
Exact and Efficient Adversarial Robustness
with Decomposable Neural Networks

Abstract

As deep neural networks are notoriously vulnerable
to adversarial attacks, there has been significant in-
terest in defenses with provable guarantees. Recent
solutions advocate for a randomized smoothing
approach to provide probabilistic guarantees, by
estimating the expectation of a network’s output
when the input is randomly perturbed. As the con-
vergence of the estimated expectations depends on
the number of Monte Carlo samples, and hence
network evaluations, these techniques come at the
price of considerable additional computation at
inference time. We take a different route and intro-
duce a novel class of deep models—decomposable
neural networks (DecoNets)—which compute the
required expectation exactly and efficiently using
a single network evaluation. This remarkable fea-
ture of DecoNets stems from their network struc-
ture, implementing a hierarchy of decomposable
multiplicative interactions over non-linear input
features, which allows to reduce the overall expec-
tation into many “small” expectations over input
units, thus delivering exact guarantees.

1 INTRODUCTION

Deep learning has revolutionized machine learning (ML)
and artificial intelligence (AI) over the past decade and
has seen a wide adoption in sensitive domains such as au-
tonomous driving and decision support systems in hiring,
jurisdiction, and medical diagnosis. Recent years, however,
have also highlighted that deep neural networks (DNNs) are
vulnerable to adversarial attacks,—small engineered input
perturbations that lead to a dramatic change in the DNN’s
output [Szegedy et al., 2014, Goodfellow et al., 2015]—
which makes their usage in such domains problematic.

This vulnerability has motivated the design of adversar-

10M 30M 50M 70M 90M
Parameters

10−2

10−1

100

101

Ru
nt

im
e

(s
ec

on
ds

)

99.99%

92.25%

22.57%

100.0%

DecoNet
DNN
ConvNet

Figure 1: Scaling certified accuracy computation for σ =
1 and R = 2σ (time in seconds, y-axis) for DecoNets,
DNNs and ConvNets of equivalent number of parameters (x-
axis). The Monte-Carlo estimate for DNNs and ConvNets is
done for different confidence levels (99.99, 92.25, 22.577)
requiring respectively 104, 103, 102 samples, evaluated in a
single batch on a single GPU. DecoNets are able to obtain a
non-probabilistic guarantee (100% confidence) in a single
network evaluation. See Sec. 5 for details.

ial defenses, i.e., training and inference techniques which
aim to protect a model from adversarial attacks. Many re-
cent works focus on certified defenses, which allow one
to prove the non-existence of adversarial examples in a
region of interest, no matter what adversarial attack is
employed. One of the most promising techniques in this
area is randomized smoothing [Lecuyer et al., 2019, Cohen
et al., 2019, Salman et al., 2019a]. This approach trans-
forms a classifier f (without robustness guarantees) into
a certified smoothed classifier g, defined by Cohen et al.
[2019] as g(x) := arg maxc P[f(x + ε) = c], where
ε ∼ N (0, σI) is isotropic Gaussian noise. That is, the in-
put x is assigned the class which is predicted with high-
est probability by f when the input x is perturbed with
noise. The smoothed classified g guarantees a constant pre-

Submitted to the 4th Workshop on Tractable Probabilistic Modeling (TPM2021). To be used for reviewing only.

diction in a certain `2-ball and hence the non-existence of
an adversarial example in such a ball. More formally, let
pA = P[f(x + ε) = g(x)] be the probability of the most
likely class, and pB = maxc 6=g(x) P[f(x + ε) = c], the
probability of the runner-up class, then

g(x+δ) = g(x) ∀‖δ‖2 ≤ R :=
σ

2
(Φ−1(pA)−Φ−1(pB)),

(1)
where Φ is the standard Gaussian CDF. In Salman et al.
[2019a], this result is generalized using guarantees on the
Lipschitz constant of bounded, soft classifier functions when
computing not pA but their expected outputs, that is when
smoothing them.

Definition 1.1 (Smoothed function). Let f : X 7→ RC be
a C-output function. Its smoothed version f̄σ is defined as
f̄σ(x) = (f̄σ,1(x), . . . , f̄σ,C(x))>, where

f̄σ,c(x) = Eε∼N (0,σI) [fc(x + ε)] (2)

and ε is zero-mean Gaussian noise with covariance σI.

As shown in Salman et al. [2019a], f̄ , the smoothed ver-
sion of a classifier f : X 7→ [0, 1]C , essentially realizes a
low-pass filtered version of f using a Gaussian filter and

hence is
√

2
πσ2 Lipschitz, leading to an immediate robust-

ness guarantee within a certain `2-ball around a sample x.
In particular, let c∗ = arg maxc=1,...,C f̄σ,c(x) be the pre-
dicted class and c∗ = arg maxc6=c∗ f̄σ,c(x) be the runner
up class. Then an attacker needs to move x at least by a
distance

R = (f̄σ,c∗(x)− f̄σ,c∗(x))/
√

2πσ2 (3)

to flip the decision of the smoothed classifier. Hence, one can
guarantee constant classification within an `2-ball of diame-
ter R around x: arg maxc f̄σ,c(x + δ) = arg maxc f̄σ,c(x)
for ‖δ‖ < R.

Randomized smoothing is compelling since it is simple, scal-
able, model agnostic and provides strong guarantees, which
have been shown to be tight [Cohen et al., 2019]. However,
one of the central challenges in randomized smoothing is
that smoothed classifiers are in fact intractable, since neither
P[f(x+ ε) = c] nor Eε[f(x+ ε)] can be computed exactly
in general, especially when f is represented by an arbitrary
DNN. To overcome this limitation, the required probabilities
(or expectations) are replaced with Monte Carlo estimates,
which can only give probabilistic guarantees for the non-
existence of adversarial examples. As usual in Monte Carlo
techniques, this introduces a trade-off between inference
quality—determined by the variance of the estimator, and
scaling indirectly with number L of Monte Carlo samples—
and inference time—scaling directly with L. Fewer samples
lead to weaker probabilistic guarantees and smaller certified
regions, while more samples require more network evalua-
tions. For example, Cohen et al. [2019] report that 100, 000

Monte Carlo samples are needed for a confidence level of
99.9% for a radius 4σ—that is, in order to certify a single
test sample, one needs to evaluate the DNN 100, 000 times.
This incurs a significant increase in computational cost,
which becomes prohibitive in real-time and high-throughput
applications.

In this paper, we argue that (in-)tractability is a choice, and
in particular, a structural choice. In particular, we introduce
a novel class of deep models, decomposable neural net-
works (DecoNets), which are able to compute the functional
Eε[f(x + ε)] exactly and in a single network evaluation.
Compared to the Monte Carlo approaches to randomized
smoothing, DecoNets not only provide exact adversarial cer-
tification (i.e., with a confidence level of 100%) but also dra-
matically reduce the time needed to certify the non-existence
of adversarial examples, as shown in Fig. 1. DecoNets are
able to deliver this by combining expressive architectural
patterns like multiplicative interaction layers [Jayakumar
et al., 2019], from which they inherit universal approxi-
mation, with decomposable computational graphs such as
probabilistic circuits (PCs) [Vergari et al., 2020, Choi et al.,
2020] which enable the tractable computation of multivari-
ate integrals. Specifically, DecoNets realize set-multilinear
polynomials over arbitrary non-linear input features, repre-
sented as standard neural networks over sub-scopes of the
inputs. In the following sections we introduce the layers in
DecoNets as operations one is allowed to combine to obtain
exact computation of their smoothed outputs and provide a
general recipe to combine them for image data while retain-
ing these guarantees throughout the whole architecture.

2 DECOMPOSABLE NEURAL
NETWORKS

While randomized smoothing is simple and effective, it faces
a major challenge, namely the computation of the expec-
tations E [fc(x + ε)] which are analytically intractable in
general DNNs. In Cohen et al. [2019], Salman et al. [2019a]
the expectations are approximated with Monte Carlo es-
timation, which comes with the usual caveats, namely i)
high computational cost and ii) probabilistic guarantees
only. These two caveats also form a trade-off, since tighter
probabilistic guarantees require more computation, since
the estimator variance decreases reciprocal with the number
of Monte Carlo samples.

It seems to be a tacit assumption in the community that an
exact and efficient computation E [fc(x + ε)] must remain
a hopeless endeavor, or vice versa, that any model which
does allow this computation cannot live up to the perfor-
mance of DNNs. In this paper, we challenge this assumption
and propose decomposable neural networks (DecoNets), a
flexible class of DNNs which does facilitate an exact and
efficient computation of E [fc(x + ε)].

2

In order to introduce DecoNets, note that any DNN classifier
is a directed acyclic computational graph over modules (or
layers), many-to-many functions whose inputs are given
by the output of other modules or by the input vector x,
and whose outputs are arbitrary tensors, subsuming scalars,
vectors, matrices, etc.

We can naturally distinguish two types of modules, namely
input modules, whose input stems exclusively from x, and
internal modules, which receive input from at least one other
module in the graph. An important property in DecoNets is
that each module depends only on a sub-vector of x′ ⊆ x,1

which we call the scope or receptive field of the module, and
which we denote with xg for any module g. For example,
if x = (x1, x2, x3)> and g(x) := x3 − x21, then xg =
(x1, x3). Note, that given the scopes of the input modules,
the scopes of the internal modules can be easily determined
by recursion.

The principle of DecoNets is relatively simple and is
based on two requirements. First, if g is an input mod-
ule, we require that the smoothing operator E [g(x + ε)]
can be computed easily (e.g. in closed form). Note that
E [g(x + ε)] = E [g(xg + ε′)] where ε′ is a isotropic Gaus-
sian noise vector of the same length as xg, i.e. the smooth-
ing operator can be restricted to the scope of g. Second,
we require that internal modules are commutative with
the smoothing operator, i.e., if g(i, h, j, . . .) is an internal
module, then E[g(h(x + ε), i(x + ε), j(x + ε), . . .)] =
g(E[h(x + ε)],E[i(x + ε)],E[j(x + ε)], . . .).

In the following, we introduce four modules—the decompos-
able multiplicative interaction, the input, the normalization,
and the output layers—that satisfy the two aforementioned
desiderata and as such guarantee to exactly compute the
expectations required for distilling a smoothed classifier
(Def. 1.1) efficiently when composed together in a computa-
tional graph for a DecoNet. We then describe in Sec. 3 how
to use them to build a DecoNet tailored for image data.

2.1 DECOMPOSABLE MULTIPLICATIVE
INTERACTION MODULES

Multiplicative interactions [Jayakumar et al., 2019] are a
general way to combine multiple input streams by realizing
a bilinear tensor product. This module has been particular-
ized in a number of successful recent neural architectures
such as gating and attention layers [Vaswani et al., 2017,
Bahdanau et al., 2014], dynamic convolutions [Wu et al.,
2019], and hypernetworks [Ha et al., 2017]. Unfortunately,
all these architectural variants cannot efficiently compute
Eq. (2). To overcome this issue, we design a multiplicative
interaction moduel with an additional structural constraint—
decomposability—which ensures that the input streams are

1For convenience, and with slight abuse of notation, we use
set notation for vectors.

functions with non-overlapping scopes.

Definition 2.1 (Decomposable multiplicative interactions).
Let g(X1) ∈ Rm and h(X2) ∈ Rn be functions defined
over disjoint sets of variables, i.e., X1∩X2 = ∅. Then, a pa-
rameterized function f(X) ∈ Ro realizes a decomposable
multiplicative interaction (DeMI) module over variables
X = X1 ∪X2 if it takes the following form for an input
x = (x1,x2):

f(x) = g(x1)>·W·h(x2)+g(x1)>·U+V·h(x2)+b (4)

where W ∈ Rm,o,n, U ∈ Rm,o, V ∈ Rn,o and b ∈ Ro
are parameter tensors and the k-th entry of the first term
computes

∑
i,j g(x1)i ·Wi,j,k · h(x2)j .

Decomposability restricts the multiplicative interactions to
encode set-multilinear polynomials [Shpilka and Yehuday-
off, 2010] whose indeterminates are given by the output
entries of the functions g and h. However, imposing de-
composability does not hinder the universal approximator
capabilities of DeMI layers, as discussed in Sec. 2.5, but is
the key to unlocking tractable computation of Eq. (2), as
illustrated by the following theorem.

Theorem 2.1 (Smoothed decomposable multiplicative in-
teractions). Let f be a decomposable multiplicative interac-
tion module. Then, its smoothed output f̄σ (x) for an input
x ∈ X and Gaussian noise magnitude σ is given by

(ḡσ (x1))
> ·W ·h̄σ (x2)+(ḡσ (x1))

> ·U+V ·h̄σ (x2)+b,
(5)

where ḡσ and h̄σ are the smoothed versions of g and h.

In essence, Thm. 2.1 states that if the inputs of a multiplica-
tive interaction module admit tractable smoothing, so does
the module itself. We can ensure this recursively by compos-
ing several multiplicative interaction modules while paying
preserving decomposability (we will provide our architec-
tural recipe to do so in Sec. 3) and alternating them with
normalization layers (Sec. 2.3). We enlarge these options by
including standard perceptrons and convolutions as possible
input layers showing how they can be tractably smoothed.

2.2 INPUT MODULES: RELU PERCEPTRONS
AND CONVOLUTIONS

Even for the simple case of a single perceptron f(x) =
r(wT · x), i.e., an affine function followed by a non-linear
activation r, tractable computation of its smoothing depends
on the choice of r. For example, if r is the sigmoid activation,
then computing Eq. (2) exactly might not be possible, as
no closed-form integral is known for the expectation of an
arbitrary sigmoid with Gaussian inputs. Fortunately, this is
not the case for rectified linear units (ReLUs), as the next
proposition shows.

3

Proposition 2.1. Let f denote an affine function with a
ReLU activation, i.e., f(x) = max(0,w>x + b). The
smoothing of f has the following expectation:

f̄σ(x) = (wTx + b) Φ(γ) + exp

(
−γ

2

2

)
σ‖w‖√

2π
, (6)

where γ = wTx+b
σ‖w‖ and Φ is the standard normal CDF.

As such, we are allowed to create input modules that con-
catenate the outputs of I perceptrons. Note that this result
extends also to convolutions followed by ReLU activations,
as they realize linear operators with parameter sharing [Le-
Cun, 1998].

2.3 NORMALIZATION AND REGULARIZATION
MODULES

A miscellaneous of regularization and normalization layers
commonly used in deep learning can be readily incorporated
in DecoNets as modules whose computations at inference
time would easily commute with the expectation as they real-
ize affine functions. For example, a dropout layer receiving
input from a module f would simply realize pd · f(x) at
inference time, where 1− pd is the probability of zeroing
the outputs of f at training time. Hence, its smoothed ver-
sion can be easily computed as pd · f̄σ(x). Similarly, as a
batch norm module would realize the affine transformation
of the k-th dimension as γk · ((f(x)k − µk)/σBN) + βk,
where γk and βk are some learned parameters and µk and
σBN are the mean and standard deviation statistics estimated
on the training set (and hence constant at inference time),
then smoothing it equals computing γk · ((f̄σ,k(x)− µk)/
σBN) + βk.

2.4 OUTPUT MODULE

The layers introduced so far guarantee the tractable computa-
tion of their smoothed equivalents, but they do not guarantee
their outputs to be bounded in [0, 1]C , which is a require-
ment for a classifier f to retrieve the radius guarantees in
Eq. (3) as shown in Salman et al. [2019a]. Since we are
not allowed to simply normalize the DecoNet predictions in
[0, 1] through a sigmoid or softmax layer, as a closed-form
expectation for it is not known (Sec. 2.2), we propose to
scale them with an affine function. Specifically, we adopt
the following element-wise min-max transformation as the
last layer:

f ′i(x) = (f(x)i − fmin
i)/(fmax

i − fmin
i) (7)

where f(x)i is the unnormalized prediction for the i-th class
as output by the penultimate layer, and fmin

i (resp. fmax
i)

are theoretical bounds over the predictions of f . As the
bounds are constants at inference time, we can again easily
commute Eq. (7) with the expectation operator to smooth it.

For a DecoNet with input modules realizing ReLU percep-
trons, we can efficiently compute a practical upper (resp.
lower) bound for fmax

i (resp. fmin
i). Specifically, for an up-

per bound, we can formulate the following optimization
problem

max
x

fi(f
in1(z), . . . , f inK (z))

s.t. x ∈ Xf , z = max(w>x + ,
¯
0)

(8)

where Xf is the range for feasible input values, e.g.,
[−0.5, 0.5]D for zero-centered images comprising D pixels
and f in1(z), . . . , f inK (z) denote K different input modules
in the DecoNet. For fmin

i we can formulate an equivalent
minimization problem. Note that to compute Eq. (7) we do
not require optimal bounds on the values of fmin

i and fmax
i ,

only relaxations fuppi and f lowi such that fmin
i ≥ f lowi and

fmax
i ≤ fuppi . We rewrite Eq. (8) as a quadratic program

with non-linear constraints making it amenable to off-the-
shelf solvers like Gurobi. Specifically we introduce for every
quadratic term multiplied by another linear (or quadratic)
term appearing in our DeMI modules a new variable in the
objective function which has a hard constraint equal to the
product of the higher order polynomial term. As a result, we
can use a few iterations of Gurobi to compute fuppi and f lowi
to plug in Eq. (7) and ensure that the output of the DecoNet
lies in [0, 1]C . For a dataset like FMNIST and a DecoNet
of one million parameters, this computation takes roughly
300-400 seconds depending on the tightness of the bound re-
quired. Note that we need to perform this computation only
once and therefore we can amortize its cost for all possible
queries to certify every input at inference time.

2.5 REPRESENTATIONAL POWER OF
DECONETS

DecoNets realize a hierarchy of multiplicative interactions
over non-linear inputs that are ReLU perceptrons. At the
same time, as pointed out in Sec. 2.1, DecoNets are com-
pact representations for set-multilinear polynomials with
potentially exponentially many terms. Each term in such a
polynomial would comprise a product of non-linear func-
tions defined over disjoint sets of variables. It follows from
the above statements that DecoNets inherit from their neural
and polynomial nature the universal approximator property:
by adding more neurons either in the input layers as ReLU
perceptrons or by increasing the parameterization of the
DeMI layers DecoNets could better approximate any target
function with reduced error.

While the above statements tell us that DecoNets can be
as expressive as general DNNs and other feedforward net-
works such as ConvNets, they do not guarantee that they
are equivalently expressive efficient [Shpilka and Yehuday-
off, 2010, Martens and Medabalimi, 2014], that is that they
can approximate a target function equivalently well than

4

other models with the same model capacity, here expressed
in terms of number of parameters. We settle this question
with our empirical evaluation in Sec. 5 where we show that
DecoNets are competitive in terms of natural accuracy on a
number of datasets when compared to DNNs and ConvNets
with an equivalent number of parameters.

Lastly, we clarify the relationship between DecoNets and
probabilistic circuits (PCs) [Vergari et al., 2020, Choi et al.,
2020]. PCs compactly represent complex distributions as
computational graphs comprising only sum, product and
input units. Imposing structural constraints on their graphs
equals to guarantee tractability for certain computations. For
instance, decomposability guarantees tractable marginaliza-
tion in PCs when in conjunction with smoothness,2 and
maximization when associated to determinism, two addi-
tional structural properties for circuits [Choi et al., 2020].

DecoNets can be understood as special circuits if we ab-
stract their input layers into single computational units, as
their inner layers already comprise only sum and product
operations. Specifically, under this light DecoNets can be
represented as non-monotonic3 and decomposable circuits
whose input units encode DNNs. In fact, differently from
PCs, which are required to have positive parameters (also
called monotonic circuits), DecoNets are not restricted to
model probability distributions, and therefore allow for ar-
bitrary parameterizations. Furthermore, DecoNets are also
less restricted structure-wise: while all the aforementioned
special classes of PCs require some combination of decom-
posability, smoothness and determinism for tractable infer-
ence, only decomposability is truly necessary in DecoNets
to tractably compute Eq. (2). This additional flexibility al-
lows us to leverage architectural biases in DecoNets that
are not allowed in standard PCs because they would “break”
some other structural property or the probabilistic semantics
of the circuit (e.g., BatchNorm). At the same time, we can
leverage the rich literature of PCs for effortless ways to
build a structure for DecoNets whose layers are guaranteed
to preserve decomposability, as the next section discusses.

3 A DECONET FOR IMAGES

We now give a simple recipe to compose the tractable in-
gredients introduced in the previous section to obtain a De-
coNet that can robustly classify and efficiently certify image
data. The main challenge in stacking multiple modules of
this kind together is preserving decomposability across all
DeMI layers. To this end, we adapt an approach to build
decomposable PCs first introduced by Poon and Domingos
[2011] and then extended to tensorized representations by
Peharz et al. [2020a]. At a high level, this process consists

2Not to be confused with functional smoothness, smoothness
in PCs constraints the input to a sum units to be functions defined
over the same sets of variables.

3Also referred to as general circuits in Vergari et al. [2021].

of two steps: i) building a hierarchical decomposition of the
global function scope, also called a region graph and then
ii) following it to build a computational graph that prop-
erly stacks DeMI layers. We describe these two steps next,
illustrated in Fig. 2.

Building the region graph. The region graph is a bipar-
tite graph comprising two kinds of nodes: regions and parti-
tions. Regions encode subsets of variables X, among them
the so-called "top region" representing a the full scope X.
“Leaf regions” indicate the regions in the graph with the
smallest scope. In the context of images, regions correspond
to patches, e.g., collection of pixels that are highlighted with
different shades of blue in Fig. 2, left. On the other hand,
partitions are collections of disjoint regions and represent
ways to decompose a region. Without loss of generality,
we consider partitioning regions into two sub-regions only.
More formally, for a region with scope Xr, a partition de-
notes the collection (Xr1 ,Xr2) where Xr1 ∩Xr2 = ∅ and
Xr1 ∪ Xr2 = Xr. For example, the top region in Fig. 2,
with scope (r, s, t, u, v, w) is decomposed by the partition
denoted by a black square indexed by 8 into two sub-regions,
one of which (indexed as 7) has scope (r, s, u, v) and the
other one (t, w). Note that a region can be partitioned in
different ways. It is easy to see that such a region graph
admits only decomposable partitions by construction and
realizes a poset over the possible subsets of the top region.

Given some image data with height H and width W , to
build a region graph we perform a recursive partitioning
process that starts from the top region—the full image—and
then keeps on partitioning it into axis-aligned patches, until
the generated regions have a large enough scope—becoming
the leaf regions. Specifically, we execute d horizontal (resp.
vertical) splits on a region r to partition Hr (resp Wr) in
equal parts (up to integer rounding) until we cannot split
a region’s dimension in d parts anymore. We then connect
each region to its corresponding sub-regions via partitions,
by caching the nodes we introduced in the region graph
to obtain a DAG as the one depicted in Fig. 2 where each
region or partition are unique.

Tensorizing DecoNet layers. Once a region graph is
available, we can build a computational graph for DecoNets
in the following way. For each leaf in the region graph we
introduce an input layer comprised of I neurons with ReLU
activations as described in Sec. 2.2. Then, for each parti-
tion node in the region graph, partitioning a region r with
scope Xr into two sub-regions with scopes Xr1 and Xr2

we introduce a block comprised of a DeMI layer followed
by Dropout and Batch Norm layers, as indicated by colors
in Fig. 2 right. The DeMI layer is parameterized byW and
realizes the function g(xr1)T ·W · h(xr2), where g and h
represent the outputs of the blocks associated to the two sub-
regions in the current partition. To speed up computations,
we implement these DeMI layers as a monolithic einsum op-

5

1

2

3

4

5

6

7

8 D
ro
p
o
u
t2

3

4

5

6

7 8

1

B
N

DeM
I

DeM
I

D
ro
p
o
u
t

B
N

DeM
I

D
ro
p
o
u
t

B
N

Figure 2: On the left, a region graph created over the set of variables (r, s, t, u, v, w) defined over a 2 × 3 image patch.
Regions are color-coded as to denote their scope while partitions are denoted as black squares. On the right: a fragment
of the computational graph of a DecoNet where DeMI, Dropout and BatchNorm modules are stacked to represent the
corresponding partition in the region graph on the left.

eration as in [Peharz et al., 2020b]. Lastly, as one region can
be partitioned in multiple ways, we mix the aforementioned
blocks associated to the partitions into a single output by a
weighted sum operation (indicated by

∑
in Fig. 2).

4 RELATED WORK

Decomposability and Circuit Representations. Con-
straining computational graphs to enable the tractable com-
putation of certain quantities of interest has a long history in
ML and AI [Davis et al., 1962, Darwiche and Marquis, 2002,
Bacchus et al., 2009, Kimmig et al., 2017]. Decomposability,
in particular, has been first introduced as a structural prop-
erty enabling tractable computations of SAT and weighted
model counting in the literature of logical circuits [Darwiche
and Marquis, 2002], the logical counterpart of PCs, encod-
ing Boolean functions with computational graphs of and
and or gates. Within the literature of PCs, only a few works
have investigated decomposable discriminative circuits for
classification [Rooshenas and Lowd, 2016, Rahman et al.,
2019, Liang and Van den Broeck, 2019, Shao et al., 2020].
However, all of them introduce additional structural proper-
ties such as determinism or structured-decomposability that
further limit their expressive efficiency as well as their abil-
ity to accommodate for the most recent neural architectural
advancements (Sec. 2.5). Equally crucially, to retain a prob-
abilistic semantics they additionally restrict their computa-
tional graphs to compute valid probabilities throughout it by
limiting the choice of input layers, forcing network parame-
ters to be in a simplex, or squashing the output value through
a sigmoid. DecoNets, on the other hand, require only decom-
posability and do not enforce a probabilistic semantics, as
such they can easily accommodate convolutions and batch
norm layers (Sec. 2). Furthermore, circuits directly encoding
a conditional probability distribution P (Y | X) [Rooshenas
and Lowd, 2016, Rahman et al., 2019, Shao et al., 2020]

can only impose decomposability over the output variables
Y thus hindering the possibility to solve Eq. (2) efficiently.

Non-certified Defenses. There have been countless
works proposing empirical defenses against adversarial ex-
amples. Perhaps the most successful approach so far as
been adversarial training Kurakin et al. [2016], Madry et al.
[2018], in which training is performed on worst-case ex-
amples within a local neighborhood of each training exam-
ple. However, since none of these defenses possess prov-
able guarantees, there is always the possibility that a new
proposed attack could break them. Indeed, most empirical
techniques which are purported to be robust are quickly
circumvented by better design of adversarial examples Atha-
lye et al. [2018], Athalye and Carlini [2018], Tramer et al.
[2020]. As a result, many in the community have directed
their attention towards approaches which provide certified
protection.

Certified Defenses. Many recent approaches provide cer-
tifiable guarantees that no adversarial example exists within
a certain radius of a point. Several of these approaches
are exact, including those based on SMT solvers Katz
et al. [2017], Ehlers [2017] or mixed integer linear pro-
grams Tjeng et al. [2017], Lomuscio and Maganti [2017],
Fischetti and Jo [2017]. Unfortunately, these approaches are
generally not computationally efficient due to the underly-
ing optimization techniques. Other recent works sacrifice
these exact guarantees for conservative ones (i.e., a point’s
certified radius may be more narrow than its true one) in
order to reduce computation Wong and Kolter [2018], Wang
et al. [2018], Raghunathan et al. [2018a,b], Dvijotham et al.
[2018a,b], Mirman et al. [2018], Zhang et al. [2018], Salman
et al. [2019b], though it still has trouble scaling to large net-
work sizes. Randomized smoothing is the most relevant
approach to our investigation. This achieves better scala-
bility than other certified methods, though the guarantees

6

0.0 0.2 0.499.0

99.2

99.4

99.6

99.8

100.0
%

 c
er

tif
ie

d
po

in
ts

2 4 6 80

20

40

60

80

100
DecoNet
DNN
ConvNet

MNIST (ε = 4.0)

Gaussian noise (σ)

0.0 0.2 0.495

96

97

98

99

100

%
 c

er
tif

ie
d

po
in

ts

2 4 6 80

20

40

60

80

100
DecoNet
DNN
ConvNet

FMNIST (ε = 4.0)

Gaussian noise (σ)

Figure 3: Percentage of certified points (y-axis) w.r.t. differ-
ent Gaussian noise magnitudes (σ, x-axis) for MNIST (top)
where DecoNets and FMNIST (bottom). We can see that
DecoNets are competitive with ConvNets for all σ values
and with DNNs for σ ≤ 1, for larger values adversarial
samples are not easily recognizable by humans.

provided are only probabilistic. The first applications of
randomized smoothing were empirical defenses Liu et al.
[2018], Cao and Gong [2017], but Lecuyer et al. Lecuyer
et al. [2019] proved certified `2 robustness using techniques
from differential privacy Dwork et al. [2006], which later
works refined Cohen et al. [2019], Salman et al. [2019a].
Other works have applied randomized smoothing for cer-
tified robustness in other distances, including `1, `∞, `0,
and Wasserstein distance Teng et al. [2019], Zhang et al.
[2019], Levine and Feizi [2020a,b], Lee et al. [2019], Yang
et al. [2020]. Finally, yet another line of work guarantees
certified `∞-robustness by imposing a Lipschitz property on
the network via alternative architectures Anil et al. [2019],
Li et al. [2019]. While our approach also introduces a new
architecture for robustness, we differ in that our architecture
instead supports closed-form computation of expectations,
and we certify `2 rather than `∞ robustness.

5 EXPERIMENTS

In this section, we aim to answer the following questions:
Q1) Are DecoNets as expressive as other deep models like
DNNs and convolutional neural networks (ConvNets)? Q2)
Do DecoNets possess similar robustness properties as these
other architectures? Q3) How do Deconets compare to these
other models in terms of time and accuracy when certifying
data points?

2 3 4
ε - L2 Norm Bound

96

97

98

 R
ob

us
t A

cc
. (

%
)

MNIST (σ=0.1)
DecoNet
DNN
ConvNet

2 3 4
ε - L2 Norm Bound

85

90
Ro

bu
st

 A
cc

. (
%

)

FMNIST (σ=0.1)

Figure 4: Robust accuracy (y-axis) for all models under
attacks with different L2 norm radiuses (x-axis) on MNIST
(top) and FMNIST (bottom).

Datasets. To answer the aforementioned questions, we
utilize MNIST LeCun [1998] and Fashion-MNIST Xiao
et al. [2017]. In future works we plan to scale DecoNets to
accurately classify larger image problems such as ImageNet
Deng et al. [2009], which undoubtedly requires to acco-
modate additional architectural biases in our framework as
well as more computational resources to run a systematical
empirical evaluation.

Model Architectures. The baseline models being used
are fully connected DNNs with ReLU activations and Con-
vNets with a fully-connected classification layer. For the
DecoNet trained on MNIST (resp. FMNIST), we build a
region graph splitting each region dimensions into 5 (d,
Sec. 3) pieces and we use 8 (resp. 12) input perceptrons
per input regions. For DecoNets we use a weight decay
of 0.0002 and experimented with dropout, finding it less

7

MNIST (300K) FMNIST (1M)

DNN CONVNET DECONET DNN CONVNET DECONET

98.7 99.3 99.1 88.6 90.3 90.1

Table 1: Natural accuracy of Baselines and DecoNet and as
we can see, the DecoNet is able to obtain comparable results
to the baseline architectures

beneficial for certified accuracies. Finally, we employ for
DecoNets a uniform combination of multiple classification
output layers as to have gradients backpropagate at different
depths as in GoogLeNetSzegedy et al. [2015]. Additional
architectural details are reported in the Appendix. All mod-
els on MNIST (resp. FMNIST) have roughly 300K (resp. 1
million) parameters.

Q1) Natural accuracy. Tab. 1 summarizes the accuracy
of all models on all datasets. DecoNets perform comparably
to all baselines despite having a an additional structural
constraint like decomposability. As the models have the
same parameter counts, we can deduce that DecoNets can
be as expressive efficient as ConvNets and DNNs. These
results are quite promising since they hint that a deep model
that allows to perform smoothing exactly and in a single
pass can be as accurate as intractable ones, therefore we can
answer our research question affirmatively.

Q2) Robust accuracy. To answer this question we con-
sidered the `2-PGD attack Madry et al. [2017]. Note that
this attack produces similar results to the DDN `2 attack
Rony et al. [2019], which just requires fewer iterations. For
this attack, we fix the number of iterations to be 40 and the
epsilon threshold to vary from 2 to 4 in increments of 0.2.
The method for adversarial training employed in this paper
is the same as the robust training procedure in Madry et al.
[2017]. This procedure takes the attacked data point as the
input for the DecoNet and trains on this sample instead of
the existing sample. Tab. 1 collects our results. DecoNets
have comparable robust accuracy as the baseline model com-
parisons with results for Fashion-MNIST, DecoNets that are
only approximately 2% worse in robust accuracy. Despite
this, we observe that DecoNets share the same properties
as deep networks when it comes to adversarial defenses. In
Fig. 4 we notice that as the value of ε increases, the change
in the robust accuracy is not large.

Q3) Certified accuracy and times Fig. 3 illustrates our
results. For small values of σ ≤ 1, DecoNets are able to
certify more samples than ConvNets and DNNs for MNIST
and still surpass ConvNets on FMNIST. For larger σ, DNNs
certify a higher percentage but have a lower natural accu-
racy. On the other hand, DecoNets are always competitive
with ConvNets. This is quite promising for a novel deep
model class such as DecoNets: with respect to these other
baselines they introduce an additional structural constraint,

decomposability, have not access to the myriad of “tricks of
the trade” brought up in the burgeoning deep learning litera-
ture and yet perform competitively. More importantly, they
can deliver much faster and exact certification guarantees.
Fig. 1 shows that despite GPU computations and batching
Monte Carlo samples, to certify a single input point for
σ = 1, a radius of 2σ and with 99.99% confidence for both
DNNs and ConvNets of different sizes takes up to 4 orders
of magnitude more than for DecoNets.

6 DISCUSSION AND CONCLUSION

In this paper, we introduced DecoNets, a promising novel
class of deep classifiers that is able to provide exact guar-
antees for adversarial robustness in a fraction of the time
that comparably expressive deep and convolutional neural
networks would require to match them with very high prob-
ability. We also proposed a simple way to build DecoNets
for image data, by combining recent advancements in the
literature of deep classifiers and probabilistic circuits.

At the same time, several interesting questions arise around
this novel model class. First, we would like to scale build-
ing and learning DecoNets for larger benchmarks including
Cifar-10 and ImageNet, employ more sophisticated modules
from “the deep learning toolkit” such as residual connec-
tions and demonstrate their robustness properties as well.
Finally, we would like to investigate which other inference
scenarios the structural properties of DecoNets can tractably
deal with, thus distilling deep classifiers that are reliable and
yet efficient.

References

Cem Anil, James Lucas, and Roger Grosse. Sorting out
lipschitz function approximation. In International Con-
ference on Machine Learning, pages 291–301. PMLR,
2019.

Anish Athalye and Nicholas Carlini. On the robustness of
the cvpr 2018 white-box adversarial example defenses.
arXiv preprint arXiv:1804.03286, 2018.

Anish Athalye, Nicholas Carlini, and David Wagner. Ob-
fuscated gradients give a false sense of security: Circum-
venting defenses to adversarial examples. In Interna-
tional Conference on Machine Learning, pages 274–283.
PMLR, 2018.

Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi.
Solving# sat and bayesian inference with backtracking
search. Journal of Artificial Intelligence Research, 34:
391–442, 2009.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align
and translate. arXiv preprint arXiv:1409.0473, 2014.

8

Xiaoyu Cao and Neil Zhenqiang Gong. Mitigating evasion
attacks to deep neural networks via region-based classi-
fication. In Proceedings of the 33rd Annual Computer
Security Applications Conference, pages 278–287, 2017.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck.
Probabilistic circuits: A unifying framework for tractable
probabilistic modeling. 2020.

J. Cohen, E. Rosenfeld, and Z. Kolter. Certified adversar-
ial robustness via randomized smoothing. In Interna-
tional Conference on Machine Learning, pages 1310–
1320, 2019.

Adnan Darwiche and Pierre Marquis. A knowledge compi-
lation map. Journal of Artificial Intelligence Research,
17:229–264, 2002.

Martin Davis, George Logemann, and Donald Loveland. A
machine program for theorem-proving. Communications
of the ACM, 5(7):394–397, 1962.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth,
Relja Arandjelovic, Brendan O’Donoghue, Jonathan Ue-
sato, and Pushmeet Kohli. Training verified learners
with learned verifiers. arXiv preprint arXiv:1805.10265,
2018a.

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal,
Timothy A Mann, and Pushmeet Kohli. A dual approach
to scalable verification of deep networks. In UAI, vol-
ume 1, page 3, 2018b.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. Calibrating noise to sensitivity in private data
analysis. In Proceedings of the 3rd Conference on The-
ory of Cryptography, TCC ’06, pages 265–284, Berlin,
Heidelberg, 2006. Springer.

Ruediger Ehlers. Formal verification of piece-wise linear
feed-forward neural networks. In International Sympo-
sium on Automated Technology for Verification and Anal-
ysis, pages 269–286. Springer, 2017.

Matteo Fischetti and Jason Jo. Deep neural networks as 0-1
mixed integer linear programs: A feasibility study. arXiv
preprint arXiv:1712.06174, 2017.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In
Yoshua Bengio and Yann LeCun, editors, 3rd Interna-
tional Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks.
In ICLR (Poster). OpenReview.net, 2017.

Siddhant M Jayakumar, Wojciech M Czarnecki, Jacob
Menick, Jonathan Schwarz, Jack Rae, Simon Osindero,
Yee Whye Teh, Tim Harley, and Razvan Pascanu. Multi-
plicative interactions and where to find them. In Interna-
tional Conference on Learning Representations, 2019.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and
Mykel J Kochenderfer. Reluplex: An efficient smt solver
for verifying deep neural networks. In International Con-
ference on Computer Aided Verification, pages 97–117.
Springer, 2017.

Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt.
Algebraic model counting. Journal of Applied Logic, 22:
46–62, 2017.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-
versarial machine learning at scale. arXiv preprint
arXiv:1611.01236, 2016.

Yann LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana.
Certified robustness to adversarial examples with differ-
ential privacy. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 656–672, 2019.

Guang-He Lee, Yang Yuan, Shiyu Chang, and Tommi S
Jaakkola. Tight certificates of adversarial robustness
for randomly smoothed classifiers. arXiv preprint
arXiv:1906.04948, 2019.

Alexander Levine and Soheil Feizi. Robustness certificates
for sparse adversarial attacks by randomized ablation. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 4585–4593, 2020a.

Alexander Levine and Soheil Feizi. Wasserstein smooth-
ing: Certified robustness against wasserstein adversarial
attacks. In International Conference on Artificial Intelli-
gence and Statistics, pages 3938–3947. PMLR, 2020b.

Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger
Grosse, and Jörn-Henrik Jacobsen. Preventing gradient at-
tenuation in lipschitz constrained convolutional networks.
arXiv preprint arXiv:1911.00937, 2019.

Y. Liang and G. Van den Broeck. Learning logistic circuits.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 4277–4286, 2019.

Xuanqing Liu, Minhao Cheng, Huan Zhang, and Cho-Jui
Hsieh. Towards robust neural networks via random self-
ensemble. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 369–385, 2018.

9

Alessio Lomuscio and Lalit Maganti. An approach to reach-
ability analysis for feed-forward relu neural networks.
arXiv preprint arXiv:1706.07351, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In Interna-
tional Conference on Learning Representations, 2018.

James Martens and Venkatesh Medabalimi. On the ex-
pressive efficiency of sum product networks. CoRR,
abs/1411.7717, 2014.

Matthew Mirman, Timon Gehr, and Martin Vechev. Differ-
entiable abstract interpretation for provably robust neural
networks. In International Conference on Machine Learn-
ing, pages 3578–3586. PMLR, 2018.

R. Peharz, S. Lang, A. Vergari, K. Stelzner, A. Molina,
M. Trapp, G. Van den Broeck, K. Kersting, and Z. Ghahra-
mani. Einsum networks: Fast and scalable learning of
tractable probabilistic circuits. In International Confer-
ence on Machine Learning, pages 7563–7574, 2020a.

R. Peharz, A. Vergari, K. Stelzner, A. Molina, X. Shao,
M. Trapp, K. Kersting, and Z. Ghahramani. Random
sum-product networks: A simple and effective approach
to probabilistic deep learning. In Uncertainty in Artificial
Intelligence, pages 334–344. PMLR, 2020b.

H. Poon and P. Domingos. Sum-product networks: A new
deep architecture. In Proceedings of UAI, pages 337–346,
2011.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang.
Semidefinite relaxations for certifying robustness to ad-
versarial examples. arXiv preprint arXiv:1811.01057,
2018a.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang.
Certified defenses against adversarial examples. arXiv
preprint arXiv:1801.09344, 2018b.

Tahrima Rahman, Shasha Jin, and Vibhav Gogate. Cutset
bayesian networks: A new representation for learning rao-
blackwellised graphical models. In Proceedings of the
Twenty-Eighth International Joint Conference on Artifi-
cial Intelligence, 2019.

Jérôme Rony, Luiz G Hafemann, Luiz S Oliveira, Ismail Ben
Ayed, Robert Sabourin, and Eric Granger. Decoupling di-
rection and norm for efficient gradient-based l2 adversar-
ial attacks and defenses. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 4322–4330, 2019.

Amirmohammad Rooshenas and Daniel Lowd. Discrimi-
native structure learning of arithmetic circuits. In Artifi-
cial Intelligence and Statistics, pages 1506–1514. PMLR,
2016.

H. Salman, J. Li, I. Razenshteyn, P. Zhang, H. Zhang,
S. Bubeck, and G. Yang. Provably robust deep learn-
ing via adversarially trained smoothed classifiers. In
Advances in Neural Information Processing Systems, vol-
ume 32, 2019a.

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and
Pengchuan Zhang. A convex relaxation barrier to tight
robustness verification of neural networks. arXiv preprint
arXiv:1902.08722, 2019b.

Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl
Stelzner, Robert Peharz, Thomas Liebig, and Kristian
Kersting. Conditional sum-product networks: Imposing
structure on deep probabilistic architectures. In Inter-
national Conference on Probabilistic Graphical Models,
pages 401–412. PMLR, 2020.

J. J. Sharples and J. C. V. Pezzey. Expectations of linear func-
tions with respect to truncated multinormal distributions–
with applications for uncertainty analysis in environmen-
tal modelling. Environmental Modelling & Software, 22
(7):915–923, 2007.

Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A
survey of recent results and open questions. Now Pub-
lishers Inc, 2010.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of
neural networks. In International Conference on Learn-
ing Representations, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1–9,
2015.

Jiaye Teng, Guang-He Lee, and Yang Yuan. `1 adversarial
robustness certificates: a randomized smoothing approach.
2019.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating
robustness of neural networks with mixed integer pro-
gramming. arXiv preprint arXiv:1711.07356, 2017.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and
Aleksander Madry. On adaptive attacks to adversarial ex-
ample defenses. arXiv preprint arXiv:2002.08347, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. Attention is all you need. In NIPS, pages
5998–6008, 2017.

10

A. Vergari, YJ. Choi, R. Peharz, and G Van den Broeck.
Probabilistic circuits: Representations, inference, learning
and applications. http://starai.cs.ucla.edu/
slides/AAAI20.pdf, 2020. Tutorial at AAAI 2020.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso,
and Guy Van den Broeck. A compositional atlas of
tractable circuit operations: From simple transformations
to complex information-theoretic queries. arXiv preprint
arXiv:2102.06137, 2021.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang,
and Suman Jana. Efficient formal safety analysis of neural
networks. arXiv preprint arXiv:1809.08098, 2018.

Eric Wong and Zico Kolter. Provable defenses against adver-
sarial examples via the convex outer adversarial polytope.
In International Conference on Machine Learning, pages
5286–5295. PMLR, 2018.

Felix Wu, Angela Fan, Alexei Baevski, Yann N. Dauphin,
and Michael Auli. Pay less attention with lightweight and
dynamic convolutions. In ICLR. OpenReview.net, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747,
2017.

Greg Yang, Tony Duan, J Edward Hu, Hadi Salman, Ilya
Razenshteyn, and Jerry Li. Randomized smoothing of all
shapes and sizes. In International Conference on Machine
Learning, pages 10693–10705. PMLR, 2020.

Dinghuai Zhang, Mao Ye, Chengyue Gong, Zhanxing Zhu,
and Qiang Liu. Filling the soap bubbles: Efficient black-
box adversarial certification with non-gaussian smooth-
ing. 2019.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh,
and Luca Daniel. Efficient neural network robustness
certification with general activation functions. In Pro-
ceedings of the 32nd International Conference on Neural
Information Processing Systems, pages 4944–4953, 2018.

11

http://starai.cs.ucla.edu/slides/AAAI20.pdf
http://starai.cs.ucla.edu/slides/AAAI20.pdf

A APPENDIX

Proof of Thm. 2.1

Proof. By linearity of expectations and by grouping expectations into tensors as in Def. 1.1 we obtain that:

f̄fσ (x) = f̄aσ (x) + f̄ bσ (x) + f̄ cσ (x) + b.

where a, b, c denote the functionals a(x) = g(x1)T ·W · h(x2), b = g(x1)T ·U and c = V · h(x2) + b.

Then, by noting that each i-th entry in a computes
∑
m,nWm,i,n · g(x1)m · h(x2)n and that the joint Gaussian density over

the noise fully factorizes as N (ε;0, σ2I) = N (ε1;0m, σ
2Im) · N (ε2;0n, σ

2In) where ε = [ε1; ε2] denotes the Gaussian
noise vector partitioned in the same way as x = [x1;x2] we obtain that

f̄aσ (x)i =Eε∼N (0D,σ2ID)

[∑
m,n

Wm,i,n · g(x1 + ε1)m · h(x2 + ε2)n

]
=
∑
m,n

Wm,i,n · Eε∼N (0D,σ2ID) [g(x1 + ε1)m · h(x2 + ε2)n]

=
∑
m,n

Wm,i,n ·
∫ ∫

N (ε1;0m, σ
2Im) · N (ε2;0n, σ

2In)

· g(x1 + ε1)m · h(x2 + ε2)n dε1 dε2

=
∑
m,n

Wm,i,n · Eε1 [g(x1 + ε1)m] · Eε2 [h(x2 + ε2)n]

by first applying the linearity of expectations and then by noting that we can break the expectation over the product of
functions over independent variables as the product of expectations. By collecting all these entries in tensors we obtain that
f̄aσ (x) =

(
f̄gσ (x1)

)T ·W · f̄hσ (x2).

Lastly, we can retrieve the second and third term in Eq. (5) by noting that the i-th component of f̄ bσ (x) can be computed
as f̄ bσ (x)i =

∫ ∫
N (ε1;0m, σ

2Im) · N (ε2;0n, σ
2In) · g(x1 + ε1) · U:,i dε1 dε2 =

∫
N (ε1;0m, σ

2Im) · g(x1 + ε1) ·
U:,i dε1 ×

∫
N (ε2;0n, σ

2In) dε2 =
(
f̄gσ (x1)

)T ·U:,i and equivalently f̄ cσ (x)j = Vj,: · f̄hσ · (x2). Rearranging these
entries in tensor form completes the proof.

Proof of Prop. 2.1

Proof. First note that

E [f(x + ε)] = E
[
max(0,w>(x + ε) + b)

]
(9)

= E
[
(w>(x + ε) + b)1{w>ε ≥ −w>x− b}

]
. (10)

Equation (10) is further

E
[
(w>x + b)1{w>ε ≥ −w>x− b}

]
+ E

[
(w>ε)1{w>ε ≥ −w>x− b}

]
= (11)

(w>x + b)P
[
w>ε ≥ −w>x− b

]
+

∫
H
p(ε)w>εdε, (12)

whereH = {ε : w>ε ≥ −w>x− b}.

Concerning the first term in (12), note that w>ε is a univariate Gaussian with w>ε ∼ N (0, σ2‖w‖2). Thus,

(w>x + b)P
[
w>ε ≥ −w>x− b

]
= (wTx + b) Φ (γ) ,

where Φ is the standard normal CDF and γ = wTx+b
σ‖w‖ .

12

Note that the second term in (12) can be written as
∫
H p(ε)w

>ε dε =
∫
H p(ε

′)σw>ε′ dε′, where ε′ ∼ N (0, I). Further-

more we can re-write the half-space H as H =
{
ε′ : w>

‖w‖ε
′ ≥ −w

>x−b
σ‖w‖

}
. We can use now Theorem 5 in Sharples and

Pezzey [2007], which provides an exact expression for integrals of linear functions with respect to the Gaussian measure
over halfspaces, precisely the form of this term. This yields∫

H
p(ε′)σw>ε′ dε′ = exp

(
−γ

2

2

)
σ‖w‖√

2π
, (13)

concluding the proof.

B EXPERIMENTS

B.1 MODEL ARCHITECTURES

The architecture for the DNNs is a fully connected layer, followed by a ReLU activation, repeated three times and finally a
fully connected head to the number of classes to be predicted followed by a softmax layer. The number of units in each layer
is dependent on which dataset is being used. For MNIST, the units at each layer are [340, 150, 50, 10]. For Fashion-MNIST,
the units are [700, 500, 200, 10]. For MNIST, the number of parameters is 326110 and for Fashion-MNIST, the number of
parameters is 1,002,210. The ConvNet’s architecture is two convolutional layers with a kernel size of 5, followed by 4 fully
connected layers and a softmax layer. The ConvNet contains 305,510 parameters for MNIST and 1,033,140 parameters for
Fashion-MNIST.

The DecoNet has 319,440 parameters for MNIST and 1,051,260 parameters for FMNIST.

13

	Introduction
	Decomposable Neural Networks
	Decomposable Multiplicative Interaction Modules
	Input Modules: ReLU perceptrons and convolutions
	Normalization and regularization modules
	Output Module
	Representational Power of DecoNets

	A DecoNet for Images
	Related Work
	Experiments
	Discussion and Conclusion
	Appendix
	Experiments
	Model architectures

