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ABSTRACT

Vision-Language Models (VLMs) are a significant technique for Artificial Gen-
eral Intelligence (AGI). With the fast growth of AGI, the security problem become
one of the most important challenges for VLMs. In this paper, through exten-
sive experiments, we demonstrate the vulnerability of the conventional adaptation
methods for VLMs, which may bring significant security risks. In addition, as the
size of the VLMs increases, performing conventional adversarial adaptation tech-
niques on VLMs results in high computational costs. To solve these problems, we
propose a parameter-efficient Adversarial adaptation method named AdvLoRA
by Low-Rank Adaptation. At first, we investigate and reveal the intrinsic low-
rank property during the adversarial adaptation for VLMs. Different from LoRA,
we improve the efficiency and robustness of adversarial adaptation by designing
a novel reparameterizing method based on parameter clustering and parameter
alignment. In addition, an adaptive parameter update strategy is proposed to fur-
ther improve the robustness. By these settings, our proposed AdvLoRA allevi-
ates the model security and high resource waste problems. Extensive experiments
demonstrate the effectiveness and efficiency of the AdvLoRA.

1 INTRODUCTION

Artificial General Intelligence (AGI), which aims to create intelligent agents that can perform as well
as or better than humans on a wide range of cognitive tasks, is a promising topic for both research
and industrial products Pei et al. (2019); Goertzel (2014). As vision and language are the most
important information of intelligence, Vision-Language Models (VLMs) have become a significant
technique for achieving AGI Fei et al. (2022); Achiam et al. (2023).

In recent years, the adaptation of VLMs aims to improve the performance on different downstream
tasks and has become a hot research topic. However, through extensive experiments, we find the vul-
nerability of the conventional adaptation methods, e.g., Full Fine-Tuning (FFT) Wang et al. (2017);
Wu et al. (2022); Zhang et al. (2022a), Linear Probe (LP), LoRA Hu et al. (2021), Unidapter Lu
et al. (2023), and Aurora Wang et al. (2023) for VLMs, which may bring significant security threats
in various domains, such as facial recognition Venkatesaramani et al. (2021); Sharif et al. (2016),
medical analysis Finlayson et al. (2019); Ma et al. (2021) and autonomous driving Zhang et al.
(2022b); Feng et al. (2021). As shown in Figure 1, we conduct adaptation experiments of VLMs
on the natural and attacked data of the MSCOCO Lin et al. (2014) and MSR-VTT Xu et al. (2016)
datasets. From these experimental results, we find that the average performance drops about 30.98%
on the attacked data. To solve this problem, various techniques are proposed against adversarial
attacks by data augmentation Volpi et al. (2018); Morris et al. (2020), attack detection Metzen et al.
(2016); Liu et al. (2018) and adversarial training Goodfellow et al. (2014); Liu et al. (2020). As the
most effective defense strategy, adversarial training enhances the adversarial robustness of VLMs
by retraining the model on mined adversarial examples Madry et al. (2018); Szegedy et al. (2013);
Pang et al. (2020).

However, as the sizes of VLMs increase, the conventional adversarial training method with full pa-
rameter updating to improve the adversarial robustness of VLMs will lead to high computing and
storage costsGan et al. (2020). In recent years, Parameter-Efficient Fine-Tuning (PEFT) technol-
ogy has garnered widespread attention as a novel adaptation paradigm due to its significant success
in adapting large-scale pre-trained models. PEFT technologies can adapt VLMs with extremely
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(a) MSCOCO (b) MSR-VTT

Figure 1: The vulnerability of VLMs adaptation methods on natural data and attacked data.

small additional tunable parameters and achieve comparable or better performance than FFT meth-
ods. While PEFT technologies have demonstrated remarkable success in natural scenarios, their
application in adversarial attack scenarios remains largely uncharted territory. But simply apply-
ing the adversarial training on the conventional adaptation methods will lead to 1) limited defense
performance and 2) high computational and storage costs. To verify our points, we visualize the
adversarial robustness performance and the tunable parameter number of different adversarial adap-
tation methods in Figure 2. From the results, we find that the existing adaptation methods such as
FFT and UniAdapter will lead to large parameter costs. Besides, LoRA, LP, and Aurora are not
robust to adversarial attacks.

Figure 2: Adversarial robustness and tunable parameter number of adversarial adaptation methods.

To solve these problems, we aim to develop a parameter-efficient adversarial adaptation method
termed AdvLoRA to effectively and efficiently improve the robustness of VLMs against attacks.
At first, similar to LoRA, the intrinsic low-rank property of adversarial adaptation for VLMs is
revealed. Secondly, we improve LoRA with a novel reparameterizing technology. Concretely, we
regard the rank of LoRA as the number of cluster centers and utilize the clustering algorithm to
reparameterize LoRA from the weight matrices of VLMs. The weight matrices are decoupled into
the clustering centers and the clustering distribution matrices. Subsequently, we impose constraints
on their product to align with the parameter distribution of the original weight matrix. Moreover,
we design an adaptive parameter update strategy to improve the robustness further. Through these
settings, we effectively and efficiently facilitate the adversarial adaptation of VLMs. Our designs on
low-rank for adversarial adaptation are motivated by the common dense direction theoryAllen-Zhu
& Li (2022), which demonstrates that low-rank adaptation in shallow convolutional neural networks
are more suitable to effectively enhance their robustness. For the first time, this paper empirically
verifies the applicability of this theory to VLMs and introduces a novel clustering-based initialization
method for LoRA, facilitating the process of adversarial fine-tuning. The contributions of this paper
are summarized as follows.
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• We demonstrate the vulnerability of VLMs with different adaptation methods to adversarial
attacks via experiments.

• We investigate and reveal the intrinsic low-rank property during the adversarial adaptation
for vision-language models.

• We propose a novel parameter-efficient adversarial adaptation method named AdvLoRA
with parameter clustering, parameter alignment, and adaptive parameter update.

• We are the first to introduce the adversarial adaptation for vision-language models. Exten-
sive experiments demonstrate the effectiveness and efficiency of our proposed method.

2 RELATED WORK

2.1 PARAMETER-EFFICIENT TUNING ON VISION-LANGUAGE MODELS

Vision-Language Models (VLMs) have demonstrated success in addressing diverse vision-language
downstream tasks, including cross-modal retrievalZeng & Mao (2022); Huang et al. (2023); Geigle
et al. (2022) and cross-modal generationRamesh et al. (2021; 2022); Bao et al. (2023); Rombach
et al. (2022). However, VLMs may underperform on specific tasks when the data distribution of
the task diverges from that of the training data. Consequently, VLMs typically require re-training
on task-specific data to effectively adapt to downstream tasks, a process commonly referred to as
adaptation or fine-tuning. As the size of VLMs increases, traditional adaptation technologies such
as Full Fine-Tuning (FFT) become increasingly inefficient and costlyWang et al. (2017); Wu et al.
(2022); Zhang et al. (2022a). Parameter-efficient tuning emerges as a promising solution to alleviate
the heavy training and storage costs associated with adapting VLMs.

Recently, inspired by methods from natural language processingHoulsby et al. (2019); Hu et al.
(2021); Li & Liang (2021); Liu et al. (2023a); Zhang et al. (2023b); Dettmers et al. (2023) and com-
puter visionRebuffi et al. (2017); Jia et al. (2022); Bahng et al. (2022) domains, some approaches de-
signed for VLMs have been proposed. These approaches aim to adapt frozen VLMs to downstream
tasks by introducing extremely small tunable parameters. Despite having fewer tunable parameters,
their effects can equal or even exceed that of the full-parameters tuning. These approaches can
be broadly categorized into three types: adapter-basedLu et al. (2023); Gao et al. (2023), prompt-
basedZhou et al. (2022); Lu et al. (2022); Xing et al. (2022), and LoRA-basedDai et al. (2023);
Dou et al. (2023); Hayou et al. (2024); Zhong et al. (2024); Qiang et al. (2024); Liu et al. (2024);
Wang et al. (2024); Zhao et al. (2024); Pan et al. (2024). LoRA-based approaches have received
considerable attention due to their fewer tunable parameters, no additional input, and no additional
inference latency. In this paper, we identify suboptimal initialization in the standard LoRA approach
and investigate a clustering-based reparameterization strategy to enhance the robustness of VLMs
during adaptation.

2.2 ADVERSARIAL ADAPTATION ON VISION-LANGUAGE MODELS

Some researchers have demonstrated that artificial neural networks including Vision-Language
Models (VLMs) are vulnerable to human-unrecognized attacks Li et al. (2020); Cai et al. (2023);
Zhao et al. (2023). Specifically, adding additional perturbations to input can cause VLMs to make
the incorrect decision with high confidence. To improve adversarial robustness on VLMs, most
works focus on data augmentation Cai et al. (2023); Wortsman et al. (2022) and adversarial training
Gan et al. (2020); Mao et al. (2023). Considered one of the most effective methods, adversarial
training can improve the adversarial robustness of VLMs by injecting adversarial inputs into the
training procedure through a min-max formulation Madry et al. (2018).

In the early stages of research, some efforts were directed at employing adversarial training tech-
niques to train VLMs from scratchGan et al. (2020). Recently, adversarial adaptation has emerged as
a cost-effective strategy for post-pretraining enhancement of adversarial robustnessHendrycks et al.
(2019); Liu et al. (2023b); Zhu et al. (2023); Li et al. (2024a;b); Xu et al. (2024); Mao et al. (2023);
Yuan et al. (2024); Zhang et al. (2023a). However, the majority of these methods enhance adversarial
robustness by updating all the parameters of the pre-trained model through adversarial adaptation,
while primarily focusing on the robustness of visual models. A few multi-modal parameter-efficient
approaches, such as TeCoAMao et al. (2023), employ prompt tuning for adversarial adaptation, but
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they too are limited to classification tasks. In this paper, we utilize a parameter-efficient method
based on LoRA to achieve adversarial adaptation for cross-modal tasks. Unlike recent methods like
AutoLoRaXu et al. (2024), which aims to solve gradient instability issues by independently extract-
ing natural image features with the LoRA branch, it is essentially not a parameter-efficient approach
as it still updates all the parameters. Furthermore, AutoLoRa is exclusively focused on visual models
and single-modality tasks.

Our designs to incorporate low-rank methodologies for adversarial adaptation is inspired by the well-
established dense direction theory proposed by Allen-Zhu & Li (2022). This theory highlights that
integrating low-rank adaptation in shallow convolutional neural networks is particularly effective in
bolstering their robustness. Significantly, this paper presents the first empirical validation of this
theory within the realm of VLMs. Additionally, it introduces a novel clustering-based initialization
method for LoRA, streamlining the adversarial fine-tuning procedure.

3 METHOD

In Section 3.1, we first define the cross-modal retrieval. Subsequently, addressing the vulnerabil-
ity of VLMs to adversarial attacks, we introduce an adversarial training module in Section 3.2 to
enhance the model’s adversarial robustness. Finally, to mitigate the high cost associated with ad-
versarial training, we present an adaptation module in Section 3.3, which maintains the VLMs’
adversarial robustness while reducing the expenses of adversarial training.

3.1 TASK DEFINITION

3.1.1 CROSS-MODAL RETRIEVAL

Cross-modal retrieval aims to utilize information from one modality to retrieve semantically relevant
information from another. We select cross-modal retrieval as our benchmark task due to its efficacy
in assessing the quality of cross-modal representation learning in VLMs. Under adversarial attacks,
cross-modal retrieval serves as an effective metric for evaluating whether models can learn robust
feature representations.

Taking image-to-text retrieval as an example, given an image vi, its semantic representation zvi =
Fv(vi) is used to compute the cosine similarity with each textual representation zwj within the text
database as follows.

sim(zvi , z
w
j ) =

zvi · zwj
∥zvi ∥∥zwj ∥

, (1)

where zwj = Fw(wj) represents the semantic representation derived from the textual data wj after
feature extraction via the text encoder Fw. Then we select the highest similarity text data as the
retrieval results. Under adversarial attacked, robust VLMs could learn semantically invariant feature
representations so that they will not be misled by small perturbations.

3.2 ADVERSARIAL TRAINING MODULE

Extensive experimentation demonstrated that both VLMs and their variants adapted with PEFT
methods are susceptible to adversarial attacks, as illustrated in Figure 1 and the Appendix G. Con-
sequently, in this subsection, we design an adversarial training module to enhance the adversarial
robustness of VLMs. We begin by introducing the concept of adversarial attacks, followed by the
presentation of adversarial training as an effective defense technology for enhancing adversarial
robustness.

3.2.1 ADVERSARIAL ATTACK

Adversarial attacks δ is a tensor added to the natural image v, va = v + δ, aiming to fool the model
into making the incorrect decision as formulated.

va = argmax
va

L(va, w), s.t. ∥va − v∥p ≤ ε, (2)
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where p donates the p-norm, and ε donates the restriction value of values, which is often set to be
smaller than 8/255. Thus, the adversarial attacks are imperceptible to humans. In this paper, we
focus on adversarial attacks on visual data, as attacks on natural language are readily perceptible to
humans. Therefore, it is practically significant and more challenging to make attacks on visual data.
Concretely, we utilize PGD Madry et al. (2018) to generate va as follows.

va =
∏

{clipε(v + ξ · sign (∇vL(v, w)))} , (3)

where sign(∇vL(v, w))) denotes the sign value of the back-propagated gradient. Besides, ξ is the
step size of each iteration. And clipε(x) = min(x, ε) clips each value of x to be smaller than ε and
return ε when the value of any dimension exceeds ε.

∏
{·} denotes the iterative procedure. In this

manner, va can fool the model to make the incorrect decision. Notably, for video data, we treat it as
a collection of images and attack 20% of the frames by randomly sparse sampling Wei et al. (2019).

3.2.2 ADVERSARIAL TRAINING

Adversarial training technologies refer to retraining the model on attacked data, which can learn
semantically invariant features under adversarial attacks. Adversarial training aims to minimize the
following objective.

θ = argmin
θ

L(va, w), (4)

where θ donates the parameters of the model.

3.3 ADAPTATION MODULE

Although adversarial training can effectively enhance VLMs’ adversarial robustness, it requires up-
dating all parameters based on gradient information, leading to a significant cost overhead. To
alleviate this issue, in this subsection, we propose an adaptation module that performs adversarial
training on LoRA to reduce the number of tunable parameters, achieving parameter-efficient adver-
sarial adaptation. We first provide a brief introduction to LoRA, followed by the introduction of
clustering reparameterization and parameter alignment methods, as well as an adaptive parameter
update strategy, to facilitate adversarial adaptation.

3.3.1 LORA

LoRA achieves parameter-efficient adaptation by updating two low-rank matrices attached to the
frozen pre-trained weights. Specifically, given the pre-trained weights W0 ∈ Rm×n, and the LoRA
matrices A ∈ Rm×k, B ∈ Rk×n, the input X(l−1) ∈ Rb×m is processed through the following
computation to obtain the output X(l) ∈ Rb×n as follows.

X(l) = X(l−1)W0 +X(l−1)AB, (5)

where k ≪ min(m,n). And A and B are initialized as follows.

A ∼ N (0, σ2), B = 0, (6)

where N denotes the Gaussian distribution.

During the adaptation process, W0 is fixed, while A and B are updated via the gradient descent
methods. In our proposed model, AdvLoRA, we freeze W0 and solely update A,B through adver-
sarial adaptation to achieve adversarial robustness in the model as follows.

θA,B = argmin
θA,B

L(va, w). (7)

Our model adheres to conventional practice by incorporating LoRA into both the attention modules
and feed-forward networks in BLIP.
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3.3.2 REPARAMETERIZATION AND ADAPTIVE PARAMETER UPDATE

The primary distinction between AdvLoRA and other LoRA-like methods lies in the parameteriza-
tion process of the matrices A,B. In the original LoRA, a random Gaussian initialization for A and
zero for B, so AB is zero at the beginning of adaptation. In contrast, our model, AdvLoRA, initially
performs clustering on the weight matrix W0 of the pre-trained model, treating the rank k of LoRA
as the number of cluster centers. Specifically, given an weight matrix W ∈ Rm×n and the rank k,
we first randomly initialize k cluster center C = {c1, c2, . . . , ck}. Then, for each column wi of
W, compute the distances to each cluster center cj and assign wi to the closest cluster as follows.

clusteri = argmin
j

∥wi − cj∥2. (8)

Then update the cluster centers by computing the mean of all data points assigned to each cluster as
follows.

cj =
1

|Sj |
∑

wi∈Sj

wi, (9)

where Sj is the set of columns of W assigned to cluster j. Repeat the above steps until the cluster
centers no longer change significantly or a maximum number of iterations is reached. In this manner,
we obtain the cluster center embeddings C ∈ Rk×n and the distance assignment matrix D ∈ Rm×k,
where each element dij represents the distance between the wi and cluster center cj . The distance
assignment matrix D can be computed using the following formula.

dij = ∥wi − cj∥2. (10)

And the cluster center representation matrix C is simply the matrix of cluster centers as follows.

C = [c1, c2, . . . , ck] . (11)

After the parameter clustering, the clustering assignment matrix D ∈ Rm×k and the parameter
center C ∈ Rk×n can be represented the A ∈ Rm×k and B ∈ Rk×n in the original LoRA method.
By these settings, we provide a better reparameterization of the tunable parameters in LoRA. It
separates the parameters into different clusters, which have different functions in the whole network.

After obtaining the matrices A and B, we further impose constraints on their product AB to align
with the parameter distribution of the original weight matrix W0 as follows.

min ∥W0 −AB∥2. (12)

In this manner, we can ensure the initialization of AB is close to W0 at the beginning of the training.

During the process of model adversarial adaptation, we design an adaptive update parameter, α, to
facilitate the model’s adaptive learning of robust semantic representations as follows.

Y = XW0 + α ·XAB. (13)

α is a tunable neural network parameter, which can control the adaptation rate during the adversarial
adaptation. In summary, we delineate the entire workflow of AdvLoRA in Algorithm 1.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

We comprehensively evaluated our proposed model, AdvLoRA, on two types of retrieval tasks and
four commonly used datasets, to demonstrate the superior performance of AdvLoRA on cross-modal
understanding tasks, including image-text retrieval: Flickr30K Plummer et al. (2015) and MSCOCO
Lin et al. (2014); as well as video-text retrieval: DiDeMo Anne Hendricks et al. (2017) and MSR-
VTT Xu et al. (2016), More details can be seen in Appendix A.
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Algorithm 1 AdvLoRA WorkFlow on VLMs.
0: Input: Images: V = {v1, v2, . . . , vn}; Texts: W = {w1, w2, . . . , wn}; Visual encoder: Fv; Textual

encoder: Fw; Pre-trained weight matrix: W0; LoRA matrix: A,B; Adaptive parameter: α; Restriction
value: ϵ; PGD step: ξ; Loss function: L.
Output: Representations of V and W : Zv = {zv1 , zv2 , . . . , zvn}, Zw = {zw1 , zw2 , . . . , zwn }.
while at adversarial fine-tuning stage do

Perform clustering algorithm on W0 and obtain cluster center representation in Eq. equation 8 and Eq.
equation 9;
Obtain the LoRA matrix A,B from cluster center representation and W0 in Eq. equation 10 and Eq.
equation 11;
Impose constraints on A and B with SGD algorithm in Eq. equation 12;
Calculate the loss l using V , W , Y , Fv , Fw, and the loss function L in Eq. equation 5.
Obtain the adversarial attack δ with V , ϵ, k, ξ and l in Eq. equation 3.
Add δ to original images V to obtain the attacked images Va.
Update A,B via Eq. equation 4.

end while
Generate robust representations of V and W to downstream tasks with adversarially adapted A,B and Fv

Fw.

4.1.2 BASELINES

We compare AdvLoRA with conventional adaptation methods, which are implemented by BLIP:
full fine-tuning (BLIP-FFT), linear probe (BLIP-LP); as well as the PEFT method on BLIP:
LoRA(BLIP-LoRA), Aurora, and Uniadapter. See more details in the Appendix B.

4.1.3 METRICS

We employ Recall@k as our evaluation metric, where k denotes the number of entries considered
within the top k retrieval results. This metric is expressed as a percentage.

4.1.4 IMPLEMENTATIONS

Our implementation is based on Salesforce’s open-source codebase Li et al. (2022). Following Lu
et al. (2023); Wang et al. (2023), we also apply BLIP Li et al. (2022) as our vision-language back-
bone for all tasks. We also present additional experiments with larger backbones in the Appendix
E. We use PyTorch to implement all experiments on the NVIDIA V100 GPU (32GB). We employ
PGD-3 Madry et al. (2018) for adversarial adaptation and to assess the model’s robustness. Addi-
tionally, experiments evaluating the model against a broader range of attack types are detailed in the
Appendix D. For the video-text retrieval task, we follow the work of Wei et al. Wei et al. (2019) by
adopting an attack strategy that sparsely samples 20% of the video frames. Furthermore, we adopt
the setup of BLIP, utilizing a momentum encoder to enhance the retrieval performance of our model.
To ensure a fair comparison, the momentum encoder is also applied to the other baseline methods.
We use AdamW Loshchilov & Hutter (2018) optimizer with weight decay. The rank of our proposed
AdvLoRA is 10. Note that during the fine-tuning process, the parameters of the backbone model are
kept frozen. More training details can be seen in the Appendix C.

4.2 VULNERABILITY TO ADVERSARIAL ATTACKS

In this section, we conduct adversarial attacks on BLIP and their variants adapted using PEFT meth-
ods to investigate their vulnerability to such attacks. Specifically, we perform PGD-3 attacks on
the baseline model for two tasks across four datasets and then evaluate their performance under
adversarial attacks. Figure 1 provides a simple illustration of the models’ vulnerability to adver-
sarial attacks, while Table 1 present detailed data on MSR-VTT dataset. The complete results on
other datasets are provided in the Appendix G. Through extensive experimentation, we draw a key
conclusion as follows.

BLIP adapted by different methods are highly susceptible to adversarial perturbations. As Table 1
indicate, regardless of whether the method used is full fine-tuning or PEFT, performance degradation
of 30.98% is observed. This phenomenon can be attributed to the inability of conventional VLMs
and adaptation techniques to effectively learn semantically invariant features from the data.
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Table 1: Vulnerability experiment on MSR-VTT. “FFT” and “LP” denoting full fine-tuning and
linear probe. “Nat” and “Att” donate natural images and adversarially attacked images. “TR” and
“VR” donate text-to-video retrieval and video-to-text retrieval, respectively.

Method Tunable Para.
MSR-VTT TR MSR-VTT VR

R@1 R@5 R@10 R@Mean R@1 R@5 R@10 R@Mean Mean
BLIP+FFT+Nat

223M
20.3 41.3 53.8 38.47 23.4 48.4 60.8 44.19 41.33

BLIP+FFT+Att 1.2 5.0 7.6 4.60 2.7 8.1 12.5 7.77 6.18(-35.15%)
BLIP+LP+Nat

0.5M
40.3 63.2 72.0 58.50 41.8 63.7 71.6 59.03 58.77

BLIP+LP+Att 7.7 16.1 20.1 14.63 14.4 26.4 32.8 24.53 19.58(-39.19%)
BLIP+LoRA+Nat

2.8M
47.2 71.4 80.5 66.36 45.8 70.7 80.3 65.60 65.98

BLIP+LoRA+Att 12.8 23.4 28.1 21.43 18.9 3.8 37.8 29.16 25.30(-40.68%)
UniAdapter+Nat

19.5M
42.4 68.4 77.4 62.73 42.9 68.4 78.3 63.20 62.97

UniAdapter+Att 8.3 15.4 18.9 14.20 11.6 22.6 27.2 20.47 17.33(-45.64%)
Aurora+Nat

0.3M
45.1 69.7 79.4 64.73 44.2 68.5 77.8 63.50 64.12

Aurora+Att 11.6 20.3 24.6 18.83 16.9 30.1 36.7 27.90 23.37(-40.75%)

Table 2: Adversarial experiment on MSCOCO. An asterisk (*) indicates that adversarial adapta-
tion has been performed. The best results are displayed in bold, while the second-best results are
underlined.

Method Tunable Para.
MSCOCO TR MSCOCO IR

R@1 R@5 R@10 R@Mean R@1 R@5 R@10 R@Mean Mean
BLIP+FFT+Att 223M 53.38 75.12 82.62 70.37 42.25 67.03 76.47 61.92 66.15
BLIP+FFT*+Att 223M 65.42 84.68 89.40 79.83 47.62 73.43 81.35 67.47 73.65
BLIP+LoRA+Att 2.8M 43.20 66.20 74.80 61.40 35.85 60.40 70.16 55.47 58.44
BLIP+LoRA*+Att 2.8M 42.22 66.12 74.70 61.01 34.69 59.39 69.14 54.41 57.71
BLIP+LP+Att 0.5M 43.22 65.82 74.46 61.17 34.60 58.59 68.86 54.12 57.61
BLIP+LP*+Att 0.5M 44.14 67.18 76.04 62.45 34.57 59.14 69.3 54.34 58.40
UniAdapter+Att 19.5M 53.98 75.66 82.74 70.79 42.02 66.80 76.39 61.74 66.27
UniAdapter*+Att 19.5M 50.76 76.68 85.40 70.95 39.90 67.80 77.88 61.86 66.40
Aurora+Att 0.3M 44.56 67.04 75.00 62.20 34.98 59.34 68.75 54.36 58.28
Aurora*+Att 0.3M 54.56 77.68 84.52 72.25 40.08 60.17 75.66 60.17 65.64
AdvLoRA+Att 2.8M 46.76 69.18 76.72 64.22 37.00 61.25 70.76 56.34 60.28
AdvLoRA*+Att 2.8M 67.28 87.16 92.76 82.40 49.02 75.88 84.59 69.83 76.12

4.3 PERFORMANCE COMPARISONS

In this section, we conduct a comparative analysis between our proposed AdvLoRA and five base-
lines across two cross-modal retrieval tasks using four datasets. Specifically, we perform adversarial
adaptation based on the PGD-3 attack to all methods and then evaluate their performance under the
condition of adversarial attack data and natural data.

Firstly, for image-text retrieval, we conducted experiments on adversarial attacked data for both
MSCOCO and Flickr30K, as shown in Table 2 and Appendix F. From these experiments, we draw
two important conclusions as follows.

1) After adversarial adaptation, AdvLoRA outperforms all other baselines when faced with adver-
sarial attacks. Notably, on MSCOCO, AdvLoRA surpasses all other PEFT methods by 12.17% and
exceeds FFT by 2.47%, while using ∼ 100× fewer tunable parameters than FFT.

2) AdvLoRA demonstrates enhanced adversarial robustness on larger datasets, highlighting the
significant potential of PEFT methods in improving model robustness against adversarial attacks.
Specifically, on the relatively smaller dataset Flickr30K, the performance of various baselines after
adversarial adaptation is comparable and does not show a significant increase in robustness. How-
ever, on the larger dataset MSCOCO, FFT achieves considerable adversarial robustness, yet it still
lags behind AdvLoRA. These results benefit not only from the design of AdvLoRA in terms of
clustering reparameterization and parameter alignment but also indicate that the effectiveness of
adversarial adaptation improves with the increase of adaptation data.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Adversarial experiment on MSR-VTT. An asterisk (*) indicates that adversarial adapta-
tion has been performed. The best results are displayed in bold, while the second-best results are
underlined.

Method Tunable Para.
MSR-VTT TR MSR-VTT VR

R@1 R@5 R@10 R@Mean R@1 R@5 R@10 R@Mean Mean
BLIP+FFT+Att 223M 1.2 5.0 7.6 4.60 2.7 8.1 12.5 7.77 6.18
BLIP+FFT*+Att 223M 21.0 41.9 50.8 37.90 21.0 46.8 57.9 41.90 39.90
BLIP+LoRA+Att 2.8M 12.8 23.4 28.1 21.43 18.9 30.8 37.8 29.16 25.30
BLIP+LoRA*+Att 2.8M 21.2 43.5 52.7 39.13 21.0 42.5 52.1 38.53 38.83
BLIP+LP+Att 0.5M 7.7 16.1 20.1 14.63 14.4 26.4 32.8 24.53 19.58
BLIP+LP*+Att 0.5M 14.5 26.8 33.3 24.87 15.8 26.7 33.5 25.33 25.10
UniAdapter+Att 19.5M 8.3 15.4 18.9 14.20 11.6 22.6 27.2 20.47 17.33
UniAdapter*+Att 19.5M 38.6 64.0 74.5 59.03 39.2 64.9 75.8 59.97 59.50
Aurora+Att 0.6M 11.6 20.3 24.6 18.83 16.9 30.1 36.7 27.90 23.37
Aurora*+Att 0.6M 38.1 63.6 73.5 58.40 37.0 60.8 72.7 56.83 57.62
AdvLoRA+Att 2.8M 12.3 21.8 26.2 20.10 15.8 28.4 34.2 26.13 23.12
AdvLoRA*+Att 2.8M 40.4 67.4 78.6 62.13 40.5 68.4 78.4 62.43 62.28

Table 4: Natural experiment with adversarial adaptation on MSCOCO. “Nat” donates natural im-
ages. An asterisk (*) indicates that adversarial adaptation has been performed.

Method Tunable Para.
MSCOCO TR MSCOCO IR

R@1 R@5 R@10 R@Mean R@1 R@5 R@10 R@Mean Mean
BLIP+FFT*+Nat 223M 57.28 78.92 86.36 74.17 48.52 75.04 83.77 69.11 71.65
BLIP+LoRA*+Nat 2.8M 70.76 90.44 94.68 85.29 56.39 80.38 87.48 74.75 80.02
BLIP+LP*+Nat 0.5M 72.58 91.20 95.22 86.33 57.15 80.93 88.05 75.38 80.86
UniAdapter*+Nat 19.5M 55.62 81.24 89.02 75.29 45.06 72.99 82.61 66.89 71.09
Aurora*+Nat 0.3M 70.92 89.39 93.94 84.74 54.38 79.38 86.88 73.54 79.15
AdvLoRA*+Nat 2.8M 70.58 90.42 94.54 85.18 56.36 80.35 87.29 74.67 79.92

Secondly, for video-text retrieval, we conducted experiments on adversarial attacked data for both
MSR-VTT and Didemo datasets, as shown in Table 3 and Appendix F. From these experiments, we
draw two conclusions from the image-text retrieval as follows.

1) AdvLoRA achieves excellent adversarial robustness on video data, surpassing all other baselines.
In DiDeMo, AdvLoRA slightly outperforms Uniadapter while using 7× fewer parameters. On
MSR-VTT, AdvLoRA enhances the model’s adversarial robustness by 39.16% and significantly
exceeds the other baselines.

2) AdvLoRA demonstrates better adversarial robustness on larger datasets. Specifically, on the
relatively smaller dataset DiDeMo, the performance of various baselines after adversarial adaptation
is comparable, and the robustness improvement is not significant. However, on the larger dataset
MSR-VTT, the Uniadapter method achieves considerable adversarial robustness but is still inferior
to AdvLoRA, and it uses 7× more parameters. Such results are attributed to the design of AdvLoRA
in terms of clustering reparameterization and parameter alignment. It indicates that the effectiveness
of adversarial adaptation improves with the increase of adaptation data.

Thirdly, we conducted experiments on natural data from four datasets, and Table 4 presents the
results for MSCOCO. The complete results on other datasets are provided in the Appendix H. From
these experiments, we draw a significant conclusion as follows.

Adversarial adaptation can degrade the performance of the model on natural data. For instance, a
comparison between Table 4 reveals that, except LP and LoRA, all other models experience a de-
cline in performance after adversarial adaptation. However, the AdvLoRA method still achieves
competitive results on MSCOCO. This can be attributed to AdvLoRA’s ability to learn semantically
invariant feature representations. The reason for the lack of performance degradation in LP and
LoRA may be due to their low sensitivity to adversarial adaptation, leading to an ineffective adap-
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Figure 3: (a) Ablation study. A, B, C, D denotes LoRA, LoRA with parameter clustering, LoRA with
parameter clustering and alignment, and LoRA with parameter clustering, alignment and adaptive
parameter update (AdvLoRA), respectively. (b) Sensitivity Analysis. (c) Convergence Analysis.

tation process. As shown in Table 2, LP and LoRA do not acquire improved adversarial robustness
after adversarial adaptation.

4.4 ABLATION STUDY

In this section, we conduct an ablation study on AdvLoRA to demonstrate the effectiveness of the
proposed clustering reparameterization, parameter alignment, and adaptive parameter update strat-
egy on Didemo, and the results are presented in Figure 3(a). The model achieves optimal adversarial
robustness when these methods are collectively employed.

4.5 HYPERPARAMETER SENSITIVITY ANALYSIS

In this section, we conduct a sensitivity analysis on the rank size of AdvLoRA on Flickr30K. We set
a series of values for the rank, namely 8, 10, 16, 32, and 64, and the results are presented in Figure 3
(b). AdvLoRA is not sensitive to the rank size, allowing us to select an appropriate rank according
to our needs to reduce the cost of adaptation.

4.6 LOSS CONVERGENCE ANALYSIS

In this section, we conduct a convergence analysis experiment between AdvLoRA and LoRA on
Flickr30K. The results are presented in Figure 3 (c). Analysis of the experimental results we can
draw the following conclusion. 1) AdvLoRA demonstrates superior convergence over LoRA in the
adversarial adaptation process, achieving a significantly reduced loss level. 2) AdvLoRA acceler-
ates the convergence of adversarial adaptation more effectively than LoRA. These efficiencies and
effectiveness can be attributed to the design of clustering reparameterization, parameter alignment,
and adaptive parameter update strategy.

5 CONCLUSION

In this paper, we aim to alleviate the security risks in the Vision-Language Models (VLMs). First of
all, we show the vulnerability of VLMs with various adaptation methods under adversarial attacks
via extensive experiments. Besides, as the sizes of VLMs increase, simply applying the conventional
adversarial adaptation methods to VLMs easily leads to 1) unpromising adversarial robustness and
2) tremendous parameter and training costs. From these motivations, a novel parameter-efficient
adversarial adaptation method named AdvLoRA is proposed with parameter clustering, parameter
alignment, and adaptive parameter update. Extensive experiments demonstrate the effectiveness and
efficiency of AdvLoRA. This result reveals the intrinsic low-rank property that emerges during the
adversarial adaptation process. Our proposed technique, which involves clustering reparameteriza-
tion and parameter alignment, has been instrumental in facilitating the adaptation process. We have
thereby offered a novel perspective for researchers in the field of security within the broader context
of AGI. In the future, it is worth further optimizing the memory and computational budget during
the adaptation process.
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A DATASETS

• Flickr30K Plummer et al. (2015) contains 31,783 images and 158,915 captions totally.
Each image is often annotated with 5 captions. Following the split in Uniadapter Lu et al.
(2023) and Aurora Wang et al. (2023), we use 1,000 images for testing, another 1,000 for
validation, and the rest for training.

• MSCOCO Lin et al. (2014) is a large dataset containing 123,287 images and 616,435
captions. Each image is annotated with 5 captions. Following the split in Uniadapter Lu
et al. (2023) and Aurora Wang et al. (2023), we use 5,000 images for testing, another 5,000
for validation, and the rest for training.

• Didemo Anne Hendricks et al. (2017) contains 10,000 videos and 40,000 annotations. Fol-
lowing Frozen in Time Bain et al. (2021), we concatenate all descriptions corresponding to
the same video into a single sentence to conduct actually video-paragraphto retrieval task.

• MSR-VTT Xu et al. (2016) is a popular video-text dataset. It contains 10,000 video and
200,000 captions. Following the split in Uniadapter Lu et al. (2023) and Aurora Wang et al.
(2023), we use 1,000 videos for testing, another 9,000 for training.

B BASELINES

• BLIP-FFT is a conventional adaptation technique that enhances the performance of BLIP
for specific downstream tasks by retraining and updating full parameters in downstream
tasks.

• BLIP-LP is an adaptation technique that involves adding and training a linear layer on top
of the frozen pre-trained model BLIP to adapt to specific downstream tasks.

• BLIP-LoRA is a Parameter-Efficient Fine-Tuning (PEFT) technology that adapts BLIP by
introducing low-rank adapters to capture task-specific information, allowing for efficient
adaptation to downstream tasks with minimal tunable parameter updates.

• Uniadapter Lu et al. (2023) is the first adapter-based PEFT technology for parameter-
efficient cross-modal adaptation.

• Aurora Wang et al. (2023) is a parameter-efficient cross-modal transfer learning framework
that uses mode approximation to generate a minimal set of tunable parameters, achieving
lightweight multi-modal adaptation.

C HYPERPARAMETER SETTING

We present the hyperparameter setting in Table 5.

D PERFORMANCE ON MORE ATTACKS

We conduct more attacks including white-box attack methods (FSGMGoodfellow et al. (2014),
PGD-20Madry et al. (2018), BIMKurakin et al. (2022)) and black-box methods (Zeroth Order Op-
timization (ZOO)Chen et al. (2017), SquareAttack with 500 queries (SA)Andriushchenko et al.
(2020)) to further demonstrate the robustness of AdvLoRA in Table 6. Note that AdvLoRA is
trained under PGD-3. We observe that our model demonstrates a strong ability to generalize and
maintain robustness in the face of various types of attacks.

E SCALING TO LARGER BACKBONES

We further demonstrate the effectiveness of our method on larger backbone models on the Flickr30K
Dataset in Table 7. Compared to LoRA, our AdvLoRA achieved 2.78%, and 3.25% performance
improvements on BLIP-Large, and BLIP-2 (OPT-2.7b), respectively.
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Table 5: Hyperparameter setting

config
Image-text Retrieval Video-text Retrieval

Flickr30K MSCOCO Didemo MSR-VTT
optimizer AdamW AdamW AdamW AdamW

learning rate 1e-5 1e-5 1e-4 1e-4
schedule cosine decay cosine decay cosine decay cosine decay

training batchsize 16 16 8 8
inference batchsize 32 32 8 8

frames - - 16 16
attack ratio - - 20% 20%

epochs 5 5 5 5
training input 384 384 8*224 8*224

inference input 384 384 16*224 16*224
adversarial type PGD-3 PGD-3 PGD-3 PGD-3

attack alpha 1/255 1/255 1/255 1/255
PGD-epsilon 1/255 1/255 1/255 1/255

rank 10 10 10 10
adaptive weight 1e-3 1e-3 1e-3 1e-3

weight norm learning rate 1e-3 1e-3 1e-3 1e-3

Table 6: Additional attack types on the MSCOCO dataset. “TR” and “IR” donate text-to-image
retrieval and image-to-text retrieval.

Method Attack TR@Mean IR@Mean Mean
LoRA PGD-3 61.01 54.41 57.71
AdvLoRA PGD-3 82.40 69.83 76.12
AdvLoRA PGD-20 81.65 69.13 75.39
AdvLoRA FGSM 84.44 72.21 78.32
AdvLoRA BIM 83.25 69.56 76.41
AdvLoRA SA 87.40 75.83 81.62
AdvLoRA ZOO 84.17 73.83 79.00

Table 7: Performance on Flickr30K when scaling to larger backbone networks. “TR” and “IR”
donate text-to-image retrieval and image-to-text retrieval.

Backbone Method TR@Mean IR@Mean Mean

BLIP-base
LoRA 80.40 73.24 76.82
AdvLoRA 82.83 74.67 78.75

BLIP-large
LoRA 81.73 73.01 77.34
AdvLoRA 84.74 75.56 80.15

BLIP-2-opt-2.7b
LoRA 83.32 81.18 82.25
AdvLoRA 87.34 83.66 85.50
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F PERFORMANCE COMPARISONS ON MORE DATASETS

We present the performance results on Flickr30K and DiDeMo in Table 8 and Table 9. Specifically,
we perform adversarial adaptation based on the PGD-3 attack to all methods and then evaluate their
performance under the condition of adversarial attack data and natural data.

Table 8: Adversarial experiment on Flikcr30K. An asterisk (*) indicates that adversarial adapta-
tion has been performed. The best results are displayed in bold, while the second-best results are
underlined.

Method Tunable Para.
Flickr30K TR Flickr30K IR

R@1 R@5 R@10 R@Mean R@1 R@5 R@10 R@Mean Mean
BLIP+FFT+Att 223M 21.10 38.40 46.00 35.16 21.96 42.62 51.18 38.58 36.87
BLIP+FFT*+Att 223M 64.60 84.80 87.70 79.03 55.06 79.52 84.46 73.01 76.02
BLIP+LoRA+Att 2.8M 67.00 81.80 84.20 77.67 58.50 77.48 82.70 72.89 75.28
BLIP+LoRA*+Att 2.8M 65.60 87.10 89.50 80.40 54.62 79.92 85.18 73.24 76.82
BLIP+LP+Att 0.5M 55.90 76.00 81.70 71.20 49.30 70.82 77.48 65.87 68.53
BLIP+LP*+Att 0.5M 56.10 75.70 82.70 71.50 48.14 70.50 78.18 65.61 68.55
UniAdapter+Att 19.5M 67.20 82.50 86.50 78.73 58.26 77.26 83.30 72.94 75.84
UniAdapter*+Att 19.5M 71.20 85.80 88.20 81.73 59.12 80.4 85.82 75.11 78.42
Aurora+Att 0.3M 65.40 80.70 84.40 76.83 56.98 76.64 82.22 71.95 74.39
Aurora*+Att 0.3M 69.10 84.10 87.30 80.17 56.80 78.82 83.76 73.13 77.15
AdvLoRA+Att 2.8M 66.20 82.50 85.80 78.17 57.70 77.52 83.32 72.85 75.51
AdvLoRA*+Att 2.8M 71.00 86.80 90.70 82.83 58.02 80.10 85.90 74.67 78.75

Table 9: Adversarial experiment on Didemo. An asterisk (*) indicates that adversarial adaptation has
been performed. The best results are displayed in bold, while the second-best results are underlined.

Method Tunable Para.
Didemo TR Didemo VR

R@1 R@5 R@10 R@Mean R@1 R@5 R@10 R@Mean Mean
BLIP+FFT+Att 223M 12.66 26.32 35.39 24.79 14.56 31.70 40.58 28.95 26.87
BLIP+FFT*+Att 223M 29.71 53.04 64.30 49.08 31.21 55.63 67.40 51.41 50.25
BLIP+LoRA+Att 2.8M 33.20 57.43 66.70 52.44 32.70 56.73 68.10 52.51 52.48
BLIP+LoRA*+Att 2.8M 33.70 59.82 69.59 54.37 32.80 59.02 70.39 54.07 54.22
BLIP+LP+Att 0.5M 23.13 45.86 53.54 40.84 26.02 47.06 57.03 43.37 42.11
BLIP+LP*+Att 0.5M 22.73 45.46 54.04 40.74 25.32 46.46 56.73 42.84 41.79
UniAdapter+Att 19.5M 27.02 52.14 64.01 47.72 9.27 24.83 36.69 23.60 35.66
UniAdapter*+Att 19.5M 36.38 63.50 73.57 57.82 35.88 64.30 73.87 58.02 57.92
Aurora+Att 0.6M 30.31 52.94 64.11 49.12 31.21 54.74 64.61 50.19 49.65
Aurora*+Att 0.6M 35.59 61.22 72.18 56.33 36.69 62.01 71.88 56.86 56.60
AdvLoRA+Att 2.8M 34.40 62.11 71.39 55.97 35.19 62.81 70.99 56.33 56.15
AdvLoRA*+Att 2.8M 37.38 64.40 73.48 58.42 36.99 63.21 72.88 57.69 58.06
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G VULNERABILITY TO ADVERSARIAL ATTACKS

In this section, we present the vulnerability results on Flickr30K, MSCOCO and DiDeMo in Table
10, Table 11 and Table 12. We have the conclusion that BLIP adapted by different methods are
highly susceptible to adversarial perturbations, which is similar to that in the main text.

Table 10: Vulnerability experiment on Flickr30K. “FFT” and “LP” denoting full fine-tuning and
linear probe. “Nat” and “Att” donate natural images and adversarially attacked images. “TR” and
“IR” donate text-to-image retrieval and image-to-text retrieval.

Method Tunable Para.
Flickr30K TR Flickr30K IR

R@1 R@5 R@10 R@Mean R@1 R@5 R@10 R@Mean Mean
BLIP+FFT+Nat

223M
72.80 90.80 95.50 86.37 63.40 86.58 92.00 80.66 83.52

BLIP+FFT+Att 21.10 38.40 46.00 35.16 21.96 42.62 51.68 38.58 36.87(-46.65%)
BLIP+LP+Nat

0.5M
89.00 98.50 99.50 95.67 78.32 94.34 96.98 89.88 92.78

BLIP+LP+Att 55.90 76.00 81.70 71.20 49.30 70.82 77.48 65.87 68.54(-24.24%)
BLIP+LoRA+Nat

2.8M
87.00 98.10 99.50 94.87 72.90 93.90 96.84 87.88 91.38

BLIP+LoRA+Att 71.60 92.10 95.50 86.40 60.62 85.92 91.18 79.24 82.82(-8.56%)
UniAdapter+Nat

19.5M
96.70 99.70 100.00 98.80 86.18 97.34 98.82 94.11 96.46

UniAdapter+Att 70.20 85.50 89.50 81.73 61.26 80.26 86.30 75.94 78.84(-17.62%)
Aurora+Nat

0.3M
96.70 99.80 100.00 98.83 85.76 97.24 98.72 93.91 96.37

Aurora+Att 69.40 84.70 88.40 80.83 60.98 80.64 86.22 75.95 78.39(-17.98%)

Table 11: Vulnerability experiment on MSCOCO. “TR” and “IR” donate text-to-image retrieval and
image-to-text retrieval.

Method Tunable Para.
MSCOCO TR MSCOCO IR

R@1 R@5 R@10 R@Mean R@1 R@5 R@10 R@Mean Mean
BLIP+FFT+Nat

223M
80.46 95.40 97.64 91.17 63.25 85.54 91.49 80.09 85.63

BLIP+FFT+Att 53.38 75.12 82.62 70.37 42.25 67.03 76.47 61.92 66.15(-19.48%)
BLIP+LP+Nat

0.5M
72.30 91.10 95.22 86.21 56.96 80.75 87.85 75.19 80.70

BLIP+LP+Att 43.22 65.82 74.46 61.17 34.60 58.59 68.86 54.12 57.65(-23.05%)
BLIP+LoRA+Nat

2.8M
70.50 90.28 94.58 85.12 56.39 80.36 87.45 74.73 79.93

BLIP+LoRA+Att 43.20 66.20 74.80 61.40 35.85 60.40 70.16 55.47 58.44(-21.49%)
UniAdapter+Nat

19.5M
79.60 94.50 97.26 90.45 62.53 84.95 90.97 79.49 84.97

UniAdapter+Att 53.98 75.66 82.74 70.79 42.02 66.80 76.39 61.74 66.27(-18.70%)
Aurora+Nat

0.3M
78.00 93.40 96.66 89.35 61.45 83.95 90.39 78.60 83.98

Aurora+Att 44.56 67.04 75.00 62.20 34.98 59.34 68.75 54.36 58.28(-25.69%)
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Table 12: Vulnerability experiment on Didemo. “TR” and “VR” donate text-to-video retrieval and
video-to-text retrieval, respectively.

Method Tunable Para.
Didemo TR Didemo VR

R@1 R@5 R@10 R@Mean R@1 R@5 R@10 R@Mean Mean
BLIP+FFT+Nat

223M
30.51 55.63 66.40 50.85 32.80 58.52 68.49 53.27 52.06

BLIP+FFT+Att 12.66 26.32 35.39 24.79 14.56 31.70 40.58 28.95 26.87(-25.19%)
BLIP+LP+Nat

0.5M
25.32 44.77 53.24 41.11 26.82 50.25 58.42 45.16 43.14

BLIP+LP+Att 23.13 45.86 53.54 40.84 26.02 47.06 57.03 43.37 42.11(-1.03%)
BLIP+LoRA+Nat

2.8M
36.79 63.21 72.28 57.43 34.10 62.41 73.08 56.53 56.98

BLIP+LoRA+Att 33.20 57.43 66.70 52.44 32.70 56.73 68.10 52.51 52.48(-4.51%)
UniAdapter+Nat

19.5M
32.80 60.02 71.19 54.67 9.97 28.32 40.38 26.22 40.45

UniAdapter+Att 27.02 52.14 64.01 47.72 9.27 24.83 36.69 23.60 35.66(-4.79%)
Aurora+Nat

0.3M
35.59 63.61 73.08 57.43 37.49 63.01 72.68 57.73 57.58

Aurora+Att 30.31 52.94 64.11 49.12 31.21 54.74 64.61 50.19 49.66(-7.92%)
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H PERFORMANCE ON NATURAL DATA

In this section, we present the performance results of natural data on Flickr30K, DiDeMo and MSR-
VTT in Table 13, Table 14 and Table 15. We have the following conclusion similar to that in the
main text.

Adversarial adaptation can degrade the performance of the model on natural data. However, the
AdvLoRA method still achieves competitive results on these datasets. This can be attributed to
AdvLoRA’s ability to learn semantically invariant feature representations. The reason for the lack
of performance degradation in LP and LoRA may be due to their low sensitivity to adversarial
adaptation, leading to an ineffective adaptation process.

Table 13: Natural experiment with adversarial adaptation on Flickr30K. “Nat” donates natural im-
ages. An asterisk (*) indicates that adversarial adaptation has been performed. The best results are
displayed in bold, while the second-best results are underlined.

Method Tunable Para.
Flickr30K TR Flickr30K IR

R@1 R@5 R@10 R@Mean R@1 R@5 R@10 R@Mean Mean
BLIP+FFT+Nat 223M 72.80 90.80 95.50 86.37 63.40 86.58 92.00 80.66 83.51
BLIP+LoRA+Nat 2.8M 96.90 99.90 100.00 98.93 86.72 97.78 98.82 94.44 96.69
BLIP+LB+Nat 0.5M 89.00 98.50 99.50 95.67 78.32 94.34 96.98 89.88 92.77
UniAdapter+Nat 19.5M 96.70 99.70 100.00 98.80 86.18 97.34 98.82 94.11 96.46
Aurora+Nat 0.3M 96.70 99.80 100.00 98.83 85.76 97.24 98.72 93.91 96.37
AdvLoRA+Nat 2.8M 96.00 99.70 100.00 98.57 85.68 97.00 98.64 93.77 96.17

Table 14: Natural experiment with adversarial adaptation on Didemo. “Nat” donates natural videoes.
An asterisk (*) indicates that adversarial adaptation has been performed. The best results are dis-
played in bold, while the second-best results are underlined.

Method Tunable Para.
Didemo TR Didemo VR

R@1 R@5 R@10 R@Mean R@1 R@5 R@10 R@Mean Mean
BLIP+FFT+Nat 223M 30.51 55.63 66.40 50.85 32.80 58.52 68.49 53.27 52.06
BLIP+LoRA+Nat 2.8M 36.79 63.21 72.28 57.43 34.10 62.41 73.08 56.53 56.98
BLIP+LB+Nat 0.5M 25.32 44.77 53.24 41.11 26.82 50.25 58.42 45.16 43.14
UniAdapter+Nat 19.5M 32.80 60.02 71.19 54.67 9.97 28.32 40.38 26.22 40.45
Aurora+Nat 0.6M 35.59 63.61 73.08 57.43 37.49 63.01 72.68 57.73 57.58
AdvLoRA+Nat 2.8M 32.10 60.72 69.39 54.07 35.29 59.82 71.18 55.43 54.75

Table 15: Natural experiment with adversarial adaptation on MSR-VTT. “Nat” donates natural im-
ages. An asterisk (*) indicates that adversarial adaptation has been performed. The best results are
displayed in bold, while the second-best results are underlined.

Method Tunable Para.
MSR-VTT TR MSR-VTT VR

R@1 R@5 R@10 R@Mean R@1 R@5 R@10 R@Mean Mean
BLIP+FFT+Nat 223M 20.3 41.3 53.8 38.47 23.4 48.4 60.8 44.20 41.33
BLIP+LoRA+Nat 2.8M 47.2 71.4 80.5 66.36 45.8 70.7 80.3 65.60 65.98
BLIP+LB+Nat 0.5M 40.3 63.2 72.0 58.50 41.8 63.7 71.6 59.03 58.77
UniAdapter+Nat 19.5M 42.4 68.4 77.4 62.73 42.9 68.4 78.3 63.20 62.97
Aurora+Nat 0.6M 45.1 69.7 79.4 64.73 44.2 68.5 77.8 63.50 64.12
AdvLoRA+Nat 2.8M 47.1 71.8 81.9 66.93 47.5 71.2 79.9 66.20 66.57
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I ADAPTATION EFFICIENCY AND STORAGE COST

Table 16: Comparison on the training time and GPU memory.
Method Tuable Para. Time Memory
BLIP+FFT 223M 1.00 1.00
BLIP+LoRA 2.8M 0.91 0.85
BLIP+LP 0.5M 0.79 0.67
Uniadapter 19.5M 0.93 0.77
Aurora 0.3M 1.05 1.04
AdvLoRA 2.8M 0.94 0.85

In this section, we conduct an analysis and comparison of the adaptation efficiency and storage cost
associated with AdvLoRA. Table 16 illustrates the relative training GPU hours and GPU memory
cost, where the time (or memory) of FFT is taken as one unit. The following conclusions can be
drawn. 1) In terms of time overhead, AdvLoRA does not exhibit a pronounced advantage, but it
outperforms Aurora and FFT. It is noteworthy that the adaptation process of models based on on-
line weight decomposition, such as Aurora, requires more time than FFT. In contrast, AdvLoRA
has a smaller time overhead due to the completion of only one offline clustering reparameterization
and parameter alignment before adaptation. 2) In terms of memory overhead, AdvLoRA surpasses
Aurora and FFT. Aurora again experiences a higher memory cost than FFT due to its heavier on-
line decomposition. 3) Overall, AdvLoRA, without any additional constraints on training time and
memory, can be considered an excellent adversarial adaptation method to enhance the adversar-
ial robustness of VLMs. Note that AdvLoRA, LoRA, Uniadapter, and Aurora are essentially all
parameter-efficient methods. The parameter-efficient techniques reduce the number of parameters
to update, but they do not reduce the memory and time requirements during training by much since
they still need to run the backward pass through the modelsSung et al. (2022). The main contribution
of parameter-efficient methods is to reduce the costs of the model deploymentSung et al. (2022).
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J CASE STUDY

In this section, we conduct a case study on MSR-VTT, as illustrated in Figure 4. It can be observed
that AdvLoRA achieves robust retrieval performance under adversarial attacks.

Figure 4: Case study of MSR-VTT. We sample and visualize eight frames from the videos. The
frames with the devil denote that they are under the adversarial attacks. The first and second texts
are the output of AdvLoRA and Aurora, respectively.
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