-like models.
We convert both datasets to the image-caption format (More details in Appendix B.2). By default,
we lock the image encoder during finetuning for strict ablation. The results are shown in Table 4.
Finetuning on LLaVA-1.5’s training data slightly improves CLIP’s performance, but it does not
help SigLIP. Still, their accuracy is around random chance. On SigLIP, we try unlocking the image
encoder during finetuning, but this does not increase model performance notably either (See results
in Appendix B.3). In Appendix B.4, we also explore the effect of high-quality data on the gap
between LLaVA-1.5 and another VLM paradigm, XVLM (Zeng et al., 2021), and find that data do
not explain it solely. This result aligns with the failure in previous work to enhance CLIP models
significantly by finetuning them on a much larger, preposition-focused subset of LAION (Kamath
et al., 2023a).

One might argue that the CLIP training objective differs from LLaVA-1.5, heavily relying on neg-
ative samples beyond data quality, so CLIP’s failure on the new dataset might be due to the lack
of corresponding negatives. Next, we check this by observing whether negative samples help the
CLIP-like models learn better. For this experiment, we focus on the model’s ability to distinguish
“left” and “right” and use the Left/Right subsets as the benchmarks. We construct hard negative
captions by switching the related phrases to their opposite, e.g., replacing “on the left” with “on the
right.” The loss objective changes accordingly, following the NegCLIP method (Yuksekgonul et al.,
2023).

The results are shown in Table 5. This strategy does not increase the model performance consistently
on the Left/Right subset, which is observed in Kamath et al. (2023a) as well. Likewise, we try
unlocking the image encoder of SigLIP in this setting, which does not make a big difference (See
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Table 4: Results of CLIP and SigLIP on What’sUp, COCO-spatial, and GQA-spatial benchmark
after finetuning on LLaVA-1.5’s training data.

What’sUp Subset A What’sUp Subset B COCO-spatial GQA-spatial
Indiv. Pairs Set of 4 Indiv. Pairs Set of 4 One-obj. Two-obj. One-obj. Two-obj.

CLIP-ViT-L/14-336px 28.9 1.0 0.0 27.2 1.0 0.0 48.9 51.1 46.6 49.1
+ finetuning 31.1 9.7 0.0 30.6 7.4 0.0 54.2 55.5 51.0 52.6

SigLIP-ViT-L/16-384px 26.7 0.0 0.0 28.7 2.0 0.0 50.3 48.6 47.8 48.7
+ finetuning 27.2 1.9 0.0 24.8 2.0 0.0 49.3 50.5 47.0 54.6

Random chance 25.0 6.3 0.4 25.0 6.3 0.4 50.0 50.0 50.0 50.0

Table 5: Two-way evaluation results of CLIP and SigLIP focusing on the Left/Right subsets of
What’sUp, COCO-spatial, and GQA-spatial benchmark with or without substituted text encoder, af-
ter finetuning on LLaVA-1.5’s training data with or without hard negative captions. After finetuning,
the accuracies are still around or below random chance.

What’sUp Subset A What’sUp Subset B COCO-spatial GQA-spatial
Indiv. Pairs Indiv. Pairs One-obj. Two-obj. One-obj. Two-obj.

CLIP-ViT-L/14-336px 49.0 1.9 54.9 10.8 51.6 48.4 52.1 50.4
+ finetuning 50.5 2.0 53.9 5.9 49.9 53.4 49.1 53.8
+ neg. cap. 50.5 1.0 50.5 1.0 48.5 55.6 49.4 50.4
+ llm2vec, finetuning 50.0 1.0 49.5 0.0 48.5 48.0 50.0 53.8
+ llm2vec, neg. cap. 49.5 2.9 50.5 6.9 48.8 46.2 48.1 51.9

SigLIP-ViT-L/16-384px 50.0 1.9 51.5 5.9 48.7 50.2 51.2 47.0
+ finetuning 49.0 1.0 51.0 3.9 50.8 53.1 49.7 55.3
+ neg. cap. 50.0 0.0 50.0 0.0 50.5 53.8 51.0 48.1
+ llm2vec, finetuning 50.5 2.9 51.0 3.9 50.1 54.8 49.1 51.1
+ llm2vec, neg. cap. 50.5 1.0 51.0 3.9 50.0 47.7 48.8 50.0

Random chance 50.0 25.0 50.0 25.0 50.0 50.0 50.0 50.0

results in Appendix B.3). All the above results indicate that data alone are not to blame for the
failure of CLIP-like models.

4.3 LANGUAGE MODEL CHOICES

Previous research suggested that the CLIP text encoder is “blind” too (Tong et al., 2024b; Kamath
et al., 2023b; Yuksekgonul et al., 2023)– It struggles with capturing changed word orders, negation,
and spatial or numerical details. On the other hand, LLaVA-1.5-7B employs a pretrained large
language model (LLM), Vicuna-1.5-7B, which is supposed to be better than the CLIP text encoder
at language reasoning, and the commonsense knowledge it learned during language modeling should
benefit VLMs.

Is pretrained LLM the secret to the success of LLaVA-1.5? To answer this question, we perform
further experiments on finetuning CLIP-like models using both the LLaVA-1.5 training data and
a stronger text encoder. Since Vicuna-1.5-7B is a decoder-only language model, we utilize the
LLaMA-2-7B-chat-hf-mntp checkpoint provided in Llm2vec (BehnamGhader et al., 2024), where
LLaMA-2-7B-chat model was converted to a text encoder and showed excellent performance in
encoding texts. We replace the original CLIP text encoder with this pretrained model and add a
two-layer MLP connector on top of it to align its output dimension with the CLIP image encoder.
Since this text encoder is well-trained, we freeze it during finetuning. To make a fair comparison, we
lock the image encoder again and use the same connector design as the one used in LLaVA-1.5-7B
with only differing widths.

We train the models in two settings: plain data and data with hard negative captions. The hard
negative captions are constructed in the same way as in Section 4.2. The results are shown in Ta-
ble 5. Surprisingly, a strong text encoder does not help either. Like the practice in Section 4.2, we
try unlocking the image encoder in this setting (See Appendix B.3). We only observe a significant
increase in the pair accuracy on What’sUp when a strong text encoder, hard negative captions, and
unlocked image encoder are all used. Still, in this case, the individual accuracy and the accura-
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Table 6: Results of LLaVA-1.5-7B with M3ID (α = 0.6, λ = 0.15) using original evaluation on
MMVP benchmark, along with the results of other methods.

Indiv. Acc. Pairs Acc.

LLaVA-1.5-7B 61.7 25.3
w/ RP (Jiao et al., 2024) – 27.3
w/ M3ID (Favero et al., 2024) 64.3 31.3
w/ DIVA (Wang et al., 2024a) – 31.3

Random chance 50.0 25.0

cies for the COCO-spatial and GQA-spatial do not improve. Based on these results, we argue that
higher quality and relevant training data or stronger language models do not solely contribute to the
performance gap.

By controlling other factors, we suggest that differences in VLM paradigms may largely explain the
performance gap. One hypothesis is that CLIP-like models use a dot product for image-text align-
ment during training and inference. For a given image embedding, every text embedding is linearly
projected into a spectrum [−1, 1] regarding their matching degree. While this multimodal contrastive
paradigm achieves great success in tasks like zero-shot classification, the learned alignment might
not effectively capture all correspondences between image and text for various downstream tasks.
This hypothesis aligns with our analysis in Section 3.1 that different visual information extraction
strategies matter.

5 DISCUSSION

Although we find that visual information extraction methods matter a lot, and LLaVA-1.5 has a
stronger extraction ability on highly similar embeddings, its poor performance on the MMVP bench-
mark remains unexplained (Tong et al., 2024c). In this section, we reconsider its failure and provide
insight into future improvements based on two findings in MLLMs: They might not attend enough
to the visual input, and the visual information is often aligned correctly but probably did not induce
enough differences in the output token probability.

5.1 ALTERNATIVE DECODING FOR LLAVA

Inspired by the findings in Section 4.1 that MLLMs might “forget” the visual input gradually, one
possible improvement is to “remind” MLLMs of them, magnifying the effect of visual input on lan-
guage models. Multi-Modal Mutual-Information Decoding (M3ID) was designed for this purpose
on MLLMs like LLaVA (Favero et al., 2024). For token in each decoding step t, M3ID computes the
output probability with the image and without any input image, denoted as lc and lu, respectively.
The latter corresponds to the language prior. Then a correction term (lc − lu) is added to lc with
weight 1−exp(−λt)

exp(−λt) if the model is not highly confident with the next token (maxk(lc)k < logα).
This correction prevents the VLM from omitting the visual input and relying on the language prior.

We test this decoding strategy on the MMVP benchmark in the standard setting. In Table 6, this
method achieves the most gain (+6%) relative to the baseline LLaVA-1.5-7b. We note that this
surpasses some methods that modified the vision part, such as Libra (30.0 with a decoupled and
more complex vision system) (Xu et al., 2024) and is on par with I-MoF (31.3 with interleaved
CLIP and DINO features) (Tong et al., 2024c). This result suggests that LLaVA-1.5 did not attend
to the visual input enough and thus might miss the key information for answering the query. A
similar finding was described through the interpretability perspective in Stan et al. (2024).

5.2 EVALUATION WITH RELAXED CONSTRAINTS

We look into the results of the MC evaluation and find that the output token probability often dif-
fers for two images (e.g., compared with image 2, image 1 slightly prefers caption 1 more). Still,
the evaluation omits them since we always pick the caption with a higher probability for each im-
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Table 7: Results of CLIP-ViT-L/14-336px and LLaVA-1.5-7B using original pair evaluation and
new evaluation with relaxed constraints on MMVP benchmark.

Original Evaluation w/ Relaxed Constraints

CLIP-ViT-L/14-336px 14.0 64.0
LLaVA-1.5-7B 25.3 73.3

Random chance 25.0 50.0

age. Such differences show that the visual nuances are often extracted and aligned with the correct
semantics by LLaVA-1.5 rather than being discarded after visual encoding.

How many visual nuances are preserved and extracted by LLaVA-1.5? We explore this question by
testing the LLaVA-1.5 on a new evaluation pipeline with relaxed constraints. To catch the slight
difference in model output, similar to the MC evaluation, we calculate the model perplexity of two
possible options. MC only uses the letters “A” and “B” when computing perplexity, but we use the
full option for perplexity computation, e.g., “(a) Open” and “(b) Closed” in the questions provided by
the original benchmark. Denote the perplexity of two options (normalized by the number of tokens)
given two images to be ppli1c1, ppli1c2, ppli2c1, ppli2c2, respectively. We consider the model to be
correct for this test case if they satisfy

ppli1c1
ppli1c1 + ppli1c2

>
ppli2c1

ppli2c1 + ppli2c2
,

In other words, the model considers (image 1, caption 1) with (image 2, caption 2) more possible
matches than (image 2, caption 1) with (image1, caption 2). This way, we “force” the model to
output differently for two images in a pair, and thus, the random chance is 50%. Through this
comparison, we amplify the semantics induced by visual nuances. We also apply this evaluation on
CLIP, replacing perplexity with cosine similarity. In Table 7, the new performance is significantly
higher than random chance as the baseline (+23.3%), compared with the pair accuracy under the
original evaluation (+0.3%). This means more visual information can be extracted from the image
embedding and aligned with the correct semantics than the original results suggested.

The possible reason why they failed to be extracted in the original setting is that the language model
did not fully utilize the image-induced semantics. Consequently, they failed to affect the output
probability enough to produce the correct answer. Influenced by language prior and spurious corre-
lation with irrelevant text tokens (Ye et al., 2024), it will probably output common answers or even
hallucinations. Hence, reaching this “upper bound” in the original evaluation requires the VLM to
utilize extracted visual nuances properly and balance it with language prior during generation.

6 CONCLUSION

Our study questions the use of erroneous agreements to reflect CLIP image encoders’ information
loss or blindness and finds that they are not the sole cause of VLM failures. We show that the
amount of extracted visual information largely depends on the extraction strategy, which varies
widely across VLMs. LLaVA-1.5, with a stronger extraction ability, outperforms CLIP-like models
on our benchmarks. Our controlled experiments suggest that the key factor in their performance
discrepancy might lie in their paradigms. We believe the information loss of the image encoder
should be defined when conditioning on the VLM paradigm and possibly the downstream task.

Our results suggest there is still room to enhance VLMs with a fixed, pretrained image encoder.
While balancing the visual grounding ability and image-text correspondence (e.g., combining pop-
ular visual representation learning models in various styles) could reach the best trade-off on the
curve for heterogeneous benchmarks, developing advanced methods for VLMs to extract and utilize
given visual information might shift the curve upwards.

Limitation. We view the VLMs abstractly and do not look into fine-grained details on how the
visual information is extracted and leads to the model’s output. We leave its dissection for future
research. For ablation studies, we do not train CLIP or SigLIP models from scratch or use larger
batch sizes due to the limitation in computing resources, so the conclusion on the effects of different
factors is restricted.
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Table 8: Question formats for different subsets.

Subset Question

What’sUp Subset A&B, Left/Right Is the (object 1) to the left of or to
the right of the (object 2)? Answer
left or right.

What’sUp Subset A, On/Under Is the (object 1) on or under the (ob-
ject 2)? Choose from the two op-
tions.

What’sUp Subset B, Front/Behind Is the (object 1) in front of or behind
the (object 2)? Answer front or be-
hind.

COCO/GQA-spatial, One obj. Is the (object 1) on the
(left/right/top/bottom) or on
the (right/left/bottom/top)? Give a
short answer.

COCO-spatial, Two obj. Is the (object 1) (to the left of/to
the right of/above/below) a (object
2) or (to the right of/to the left
of/below/above) a (object 2)? Give
a short answer.

GQA-spatial, Two obj. Is the (object 1) to the
(left/right/front/behind) of a (object
2) or to the (right/left/behind/front)
of a (object 2)? Give a short
answer.

A BENCHMARKS AND EVALUATIONS

We use the public pretrained weights of LLaVA-1.5-7B (https://huggingface.co/
llava-hf/llava-1.5-7b-hf) for evaluation and use greedy encoding by default to ensure
reproducibility. We use OpenAI’s pretrained CLIP-ViT-L/14-336px model, SigLIP-ViT-L/16-384px
pretrained on the WebLI dataset (Chen et al., 2022) provided in the OpenCLIP repository, and offi-
cial pretrained XVLM-16M weight for both evaluation and finetuning.

A.1 EVALUATION ON WHAT’SUP

The What’sUp benchmark (Kamath et al., 2023a) contains 820 images of pairs of household ob-
jects, 408 in Subset A and 412 in Subset B. We corrected the mislabeled images in the GitHub
Issues and reevaluated the pretrained VLMs. For CLIP, SigLIP, and XVLM’s evaluation, we use
the official code provided by the What’sUp benchmark’s authors in https://github.com/
amitakamath/whatsup_vlms.

For LLaVA-1.5, the questions used for evaluation are listed in Table 8. Then the question is concate-
nated with the fixed prompt template (“USER: <image> \n(question) ASSISTANT:”). Consider-
ing the position bias in LLMs (Wang et al., 2024b), we exchange the position of two prepositions in
the question with 50% probability on COCO-spatial and GQA-spatial benchmarks for fair results.
On the What’sUp benchmark, the orders are always the same for two images. Then, we evaluate the
outputs by keyword matching since we observe that the output is quite structured.

The reason why we use different commands after the main question (e.g., “Answer left or right”,
“Choose from the two options”, and “Give a short answer”) is that we found the LLaVA-1.5 model
sensitive to such command. We tried “Answer on or under” for the On/Under subset in What’sUp
Subset A, and the model accuracy is quite low. This is one of its limitations that deserves future
research. However, we aim to show that LLaVA-1.5 can extract such information, so we use the best
prompt to showcase its ability.
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USER: <image>
Are the butterfly’s wings closer to being  
open or closed?
(a) Open 
(b) Closed 
Answer with the option’s letter from the 
given choices directly. ASSISTANT:

Figure 4: Example test case and prompt for LLaVA-1.5 in MMVP benchmark.

A.2 EVALUATION ON MMVP AND MMVP-VLM

The MMVP benchmark contains 150 pairs of similar images, and the MMVP-VLM benchmark has
135 pairs of similar images, divided into nine categories. There is an overlap between the image
pairs in these two benchmarks. An example of an image pair and the corresponding prompt for
LLaVA-1.5 in MMVP are shown in Figure 4. We corrected the mislabeled images in the GitHub
Issues and reevaluated the pretrained VLMs. Since MMVP is incompatible with CLIP and so is
MMVP-VLM with MLLMs, we convert their questions manually. We attach these new questions to
the supplementary material for reference.

In the standard setting, we evaluate the correctness of the model response by human evaluation.
Although the accuracy given by the GPT-4 evaluation was close to that of a human evaluation on
average, we noticed that it is unreliable since it gave several wrong judgments. So, we evaluate the
correctness of the answers manually to avoid models getting higher accuracy by cheating GPT-4. In
the Multiple-Choice setting, we calculate and rank the perplexity of “A</s>” and “B</s>” given
by the model.

In Section 5.2, we calculate the perplexity of two options (The two options are “(a) Open” and “(b)
Closed” for the example in Figure 4). We also add the EOS (“</s>”) to the end of these options
and normalize the perplexity by their number of tokens.

B SUPPLEMENTARY EXPERIMENTAL DETAILS AND RESULTS

B.1 HYPERPARAMETERS

Our code is based on https://github.com/mlfoundations/open_clip. We finetune
CLIP and SigLIP models for 5 epochs with a learning rate of 5e−6 on the combination of converted
LCS-558K plus converted DataMix-665K. We use 50 steps of warmup and AdamW optimizer with
a cosine-annealing learning rate schedule. The batch size is 512, and we train the models on 4 gpus.

B.2 LLAVA-1.5’S TRAINING DATA

We check the frequency of appearance of the following keywords in DataMix-665K and LCS-558K:
“on the left,” “on the right,” “to the left,” “to the right,” “at the left,” “at the right.” In DataMix-665K,
there are 12957 instances with at least one of the key phrases, among which 12658 have a paired
image. For captions (ground truth answers), this number is 13473 since an instance is paired with a
multi-turn conversation. In LCS-558K, there are 560 such instances and captions since each instance
has only one question and one answer.

In our experiments in Section 4.2, LCS-558K was converted from image-text pair format to con-
versation format, so we revert this process by using ground truth answer as the caption. Since
DataMix-665K is in a multi-turn conversation format, we randomly pick one answer as the caption
in each epoch. In Section 4.3, the new text encoder can encode long paragraphs, so we use the
concatenation of all answers in the multi-turn conversation as the ground truth caption.
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Table 9: Results of SigLIP-ViT-L/16-384px on the Left/Right subsets of What’sUp, COCO-spatial,
and GQA-spatial benchmark after finetuning with image encoder unlocked on LLaVA-1.5’s training
data (LCS-558K + DataMix-665K) with constructed hard negative captions.

What’sUp Subset A What’sUp Subset B COCO-spatial GQA-spatial
Indiv. Pairs Indiv. Pairs One-obj. Two-obj. One-obj. Two-obj.

SigLIP-ViT-L/16-384px 50.0 1.9 51.5 5.9 48.7 50.2 51.2 47.0
+ finetuning 50.5 2.9 51.5 5.9 48.7 57.7 50.5 48.1
+ neg. cap. 50.0 3.9 47.1 2.0 52.3 47.0 51.8 52.7

Random chance 50.0 25.0 50.0 25.0 50.0 50.0 50.0 50.0

Table 10: Results of SigLIP-ViT-L/16-384px on the Left/Right subsets of What’sUp, COCO-spatial,
and GQA-spatial benchmark. We substituted the text encoder to be Llama-2-7b-chat-hf-mntp, then
finetuned the model with image encoder unlocked on LLaVA-1.5’s training data (LCS-558K +
DataMix-665K) with or without constructed hard negative captions.

What’sUp Subset A What’sUp Subset B COCO-spatial GQA-spatial
Indiv. Pairs Indiv. Pairs One-obj. Two-obj. One-obj. Two-obj.

SigLIP-ViT-L/16-384px 50.0 1.9 51.5 5.9 48.7 50.2 51.2 47.0
+ finetuning 50.0 1.0 49.0 7.8 50.9 50.2 48.7 50.8
+ neg. cap. 56.3 26.2 55.4 25.5 50.8 48.4 46.7 53.4

Random chance 50.0 25.0 50.0 25.0 50.0 50.0 50.0 50.0

B.3 RESULTS OF UNLOCKING IMAGE ENCODER

We try unlocking the image encoder during finetuning on the SigLIP model. The results after fine-
tuning with CLIP text encoder are in Table 9, and results with LLaMA-2-7B-chat-hf-mntp are in
Table 10. Interestingly, we observe a significant increase in pair accuracy on the What’sUp bench-
mark only when using hard negative captions and a strong text encoder while unlocking the image
encoder. Still, the individual accuracy remains low.

B.4 RESULTS OF FINETUNING XVLM

Observing the similar failure of the data-informed attempt, previous work concluded that even with
relevant, high-quality data and hard negatives, denser supervision is likely required to let the model
learn the basic spatial relations (Kamath et al., 2023a), as in XVLM (Zeng et al., 2021), a VLM with
supervision at the bounding-box level. However, LLaVA does not incorporate downstream task-
related inductive bias or denser supervision to achieve high accuracy, yet it beats XVLM finetuned
on COCO (Lin et al., 2014) on the What’sUp benchmark.

We explore finetuning XVLM on LLaVA’s training data based on their official code (https:
//github.com/zengyan-97/X-VLM), but no improvement is observed in the results (the
last two model rows in Table 11). The image encoder is locked during finetuning. We use both
contrastive learning loss and image-text matching loss. The evaluation is performed through the
image-text matching score. We finetune the XVLM-16M model for 5 epochs with a learning rate of
1e − 5 and a weight decay rate of 0.01. We use 10% steps of warmup and AdamW optimizer with
a lambda learning rate schedule. The batch size is 128, and we train the model on 4 gpus.

B.5 RESULTS OF DIFFERENT MLLMS

Do our findings on LLaVA-1.5 in Section 3.2 generalize to other MLLMs? We evaluate four other
MLLMs using their officially released weights. First, we consider LLaMA-3-V-8B and Phi-3-V-
3.8B which have LLaVA-like architecture and use frozen CLIP-ViT-L/14-336px as the image en-
coder (Rasheed et al., 2024). For MLLMs with different architectures and training data, we use
Otter-Image-MPT7B (Li et al., 2023b;a) with frozen CLIP-ViT-L/14 as the image encoder and
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Table 11: Results of XVLM-16M on the Left/Right subsets of What’sUp, COCO-spatial, and GQA-
spatial benchmark on LLaVA-1.5’s training data.

What’sUp Subset A What’sUp Subset B COCO-spatial GQA-spatial
Indiv. Pairs Set of 4 Indiv. Pairs Set of 4 One-obj. Two-obj. One-obj. Two-obj.

XVLM-16M 50.0 30.6 1.0 32.8 10.8 0.0 65.4 64.6 63.2 53.3
+ finetuning 46.4 28.4 1.0 34.6 8.3 1.0 66.8 65.2 61.3 51.2

Random chance 25.0 6.3 0.4 25.0 6.3 0.4 50.0 50.0 50.0 50.0

Table 12: Results of CLIP-ViT-L/14-336px and MLLMs on four subsets in What’sUp. The indi-
vidual accuracy and pair accuracy are in percentage points. The average cosine similarity of the
CLIP-ViT-L/14-336px image embeddings for image pairs is calculated for each category.

What’sUp Subset A What’sUp Subset B
Left/Right On/Under Left/Right Front/Behind
Indiv. Pairs Indiv. Pairs Indiv. Pairs Indiv. Pairs

CLIP-ViT-L/14-336px 49.0 1.9 61.7 23.3 54.9 10.8 51.5 7.8
LLaVA-1.5-7B 99.0 98.1 80.1 60.2 100 100 98.5 97.1
LLaMA-3-V-8B 90.3 80.6 57.8 20.4 71.1 46.1 69.1 41.2
Phi-3-V-3.8B 100 100 85.4 70.9 100 100 56.9 13.7
InstructBLIP-Vicuna-7B 50.0 1.9 93.7 87.4 50.0 0.0 50.0 5.9
Otter-Image-MPT7B 50.0 1.0 56.8 13.6 50.0 0.0 51.5 11.8

Avg. Embedding Cosine Sim. 0.995 0.971 0.955 0.902

InstructBLIP-Vicuna-7B (Dai et al., 2023) with frozen EVA-CLIP-ViT-G/14 (Sun et al., 2023). Ot-
ter adopts the OpenFlamingo (Awadalla et al., 2023) paradigm with a Perceiver resampler module
on top of the frozen image encoder, and then sends the output of this module to the cross-attention
layers of the language model. InstructBLIP employs the pretrained BLIP-2 (Li et al., 2023c) model,
with a Q-Former and a fully connected layer as the vision-language connector between the frozen
image encoder and the language model. Inside the Q-Former, image embeddings are used in cross-
attention layers.

During evaluation, we find that all of these MLLMs are sensitive to the wording in the command
part, so we try several commands and report the best results as we did for LLaVA-1.5. We keep all
other settings the same as in Section A.1.

The results are shown in Table 12 and Table 13. For comparison, we also include the results of
CLIP-ViT-L/14-336px and LLaVA-1.5. The good performance of LLaMA-3-V-8B and Phi-3-V-
3.8B verifies that they can also extract distinct information from highly similar embeddings, though
they are weak on some prepositions (Front/Behind for Phi-3-V-3.8B, and On/Under for LLaMA-3-
V-8B). These results show that our findings generalize to these two MLLMs with different scales
and language models.

On the other hand, with different architectures and training data, Otter and InstructBLIP still struggle
on this benchmark (except On/Under for InstructBLIP). Hence, MLLMs do not guarantee effective
extraction from frozen image encoder. Good design of MLLM architecture and curated training data
synergize to provide strong visual information extraction ability.
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Table 13: Results of CLIP-ViT-L/14-336px and MLLMs on What’sUp (four-way classification)
benchmark, COCO-spatial, and GQA-spatial. “Set of 4” is the correctness for all four images in a
set.

What’sUp Subset A What’sUp Subset B COCO-spatial GQA-spatial
Indiv. Pairs Set of 4 Indiv. Pairs Set of 4 One-obj. Two-obj. One-obj. Two-obj.

CLIP-ViT-L/14-336px 28.9 1.0 0.0 27.2 1.0 0.0 48.9 51.1 46.6 49.1
LLaVA-1.5-7B 62.1 41.3 14.6 74.0 61.8 23.5 96.0 82.3 96.0 90.7
LLaMA-3-V-8B 60.0 36.4 17.5 70.1 43.6 20.6 97.8 83.2 99.0 90.7
Phi-3-V-3.8B 58.0 36.4 15.5 71.8 55.4 12.8 97.3 85.2 98.0 91.1
InstructBLIP-Vicuna-7B 37.6 25.7 0.0 29.9 15.2 0.0 55.0 51.4 47.8 50.2
Otter-Image-MPT7B 24.5 2.4 0.0 24.8 3.0 0.0 51.9 50.0 54.1 51.9

Random chance 25.0 6.3 0.4 25.0 6.3 0.4 50.0 50.0 50.0 50.0
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