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ABSTRACT

Extensive prior work on importance-based pruning relies on first- or second-order
Taylor expansions of the loss to score parameters by the estimated loss increase
upon removal. However, in large language models with massive parameters and
multi-layered nonlinear mappings, such approximations inevitably lead to errors.
When applied to structured pruning, Taylor-based criteria are typically extended
from individual weights to entire neurons or channels by aggregating their sensi-
tivities. While this enables parameter reduction at the structural level, Taylor ex-
pansion is constrained to low-order approximations, owing to the computational
intractability of higher-order terms in large-scale models, which results in inaccu-
rate estimates of loss change. Moreover, it neglects the hierarchical dependencies
of deep models, failing to account for how parameters influence subsequent lay-
ers through forward propagation. In particular, the intermediate activations within
the feed-forward network (FFN) layer provide a direct characterization of how the
pre-activation projections transmits information forward, thereby offering a more
faithful account of its influence on the model’s representations. Therefore, we pro-
pose ActTaylor, an intermediate activation enhanced Taylor criterion for struc-
tured pruning, which integrates loss sensitivity with the hierarchical influence of
parameters captured through intermediate activations. ActTaylor scores each hid-
den unit in the FFN by modulating its Taylor-based sensitivity with the activation
statistics for one-shot pruning without any retraining. At pruning ratios of 20%
and 30%, our method consistently outperforms state-of-the-art structured pruning
baselines across seven commonsense benchmarks and one multi-task knowledge
benchmark, improving the average accuracy on LLaMA-2 7B by 7.8% and 12.9%,
and on LLaMA-2 13B by 12.5% and 14.0%, respectively.

1 INTRODUCTION

Large language models based on the Transformer architecture have achieved strong performance
across many tasks in natural language processing, including question answering, summarization, and
reasoning ((Wei et al., 2022)). Scaling laws suggest that increasing model size leads to consistent
improvements in accuracy when sufficient data and computational resources are provided (Kaplan
et al., 2020; Hoffmann et al., 2022). As a consequence, recent models often contain hundreds of bil-
lions of parameters, which results in high memory usage and computational cost during inference.
These demands limit the practical deployment of large models in applications where computational
efficiency is important. To address this issue, researchers have explored various methods of model
compression, such as structural pruning(Ma et al., 2023a; Ashkboos et al., 2024), quantization (Fran-
tar et al., 2023), and low rank approximation(Huang et al., 2025b), in order to reduce model size and
improve inference efficiency without a significant loss in accuracy. This paper focuses on structural
pruning, which specifically targets the feedforward layers of Transformer models. By removing the
entire rows or column of the weight matrices, structural pruning significantly enhances inference
efficiency and is particularly advantageous in hardware deployment. One key reason to focus on
pruning the feed-forward networks (FFN) in Transformer architectures is that FFN layers account
for a significant portion of the model’s parameters and computational cost. Furthermore, prior work
has shown that a small subset of FFN neurons with large activation norms dominate the model’s
inference behavior (Huang et al., 2025b).
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Recent advancements in structural pruning have increasingly employed loss-aware importance cri-
teria derived from Taylor expansions. Some approaches approximate the effect of parameter or
channel removal on the global training objective by retaining first- or second-order terms of the
Taylor expansion(Ma et al., 2023a; van der Ouderaa et al., 2024). Others, such as SlimGPT (Ling
et al., 2024), adopt a more tractable approximation by applying Taylor expansion to a layer-wise
reconstruction loss that serves as a proxy for the global objective. This allows them to capture not
only the gradient but also the curvature of the loss landscape, providing a principled approximation
of the parameter’s contribution to overall model performance. While Taylor expansion provides a
principled importance score for individual parameters, its extension to structured pruning requires
additional considerations. At the neuron level, removing a unit in the FFN layer corresponds to elim-
inating an entire row of the input projection matrix together with the associated column in the output
projection. In this setting, Taylor expansion evaluates the sensitivity of the loss to perturbations of
the whole row vector of parameters. Although this row-level criterion is theoretically consistent, this
criterion only captures the loss response and fails to reflect the neuron’s actual forward contribution,
which is directly manifested in its activation. Consequently, neurons with negligible activations that
contribute little to the actual flow of information may still receive high Taylor scores. This discrep-
ancy motivates us to further examine the role of activation statistics as indicators of how strongly a
neuron participates in forward signal propagation. These considerations suggest that Taylor-based
importance alone is insufficient to faithfully capture neuron relevance, and highlight the need for
complementary measures that incorporate activation information.

To overcome this limitation, we propose ActTaylor, an activation-enhanced Taylor criterion for
structured pruning. ActTaylor extends the classical Taylor expansion approach by incorporating
moment-based statistics of intermediate activations as a measure of forward utilization. Each hidden
unit in the FFN is assigned an importance score defined as the geometric mean of its Taylor-based
sensitivity and its activation statistics, computed over calibration samples. This formulation captures
both the estimated loss impact of parameter removal and the neuron’s role in propagating informa-
tion. Structured pruning is then performed by ranking units with this criterion and removing the least
important ones. Results show that our one-shot pruning strategy is highly effective without requir-
ing retraining, and that activation-enhanced Taylor expansion consistently outperforms Taylor-only
pruning. Our contributions are as follows:

• We propose ActTaylor, an activation-enhanced Taylor criterion that remedies the limita-
tions of classical Taylor expansion in structured pruning. By combining Taylor-based loss
sensitivity with moment-based activation statistics through a geometric integration, Act-
Taylor provides a principled and faithful measure of neuron importance.

• ActTaylor enables one-shot pruning without any weight updates, compensation, or fine-
tuning, making it both efficient and scalable for large language models.

• Experiments on LLaMA-2 and Mistral models demonstrate that ActTaylor consistently out-
performs state-of-the-art structured pruning baselines. Across seven commonsense reason-
ing benchmarks and one multi-task knowledge benchmark, our method achieves superior
performance compared to all baselines. In particular, it improves the average accuracy on
LLaMA-2 7B by 7.8% and 12.9% at 20% and 30% sparsity, and on LLaMA-2 13B by
12.5% and 14.0%, respectively.

2 RELATED WORK

Large Language Model Compression. Large Language Models (Touvron et al., 2023a;b; Scao
et al., 2023; Wang & Komatsuzaki, 2021; Achiam et al., 2023) refer to Transformer language mod-
els with billions or more parameters that consistently demonstrate outstanding performance across
a wide range of tasks. However, their massive size and computational demands limit practical de-
ployment, making model compression a key research direction. Existing approaches can be broadly
categorized into quantization(Kim et al., 2023; Hooper et al., 2024), pruning(Frantar & Alistarh,
2023; Gao et al., 2024b; Ma et al., 2023b), knowledge distillation(Agarwal et al., 2023; Liu, 2024),
and low-rank decomposition(Wang et al., 2025; Huang et al., 2025b). We concentrate on the prun-
ing of the language models, especially the structural pruning. Pruning includes structural pruning,
unstructural pruning, and semi-structural pruning. Unstructural pruning removes individual weights
based on criteria such as magnitude, achieving high sparsity but lacking hardware efficiency(Frantar
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& Alistarh, 2023; Xia et al., 2023; Sun et al., 2024). Semi-structural pruning enforces regular spar-
sity patterns (e.g., 2:4), balancing flexibility and hardware acceleration(Li et al., 2023; Sun et al.,
2024; Frantar & Alistarh, 2023). Structural pruning eliminates entire neurons, layers, or heads, lead-
ing to direct speedup but risking larger accuracy loss(Ma et al., 2023b; van der Ouderaa et al., 2024;
Gao et al., 2024b).

Taylor Expansion-based Large Language Model Pruning. Recent research has explored Taylor
expansion-based pruning techniques for both structured and unstructured pruning of large language
models. These methods approximate the impact of removing parameters by expanding the loss func-
tion around the current weights, using either first-order (gradient-based) or second-order (Hessian-
based) information. GBLM-PrunerDas et al. (2024) exploits the first-order Taylor expansion, using
normalized gradients from a small set of calibration samples in a training-free fashion to define its
pruning criterion, and consistently surpasses methods such as SparseGPT(Frantar & Alistarh, 2023)
and Wanda(Sun et al., 2024) across multiple benchmarks. LoRAPrune(Zhang et al., 2023) utilizes
first-order information for pruning while employing LoRA-guided weights and gradients to approxi-
mate importance efficiently and facilitate rapid post-pruning recovery. LLM-PrunerMa et al. (2023b)
compresses large language models in a task-agnostic manner by structurally pruning non-critical
coupled structures with gradient information and efficiently recovering performance via lightweight
LoRA tuning. Building on classical work in Optimal Brain Damage(LeCun et al., 1989) and Optimal
Brain Surgeon (Hassibi et al., 1993), recent research incorporates second-order Taylor information
to enable effective pruning of large language models. LLM Surgeon(van der Ouderaa et al., 2024)
extends second-order pruning to large-scale LLMs by employing a Kronecker-factored Hessian ap-
proximation to estimate loss impact, computing optimal weight updates for compensation, and it-
eratively pruning with curvature updates to achieve high-accuracy compression. SlimGPT(Ling
et al., 2024) performs structured pruning in a layer-wise manner, leveraging curvature-based error
minimization with compensation, and employs batched greedy strategies plus grouped Cholesky
decomposition to make Hessian-based pruning scalable to large LLMs. In summary, these studies
all build on the idea of Taylor expansion to approximate the loss change caused by pruning and
leverage various techniques—such as normalized gradients, LoRA-guided importance estimation,
and Kronecker-factored Hessian approximations—to achieve more effective compression of large
language models. In this work, we focus on structured pruning and propose a method that, grounded
in Taylor expansion, further exploits the characteristics of neuron pruning by incorporating soft
activation sparsity to address the limitations of Taylor-based importance estimation for neurons.

3 METHODOLOGY

We begin by formulating the problem of neuron pruning in Transformer feedforward networks. We
then leverage Taylor expansion to approximate the loss change incurred by removing neurons, and
analyze its limitations in capturing forward signal contributions. Motivated by this observation, we
introduce an activation-enhanced Taylor expansion that combines loss sensitivity with activation
statistics, leading to a more faithful measure of neuron importance.

3.1 NEURON PRUNING

In the Transformer architecture, each layer is composed of a multi-head self-attention (MHSA)
module followed by a feedforward network (FFN). The FFN typically consists of two linear trans-
formations separated by a non-linear activation function. For a given token representation x ∈ Rd,
the FFN computes:

FFN(x) = W2 σ(W1x), (1)

where W1 ∈ Rdff×d and W2 ∈ Rd×dff are weight matrices, and σ(·) is a non-linear activation func-
tion. In this work, we define the activation output h = σ(W1x) ∈ Rdff as the set of FFN neurons.
Each dimension of h corresponds to a neuron that captures a distinct non-linear transformation of
the input token.

Neuron Pruning refers to the process of deactivating a subset of these neurons based on their impor-
tance. Structurally, this is equivalent to setting the corresponding rows in W1 and the corresponding
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columns in W2 to zero, such that the pruned neurons no longer contribute to the output of the FFN.
This structured pruning scheme reduces both the model’s parameter count and computational cost,
and it preserves the architecture’s compatibility with efficient inference frameworks.

3.2 TAYLOR EXPANSION: MINIMIZING THE LOSS CHANGE

In network pruning, our objective is to remove a subset of parameters while minimizing the perfor-
mance degradation of a well-trained model. Let W ∗ denote the pretrained parameters obtained by
minimizing the training loss L(W ). We seek a masked parameter set Ŵ such that the induced loss
change is minimized under pruning constraints:

Ŵ = argmin
W

∣∣∣L(W ∗\Ŵ )− L(W ∗)
∣∣∣. (2)

We focus on pruning neurons in the feed-forward network (FFN) layers of Transformer models.
Consider the ℓ-th FFN layer with input projection matrix Wℓ ∈ Rdhid×din . Deactivating a neuron i
corresponds to zeroing its associated row vector wi in Wℓ and removing the matched column in the
output projection.

Let S denote a set of neurons in layer ℓ, and Ŵℓ,S the corresponding collection of row vectors. A
second-order Taylor expansion of the loss around W ∗ restricted to layer ℓ gives:

|∆Lℓ,S | ≈

∣∣∣∣∣∣
∑
i∈S

w⊤
i ∇wi

L − 1
2

∑
i,j∈S

w⊤
i Hℓℓ wj

∣∣∣∣∣∣ , (3)

where Hℓℓ ≡ ∇2
Wℓ

L(W ∗) is the Hessian restricted to the parameters of layer ℓ.

Directly computing the quadratic term is computationally intractable for large models. Instead,
we approximate it using Hessian–vector products (HVPs), which allow efficient evaluation of the
second-order contribution without explicitly forming the Hessian. This yields a per-neuron Taylor
importance score:

∆LTaylor
i =

∣∣∣w⊤
i ∇wi

L
∣∣∣+ 1

2

∣∣∣w⊤
i

(
Hℓℓ wstruc

)∣∣∣, (4)

eq:per-neuron-bound where both terms are averaged over the calibration dataset and wstruc is a
layer-wise representative direction. The detailed derivation of this formulation is provided in Ap-
pendix A.4.

3.3 LIMITATION OF TAYLOR EXPANSION

Setup. Consider the FFN in a Transformer block with input x ∈ Rd. For the i-th neuron, let w⊤
i

denote the i-th row of W1. Then the pre-activation, activation, and contribution to the output are

ai = w⊤
i x, hi = σ(ai), zi = (W2):,i hi, (5)

where (W2):,i is the i-th column of W2. Thus each neuron i is fully determined by its row vector
wi in W1 and propagates forward through the corresponding column of W2.

Exact first and second derivatives. For neuron i, the exact derivatives of the loss w.r.t. its row
vector wi are

∂L
∂wi

= E
[(
(∇hℓ)i σ

′(ai)
)
x
]
,

∂2L
∂wi∂w⊤

i

= E
[(
(∇hℓ)i σ

′′(ai)
)
xx⊤] . (6)

Here, ∇hℓ denotes the gradient of the per-sample loss with respect to the hidden activations h =
σ(a); (∇hℓ)i is the backpropagated signal associated with neuron i; and σ′(·), σ′′(·) are the first
and second derivatives of the activation function.
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Taylor expansion vs. forward influence. Consider one row w⊤
i of W1, which defines the pre-

activation ai = w⊤
i x and the hidden activation hi = σ(ai). A Taylor expansion of the loss L with

respect to wi around the current parameter value yields coefficients that are expectations of multi-
linear forms in W⊤

2 ∇zℓ, σ′(ai), σ′′(ai), and so on, up to higher-order derivatives of σ. Importantly,
these coefficients contain no monomial in the activation value hi itself.

In contrast, the forward contribution of neuron i to the FFN output z is mediated directly by its
activation:

z =
∑
j

(W2):,j hj , (7)

so the influence of neuron i is proportional to |hi| through the term (W2):,ihi. Thus the activation
magnitude gates how much signal wi actually transmits forward, whereas Taylor coefficients reflect
only the sensitivity of the loss to perturbations of wi and ignore this forward utilization.
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Figure 1: Distribution of the 4-th moment of neuron activations across different FFN layers of
LLaMA-2. Shallow layers (e.g., Layer 4) show near-zero activations for almost all neurons. In
middle layers (e.g., Layer 13), over half of the neurons remain close to zero, while deeper layers
(e.g., Layer 26) display a broader distribution but still contain a large fraction of near-zero activations
relative to their maximum values. This indicates that many neurons contribute little to forward
propagation across depths.

Illustrative example. To see the discrepancy more concretely, consider the case of a ReLU acti-
vation σ(a) = max(0, a). Suppose w⊤

i x < 0. Then the corresponding activation is exactly zero:
hi = σ(ai) = 0. In this case, setting wi = 0 leaves the hidden activation unchanged and therefore
has no effect on the layer output z or on subsequent computations. However, the Taylor coefficients
of L with respect to wi need not vanish, because they depend on σ′(ai) and σ′′(ai) evaluated at
ai = 0 and on the backpropagated gradient (∇hℓ)i. Thus, Taylor expansion can assign non-trivial
importance scores to parameters that have zero forward contribution, thereby overestimating their
role.

This mismatch becomes especially problematic in large-scale models where sparse activations
are prevalent. In Transformer FFNs, many neurons are inactive (i.e. hi ≈ 0) across most in-
puts(Figure 1). While the Taylor expansion emphasizes sensitivity of the loss to infinitesimal pertur-
bations in wi, it ignores whether the neuron is actually utilized in the forward pass. Hence, neurons
with persistently small activations may receive high Taylor scores despite contributing negligibly to
the signal flow. Although state-of-the-art LLMs employ smooth gating activations such as SwiGLU
or GeLU instead of ReLU, the same issue persists. These activations also yield many near-zero
outputs due to their saturating nonlinearities. For such neurons, the contribution (W2):,ihi is trivial
even if the associated Taylor coefficient is large. Moreover, while W2 could in principle amplify hi,
the near-zero activation ensures that the forward signal remains negligible in expectation over the
dataset. Therefore, relying solely on Taylor expansion risks overvaluing neurons whose effective
forward influence is absent.

In summary, Taylor expansion captures the local loss sensitivity to parameter perturbations but dis-
regards the actual utilization of neurons in the forward pass. This limitation is exacerbated in over-
parameterized models with highly sparse activations, where many neurons are rarely active and thus
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play little role in practice. An accurate assessment of neuron importance should therefore integrate
both perspectives: (1) the backward sensitivity encoded in Taylor coefficients, and (2) the forward
contribution mediated by activation magnitudes. The next subsection develops such an activation-
enhanced Taylor criterion.

3.4 ACTIVATION-ENHANCED TAYLOR EXPANSION FOR NEURON IMPORTANCE

The previous section has shown that Taylor expansion, while principled in capturing loss sensitivity,
fails to account for the forward influence mediated by activation values. Building on this observation,
we propose to augment Taylor-based neuron importance with activation statistics. By combining
these two perspectives, our criterion provides a more faithful assessment of neuron importance for
structured pruning. Concretely, we define a hybrid importance score that integrates both activation
statistics and Taylor-based sensitivity through a geometric mean. Let Ti denote the Taylor-based
estimate of the expected loss increase incurred by removing neuron i, and let Ai denote its p-th
moment of activation over the calibration set. We then assign neuron i the importance score

Ii = Aλ
i · T 1−λ

i , (8)

where λ ∈ [0, 1], Ai = Ex∼D[|hi(x)|p] , Ti = Ex∼D

[
|∆LTaylor

i (x)|
]
.

Here hi denotes the activation of neuron i, D denotes the calibration dataset. ∆LTaylor
i denotes the

loss perturbation from zeroing the parameter vector of neuron i, as defined in Eq. 4. The balancing
coefficient λ controls the relative emphasis on loss sensitivity versus activation statistics. The mo-
ment order p determines which aspect of the activation distribution is captured, with smaller values
emphasizing average magnitude and higher values emphasizing tail behavior. This multiplicative
formulation ensures that a neuron is regarded as important only if it is simultaneously loss-sensitive
and actively utilized in forward propagation. Unlike additive combinations, which allow one signal
to dominate the other, the geometric mean enforces a balanced contribution, naturally penalizing
neurons that score low on either dimension.

3.5 LAYER-WISE PRUNING RATIO

Determining the pruning ratio for each layer is a crucial step in structured pruning, as uniformly
applying the same sparsity across all layers often leads to suboptimal results. Following prior
work (Huang et al., 2025a), we adopt a linearly varying layer-wise sparsity schedule controlled
by a single hyperparameter β. Formally, the sparsity ratio si of the i-th layer is defined as:

si = S − β(L− 1)

2
+ β × (i− 1), i = 1, 2, . . . , L, (9)

where S denotes the target average sparsity across all layers, L is the total number of layers, and β
controls the slope of sparsity allocation across depth.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Implementation details. We use the first shard of the C4 dataset as the calibration set(Raffel
et al., 2020), from which 256 random samples with a sequence length of 4096 tokens are selected to
compute pruning criteria. The hyperparameters in the pruning criteria λ are selected via grid search
on calibration set C4. The moment order p is set to 4 throughout our experiments. The Hessian
Vector Product is computed on four NVIDIA H100 GPUs, while all other pruning and evaluation
experiments are conducted on a single NVIDIA H100.1

Models and Evaluation. We evaluate our approach on several decoder-based generative models,
including LLaMA-2 7B, 13B(Touvron et al., 2023b), and Mistral 7B-v0.1 (Jiang et al., 2023). Lan-
guage modeling performance is measured by perplexity on the WikiText2 test set (Merity et al.,

1Our code is available at https://anonymous.4open.science/r/LLMPruning-52F0/.
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2016). The commonsense reasoning capability is evaluated on eight benchmarks: BoolQ, PIQA,
HellaSwag, WinoGrande, ARC-easy, ARC-challenge, OpenBookQA, and MMLU. Among these,
MMLU is evaluated in the 5-shot setting, while all others are assessed in the zero-shot setting. All
evaluations are conducted using the LM Evaluation Harness framework(Gao et al., 2024a).

Baselines. To validate the superiority of our method over existing Taylor expansion–based ap-
proaches, we compare against LLM-Pruner(Ma et al., 2023b), the state-of-the-art structured pruning
method built upon Taylor expansion. In addition, we include recent importance-based methods such
as FLAP(An et al., 2024), as well as decomposition-based pruning approaches, including SVD-
LLM(Wang et al., 2025) and SliceGPT(Ashkboos et al., 2024).

4.2 MAIN RESULTS

Perplexity and Commonsense Reasoning Task Performance. Table 1 reports the perplexity and
downstream performance of our method and competing baselines on LLaMA-2 models (7B, 13B)
and Mistral-7B under 20% and 30% structured pruning. The evaluation covers both generalization
ability (measured by perplexity on WikiText2) and reasoning capability across seven commonsense
benchmarks and one multi-task knowledge benchmark. Since the pruning strategy of LLM-Pruner
is not applicable to Mistral 7B, its results are omitted in that part of the table. Across all models and
sparsity levels, ActTaylor consistently achieves the best average performance. For LLaMA-2 7B,
ActTaylor improves average accuracy by 7.8% at 20% pruning and 12.9% at 30% pruning over the
best baseline. For LLaMA-2 13B, the gains are even larger, with 12.5% at 20% pruning and 14.0% at
30% pruning; notably, at 20% sparsity, the average accuracy of ActTaylor is only 3% lower than the
unpruned model, demonstrating strong retention of performance under compression. On Mistral 7B,
ActTaylor also surpasses all baselines, delivering strong improvements at both pruning ratios while
maintaining competitive perplexity. Importantly, all these results are obtained in a one-shot pruning
setting without any weight updates, compensation, or fine-tuning, highlighting the effectiveness and
practicality of ActTaylor for compressing large-scale language models.

Table 1: Perplexity and downstream performance of LLaMA-2 models (7B, 13B) and Mistral-7B at
20% and 30% compression ratio. Best results are in bold.

Model Method PPL ↓ Avg. ↑ MMLU PIQA BoolQ WinoG. HellaS. ARC-e ARC-c OBQA

LLaMA-2 7B
20%

Original 5.11 64.10 45.70 79.05 77.77 69.38 75.92 74.49 46.25 44.20
LLM-Pruner 10.55 55.12 26.20 75.95 63.76 63.38 67.83 64.31 39.93 39.60

FLAP 6.76 53.18 31.90 74.54 53.94 62.98 64.74 61.28 36.43 39.60
SliceGPT 9.70 41.84 26.30 61.26 37.92 59.83 44.28 46.09 28.41 30.60

SVD-LLM 7.84 46.73 26.80 65.13 54.68 62.43 51.73 47.22 27.82 38.00
ActTaylor (Ours) 6.70 59.45 36.80 76.88 72.51 67.88 71.85 67.09 41.98 40.60

LLaMA-2 7B
30%

LLM-Pruner 18.25 47.67 24.60 72.25 53.24 54.54 56.96 51.09 31.66 37.00
FLAP 8.91 48.93 26.70 70.29 52.20 60.06 56.58 55.18 32.25 38.20

SliceGPT 15.42 37.57 25.90 55.55 37.83 54.46 35.17 39.06 24.57 28.00
SVD-LLM 11.40 42.54 25.50 60.01 51.80 58.25 41.85 43.31 25.43 34.00

ActTaylor (Ours) 8.49 55.25 31.70 74.10 67.83 65.27 66.54 60.27 37.71 38.60

LLaMA-2 13B
20%

Original 4.57 67.55 55.40 80.41 80.55 72.53 79.41 77.39 49.15 45.60
LLM-Pruner 9.67 56.39 22.80 77.97 62.97 60.77 71.26 67.09 44.28 44.00

FLAP 5.90 58.18 41.20 75.57 66.42 67.25 69.19 65.91 39.08 40.80
SliceGPT 8.21 48.99 35.49 65.18 37.86 65.67 52.30 59.26 36.77 39.40

SVD-LLM 6.18 57.90 35.54 72.91 72.17 68.43 63.47 71.00 39.93 41.00
ActTaylor(Ours) 5.75 65.45 49.20 78.73 80.86 71.43 77.16 73.78 48.04 44.40

LLaMA-2 13B
30%

Original 4.57 67.55 55.40 80.41 80.55 72.53 79.41 77.39 49.15 45.60
LLM-Pruner 12.47 50.93 22.80 73.18 62.11 57.93 60.89 54.71 34.04 41.40

FLAP 7.08 54.29 33.20 72.42 64.37 63.93 62.44 61.45 37.29 39.20
SliceGPT 12.68 39.54 27.10 56.75 37.83 57.70 38.27 40.87 26.19 31.60

SVD-LLM 7.93 48.54 28.60 65.56 64.01 63.93 48.00 50.59 30.03 37.60
ActTaylor(Ours) 7.05 61.91 45.50 76.66 76.39 68.75 73.38 68.31 44.28 42.00

Mistral 7B
20%

Original 4.92 70.12 62.50 82.05 83.98 73.95 81.02 79.55 53.92 44.00
FLAP 7.11 50.03 25.90 72.31 62.26 64.09 55.94 51.05 31.91 36.80

SliceGPT 8.23 42.73 28.60 60.66 37.86 59.43 45.10 48.15 30.03 32.00
SVD-LLM 7.26 57.77 41.80 73.39 68.29 68.43 61.75 71.34 40.53 36.60

ActTaylor(Ours) 6.63 64.70 52.90 80.03 75.93 69.46 75.36 72.77 47.35 43.80

Mistral 7B
30%

FLAP 13.10 49.61 26.40 69.59 65.26 64.80 55.61 48.91 30.55 35.80
SliceGPT 14.69 35.77 25.00 54.41 37.83 51.62 32.54 35.02 22.95 26.80

SVD-LLM 12.32 49.06 28.20 64.91 64.62 64.17 47.36 58.25 30.72 34.20
ActTaylor(Ours) 8.46 58.54 43.60 76.66 66.85 66.85 69.44 64.35 41.21 39.40

These findings highlight that ActTaylor is a simple yet effective criterion for structured pruning,
providing a strong balance between efficiency and performance across different model scales and
pruning settings.
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4.3 ABLATION STUDY

To better understand the effectiveness of our pro-
posed ActTaylor criterion, we conduct ablation stud-
ies comparing it with the classical Taylor-based pruning
method. As shown in Figure 2, across both LLaMA-
2 7B and Mistral 7B, ActTaylor consistently achieves
lower perplexity than Taylor expansion under the same
pruning ratio. The performance gap becomes more pro-
nounced as the pruning ratio increases, highlighting that
activation statistics effectively mitigate the approxima-
tion error of Taylor expansion and provide more stable
importance estimates. These results demonstrate that in-
corporating activation information is particularly bene-
ficial in preserving language modeling capability when
models are compressed to higher sparsity levels.
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Figure 2: Perplexity comparison of Tay-
lor vs. ActTaylor across pruning ratios
on LLaMA-2 7B.

5 CONCLUSION

In this work, we introduced ActTaylor, an activation-enhanced Taylor criterion for structured prun-
ing of large language models. By combining loss sensitivity with activation statistics, our method
addresses the intrinsic limitations of Taylor expansion in capturing neuron importance. We devel-
oped a principled formulation that integrates both perspectives through a multiplicative scheme, sup-
ported by a theoretical justification and efficient approximations via Hessian–vector products. Ex-
tensive experiments across multiple model scales and benchmark tasks demonstrated that ActTaylor
achieves more favorable trade-offs between compression and performance compared to existing ap-
proaches. Our study highlights the importance of incorporating forward activation information into
pruning criteria and provides a general framework that can be extended to future model compression
techniques.
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A APPENDIX

A.1 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. No human subjects or animal experimentation were
involved in this study. All datasets used, including the epigenomic histone modification dataset and
the plant core promoter dataset, were sourced in compliance with relevant usage guidelines, ensuring
no violation of privacy. We took care to avoid biases or discriminatory outcomes in our research
process. No personally identifiable information was used, and no experiments were conducted that
could raise privacy or security concerns. We are committed to maintaining transparency and integrity
throughout the research process.

A.2 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets will be made publicly available to facilitate replication and verification upon publi-
cation. The experimental setup, including training steps, model configurations, and hardware details,
is described in detail within the paper.

The datasets employed—C4 and Wikitext2—are publicly accessible, ensuring consistency and re-
producibility of evaluation results.

We believe these measures will enable other researchers to reproduce our findings and further ad-
vance the field.

A.3 LLM USAGE

Large Language Models (LLMs) were used exclusively to aid in the writing and polishing of this
manuscript. Specifically, we employed an LLM to refine language, improve readability, and ensure
clarity in various sections of the paper. The model assisted with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or ex-
perimental design. All research concepts, ideas, and analyses were solely developed and conducted
by the authors. The contributions of the LLM were limited to improving the linguistic quality of the
paper, without involvement in scientific content or data analysis.

We further ensured that all LLM-generated text adheres to ethical guidelines and does not contribute
to plagiarism or scientific misconduct.

A.4 HESSIAN–VECTOR PRODUCT APPROXIMATION FOR A NEURON SET

During pruning, we consider removing a set of FFN neurons S in layer ℓ. Let Wℓ denote the input
projection matrix of this layer, and let Ŵℓ,S be the concatenation of the row vectors {wi}i∈S to be
zeroed. The induced loss change admits the second-order expansion (layer-local) around W ∗:

∣∣∆Lℓ,S

∣∣ ≈

∣∣∣∣∣∣
∑
i∈S

w⊤
i ∇wi

L − 1

2

∑
i,j∈S

w⊤
i Hℓℓ wj

∣∣∣∣∣∣ , Hℓℓ ≡ ∇2
Wℓ

L(W ∗). (A.1)

By the triangle inequality, we obtain an upper bound. We use this upper bound to denote the loss
change induced by the removal of a neuron set, and take it as the importance score for guiding
pruning decisions. ∣∣∆Lℓ,S

∣∣ ≤
∣∣∑
i∈S

w⊤
i ∇wiL

∣∣ +
1

2

∣∣ ∑
i,j∈S

w⊤
i Hℓℓ wj

∣∣. (A.2)

Define the aggregated direction wS :=
∑

j∈S wj . The quadratic term can be rewritten exactly as∑
i,j∈S

w⊤
i Hℓℓ wj = w⊤

SHℓℓ wS =
∑
i∈S

w⊤
i

(
Hℓℓ wS

)
. (A.3)

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hence, for a given set S, the per-neuron second-order contribution is w⊤
i (HℓℓwS), and Eq. A.1 can

be evaluated via a single Hessian–vector product (HVP) with vector wS .

In practice, when ranking neurons before selecting S, the joint direction wS is unknown. Following
the structural-direction idea of Nonnenmacher et al. (2022), we approximate wS by a layer-wise
representative direction wstruc, constructed by concatenating all row vectors of the layer’s input
projection matrix into a single long vector. This design captures the structural coupling within the
layer and allows us to approximate the second-order interactions without explicitly computing the
full Hessian. ∑

i,j∈S

w⊤
i Hℓℓ wj ≈ (

∑
i∈S

w⊤
i )

(
Hℓℓ wstruc

)
(A.4)

Now, applying the triangle inequality again yields a per-neuron decomposable upper bound:∣∣∆Lℓ,S

∣∣ ≲
∑
i∈S

∣∣∣w⊤
i ∇wi

L
∣∣∣+ 1

2

∑
i∈S

∣∣∣w⊤
i

(
Hℓℓ wstruc

)∣∣∣. (A.5)

We therefore define the Taylor-based importance score for a single neuron i as:

∆LTaylor
i :=

∣∣∣w⊤
i ∇wi

L
∣∣∣+ 1

2

∣∣∣w⊤
i

(
Hℓℓ wstruc

)∣∣∣, (A.6)

where both terms are averaged over the calibration dataset. This avoids materializing Hℓℓ while
capturing layer-local curvature through a single HVP, and ensures that

∑
i∈S ITaylor

i upper-bounds
the loss change for set S.
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