
Unsupervised Binary Code Translation with Application to

Code Similarity Detection and Vulnerability Discovery

Iftakhar Ahmad

University of South Carolina
iahmad@email.sc.edu

Lannan Luo

George Mason University
lluo4@gmu.edu

Abstract

Binary code analysis has immense importance
in the research domain of software security. To-
day, software is very often compiled for vari-
ous Instruction Set Architectures (ISAs). As
a result, cross-architecture binary code anal-
ysis has become an emerging problem. Re-
cently, deep learning-based binary analysis has
shown promising success. It is widely known
that training a deep learning model requires a
massive amount of data. However, for some
low-resource ISAs, an adequate amount of data
is hard to find, preventing deep learning from
being widely adopted for binary analysis. To
overcome the data scarcity problem and fa-
cilitate cross-architecture binary code analy-
sis, we propose to apply the ideas and tech-
niques in Neural Machine Translation (NMT)
to binary code analysis. Our insight is that
a binary, after disassembly, is represented in
some assembly language. Given a binary in a
low-resource ISA, we translate it to a binary
in a high-resource ISA (e.g., x86). Then we
can use a model that has been trained on the
high-resource ISA to test the translated binary.
We have implemented the model called UNSU-
PERBINTRANS, and conducted experiments to
evaluate its performance. Specifically, we con-
ducted two downstream tasks, including code
similarity detection and vulnerability discovery.
In both tasks, we achieved high accuracies.

1 Introduction

In software security research, binary code analy-
sis plays a significant role. It can play a vital role
in various tasks, such as vulnerability discovery,
code plagiarism detection, and security auditing of
software, etc., without accessing the source code.
Today, software is very often compiled for various
Instruction Set Architectures (ISAs). For exam-
ple, IoT vendors often use the same code base to
compile firmware for different devices that oper-
ate on varying ISAs (e.g., x86 and ARM), which
causes a single vulnerability at source-code level

to spread across binaries of diverse devices. As a
result, cross-architecture binary code analysis has
become an emerging problem (Pewny et al., 2015;
Eschweiler et al., 2016; Feng et al., 2016; Xu et al.,
2017; Zuo et al., 2018). Analysis of binaries across
ISAs, however, is non-trivial: such binaries dif-
fer greatly in instruction sets; calling conventions;
general- and special-purpose CPU register usages;
and memory addressing modes.

Recently, we have witnessed a surge in research
efforts that leverage deep learning to tackle various
binary code analysis tasks, including code clone
detection (Luo et al., 2017a; Zuo et al., 2018), mal-
ware classification (Raff et al., 2018; Cakir and
Dogdu, 2018), vulnerability discovery (Lin et al.,
2019; Wu et al., 2017), and function prototype in-
ference (Chua et al., 2017). Deep learning has
demonstrated its strengths in code analysis, and
shown noticeably better performances over tradi-
tional program analysis-based methods (Song et al.,
2013; BAP, 2011; Luo et al., 2014; Wang et al.,
2009b) in terms of both accuracy and scalability.

It is widely known that training a deep learn-
ing model usually requires a massive amount of
data. As a result, most deep learning-based binary
code analysis methods have been dedicated to a
high-resource ISA, such as x86, where large-scale
labeled datasets exist for training their models. But
for many other ISAs (e.g., ARM, PowerPC), there
are few or even no labeled datasets, resulting in
negligent focus on these low-resource ISAs. More-
over, it is labor-intensive and time-consuming to
collect data samples and manually label them to
build datasets for such low-resource ISAs. In this
work, we aim to overcome the challenge of data
scarcity in low-resource ISAs and facilitate cross-
architecture binary code analysis.

Our Insight. Given a pair of binaries in differ-
ent ISAs, they, after being disassembled, are rep-
resented in two sequences of instructions in two
assembly languages. In light of this insight, we

propose to learn from Neural Machine Translation
(NMT), an area that focuses on translating texts
from one human language into another using ma-
chine/deep learning techniques (Sutskever et al.,
2014). There are two types of NMT systems. One
is supervised and requires a large parallel corpus,
which poses a major practical problem. Another is
unsupervised, which removes the need for parallel
data. As unsupervised NMT has the advantage of
requiring no cross-lingual signals, we adopt unsu-
pervised NMT for binary code analysis.
Our Approach. Drawing inspiration from the
unsupervised neural machine translation model
Undreamt (Artetxe et al., 2018b), we design an
unsupervised binary code translation model called
UNSUPERBINTRANS. UNSUPERBINTRANS is
trained in a completely unsupervised manner, re-
lying solely on mono-architecture corpora. Once
trained, UNSUPERBINTRANS can translate bina-
ries from a low-resource ISA to a high-resource
ISA (e.g., x86). Consequently, when dealing with
a binary in a low-resource ISA, translating it into a
high-resource ISA enables us to use a model trained
on the high-resource ISA to test the translated bi-
nary code. UNSUPERBINTRANS can be applied
to a variety of applications, such as vulnerability
discovery and code similarity detection.

We have implemented UNSUPERBINTRANS 1,
and evaluated its performance. Specifically, we
conduct two critical binary analysis tasks, includ-
ing code similarity detection and vulnerability dis-
covery. In both tasks, we achieve high accuracies
across different ISAs. For example, a model trained
on x86 can successfully detect all vulnerable func-
tions in ARM (even the model has not been ex-
posed to any vulnerable functions in ARM during
its training), indicating the exceptional translation
capabilities of UNSUPERBINTRANS.

Below we summarize our contributions:

• We propose a novel unsupervised method for
translating binary code from one ISA to an-
other, such that the translated binary shares
similar semantics as the original code.

• We have implemented the model UNSU-
PERBINTRANS and conducted evaluations on
two important binary analysis tasks. The re-
sults show that UNSUPERBINTRANS can suc-
cessfully capture code semantics and effec-
tively translate binaries across ISAs.

1https://github.com/lannan/UnsuperBinTrans

int foo (int a) {
 int r;
 if (a == 1234) {
 r = 1;
 } else {
 r = 0;
 }
 return r;
}

int r;
if (a == 1234)

r = 1 r = 0

return r

(a) Source code (b) Control flow graph

A	basic	block	

Figure 1: Control flow graph and basic block.

• This work proposes a new research direction
in binary code analysis, especially for low-
resource ISAs. Based on it, for a downstream
binary analysis task, we only need to train a
model on a high-resource ISA and transfer
it to analyze binaries in other ISAs by trans-
lating such binaries to the high-resource ISA.
Through this, we can resolve the data scarcity
issue in low-resource ISAs.

2 Background

A control flow graph (CFG) is the graphical rep-
resentation of control flow or computation during
the execution of programs or applications. A CFG
is a directed graph in which each node represents
a basic block and each edge represents the flow
of control between blocks. A basic block is a se-
quence of consecutive statements in which the flow
of control enters at the beginning and leaves at the
end without halt or branching except at the end.

As shown in Figure 1(a), given a piece of source
code, its corresponding CFG is shown in Fig-
ure 1(b), where each node is a basic block. Simi-
larly, we can also generate the corresponding CFG
for a piece of binary code. We here use the source
code as an example for simplicity.

3 Motivation and Model Design

This section first discusses the motivation behind
our proposal for unsupervised binary code transla-
tion, and then presents the model design.

3.1 Motivation

Consider the vulnerability discovery task, a long-
standing problem of binary code analysis, as an
example, binaries in different ISAs are analyzed
in detail to find vulnerabilities. Nowadays, apply-
ing machine/deep learning to binary analysis has
drawn great attention due to the exceptional perfor-
mance. However, it usually requires a large amount
of data for training. Unfortunately, many a time it

https://github.com/lannan/UnsuperBinTrans

is difficult to collect such a large amount of training
data, especially for low-resource ISAs.

There are some ISAs that are commonly used
(e.g., x86) and it becomes easy to collect large
training data for such ISAs. It would be a great
advantage if the availability of such large training
data of high-resource ISAs could facilitate the au-
tomated analysis of binaries in low-resource ISAs,
where sufficient training data is not available.

For example, suppose there is a large training
dataset for the ISA X, however, we need to analyze
a binary b in the ISA Y, where the available training
data is insufficient. As a result, it is difficult to train
a model for analyzing b in Y. In order to resolve
the problem, our idea is to translate b from the ISA
Y to X, resulting in a translated binary b’ in X.
Then, we can leverage the large training dataset of
X to train a model, which can be used to perform
prediction on the translated version b’ in X.

3.2 Learning Cross-Architecture Instruction

Embeddings

A binary, after disassembled, is represented as a se-
quence of instructions. An instruction includes an
opcode (specifying the operation to be performed)
and zero or more operands (specifying registers,
memory locations, or literal data). For example,
mov eax, ebx is an instruction where mov is an
opcode and both eax and ebx are operands.2 In
NMT, words are usually converted into word em-
beddings to facilitate further processing. Since we
regard instructions as words, similarly we represent
instructions as instruction embeddings.
Challenge. In NLP, if a trained word embedding
model is used to convert a word that has never ap-
peared during training, the word is called an out-of-
vocabulary (OOV) word and the embedding gener-
ation for such words will fail. This is a well-known
problem in NLP, and it exacerbates significantly in
our case, as constants, address offsets, and labels
are frequently used in instructions. How to deal
with the OOV problem is a challenge.
Solution: Preprocessing Instructions. To resolve
the OOV problem, we propose to preprocess the
instructions using the following rules: (1) Con-
stants up to 4 digits are preserved because they
usually contain useful semantic information; con-
stants more than 4 digits are replaced with <CONST>.
(2) Memory addresses are replaced with <ADDR>.

2Assembly code in this paper adopts the Intel syntax, i.e.,
op dst, src(s).

(3) Other symbols are replaced with <TAG>. Take
the code snippets below as an example, where the
left one shows the original assembly code and the
right one is the preprocessed code.

MOV EDX, 11E1H MOV EDX, 11E1H
MOV ECX, 0FFFFFFFFH MOV ECX, <CONST>
JLE LOC_9BA3B JLE LOC_<TAG>
CALL CRYPTO_FREE CALL CRYPTO_FREE
MOV RCX, CS:GLIBC_2_5 MOV RCX, CS:<ADDR>
MOV [RSP+VAR_58], RDX MOV [RSP+<VAR>], RDX

Building Training Datasets. As we regard instruc-
tions as words and basic blocks as sentences, we
use a large number of basic blocks to train the in-
struction embeddings. Specifically, for a given ISA
X, we first collect various opensource programs,
and compile them in X. Note that given the wide
availability of opensource code, this requires little
effort. After that, we use IDA Pro (The IDA Pro
Disassembler and Debugger) to disassemble all the
binaries to generate the assembly code, from which
we can extract the basic blocks. We use all the ba-
sic blocks (after preprocessing) to build a training
dataset for this ISA.
Learning Process. Below we define two terms,
mono-architecture instruction embeddings (MAIE)
and cross-architecture instruction embeddings
(CAIE).

Definition 1 (Mono-Architecture Instruction
Embeddings) Mono-architecture instruction
embeddings (MAIE) are architecture-specific,
where similar instructions in the same ISA have
close embeddings. MAIE of different ISAs are
projected into different vector spaces.

Definition 2 (Cross-Architecture Instruction Em-
beddings) Cross-architecture instruction embed-
dings (CAIE) are architecture-agnostic, where simi-
lar instructions, regardless of their ISAs, have close
embeddings. CAIE are projected into the same vec-
tor space.

We adopt fastText (Bojanowski et al., 2017)
to learn MAIE for an ISA. The result is an embed-
ding matrix X 2 RV⇥d, where V is the number of
unique instructions in the vocabulary, and d is the
dimensionality of the instruction embeddings. The
ith row Xi⇤ is the embedding of the ith instruction
in the vocabulary.

Given two ISAs, where one is a high-resource
ISA and another a low-resource ISA, we follow
the aforementioned steps to learn MAIE for each
ISA. After that, we map MAIE of the low-resource

x86
binary
code

Binary
in low-

resource
ISA

Cross-architecture
instruction embeddings

(CAIE)

Shared encoder

CAIE

L1 decoder

L2 decoder

Translating binaries
in low-resource ISA

to x86 code

Binary analysis in
low-resource ISA

Figure 2: Architecture of UNSUPERBINTRANS.

ISA into the vector space of the high-resource ISA
by adopting the unsupervised learning technique
vecmap (Artetxe et al., 2018a). Note that other un-
supervised learning methods for generating cross-
lingual word embeddings (Conneau et al., 2017;
Ruder et al., 2019) also work.

3.3 Translating Basic Blocks Across ISAs

Drawing inspiration from the unsupervised neu-
ral machine translation model Undreamt (Artetxe
et al., 2018b), we design an unsupervised binary
code translation model, named UNSUPERBIN-
TRANS, to translate a piece of binary code (i.e.,
a basic block) from one ISA to another ISA.
The model architecture of UNSUPERBINTRANS is
shown in Figure 2.

First, CAIE are generated for two ISAs, where
one is a high-resource ISA (x86) and another a
low-resource ISA (see Section 3.2). Then, we train
UNSUPERBINTRANS (the grey dashed box; the
detailed process is discussed below). The training
only uses mono-architecture datasets and CAIE
generated from the mono-architecture datasets.
The mono-architecture dataset for each ISA con-
tains a large number of basic blocks from this ISA.
Finally, the trained model can translate a basic
block from the low-resource ISA to x86, and the
translated basic block shares similar semantics as
the original one. Through the translation of bina-
ries from a low-resource ISA to x86, we can use
a model trained on x86 to analyze the translated
code. This capability allows UNSUPERBINTRANS
to address the data scarcity issue in low-resource
ISAs. UNSUPERBINTRANS can be applied to vari-
ous binary analysis tasks, such as code similarity
detection and vulnerability discovery.

As UNSUPERBINTRANS is designed based on
Undreamt, below we briefly discuss how Undreamt
works. Please refer to (Artetxe et al., 2018b) for
more details. Undreamt alleviates the major limi-
tations of NMT, i.e., the requirement of very large

parallel text corpora. Undreamt achieves very good
results for translation due to the three main proper-
ties of its architecture. These properties are dual
structure, shared encoder, and fixed embeddings
in the encoder. First, the dual structure enables
bidirectional translation capabilities to be achieved
through training. Second, the shared encoder pro-
duces a language-independent representation of
the input text corpus. Then the corresponding de-
coders for a particular language can transform that
representation into the required language. Finally,
with the help of fixed embeddings in the encoder,
Undreamt can easily learn how to compose word-
level representations of a language to build repre-
sentations for bigger phrases. These embeddings
are pre-trained and kept fixed throughout the train-
ing which makes the training procedure simpler.

The training procedure consists of two main
underlying components. Denoising and On-the-
fly backtranslation. Although the dual property
of Undreamt helps it gain preliminary translation
knowledge, eventually such procedure results in
a simple copying task where the trained model
may result in making word-by-word replacements
of the source and target languages. Therefore, to
improve the translation capability of the trained
model, Undreamt injects noise into input data by
adding some random swaps of contiguous words.
Then the model is asked to recover the original
input text by denoising the corrupted data. This
process of adding and removing the noise helps
the model to learn the actual relationship between
words in the sentences for the given languages.

We implement UNSUPERBINTRANS upon
Undreamt. During the testing phase, when pro-
vided with a basic block from one ISA, we first
represent it as a sequence of CAIE, which is fed to
UNSUPERBINTRANS. UNSUPERBINTRANS then
translates it to a basic block in another ISA, which
shares similar semantics as the source basic block.

Table 1: Statistics of datasets.

Opt. ISA # of # of Unique Total # of
Level Functions Instructions Instructions

O0 ARM 80,065 100,515 6,669,266
x86 71,608 94,121 6,555,483

O1 ARM 83,184 102,388 6,864,017
x86 70,350 89,893 6,587,172

O2 ARM 74,173 111,564 7,408,810
x86 70,678 91,139 6,626,772

O3 ARM 74,186 111,587 7,317,972
x86 70,329 89,932 6,619,398

4 Evaluation

We conducted experiments to evaluate the transla-
tion performance of UNSUPERBINTRANS. We first
describe the experimental settings, and then con-
duct quantitative analysis by computing the BLEU
scores (Bilingual Evaluation Understudy) (Pap-
ineni et al., 2002). After that, we conduct two
downstream tasks, including code similarity com-
parison and vulnerability discovery. Finally, we
evaluate the efficiency.

4.1 Experimental Settings

UNSUPERBINTRANS contains three compo-
nents, including fastText (Bojanowski et al.,
2017), vecmap (Artetxe et al., 2018a), and
Undreamt (Artetxe et al., 2018b). The experiments
were conducted on a computer with Ubuntu 20.04,
a 64-bit 2.50 GHz 11th Gen Intel® Core(TM) i7-
11700 CPU with 8 cores, an Nvidia GeForce RTX
3080 GPU, 64 GB RAM, and 2 TB HD. We set the
embedding dimension to 200 and use the default
settings of vecmap and Undreamt: the hyperparam-
eters, such as learning rate, epoch, and batch size,
etc., are set to their default values.
Datasets. We consider two ISAs, x86 and ARM.
We select a set of widely used open-source pack-
ages, include binutils, coreutils, findutils,
inetutils, and openssl, to build two mono-
architecture datasets (one for x86 and another for
ARM). Specifically, for each program, we compile
it into binaries in x86 and ARM. We consider four
optimization levels, O0, O1, O2, and O3, when
generating binaries. As a result, for each program,
we obtain four binaries for each ISA, each of which
is for one optimization level.

We next disassemble these binaries using IDA
Pro and extract basic blocks. Each instruction in
basic blocks is then preprocessed. Finally, we
build four mono-architecture datasets for x86 and
another four for ARM. Each mono-architecture

dataset contains a set of preprocessed basic blocks
corresponding to one ISA and one optimization
level. Table 1 shows the statistics of our datasets,
including the number of functions, the number of
unique instructions (i.e., vocabulary size), and the
total number of instructions for each optimization
level in terms of the two ISAs, x86 and ARM.

Training UNSUPERBINTRANS. Given two
datasets corresponding to two different ISAs and
the same optimization level, we first use fastText
to generate MAIE for each ISA, which are then
mapped to a shared space to generate CAIE by
vecmap. After that, we train UNSUPERBINTRANS
using the two datasets and CAIE to translate basic
blocks from one ISA to another. Note that UNSU-
PERBINTRANS is based on unsupervised learning;
we do not need to determine which basic block in
one ISA is similar to a basic block in another ISA.

4.2 Quantitative and Qualitative Analysis

We first calculate the BLEU score to measure the
quality of our translation. A BLEU score is repre-
sented by a number between zero and one. If the
score is close to zero, the translation quality is poor.
On the other hand, the translation quality is good
when the score is close to one.

For each x86 function, we first find its simi-
lar ARM function: following the dataset building
method in InnerEye (Zuo et al., 2018), we con-
sider two functions similar if they are compiled
from the same piece of source code, and dissimilar
if their source code is rather different. As a result,
for each ARM function, denoted as S, upon iden-
tifying its similar x86 function R, we include this
similar pair into our dataset. For each ARM func-
tion in the dataset, we use UNSUPERBINTRANS to
translate each of its basic blocks into x86, result-
ing in a translated function in x86, denoted as T .
After that, we compute the BLEU score between
T and R. Finally, we compute the average BLEU
score for all functions in the dataset. We obtain
0.76, 0.77, 0.77, 0.76 BLEU scores, for the four
different optimization levels, respectively, when
using fastText for instruction embedding genera-
tion. Moreover, when we use word2vec, we obtain
0.77, 0.77, 0.77, 0.76 BLEU scores, for the four
different optimization levels, respectively. Thus,
our model achieves good translation.

Table 2 shows three randomly selected examples.
Due to space limits, we use basic blocks as exam-
ples. In each example, 1) the source ARM is the

Table 2: Three examples of assembly code translations.

1

Source LDR R0, [R7, 0X10+<ADDR>]; MOV R1, <TAG>; BL STARTSWITH_0;
ARM MOV R3, R0; CMP R3, #0; BEQ LOC_<TAG>

Reference MOV RAX, [RBP+NAME]; LEA RSI, <TAG>; MOV RDI, RAX;
x86 CALL STARTSWITH_0; TEST AL, AL; JZ SHORT LOC_<TAG>

Translated MOV RAX, [RBP+NAME]; LEA RSI, <TAG>; MOV RDI, RAX;
x86 CALL _STRCMP; TEST EAX, EAX; JZ SHORT LOC_<TAG>

2

Source LDR R3, [R7, 0X18+H]; LDRB.W R3, [R3, #0X37]; AND.W R3, R3, #2;
ARM UXTB R3, R3; CMP R3, #0; BNE LOC_<TAG>

Reference MOV RAX, [RBP+H]; MOVZX EAX, <BYTE_PTR>[RAX+6BH];
x86 AND EAX, 2; TEST AL, AL; JNZ SHORT LOC_<TAG>

Translated MOV RAX, [RBP+H]; MOVZX EAX, <BYTE_PTR>[RAX+6BH];
x86 AND EAX, 2; TEST AL, AL; JNZ SHORT LOC_<TAG>

3

Source LDR R3, [R7, 0X18+INFO]; LDRB R3, [R3, #6]; AND.W R3, R3, #4;
ARM UXTB R3, R3; CMP R3, #0; BEQ LOC_<TAG>

Reference MOV RAX, [RBP+H]; MOVZX EAX, <_PTR>[RAX+6CH];
x86 AND EAX, 20H; TEST AL, AL; JNZ SHORT LOC_<TAG>

Translated MOV RAX, [RBP+INFO]; MOVZX EAX, <BYTE_PTR>[RAX+6];
x86 AND EAX, 4; TEST AL, AL; JZ SHORT LOC_<TAG>

original ARM basic block; 2) the reference x86 is
the x86 basic block that is similar to the original
ARM basic block; and 3) the translated x86 is the
x86 basic block that is translated from the original
ARM basic block by our model. By comparing the
translated x86 block with the reference x86 block,
we can see that UNSUPERBINTRANS (1) success-
fully predicts all opcodes (i.e., the opcodes in the
translated x86 and those in the reference x86 block
are the same), and (2) a small number of operands
are not predicted correctly but reasonable. For ex-
ample, in the first example, the fifth instruction in
the reference x86 block is TEST AL, AL, while the
predicted instruction in the translated x86 block is
TEST, EAX, EAX. Opcodes, which determines the
operation to be performed, captures more seman-
tics compared to operands. Moreover, the random
allocation of registers across different optimization
levels diminishes their significance. We thus can
conclude that UNSUPERBINTRANS consistently at-
tains exceptionally high-quality translations. This
results in superior performance in various down-
stream tasks, as detailed in the following sections.

4.3 Downstream Applications

We consider two downstream tasks as follows.

Function Similarity Comparison. Given two bi-
nary functions, f1 and f2, in two different ISAs, X

and Y, our goal is to measure their similarity. If
they are similar, they may copy from each other
(i.e., stem from the same piece of source code). To
achieve this, we translate each basic block of f1 in

the ISA X to a basic block in the ISA Y, resulting in
a function f 0

1 in Y. After that, we have two binary
functions, f 0

1 and f2, within the same ISA Y.
For each function, we generate its function em-

bedding, which is computed as the weighted sum
of the CAIE of all instructions in this function.
The weight of each CAIE is calculated as the term-
frequency (TF). We then compute the cosine simi-
larity between their function embeddings to mea-
sure their similarity.

Vulnerability Discovery. We consider three
vulnerabilities: CVE-2014-0160 (or Heartbleed
bug) (Banks, 2015), CVE-2014-3508, and CVE-
2015-1791. We follow a similar way as above to
compute the functions embeddings for the vulnera-
ble functions and benign functions. We use Support
Vector Machine (SVM), a widely used machine
learning model to detect vulnerabilities.

Since there is usually only one vulnerable
function (positive sample) for training SVM, the
dataset becomes extremely imbalanced. To han-
dle the imbalance issue, Random Oversampling
(ROS) (Moreo et al., 2016) and Synthetic Minority
Over-sampling Technique (SMOTE) (Chawla et al.,
2002) are adopted. For each vulnerability case, we
first train an SVM model using the vulnerable func-
tions and benign functions in x86. We then use the
trained model to detect the vulnerability in ARM
functions. During detection, we first translate each
basic block in the ARM function to a basic block in
x86 and use the SVM model (that has been trained
on x86) to test the translated function.

Table 3: Accuracy of the function similarity task.

Opt. Tool for instruction embedding generation
Level word2vec fastText

O0 78.09% 81.24%
O1 83.33% 91.11%
O2 87.05% 95.30%
O3 86.76% 94.97%

4.4 Function Similarity Comparison

For each optimization level, we first randomly se-
lect 7, 418 x86 functions. For each selected x86
function, we search for its similar and dissimilar
function in ARM. We consider two functions sim-
ilar if they are compiled from the same piece of
source code, and dissimilar if their source code is
rather different. We assign the label “1” to each
similar function pair, and the label “0” to each dis-
similar function pair.

We next generate function embeddings for each
function. In NLP, many methods exist for compos-
ing word embeddings to sentence/document embed-
dings. We choose the following way. We calculate
the term-frequency (TF) for each instruction in a
function and then multiply it by the correspond-
ing CAIE of that instruction. We next add all the
weighted CAIE and use the sum as the function em-
bedding. Note that for an ARM function, we first
translate it to an x86 function using UNSUPERBIN-
TRANS, and then compute its function embedding
using the method discussed before. To measure the
function similarity, we calculate the cosine simi-
larity between their function embeddings and then
calculate the accuracy.

We perform the experiment for all the optimiza-
tion levels. Table 3 shows the results. As UN-
SUPERBINTRANS needs to first generate MAIE
(see Section 3.2) and then perform the transla-
tion, we also explore different tools for generat-
ing MAIE and assess which one yields better per-
formance. Specifically, we use fastTtext and
word2vec. The results demonstrate that we achieve
reasonable accuracies for each optimization level.
Moreover, fastText leads to better performance.

Note that in this task, we use a weighted sum
of instruction embeddings to generate function em-
beddings. As there are many advanced methods for
composing word embeddings, including those us-
ing machine/deep learning models (Lin et al., 2017;
Kenter et al., 2016; Xing et al., 2018), we expect
that by adopting these advanced methods, we can
achieve even higher accuracies.

4.5 Vulnerability Discovery

We consider three case studies as follows.

Case Study I. CVE-2014-0160 is the Heartbleed
vulnerability in OpenSSL (Banks, 2015). It allows
remote attackers to get sensitive information via
accessing process stack memory using manually
crafted data packets which would trigger a buffer
overread. We obtain the vulnerable binary function
in x86 and ARM from OpenSSL v1.0.1d.

Case Study II. For CVE-2014-3508, context-
dependent attackers are able to obtain sensitive in-
formation from process stack memory via reading
output from some specific functions. The vulnera-
ble function is collected from OpenSSL v1.0.1d.

Case Study III. For CVE-2015-1791, a race con-
dition occurs when the vulnerable function is used
for a multi-threaded client. A remote attacker can
create a denial of service attack (double free and
application crash) when attempting to reuse a ticket
that had been obtained earlier. The vulnerable func-
tion is also collected from OpenSSL v1.0.1d.

Our Results. For each case study, we select
9,999 benign functions. However, we only have
one vulnerable sample. To address this unbal-
anced sample issue, we use ROS (Moreo et al.,
2016) and SMOTE (Chawla et al., 2002). We
set the parameters k_neighbors to 2 and sam-
pling_strategy to 0.002. We try different values
of sampling_strategy, including 0.5, 0.25, and 0.02,
etc., and find that with the value of 0.002, we obtain
enough oversampling data and yield good results.
As we set k_neighbors to 2, we duplicate the vulner-
able function three times, so that the initial minority
sample size is more than the value of k_neighbors.

We then compute the function embedding for
each function. We use the function embeddings of
x86 vulnerable functions and benign functions to
train an SVM model. Then, the trained SVM model
is transferred to test the translated code of each
ARM function, without any modification. In this
experiment, we use fastText to generate MAIE
as it gives better results than word2vec.

Baseline Method. Our work aims to address
the data scarcity issue in low-resource ISAs. To
achieve this, we introduce UNSUPERBINTRANS,
which can translate binaries from a low-resource
ISA to a high-resource ISA. By applying UN-
SUPERBINTRANS, we can use the SVM model
trained on x86 to test a binary in ARM by translat-
ing the ARM binary to x86.

Table 4: Performance of the vulnerability discovery task (%).

Opt. Case True Positive Rate False Positive Rate Precision F1-score

Level Study Baseline Ours Baseline Ours Baseline Ours Baseline Ours

O0
I 1.00 1.00 0.00 0.0001 1.00 0.95 1.00 0.98
II 1.00 1.00 0.0002 0.0001 0.83 0.95 0.91 1.00
III 1.00 1.00 0.00 0.0001 1.00 0.95 1.00 0.98

O1
I 1.00 1.00 0.00 0.0001 1.00 0.95 1.00 0.98
II 1.00 1.00 0.0003 0.0002 0.77 0.83 0.87 0.91
III 1.00 1.00 0.00 0.0002 1.00 0.83 1.00 0.91

O2
I 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00
II 1.00 1.00 0.0001 0.00 0.91 1.00 0.95 1.00
III 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00

O3
I 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00
II 1.00 1.00 0.0002 0.00 0.83 1.00 0.91 1.00
III 1.00 1.00 0.00 0.0001 1.00 0.95 1.00 0.98

To showcase the effectiveness of the translation,
we perform a baseline comparison. The baseline
model we consider is an SVM model trained and
tested on ARM, without employing any translation.
As one would expect, the model trained and tested
on ARM is likely to outperform a model trained on
x86 and tested on the translated code (from ARM
to x86). That is, the baseline model represents the
best-case scenario. Moreover, if the performance
difference between the baseline and our model is
small, it signifies effective translation.

Table 4 shows the results. We can see that our
model consistently demonstrates close proximity
in most cases when comparing to the baseline. The
performance of UNSUPERBINTRANS across all
performance metrics is impressive. For example,
UNSUPERBINTRANS has a 100% true positive rate,
indicating it identifies all the ARM vulnerable func-
tions accurately. Therefore, we can conclude that
UNSUPERBINTRANS has exceptional translation
capabilities and can be applied to the vulnerability
discovery task with high reliability.

4.6 Efficiency

We evaluate the training time of UNSUPERBIN-
TRANS, which needs to first generate MAIE using
fastText (Part I) and then learn CAIE (Part II).
After that, we train UNSUPERBINTRANS using
CAIE and two mono-architecture datasets (Part
III). The total training time is the sum of the three
parts. Part I approximately around 20 minutes for
MAIE generation of ARM and x86. Part II takes
around 15 minutes for CAIE generation. Part III
takes approximately 16 hours for the training of
each optimization level. Thus, the total training
time is around 16.5 hours.

5 Related Work

The related work can be divided into: traditional
and machine/deep learning based. Each one can be
further divided into: mono-architecture and cross-
architecture based.

5.1 Traditional Code Similarity Comparison

Mono-Architecture Approaches. Most traditional
approaches work on a single ISA. Some analyze
source code (Kamiya et al., 2002; Jiang et al.,
2007; Luo and Zeng, 2016). Others analyze bi-
nary code (Luo, 2020; Zeng et al., 2019b; Luo
et al., 2019a; Zeng et al., 2019a, 2018; Luo et al.,
2016), e.g., using symbolic execution (Luo et al.,
2014, 2021, 2017b), but are expensive. Dynamic
approaches include API birthmark (Tamada et al.,
2004), system call birthmark (Wang et al., 2009a),
instruction birthmark (Tian et al., 2013), and core-
value birthmark (Jhi et al., 2011). However, extend-
ing them to other ISAs would be hard and tedious.
Moreover, code coverage is another challenge.
Cross-Architecture Approaches. Recent works
have applied traditional approaches to the cross-
architecture scenario (Pewny et al., 2015; Es-
chweiler et al., 2016; Chandramohan et al., 2016;
Feng et al.; David et al., 2018). Multi-MH and
Multi-k-MH (Pewny et al., 2015) are the first two
methods for comparing functions across ISAs, but
their fuzzing-based basic-block similarity compar-
ison and graph (i.e., CFG) matching-based algo-
rithms are expensive. discovRE (Eschweiler et al.,
2016) uses pre-filtering to boost CFG-based match-
ing process, but is still expensive and unreliable.
Esh (David et al., 2016) uses data-flow slices of ba-
sic blocks as comparable unit. It uses a SMT solver
to verify function similarity, which is unscalable.

5.2 Machine/Deep Learning-based Code

Similarity Comparison

Mono-Architecture Approaches. Recent research
has demonstrated the applicability of machine/deep
learning techniques to code analysis (Han et al.,
2017; Ding et al., 2019; Van Nguyen et al., 2017;
Phan et al., 2017; Yan et al., 2019; Massarelli et al.,
2019). Lee et al. propose Instruction2vec for
converting assembly instructions to vector repre-
sentations (Lee et al., 2017). PalmTree (Li et al.,
2021) generates instruction embeddings by adopt-
ing the BERT model (Devlin et al., 2018). However,
all these approaches work on a single ISA.

Cross-Architecture Approaches. A set of ap-
proaches target cross-architecture binary analy-
sis (Feng et al., 2016; Xu et al., 2017; Chandramo-
han et al., 2016; Zuo et al., 2018; Redmond et al.,
2019). Some exploit the code statistical. For ex-
ample, Gemini (Xu et al., 2017) use manually se-
lected features (e.g., the number of constants and
function calls) to represent basic blocks, but ig-
nore the meaning of instructions and dependency
between them, resulting in significant information
loss. InnerEye (Zuo et al., 2018) uses LSTM to
encode each basic block into an embedding, but
needs to train a separate model for each ISA.

For these approaches, in order to train their mod-
els, cross-architecture signals (i.e, labeled similar
and dissimilar pairs of code samples across ISAs)
are needed, which require a lot of engineering ef-
forts. For example, InnerEye (Zuo et al., 2018)
modifies the backends of various ISAs in the LLVM
compiler (LLVM) to generate similar and dissim-
ilar basic block pairs in different ISAs, while the
dataset collection is identified as one of the chal-
lenges of this work. We instead build an unsuper-
vised binary code translation model that does not
require large parallel corpora. More importantly,
our work can resolve the data scarcity problem in
low-resource ISAs.

The concurrent work, UniMap (Wang et al.,
2023), also aims to address the data scarcity issue
in low-resource ISAs. We proposed entirely differ-
ent approaches. UniMap learns cross-architecture
instruction embeddings (CAIE) to achieve the goal.
In contrast, our work takes a more progressive
stride by translating code from low-resource ISAs
to a high-resource ISA. As shown in Figure 2,
UniMap stops at the CAIE learning stage, while our
work moves beyond this point, concentrating on bi-
nary code translation. As we translate binary code

to a high-resource ISA, our approach has several
advantages. One advantage is that we can gener-
ate function embeddings by directly summing the
CAIE of instructions within a function and use the
function embeddings to measure similarity (as il-
lustrated in the function similarly comparison task).
This eliminates the need for a downstream model
training, which however is required by UniMap. An-
other advantage is that we can directly use the ex-
isting downstream models that have already been
trained on the high-resource ISA to test the trans-
lated code (as illustrated in the vulnerability dis-
covery task). However, UniMap needs to retrain the
existing models using the learned CAIE.

6 Discussion

Intermediate representation (IR) can be used to rep-
resent code of different ISAs (angr Documentation).
Given two pieces of binaries from different ISAs,
which have been compiled from the same piece
of source code, even if they are converted into a
common IR, the resulting IR code still looks quite
different (see Figure 1 and 3 of (Pewny et al., 2015)
and the discussion in (Wang et al., 2023)). As a
result, existing works that leverage IR for analyz-
ing binaries across ISAs have to perform further
advanced analysis on the IR code (Pewny et al.,
2015; David et al., 2017; Luo et al., 2019b, 2023).

7 Conclusion

Deep learning has been widely adopted for binary
code analysis. However, the limited availability
of data for low-resource ISAs hinders automated
analysis. In this work, we proposed UNSUPERBIN-
TRANS, which can leverage the easy availability of
dataset in x86 to address the data scarcity problem
in low-resource ISAs. We conducted experiments
to evaluate the performance. For vulnerability dis-
covery, UNSUPERBINTRANS is able to detect all
vulnerable functions across ISAs. Thus, UNSU-
PERBINTRANS offers a viable solution for address-
ing the data scarcity issue in low-resource ISAs.

NLP-inspired binary code analysis is a promis-
ing research direction, but not all NLP techniques
are applicable to binary code analysis. Therefore,
works like ours that identify and study effective
NLP techniques for binary code analysis are valu-
able in advancing exploration along this direction.
This work demonstrates how NLP techniques can
be leveraged in binary code analysis and under-
scores the practical utility of such approaches.

Limitations

In the evaluation, we consider two ISAs, x86 and
ARM. There are many other ISAs, such as MIPS
and PowerPC. We leave the evaluation on whether
our approach works for other ISAs as future work.

In this work, we consider instructions as words,
which is a natural choice and works well accord-
ing to our evaluation. However, there exist other
choices. For instance, we may also consider raw
bytes (Liu et al., 2018; Guo et al., 2019; Raff et al.,
2018) or opcode and operands (Ding et al., 2019;
Li et al., 2021) as words. An intriguing research
work is to study which choice works the best and
whether it depends on ISAs and downstream tasks.

Given the large variety of binary analysis tasks
and their complexity, we do not claim that our ap-
proach can be applied to all tasks. The fact that it
works well for two important tasks (vulnerability
discovery and code similarity detection). Demon-
strating our approach for other applications is of
great use. Much research can be done for exploring
and expanding the boundaries of the approach.

Ethics Statement

We state that this work does not violate any of the
ethics and principles of scientific research in the
field of computer science.

Acknowledgments

This work was supported in part by the US Na-
tional Science Foundation (NSF) under grants
CNS-2304720. The authors would like to thank
the anonymous reviewers for their valuable com-
ments.

References

angr Documentation. Intermediate representation.
https://docs.angr.io/advanced-topics/ir.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018a.
A robust self-learning method for fully unsupervised
cross-lingual mappings of word embeddings. arXiv
preprint arXiv:1805.06297.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2018b. Unsupervised neural ma-
chine translation. In ICLR.

James Banks. 2015. The heartbleed bug: Insecurity
repackaged, rebranded and resold. Crime, Media,
Culture.

BAP. 2011. Bap: Binary analysis platform. https:
//github.com/BinaryAnalysisPlatform/bap/.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics.

Bugra Cakir and Erdogan Dogdu. 2018. Malware clas-
sification using deep learning methods. In ACMSE.

Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu,
Yang Liu, Chia Yuan Cho, and Hee Beng Kuan Tan.
2016. Bingo: Cross-architecture cross-os binary
search. In FSE.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer. 2002. Smote: synthetic
minority over-sampling technique. Journal of artifi-
cial intelligence research.

Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and
Zhenkai Liang. 2017. Neural nets can learn function
type signatures from binaries. In USENIX Security.

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ran-
zato, Ludovic Denoyer, and Hervé Jégou. 2017.
Word translation without parallel data. arXiv preprint
arXiv:1710.04087.

Yaniv David, Nimrod Partush, and Eran Yahav. 2016.
Statistical similarity of binaries. In PLDI.

Yaniv David, Nimrod Partush, and Eran Yahav. 2017.
Similarity of binaries through re-optimization. In
ACM SIGPLAN Notices.

Yaniv David, Nimrod Partush, and Eran Yahav. 2018.
Firmup: Precise static detection of common vulnera-
bilities in firmware. In the 23rd International Con-
ference on Architectural Support for Programming
Languages and Operating Systems.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Steven HH Ding, Benjamin CM Fung, and Philippe
Charland. 2019. Asm2vec: Boosting static represen-
tation robustness for binary clone search against code
obfuscation and compiler optimization. In S&P.

Sebastian Eschweiler, Khaled Yakdan, and Elmar
Gerhards-Padilla. 2016. discovRE: Efficient cross-
architecture identification of bugs in binary code. In
NDSS.

Qian Feng, Minghua Wang, Mu Zhang, Rundong Zhou,
Andrew Henderson, and Heng Yin. Extracting con-
ditional formulas for cross-platform bug search. In
the 2017 ACM on Asia Conference on Computer and
Communications Security.

Qian Feng, Rundong Zhou, Chengcheng Xu, Yao
Cheng, Brian Testa, and Heng Yin. 2016. Scalable
graph-based bug search for firmware images. In CCS.

https://docs.angr.io/advanced-topics/ir
https://github.com/BinaryAnalysisPlatform/bap/
https://github.com/BinaryAnalysisPlatform/bap/

Wenbo Guo, Dongliang Mu, Xinyu Xing, Min Du, and
Dawn Song. 2019. DEEPVSA: Facilitating value-set
analysis with deep learning for postmortem program
analysis. In USENIX Security.

Zhuobing Han, Xiaohong Li, Zhenchang Xing, Hongtao
Liu, and Zhiyong Feng. 2017. Learning to predict
severity of software vulnerability using only vulnera-
bility description. In IEEE International Conference
on Software Maintenance and Evolution.

Yoon-Chan Jhi, Xinran Wang, Xiaoqi Jia, Sencun Zhu,
Peng Liu, and Dinghao Wu. 2011. Value-based pro-
gram characterization and its application to software
plagiarism detection. In ICSE.

Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and
Stephane Glondu. 2007. Deckard: Scalable and ac-
curate tree-based detection of code clones. In ICSE.

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
2002. CCFinder: a multilinguistic token-based code
clone detection system for large scale source code.
IEEE Transactions on Software Engineering.

Tom Kenter, Alexey Borisov, and Maarten De Rijke.
2016. Siamese cbow: Optimizing word embed-
dings for sentence representations. arXiv preprint
arXiv:1606.04640.

Young Jun Lee, Sang-Hoon Choi, Chulwoo Kim, Seung-
Ho Lim, and Ki-Woong Park. 2017. Learning binary
code with deep learning to detect software weakness.
In KSII the 9th International Conference on Internet.

Xuezixiang Li, Qu Yu, and Heng Yin. 2021. Palmtree:
Learning an assembly language model for instruction
embedding. In CCS.

Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, Olivier
De Vel, Paul Montague, and Yang Xiang. 2019.
Software vulnerability discovery via learning multi-
domain knowledge bases. IEEE Transactions on
Dependable and Secure Computing.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. In ICLR.

Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li,
Feng Li, Aihua Piao, and Wei Zou. 2018. ↵diff:
cross-version binary code similarity detection with
dnn. In ASE.

LLVM. The LLVM compiler infrastructure. https:
//llvm.org.

Lannan Luo. 2020. Heap memory snapshot assisted pro-
gram analysis for android permission specification.
In IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering.

Lannan Luo, Yu Fu, Dinghao Wu, Sencun Zhu, and
Peng Liu. 2016. Repackage-proofing android apps.
In DSN.

Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and
Sencun Zhu. 2014. Semantics-based obfuscation-
resilient binary code similarity comparison with ap-
plications to software plagiarism detection. In FSE.

Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and
Sencun Zhu. 2017a. Semantics-based obfuscation-
resilient binary code similarity comparison with ap-
plications to software and algorithm plagiarism detec-
tion. IEEE Transactions on Software Engineering.

Lannan Luo and Qiang Zeng. 2016. Solminer: min-
ing distinct solutions in programs. In International
Conference on Software Engineering Companion.

Lannan Luo, Qiang Zeng, Chen Cao, Kai Chen, Jian
Liu, Limin Liu, Neng Gao, Min Yang, Xinyu Xing,
and Peng Liu. 2017b. System service call-oriented
symbolic execution of android framework with appli-
cations to vulnerability discovery and exploit genera-
tion. In MobiSys.

Lannan Luo, Qiang Zeng, Chen Cao, Kai Chen, Jian
Liu, Limin Liu, Neng Gao, Min Yang, Xinyu Xing,
and Peng Liu. 2019a. Tainting-assisted and context-
migrated symbolic execution of android framework
for vulnerability discovery and exploit generation.
IEEE Transactions on Mobile Computing.

Lannan Luo, Qiang Zeng, Bokai Yang, Fei Zuo, and
Junzhe Wang. 2021. Westworld: Fuzzing-assisted
remote dynamic symbolic execution of smart apps
on iot cloud platforms. In ACSAC.

Zhenhao Luo, Baosheng Wang, Yong Tang, and Wei
Xie. 2019b. Semantic-based representation binary
clone detection for cross-architectures in the internet
of things. Applied Sciences.

Zhenhao Luo, Pengfei Wang, Baosheng Wang, Yong
Tang, Wei Xie, Xu Zhou, Danjun Liu, and Kai Lu.
2023. Vulhawk: Cross-architecture vulnerability de-
tection with entropy-based binary code search. In
NDSS.

Luca Massarelli, Giuseppe Antonio Di Luna, Fabio
Petroni, Roberto Baldoni, and Leonardo Querzoni.
2019. Safe: Self-attentive function embeddings for
binary similarity. In International Conference on De-
tection of Intrusions and Malware, and Vulnerability
Assessment. Springer.

Alejandro Moreo, Andrea Esuli, and Fabrizio Sebastiani.
2016. Distributional random oversampling for imbal-
anced text classification. In Proceedings of the 39th
International ACM SIGIR conference on Research
and Development in Information Retrieval.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics.

https://llvm.org
https://llvm.org

Jannik Pewny, Behrad Garmany, Robert Gawlik, Chris-
tian Rossow, and Thorsten Holz. 2015. Cross-
architecture bug search in binary executables. In
S&P.

Anh Viet Phan, Minh Le Nguyen, and Lam Thu Bui.
2017. Convolutional neural networks over control
flow graphs for software defect prediction. In the
29th International Conference on Tools with Artificial
Intelligence.

Edward Raff, Jon Barker, Jared Sylvester, Robert Bran-
don, Bryan Catanzaro, and Charles K Nicholas. 2018.
Malware detection by eating a whole exe. In Work-
shops at the 32 AAAI Conference on Artificial Intelli-
gence.

Kimberly Redmond, Lannan Luo, and Qiang Zeng.
2019. A cross-architecture instruction embedding
model for natural language processing-inspired bi-
nary code analysis. In NDSS Workshop on Binary
Analysis Research.

Sebastian Ruder, Anders Søgaard, and Ivan Vulić. 2019.
Unsupervised cross-lingual representation learning.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics: Tutorial
Abstracts.

Dawn Song, D Brumley, H Yin, J Caballero, I Jager,
MG Kang, Z Liang, J Newsome, P Poosankam, and
P Saxena. 2013. Bitblaze: Binary analysis for com-
puter security.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in neural information processing systems.

Haruaki Tamada, Keiji Okamoto, Masahide Nakamura,
Akito Monden, and Ken-ichi Matsumoto. 2004. Dy-
namic software birthmarks to detect the theft of win-
dows applications. In International Symposium on
Future Software Technology.

The IDA Pro Disassembler and Debugger. http://
www.datarescue.com/idabase/.

Zhenzhou Tian, Qinghua Zheng, Ting Liu, and Ming
Fan. 2013. Dkisb: Dynamic key instruction sequence
birthmark for software plagiarism detection. In 2013
IEEE 10th International Conference on High Per-
formance Computing and Communications & 2013
IEEE International Conference on Embedded and
Ubiquitous Computing.

Thanh Van Nguyen, Anh Tuan Nguyen, Hung Dang
Phan, Trong Duc Nguyen, and Tien N Nguyen.
2017. Combining word2vec with revised vector
space model for better code retrieval. In the 39th
International Conference on Software Engineering
Companion.

Junzhe Wang, Matthew Sharp, Chuxiong Wu, Qiang
Zeng, and Lannan Luo. 2023. Can a deep learn-
ing model for one architecture be used for others?
Retargeted-Architecture binary code analysis. In
32nd USENIX Security Symposium.

Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng
Liu. 2009a. Behavior based software theft detec-
tion. In the 16th ACM conference on Computer and
communications security.

Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng
Liu. 2009b. Detecting software theft via system call
based birthmarks. In Computer Security Applications
Conference.

Fang Wu, Jigang Wang, Jiqiang Liu, and Wei Wang.
2017. Vulnerability detection with deep learning. In
the 3rd IEEE international conference on computer
and communications.

Wenhui Xing, Xiaohui Yuan, Lin Li, Lun Hu, and Jing
Peng. 2018. Phenotype extraction based on word em-
bedding to sentence embedding cascaded approach.
IEEE transactions on nanobioscience.

Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song,
and Dawn Song. 2017. Neural network-based graph
embedding for cross-platform binary code similarity
detection. In CCS.

Jiaqi Yan, Guanhua Yan, and Dong Jin. 2019. Classify-
ing malware represented as control flow graphs using
deep graph convolutional neural network. In DSN.

Qiang Zeng, Golam Kayas, Emil Mohammed, Lan-
nan Luo, Xiaojiang Du, and Junghwan Rhee. 2019a.
Heaptherapy+: Efficient handling of (almost) all heap
vulnerabilities using targeted calling-context encod-
ing. In DSN.

Qiang Zeng, Lannan Luo, Zhiyun Qian, Xiaojiang Du,
and Zhoujun Li. 2018. Resilient decentralized an-
droid application repackaging detection using logic
bombs. In International Symposium on Code Gener-
ation and Optimization.

Qiang Zeng, Lannan Luo, Zhiyun Qian, Zhoujun Li,
Chin-Tser Huang, and Csilla Farkas. 2019b. Re-
silient user-side android application repackaging and
tampering detection using cryptographically obfus-
cated logic bombs. IEEE Transactions on Depend-
able and Secure Computing (TDSC).

Fei Zuo, Xiaopeng Li, Zhexin Zhang, Patrick Young,
Lannan Luo, and Qiang Zeng. 2018. Neural ma-
chine translation inspired binary code similarity
comparison beyond function pairs. arXiv preprint
(NDSS’19).

http://www.datarescue.com/idabase/
http://www.datarescue.com/idabase/

