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ABSTRACT

There is a broad consensus that the inability to form long-term plans is one of
the key limitations of current foundational models and agents. However, the
existing planning benchmarks remain woefully inadequate to truly measure their
planning capabilities. Most existing benchmarks either focus on loosely defined
tasks like travel planning or end up leveraging existing domains and problems
from international planning competitions. While the former tasks are hard to
formalize and verify, the latter were specifically designed to test and challenge
the weaknesses of existing automated planners. To address these shortcomings,
we propose a procedure for creating a planning benchmark centered around the
game called Countdown, where a player is expected to form a target number from
a list of input numbers through arithmetic operations. We discuss how this problem
meets many of the desiderata associated with an ideal benchmark for planning
capabilities evaluation. Specifically, the domain allows for an intuitive, natural
language description for each problem instance, it is computationally challenging
(NP-complete), and the instance space is rich enough that we do not have to worry
about memorization. We perform an extensive theoretical analysis, establishing
the computational complexity result and demonstrate the advantage of our instance
generation procedure over public benchmarks. We evaluate a variety of existing
LLM-assisted planning methods on instances generated using our procedure. Our
results show that, unlike other domains like 24 Game (a special case of Countdown),
our proposed dynamic benchmark remains extremely challenging for existing LLM-
based approaches.

1 INTRODUCTION

The inability to come up with long-term sequential plans remains a core hurdle to using foundational
models and large language models (LLMs) to create highly autonomous agents. Thus, benchmarking
the planning ability of such models and agents is of paramount importance. Surprisingly, the
current set of approaches to measuring planning capabilities is quite limited. Looking at the current
landscape, one can easily recognize two main trends. First, a set of benchmarks that focus on
easy-to-specify and intuitive but fuzzy planning tasks like travel-planning (Xie et al., 2024; Zheng
et al., 2024). Unfortunately, such domains are hard to formalize, making a rigorous evaluation of
planning capabilities nearly impossible to achieve. Second, a set of benchmarks that builds off of
international planning competition (IPC) domains (Bacchus, 2001) that were originally designed to
evaluate the performance of automated planners (Valmeekam et al., 2023; kok). While this category
of benchmarks could, in theory, offer more diversity and the ability to perform systematic evaluation,
the specific domains and problems were designed to challenge the strengths and weaknesses of
planners that were popular at the time of these competitions. Additionally, these planning domains
may not be easy to specify in intuitive natural language prompts (Stein et al., 2025).

Consequently, LLM researchers looked at logical puzzles for benchmark domains. Among them, the
24 Game, popularized by ToT (Yao et al., 2023), and widely used since. While easy to describe in
natural language, the puzzle is restricted in size, with a state space of around 4500 states (Katz et al.,
2024). While several methods show significant performance on this dataset, the benchmark used
by most methods consists of instances scraped from the internet (Yao et al., 2023), raising concerns
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of data contamination. An alternative that was recently considered is the game called Countdown1

(Gandhi et al., 2024). In this game, a player receives a list of numbers and is asked to form a given
target number through a sequence of arithmetic operations. This is a strict generalization of the 24
Game, which only considers the target number 24 and input of size 4. While the game becomes
more popular as a benchmark (Stojanovski et al., 2025), there has been surprisingly little effort to
understand its nature and complexity. Such a lack of clear understanding of the computational nature
of the problem could lead to misinterpretation of the experimental results and possibly overestimating
the true planning capabilities of the tested methods. To exemplify, a good generalization capability
may be claimed when observing non-decreasing performance as instances grow in size. This, however,
is true only if the problem hardness grows monotonically with instance size in that range. This
assumption turns out not to hold in Countdown, irrespective of the instance generation method. We
alleviate this gap in understanding of the Countdown by providing a rigorous and thorough analysis
of the problem. More specifically, our contributions are as follows:

1. We establish that Countdown is an NP-complete problem.

2. We provide an approach for generating challenging Countdown problem instances and
compare it to existing approaches in the literature.

3. We create a novel formulation of Countdown in a planning language PDDL, allowing us to
leverage existing numeric planners as a baseline.

4. We conduct a rigorous experimental evaluation of a representative collection of existing
LLM-assisted planning methods. We show that the AutoToS method (Cao et al., 2024),
which uses LLMs to generate a symbolic solver, performs well on the tested collection,
surpassing the domain-independent planner baseline. Our experiments reveal two surprising
results.

• We discover an interesting phenomena in Countdown, two phase transitions as instance
size grows. The first one is natural, from easy to hard instances, while the second one
is surprising, from hard to easy instances.

• We find the famous LLM-based methods (Wei et al., 2022; Yao et al., 2023) to strug-
gle with the instances in the tested collection, even with instances of smallest size.
The performance of these methods on our dataset is dramatically worse than on the
static dataset they were originally tested on, hinting that the reported in the literature
performance levels may have been due to memorization.

5. We perform an analysis of errors generated by the LLM-based planners on the domain.

2 PLANNING BENCHMARK DESIDERATA

We start by listing a few desired properties for a successful benchmark of planning abilities.

• The problem should be sequential in nature, the order in which the actions need to be
performed should matter.

• It should have a well defined action and state space.

• The problem should be of a non-trivial complexity.

• It should have a precise yet concise natural language description, including initial state, goal,
and task dynamics.

• Must have sound validators for candidate solutions.

• It should have a large instance space and a dynamic generation procedure, thus allowing for
the avoidance of memorization concerns.

We will show the Countdown problem meet these criteria.

1It is loosely (Colton, 2014) based on a popular French game show Des chiffres et des lettres and its British
variant under the name Countdown.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

3 BACKGROUND

We consider planning tasks that are given by their transition system Π = ⟨S,A, T, s0, S∗⟩, where S
is a finite set of states, with s0 ∈ S being the initial state and S∗ ⊆ S being the set of goal states.
The set A is a finite set of actions. The transition relation T ⊆ S ×A× S is deterministic, i.e. for
every state s and action a, there is at most one s′ with (s, a, s′) ∈ T . If there is such an s′, we say
that a is applicable in s and that s′ is the successor state achieved by applying a in s. A plan π is a
sequence of actions that is consecutively applicable in the initial state s0 and where the final state is a
goal state.

4 THE COUNTDOWN

We start with the formal definition of the Countdown problem. First, we will restrict our attention here
to the set of arithmetic operations O = {+,−, ∗, /}. For each operation o ∈ O and two non-negative
rational numbers x, y, we will denote the outcome of an arithmetic operation on these numbers as
o(x, y). Now with these notations in place, we are ready to define the countdown problem formally.
Definition 1. A Countdown problem is defined by a tuple of the form C = ⟨I1, O, τ⟩, where input
I1 is a multi-set of n non-negative integers, i.e, ∀x ∈ I1, x ∈ N, operators O is the set of arithmetic
operators and target τ is a non-negative integer τ ∈ N. The solution to a countdown problem consists
of a sequence of triplets of the form Θ = ⟨⟨x1, o1, y1⟩, . . . , ⟨xn−1, on−1, yn−1⟩⟩, such that

(i) for 1 ≤ i < n, oi∈O,

(ii) for 1 ≤ i < n, {xi, yi} ⊆ Ii and Ii+1=Ii\{xi, yi}∪{oi(xi, yi)}, and

(iii) In = {τ}.

We now show how a Countdown problem C = ⟨I1, O, τ⟩ over input size n induces a transition
system Π = ⟨S,A, T, s0, S∗⟩. First, let us observe that we can over-approximate a set of all rational
numbers obtainable from the input in under n steps: Let I1 ⊂ N be the set of integer numbers in
I1 and Ii+1 = {o(x, y) | x, y ∈ Ii, o ∈ O} ∪ Ii. The set In of all possible reachable numbers
in less than n steps is denoted by I . Clearly, the size of I is finite for a finite n. Given the
set I , we can now define the set of states S, as all multi-sets of size up to n of elements from
I ∪ {τ}. The initial state s0 is I1 and the set of goal states S∗ is {{τ}}. The set of all actions is
A = {⟨o, x, y⟩ | x, y ∈ I, o ∈ O}. The transition relation T is defined as follows. For a multi-set
s ∈ S, and an action a = ⟨o, x, y⟩ ∈ A, a is applicable in s if and only if {x, y} is a subset of s. In
such case, (s, a, s′) ∈ T for s′ = s \ {x, y} ∪ {o(x, y)}.

4.1 STATE SPACE SIZE
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Figure 1: The state space size for the
Countdown problem.

One can think of the state space S of the problem as the
set of states reachable from the initial state s0 through
transitions in T . The number of applicable actions (a.k.a.
branching factor) in a state s of size k for k > 1 is at most
bk = k ∗ (k− 1) ∗ 3. If we start with a state of size n, then
the first layer has 1 state, the second layer has bn states, the
third layer has bn ∗ bn−1, and the last layer (layer n) has∏n

i=2 bi states. So, layer j, j ≥ 2 has at most Lj states,
where Lj is as follows.

Lj =

n∏
i=n+2−j

bi =

n∏
i=n+2−j

3i(i− 1) =
3j−1n!(n− 1)!

(n− j)!(n+ 1− j)!

and the total number of states is therefore bounded by
n∑

j=1

Lj =

n∑
j=1

3j−1n!(n− 1)!

(n− j)!(n+ 1− j)!
.

Figure 1 shows the state space size (log scale) as a function of state size.
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4.2 COMPLEXITY ANALYSIS

We now analyze the computational complexity of solving the Countdown problem. We start with
some useful results from the literature on related problems.
Definition 2 (PP). Partition Problem - For a given set of integers X = {x1, ..., xn} can you divide
them into two non-overlapping subsets, X1, and X2, such that the sum of elements in X1 is equal to
the sum of elements in X2?
Lemma 1. PP is NP-complete.

The result is by Karp (1972). We now define an intermediate problem and show its complexity, to be
later used for our main result.
Definition 3 (SAP). Subtraction Addition Problem - For a given set of integers X = {x1, ..., xn}
and a target integer ω, is there a sequence of addition and subtraction operations on X that results
in ω.
Lemma 2. SAP is NP-complete.

Proof. The membership result is straightforward, there exists a polynomial witness for the SAP
problem. The hardness result stems from a polynomial reduction from the partition problem PP.

A solution to a PP problem for set X = {x1, ..., xn}, takes the form of finding X1 and X2, such that:∑
x∈X1

x =
∑
x∈X2

x.

This can be reorganized to ∑
x∈X1

x−
∑
x∈X2

x = 0.

This is equivalent to a SAP problem where ω = 0. This shows the problem is NP-Hard, which, when
combined with the earlier NP result, shows that the problem is NP-complete.

Lemma 3. There exist no two sets of integers {x, y} and {a, b}, such that

10a±b = 10x ± 10y

Proof. We show for the addition case, noting that the subtraction case is analogous. Assume to the
contrary that a, b, x, y ∈ N such that 10a+b = 10x+10y . Then a+b = log(10x+10y) and therefore
log(10x + 10y) ∈ N.

Assume w.l.o.g that x > y. Observe that log(10x+10y) = log(10y10x−y+10y) = y+log(10x−y+
1). Therefore, log(10n + 1) = m ∈ N for some n ∈ N. Thus, 10m = 10n + 1 or 1 = 10m − 10n.
Since f(x) = 10x is monotonically increasing, this can happen only when m > n. Since m,n ∈ N,
this means that m ≥ n+ 1. Therefore we have

1 = 10m − 10n ≥ 10n+1 − 10n = (10− 1)10n > 1 · 1,
contradicting the assumption.

We are now ready to define our problem of interest.
Definition 4 (CDP). For a Countdown problem instance C = ⟨I1, O, τ⟩, is there a sequence Θ that
is a solution to C?
Theorem 1. CDP is NP-Complete.

Proof. The membership result is straightforward. We can see that there exists a polynomial witness
for the CDP problem. The hardness can be shown by a polynomial reduction from the SAP problem.

Let the original set in an SAP instance be X = {x1, ..., xn} and target ω. We create a Countdown
instance C = ⟨I1, O, τ⟩ where I1 = {10x1 , ..., 10xn} and τ = 10ω. According to Lemma 3, a
solution to this Countdown problem cannot contain + or − operations. Thus, the solution can only
contain multiplication or division operations, which will result in the addition and subtraction of the
exponents. Therefore, there is a 1:1 correspondence between the solutions for the original SAP and
the solutions to the corresponding Countdown problem. This proves that CDP is NP-Hard.
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5 DATA GENERATION AND ANALYSIS

Existing literature focuses on small size instances, ranging from 4 input numbers (Gandhi et al., 2024;
Yao et al., 2023) to 5 or 6 (Stojanovski et al., 2025). The generation methods start either from a given
target and search for a list of numbers that can achieve that target (Gandhi et al., 2024) or start from
a list of numbers and find a target (Stojanovski et al., 2025). The former approach does not scale -
its computation complexity is exponential in the required input size and quickly becomes infeasible.
Thus, we focus here on the latter approach, starting from a list of input numbers, we search for a target
number. The method proposed in Reasoning-Gym by Stojanovski et al. (2025) simply performs a
randomly chosen operation over the input numbers, in the given order. If the obtained target is not in
the predefined range, the process is repeated. Our conjecture is that this results in targets that are more
frequent to obtain with these numbers. In other words, the number of possible solutions to the problem
is somewhat large, making it easier to find a solution. We propose a simple alternative. Given an input
list of numbers (the initial state), we generate a random path from the initial state to a state with a single
number τi. We repeat it multiple times, choosing τ to be the least frequent element in {τi}i. To test
our conjecture, we have generated a dataset according to Stojanovski et al. (2025), which we denote
as RG (for Reasoning-Gym) and one according to our proposed method, denoted by CD, each with
size ranging from 4 to 50, and 100 instances per size. Additionally, we generate a dataset according
to the method of Stream-of-Search, by Gandhi et al. (2024). In this case, the instances are generated
backwards from the target by performing a breadth-first exploration, which makes the process
extremely slow for larger instance sizes. We were able to generate instances of up to size 9. As before,
we generated 100 instances of each size, 4 to 9. We denote the dataset by SoS (for Stream-of-Search).
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Figure 2: Countdown solutions counts, various datasets.

Finally, we use the existing dataset of
the 24 Game (Yao et al., 2023), which
we denote by 24Game. All instances in
the 24Game dataset are of size 4. We
take the same 100 instances that are eval-
uated by Yao et al. (2023). All datasets
and generation code are in the supple-
mentary material. We perform a simple
experiment, counting the number of so-
lutions in these datasets using a DFS
traversal. For efficiency, the algorithm
is implemented in C++. Still, as the state
space becomes large quite quickly (see
section 4.1), we were only able to com-
plete the traversal for instances of size
up to 7 (within a reasonable time limit
of 10 hours per instance). Figure 2 plots
the number of solutions per instance in
these three collections. One can clearly
see that our method produces instances where the number of ways to get to the target number is
significantly smaller, which arguably can indicate that these instances are harder to solve. Going back
to successful benchmark desiderata mentioned in Section 2, it is clear that our proposed benchmark
meets all these criteria.

6 EXPERIMENTAL EVALUATION

All experiments are performed on Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz machines, with the
timeout of 30 minutes and memory limit of 3.5GB per run. In all experiments, we measure accuracy
in terms of the number of successfully solved instances per size. As we have 100 instances per size
in each dataset, the accuracy is a number between 0 and 100. To do that, we have implemented a
validator according to Definition 1. An access to a validator also allows us to measure the accuracy
of a best out of k solutions produced. In our experiments that involve language models, we repeat
each experiment 5 times and measure accuracy@5, choosing per task the maximal accuracy over the
5 trials. Here as well, we aggregate over the 100 instances per instance size.
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6.1 SYMBOLIC PLANNING

We implemented a symbolic solver based on a domain-independent numeric planning. To do that, we
described the Countdown problem in a planning language PDDL (Fox & Long, 2003). The PDDL
domain is shown in Figure 9 in the Appendix. Each instance in our dataset is automatically translated
into a PDDL problem instance. For example, an instance with input numbers [3, 4, 5, 6] and a target
24 is depicted in Figure 10 in the Appendix. We use an off-the-shelf numeric planner ENHSP (Scala
et al., 2020). Since the planner is deterministic, we run it only once.

6.2 LLM-ASSISTED PLANNING

Our evaluation focuses on the following three representative open language models: DeepSeek V3
(DeepSeek-AI et al., 2025), Llama 3.1 405B (Dubey et al., 2024), and Qwen 2.5 72B (Team, 2024).
All models were accessed using API. We evaluate them in a variety of methods for planning with
language models. We repeat each experiment 5 times and measure the accuracy@5, scoring 1 if at
least one of the 5 attempts was successful in solving the problem.

AUTOTOS
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Figure 3: The accuracy of ENHSP and accuracy@5 of
AutoToS with different language models for the Count-
down problem.

We start with the most promising ap-
proach, AutoToS (Cao et al., 2024) that
extends the Thought of Search framework
(Katz et al., 2024). Both ToS and Auto-
ToS achieve 100% accuracy on the related
domain 24 Game. Further, these meth-
ods use the language models to produce
a code that can be then used to solve all
problems in the dataset with no additional
calls to the language models. This makes
AutoToS a promising approach to Count-
down. Our implementation of the Count-
down game in AutoToS is an adaptation
from the 24 Game implementation of Cao
et al. (2024). We repeated the experiment
5 times, and each time, each of the tested
models was able to finish the process pro-
ducing the code that evaluated to 100% on
the held out small set of instances. The
average number of calls to the language model during AutoToS was 3.8 for DeepSeek V3, 3.4 for
Llama 405B, and 4.2 for Qwen 2.5. To test the generated code, we integrated it into a standard
implementation of a DFS search.
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Figure 4: The accuracy of ENHSP and AutoToS for the
Countdown problem, various datasets.

As AutoToS essentially generates sym-
bolic search-based planners, and ENHSP
is a symbolic search-based planner, we
can now run these planners on our dataset
without using a language model. Figure
3 depicts the accuracy of the symbolic
search-based methods, ENHSP and Auto-
ToS on our dataset. Note the interesting
drop in performance between the input
size 7 and 17, after which it goes back
to 100%, until after size 30, when the in-
stances become too large for the domain-
independent planner ENHSP. Whenever
ENHSP failed to produce a plan, it was
due to a timeout - the underlying greedy
best-first search (GBFS) is a heuristic
search, and with increased instance size,
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the heuristic value computation time also increases. The simple blind DFS search, however, not need-
ing to compute heuristic values, seems to deal rather well with large instances. Whenever it failed, it
was due to exhausting the allowed memory. We note that this is due to our naive implementation and
a different implementation of DFS might not have the memory issue. Regardless of the reasons for
failure, both methods exhibit a non-monotonic performance, an unexpected phenomenon. To explore
the phenomenon further, we check whether it persists on the two other mentioned datasets, RG and
SoS. We choose a single AutoToS configuration, to avoid the noise from multiple trials. Figure
4 shows that the same phenomenon occurs on all tested datasets, which were created by different
methods, and it happens around the same instance size values. This indicates that the Countdown
game has two phase transitions, one from easy to hard around instance size 8 and one from hard to
easy around instance size 20. While we cannot offer any explanation for the phenomenon, it does
allow us to conclude that it is sufficient to limit our test set to sizes between 4 and 10, allowing us to
capture a sufficient number of both easy and hard instances. This is not just convenient, it is necessary,
as some of the LLM-based planning methods are quite computationally intensive (Katz et al., 2024).

We move now to the three popular methods of planning with language models. For simplicity, we
will henceforth refer to them as LLM planning methods.

IO/COT/TOT
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Figure 5: Accuracy @5 of LLM planning methods on CD.

The simplest and the most straightfor-
ward LLM planning method is to ask
the language model to produce a solu-
tion at once, providing the problem de-
scription in the input prompt. We de-
note the method by (IO) for input/out-
put. Chain of Thoughts (CoT) (Wei
et al., 2022) is among the most popular
methods of solving reasoning problems,
eliciting the models to produce a chain
of reasoning steps that lead to the final
answer. Tree of Thoughts (ToT) (Yao
et al., 2023) is among the most well-
cited approaches to planning with lan-
guage models. The work experimented
with a dataset of 24 Game instances,
and therefore only a minor adaptation
to their code was needed to run on our
dataset.
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Figure 6: The average number of calls made to language
models by the ToT approach with various language mod-
els.

Figure 5 shows the accuracy @5 of these
three LLM planning methods on our
dataset. As previously mentioned, we re-
stricted the test set to sizes between 4 and
10. Still, some methods, such as ToT, re-
quire a significant number of calls to the
language model. Figure 6 presents the
average number of calls to each of the lan-
guage models performed while solving an
instance from the CD dataset. Note that
the number of calls to the language model
for the IO and CoT approaches is always
1. The number of calls to the language
models for the AutoToS method is below
5 for the entire dataset, regardless of the
number of instances, since it is only per-
formed once to obtain the search compo-
nents code, and then no calls to a language
model are made per input.
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IO CoT ToT
Model 24Game CD[4] 24Game CD[4] 24Game CD[4]

ac
c@

5 Qwen 6 2 8 2 83 28
Llama 7 2 32 7 90 40
DeepSeek 38 5 48 13 77 20

m
ea

n Qwen 2 1 2 0 47 9
Llama 1 0 9 1 48 12
DeepSeek 10 1 18 4 28 4

Table 1: Accuracy of the LLM planning methods.

Comparing the performance result
in Figure 5 to the earlier meth-
ods, depicted in Figure 3, we see a
huge gap in accuracy results. The
best result for LLM planning meth-
ods is 40% for input size 4, while
on larger inputs all LLM planning
methods score below 10%. An ob-
servant reader might notice the dis-
crepancy from the results reported
by Yao et al. (2023) on the 24
Game, 74%. While some of the
difference can be attributed to the use of a different language model, GPT4, we offer an alternative
explanation – some of the difference can be attributed to the way the dataset for the 24 Game was
created by Yao et al. (2023). The 24 Game instances were obtained from the internet2, which also
happens to be the source for the data used for training the language models. In order to test this
hypothesis, we ran the three LLM planning approaches on the instances from Yao et al. (2023),
depicted by 24Game.

Qwen Llama DeepSeek
ToT

0

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 @
 5

24Game
CD[4]

Figure 7: Accuracy @5 of various language
models using the Tree of Thought (ToT) ap-
proach, comparing the 24Game dataset to in-
stances of the same size (4) from our dataset.

Figure 7 and Table 1 show the comparison between
accuracy obtained on 24Game and instances of
size 4 in our dataset CD[4]. The figure visualizes
the accuracy @5 results while the table presents
the raw numbers for both the accuracy @5 and the
mean accuracy. For each of the models and each
of the methods, we can clearly observe the signif-
icant drop in accuracy when moving away from
the instances the models might have seen in their
training data. This gives a strong indication for the
utility of the proposed data generation method and
the CD dataset and its superiority over the existing
datasets. Since we propose a generation method
that can easily produce previously unseen data, we
do not have the disadvantage of static datasets that
gradually find their way into the training sets of
language models.

7 ERROR CLASSIFICATION AND ANALYSIS

In order to better understand the errors made by the language models, we partition them into multiple
categories:

• Incorrect Format, where the output generated didn’t align with the format that was specified
in our prompt.

• Less Number of Steps Used, where the number of steps used in the solution identified by the
planner was smaller than the required number of steps, which should always be equal to the
size of the input numbers.

• More Number of Steps Used, where the number of steps is longer than what is required.
Note that all valid solutions for a given countdown problem have exactly the size of the
input numbers minus one operations.

• Not All Input Numbers Used, where one or more of the input numbers were not used along
the provided solution.

• Not Target Number, where the sequence of operations listed in the solution results in a
number different from the target number.

2https://www.4nums.com/game/difficulties/
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Figure 8: Mean number of error observed per language model and planning method across each each
error category.

• Incorrect Operator, where the operator sequence uses an operator outside the set of operators
O considered in this version of the countdown problem.

• Unknown Number Used, where a solution step mentions a number that should not be
available at that step.

Note that these errors are not disjoint, sometimes multiple errors appear at the same solution step.
Figure 8 shows the mean of the frequency of error observed by various methods with different models,
across 5 runs. Note that the figure includes only IO, CoT, and ToT methods, since all solutions
produced by AutoToS were validated to be correct. The baseline, ENHSP is guaranteed to only
generate correct solutions, as the planning model is correct (human validated) and the planner is both
sound and complete. Observe that per method (IO/CoT/ToT), with just a few exceptions, the models
are not too different in the errors they make.

The three most common categories, responsible for the lion share of all errors are formatting errors,
use of unknown number, and reaching a number different from the target one. ToT seems to exacerbate
the issue with the latter two categories, which together are responsible for 67.7%, 94.1%, and 95%
of all errors of DeepSeek, Llama, and Qwen, respectively. Incorrect operators are by far the rarest
category, with no such errors in ToT. Next two are the more/less than needed number of steps, with
similar share of errors falling into these two categories. Finally, not all input numbers being used
appears mostly in IO, sometimes in CoT, rarely in ToT.

8 CONCLUSIONS AND FUTURE WORK

We make a case for the Countdown game as a benchmark of models and agents’ planning abilities.
This easily describable in natural language yet precise and computationally challenging domain meets
many desiderata of an ideal planning domain. We compare the performance of various LLM-assisted
planning methods as well as a symbolic baseline based on a domain-independent numeric planner
and find AutoToS to perform best overall, while the famous LLM-based planning methods IO, CoT,
and ToT exhibit inadequate performance (below 10%) for instance sizes larger than 4. Further,
even for instances of size 4, the performance of these methods drops dramatically compared to the
performance on the static dataset from their original experimental evaluation. This raises serious
concerns about the suitability of these methods for solving previously unseen planning problems.

In future, we would like to explore various extensions of Countdown. Allowing additional operations
or using only a subset of input numbers might have a positive effect on language models’ performance.
On the other hand, introducing different costs of operations and optimizing the summed cost of a
sequence makes the problem harder, and will challenge the currently well performing methods.

9
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APPENDIX

A COUNTDOWN PDDLS

The PDDL domain file for the proposed countdown domain, used in our experiments with ENHSP
symbolic planner is provided in Figure 9. Figure 10 provides an example instance with input numbers
[3,4,5,6] and a target 24.

(define (domain countdown)
(:types num - object)
(:predicates (active ?o-num) (goalreached))

(:functions (value ?o - num) (targetvalue) (numactive))

(:action add
:parameters (?a ?b - num)
:precondition (and (not (= ?a ?b)) (active ?a) (active ?b))
:effect (and (decrease (numactive) 1)

(increase (value ?a) (value ?b))
(not (active ?b))))

(:action subtract
:parameters (?a ?b - num)
:precondition (and (not (= ?a ?b)) (active ?a) (active ?b)

(>= (value ?a) (value ?b)))
:effect (and (not (active ?b)) (decrease (numactive) 1)

(decrease (value ?a) (value ?b))))

(:action multiply
:parameters (?a ?b - num)
:precondition (and (not (= ?a ?b)) (active ?a) (active ?b))
:effect (and (not (active ?b)) (decrease (numactive) 1)

(assign (value ?a) (* (value ?a) (value ?b)))))

(:action divide
:parameters (?a ?b - num)
:precondition (and (> (value ?b) 0) (not (= ?a ?b))

(active ?a) (active ?b))
:effect (and (not (active ?b)) (decrease (numactive) 1)

(assign (value ?a) (/ (value ?a)(value ?b)))))

(:action checkgoal
:parameters (?a - num)
:precondition (and (active ?a) (= (numactive) 1)

(= (value ?a) (targetvalue)))
:effect (and (goalreached)))

)

Figure 9: The PDDL domain for the Countdown problem.

(define (problem c01)
(:domain countdown)
(:objects n1 n2 n3 n4 - num)

(:init
(= (value n1) 3) (= (value n2) 4) (= (value n3) 5) (= (value n4) 6)
(= (targetvalue) 24)
(= (numactive) 4)
(active n1) (active n2) (active n3) (active n4)

)
(:goal (and (goalreached)))

)

Figure 10: The PDDL problem example for input [3,4,5,6] and target 24.
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B COMPLETE PROOF OF LEMMA 3

Lemma 3. There exist no two sets of integers {x, y} and {a, b}, such that

10a±b = 10x ± 10y

Proof. Case 1: 10a+b = 10x + 10y proof is in the main part of the paper.

Case 2: 10a−b = 10x − 10y

Assume to the contrary that a, b, x, y ∈ N such that 10a−b = 10x−10y . Then a−b = log(10x−10y)
and therefore log(10x − 10y) ∈ N.

Assume w.l.o.g that x > y. Observe that log(10x−10y) = log(10y10x−y−10y) = y+log(10x−y−
1). Therefore, log(10n − 1) = m ∈ N for some n ∈ N. Thus, 10m = 10n − 1 or 1 = 10n − 10m.
Since f(x) = 10x is monotonically increasing, this can happen only when n > m. Since m,n ∈ N,
this means that n ≥ m+ 1. Therefore we have

1 = 10n − 10m ≥ 10m+1 − 10m = (10− 1)10m > 1 · 1,

contradicting the assumption.
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