Under review as a conference paper at ICLR 2026

REASONING VIA TEST-TIME INSTANCE-LEVEL POLICY
GRADIENT IN LATENT SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) typically reason through explicit, step-by-step
natural-language traces. Humans, however, also rely on non-linguistic, unconscious
processes, such as the inspirations that emerge during the incubation period.
In this work, we introduce LATENTSEEK, a novel framework designed to
enhance the reasoning capabilities of LLMs through Test-Time Instance-level
Policy Gradient within the model’s latent space—thus complementing explicit
natural-language steps. LATENTSEEK employs policy gradient optimization to
iteratively refine latent representations, guided solely by a self-generated reward
signal. This allows the model to adapt its reasoning trajectory dynamically on
a per-instance basis. Empirical evaluations across diverse benchmarks, GSM8K,
MATH-500, and AIME2024 as well as multiple LLM families (e.g., LLaMA,
Qwen) demonstrate that LATENTSEEK outperforms established baselines,
including Chain-of-Thought (CoT), Best-of-N (BoN) and training-based methods.
Further analysis indicates that LATENTSEEK is computationally efficient, typically
converging within a few optimization iterations for average-level problems.
Moreover, the model’s performance improves as the number of latent update
iterations increases, highlighting the benefits of exploring within the latent space.
These findings highlight LATENTSEEK as a lightweight and effective paradigm for
improving the reasoning capabilities of LLMs without changing their parameters.

Reinforcement Fine-tuning LatentSeek
{ g m The calculate calculate to .
(o] ou’
Language Reward 1 4 4 t A
Policy Function Latent Space Exploration :
Model Y fevard_~ (k+1) i
Latent Spcae z(k+ !
PPO, GRPO, ete. Y . T
-
z
Prompt Engineering o
Token Ty |T2| =]
- LM Head Iteration Reward
You are a helpful Al assistant. Please ... >~ Large Function
ion | #1] [%2] "\ ~Reward_~
8 Let's verify step by step... > Latent representation
Language } } }
Please explain and verify... L
Model Large Language Model
>
4
& Tuned

Task: John buys a house for $80,000 and then puts in

HapdacrattsdjironptiOptinization $50,000 in repairs. [...] How much profit did he make?

Frozen

Figure 1: Comparison of LATENTSEEK with RL-based fine-tuning and Prompt Engineering. RL-
based fine-tuning methods generally require iterative updates to model parameters guided by reward
signals. Prompt engineering approaches depend heavily on manually designed prompts. In contrast,
LATENTSEEK performing optimization within the latent space. Of note, the output of LATENTSEEK
may be incoherent and semantically ungrounded; please refer to §3.5.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable reasoning abilities, largely unlocked
by techniques such as Chain-of-Thought (CoT) prompting, which guides them to generate step-by-

Under review as a conference paper at ICLR 2026

step solutions in natural language (Achiam et al., 2023; Wei et al., 2022). This approach, however,
presupposes that the optimal reasoning path for a neural network is one that mirrors human linguistic
expression. However, research in human cognition suggests that effective reasoning is not confined to
conscious, verbal articulation (Sio and Ormerod, 2009; Ritter and Dijksterhuis, 2014); it also involves
implicit, non-verbal processes, such as the “incubation” period where inspirations can emerge without
conscious effort (Sio and Ormerod, 2009; Sklar et al., 2012). These findings suggest that constraining
LLMs to reason only in natural language may be unnecessarily restrictive.

An emerging line of research validates this concept, using specialized fine-tuning to “internalize”
reasoning steps into sequences of continuous thought vectors (Deng et al., 2024; Hao et al., 2024).
While these approaches validate the promise of latent reasoning, they rely on costly and complex
training curricula to adapt the model. As illustrated in Figure 1, this aligns them with the broader
paradigm of training-based methods such as supervised fine-tuning or reinforcement fine-tuning,
which require iterative parameter updates that are computationally intensive and permanently alter
the backbone (Ouyang et al., 2022; DeepSeek-Al, 2025). As a result, they underutilize the model’s
semantic capacity in its pre-trained latent space' and, in practice, present inferior performance to
that of CoT. This raises a critical question: Can we take the benefits of pre-trained latent space to
perform reasoning at test time, without the need for any parameter updates?

Motivated by these observations, we present the first attempt to perform seeking in the latent space by
introducing LATENTSEEK, a framework that significantly enhances instance-level reasoning at test
time. As shown in Figure 1, LATENTSEEK operates on a frozen model, circumventing the costs of fine-
tuning. Unlike static prompt engineering, LATENTSEEK performs dynamic, iterative optimization
on instance-specific latent representations that steer the pre-trained model’s reasoning process without
modifying its parameters. These latent representations act as a planning or control mechanism that
guides the model toward better reasoning paths for each specific problem instance. We optimize latent
representations at test time using the policy gradient method (Williams, 1992) to maximize reward
(§2.3). Specifically, for each reasoning problem, we update the token-wise latent representations
using guidance from the reward function, treating them as independent variables. In each iteration,
the updated latent representations are decoded into tokens, which serve as inputs for computing the
reward. Importantly, the reward function operates in a self-rewarding manner, relying solely on the
model’s internal capabilities without incorporating any external information. The process continues
until the reward exceeds a predefined threshold or the maximum number of iterations is reached.

Our innovative latent space reasoning method is simple yet effective: Notably, LATENTSEEK yields
average gains of 15.23 points over BoN on GSM8K, 4.72 points over Self-Reflection on MATH-500,
and 6.67 points over CoT on AIME2024 (Table 1). Furthermore, when using LLaMA3.1-8B-Instruct
as the backbone, LATENTSEEK surpasses prior arts including SimpleRL-Zoo (Williams, 1992)
(+18.1) and Genius (Xu et al., 2025) (+12.7), on the GSM8K and MATH-500 datasets (Table 2).
Further experiments (§3.4) show that test-time performance improves with the number of update
iterations, suggesting a complementary scaling axis: the number of optimization steps in latent
space. To better characterize the latent space, we conduct idealized experiments using a perfect,
ground-truth verifier that issues sharp rewards. Across all evaluation settings, this yields an average
gain of 19.12 points over CoT (Table 3), highlighting the benefits of pure exploration in the
latent space. Apart from the above, our case studies (§3.5) reveal that LATENTSEEK often attains
the correct answer even when its intermediate reasoning is unintelligible to human readers. This
divergence reveals that the optimal reasoning path for LLMs need not mirror human reasoning, and
that optimization in latent space may be a more native and effective paradigm.

Our contributions can be summarized as follows:

* We introduce LATENTSEEK, an efficient yet effective method that enhances reasoning capabilities
through test-time instance-level policy gradient, and demonstrate that it outperforms all baselines.

* We conduct a scaling analysis, revealing that performance at test time improves with an increased
number of update iterations, highlighting the potential of test-time scaling in the latent space.

* We conduct a statistical analysis to demonstrate the efficiency of LATENTSEEK and the appropri-
ateness of its output length. Our qualitative analysis further indicates that language models may
adopt reasoning strategies that diverge from human intuition.

'In this work, we take the convention (Hao et al., 2024) that treats the transformers’ output space ahead of the
final language model (LM) head as latent space (Figure 1), and the vector in the space as latent representation
(Figure 1); refer to §2.2 for notations.

Under review as a conference paper at ICLR 2026

2 TEST-TIME INSTANCE-LEVEL POLICY GRADIENT IN LATENT SPACE

2.1 PROBLEM FORMULATION: TEST-TIME INSTANCE-LEVEL REASONING

Let c be the context prompt of a reasoning problem instance and 7 a pre-trained auto-regressive
language model (LM) composed of a Transformer backbone Tgnsformer (Vaswani et al., 2017) and a

LM head 7 p.head- For a reasoning sequence x = (1, z2, ..., T7),
T
m(x|e) =[] m(@: [x<re), w(wr | x<r,€) = Tiatneaa(@e | 20), (1
t=1

where x; denotes the sequence of tokens preceding position ¢ and 2; := Transformer (X<, €) is the
latent representation associated with z;. Following Hao et al. (2024), we refer to z; as lying in the
latent space of x;. At test time, the ground truth is unknown, and thus a reward function R(x,c)
is introduced to evaluate the reasoning token sequence. Concluding the above, the objective for a
reasoning problem is to find an optimal reasoning path:

x* = argmax R(x,c). 2)

Please refer to Appendix B for examples.

2.2 REASONING VIA POLICY GRADIENT IN LATENT SPACE

To solve the problem in Equation (2), we reformulate the task as optimizing over a sequence of latent
representations rather than directly searching for tokens. Specifically, we denote a sequence of latent
representations z = (21, 22, . . ., 2n), Where z; lies in the latent space of x; and N is typically an
integer smaller than or equal to 7. To identify the optimal sequence of latent representations, the
to-be-optimized objective is as follows:

zt = argmax IEx~‘n’(x|z,C) [R(X? C)] . S

To sample x ~ 7(x | z, c), we first decode the latents z into their corresponding tokens, then continue
with autoregressive generation, since the complete sequence may extend beyond the latent-initialized
reasoning path. As T is the complete sequence length, the factorization is

N T
m(x|z,¢) = HWLM-head(fl?f, | 2t) H m(xe | X<, €), “
t=1 t=N+1
decode from latents continue generation

where, if the generation stops at t = NN, the second product is empty and equals 1.

Test-Time Optimization of Latent Representations. Given the objective in Equation (3), we
optimize the latent representations using a direct policy gradient approach based on REINFORCE
(Williams, 1992). Assuming the independence of the latent representations, the update process is:

z +— z+nV,J(2), %)

where the gradient V,7(z), of our objective with respect to z can be derived as:

V2T (2) = Exr(x|z,c) [R(X,¢)V,]logm(x | z,¢)]. (6)

Leveraging Equation (4), the gradient of the ¢-th latent representation is:
[VZJ(Z)]t = EXNﬂ'(x\zm) [R(X7 C)vzr, IOgﬂ'(xt | Zt)] s @)

where the expectation is approximated using the empirical mean in practical implementation. Please
refer to Appendices C and D for a theoretical justification of this assumption and a detailed derivation
of the policy-gradient update.

Under review as a conference paper at ICLR 2026

Algorithm 1 LATENTSEEK

Require: Problem c, learning rate 7, pre-trained model 7, reward threshold 7, fraction ratio p, max
iterations K

x,2z < m(x | c) > Initialize latent representations with CoT: Equation (1).

r + R(x,c) > Self Reward with Equation (8).

T + |x]|

z < [21,22,. .., Zp1) > Keep a p fraction, such as 20%

while £ < K andr < 7 do > K is typically 10
z 4+ z+nV,J(2) > Update V,.7 (z): Equations (6) and (7).
x ~ m(x|z,c) > Sample sequence: Equation (4).
r + R(x,c) > Self Reward with Equation (8).

end while

return x

2.3 LATENTSEEK ALGORITHM

The LATENTSEEK algorithm is summarized in Algorithm 1. At a high level, it performs an instance-
level, gradient-guided search over a latent space by iteratively refining latent representations and
querying a self-rewarding mechanism. Concretely, at iteration k, the current latents z are decoded to
a full sequence x through a sampling method. Conditioned on x and the instance context c, a scalar
reward is then obtained from a self-rewarding mechanism:

R(X? C) ~ 77(' ‘ X, ¢, promptse]f—reward)' (8)

This reward signal drives a gradient-guided refinement step that updates the latent representations,
thereby biasing subsequent decodes toward higher-reward reasoning paths. The process runs for a
small number of iterations (typically less than 3), stopping early if the reward exceeds a threshold.

Enhancing Techniques. To ensure more stable and efficient optimization, we propose the inte-
gration of two complementary techniques. First, CoT Initialization: The initial latent representation
is derived from the CoT reasoning sequence. This approach leverages the reasoning capabilities of
CoT to establish an effective starting point for subsequent optimization. Second, Fractional Sequence
Optimization: Instead of optimizing the entire sequence of latent representations z = [z1, 2o, . . ., 27,
we propose to optimize only a subsequence [z1, 22, . . ., 2,7), Where p € (0, 1] is a hyperparameter.
The hyperparameter p must strike a balance between two competing objectives: maintaining adequate
representational capacity to support effective exploration, and limiting the number of latent repre-
sentations being updated. Excessive modification of latent representations—especially when their
decoded outputs lack semantic coherence—can compromise the reliability of the reward function.

3 EMPIRICAL RESULTS

3.1 EXPERIMENTAL SETUP

In this subsection, we list our experimental setup. See Appendices F.1 to F.6 for more details.

Reward Mechanism We employ the mathematical reasoning prompts introduced by Lifshitz et al.
(2025) to elicit the model’s self-reward computation. For some models on specific tasks, we further
incorporate a format-based reward (DeepSeek-Al, 2025) to enhance their instruction-following
capability. To further analysis the potential of our paradigm, we introduce a Perfect Sharp Reward
Model (PSRM), the details of which are discussed in §3.3.

Prompt Designation For robustness consideration, we use two prompts for evaluation, with the
first requiring a wrapped answer with \bozed{} (Yang et al., 2024; Team, 2024a) (Prompt 1) and the
second asking to format the answer as a json (Prompt 2).

Backbones To evaluate the generalizability of our approach, we conduct experiments with pre-
trained LLMs of different families and sizes: Qwen2-7B-Instruct, Qwen2.5-1.5B, 7B, 14B-Instruct
(Yang et al., 2024; Team, 2024a), LLaMA3.1-8B-Instruct (Team, 2024b).

Under review as a conference paper at ICLR 2026

Table 1: Accuracy results. Bold: best performance, Underlined: second-best. Numbers highlighted
in red indicate the performance gap relative to the CoT method. Each rollout baseline uses a rollout
number comparable to LATENTSEEK ’s update iterations for fairness. See Appendix E.1 for larger-
number comparisons, Appendix E.3 for token consumption, Appendix E.6 for performance trends
across different fraction ratios, and Figure 3 for results of Qwen3 on AIME2024. : requires training.

Model Qwen2 Qwen2.5 LLaMA3.1 A
Methods 7B 1.5B 7B 14B 8B Ve

GSMS8K: Prompt 1

CoT 68.01 68.08 88.86 92.03 50.19 73.43
BoN 79.76 68.31 89.08 92.27 72.93 80.47
Self-Reflection (Shinn et al., 2023) 67.85 68.84 88.48 92.21 52.16 73.91
Self-Consistency 73.24 69.07 89.23 92.19 55.34 75.81
SFT? 65.86 49.20 72.55 82.39 40.33 62.07
SFT (Magpie 25K)" 76.50 66.48 83.01 90.30 70.81 77.42
iCoT® (Deng et al., 2024) 47.54 23.28 41.02 - 47.08 39.73
LATENTSEEK (Selj) 84.384,16,37 70.89+2A3| 90.14+ 1.28 92-49+U.46 78.54+25_;}5 83.29+g)_3(;
GSMS8K: Prompt 2
CoT 65.20 15.31 66.41 91.81 69.07 61.56
BoN 61.33 6.14 74.04 92.27 75.97 61.95
Self-Reflection (Shinn et al., 2023) 68.16 27.98 72.63 91.96 76.22 67.39
Self-Consistency 64.37 8.79 69.22 92.49 74.30 61.83
LATENTSEEK (Self) 80.21. 1501 44.20 2850 85.06. 1565 92.72,0.01 83.70 1463 7718 15.62
MATH-500: Prompt 1
CoT 51.40 54.80 72.80 77.20 47.60 60.76
BoN 53.40 47.40 75.40 78.80 51.20 61.24
Self-Reflection (Shinn et al., 2023) 53.00 53.00 72.40 75.80 45.40 59.92
Self-Consistency 53.60 51.60 73.20 77.40 50.40 61.24
SFT (Magpie 25K) 46.60 44.40 55.40 68.20 31.00 49.12
LATENTSEEK (Self) 57.40.6.00 55.60-..50 75.60. 5 50 80.00 2 50 54.60..7.00 64.64 3 35
MATH-500: Prompt 2
CoT 37.40 29.40 53.80 68.00 40.40 45.80
BoN 41.60 29.40 55.80 64.20 44.40 47.08
Self-Reflection (Shinn et al., 2023) 43.00 32.20 55.60 70.00 35.20 47.20
Self-Consistency 43.20 17.20 57.00 65.80 45.20 45.68
LATENTSEEK (Self) 44.80+7_40 34.404,.3‘00 57.60+3_50 71.00+3,00 47-00+6.6() 50.96+5, 16
AIME2024: Promptl
CoT 0.00 3.33 6.67 10.00 0.00 4.00
BoN 0.00 0.00 10.00 16.67 0.00 5.33
Self-Reflection (Shinn et al., 2023) 0.00 6.67 6.67 10.00 0.00 4.67
Self-Consistency 3.33 0.00 3.33 13.33 6.67 5.33
SFT (Magpie 25K)! 333 0.00 333 10.00 3.33 4.00
LATENTSEEK (Self) 3.33 1 3.33 6.67 333 13.33,6.67 16.67 1 6.67 10.0010.00 10.00,6.00
AIME2024: Prompt2
CoT 0.00 0.00 0.00 3.33 0.00 0.67
BoN 3.33 0.00 6.67 10.00 6.67 5.33
Self-Reflection (Shinn et al., 2023) 0.00 3.33 0.00 6.67 6.67 3.33
Self-Consistency 3.33 0.00 3.33 3.33 0.00 2.00
LATENTSEEK (Self) 3.33+3_33 3.33.3.33 13.33. 1333 10'00+6.67 6.674,6‘57 7-33+6Ab7

Benchmarks Following Deng et al. (2024); Liu et al. (2025), we focus on mathematical reasoning
for evaluation. We evaluate on two standard benchmarks for reasoning, GSM8K (Cobbe et al., 2021)
and MATH-500 (Hendrycks et al., 2021), and a harder dataset AIME2024.

Baselines We compare our methods against several established baselines:

* Prompting (Training-Free): CoT (Wei et al., 2022) and Few-Shot CoT (Lambert et al., 2025).

» Explicit Search (Training-Free): Best-of-N (BoN) represents a highly effective search strategy, as
demonstrated by Liu et al. (2025). Self-Reflection (Shinn et al., 2023) is a search strategy imitating
humans’ reasoning pattern. Self-Consistency, also named majority vote, is a search mechanism in
explicit space that stems from a multi-agent system.

* Reinforcement Learning: (1) Self Reward: Self-Rewarding (Yuan et al., 2025), ScPO (Prasad et al.,
2024), CoH (Liu et al., 2023a), and Genius (Xu et al., 2025). (2) Verifiable Reward: SimpleRL-Zoo
(Zeng et al., 2025), GRPO (GSMSK train set), and SPIN (Chen et al., 2024a).

* Latent Chain-of-Thought: Although iCoT (Deng et al., 2024) requires an augmented training
dataset for GSM8K (Cobbe et al., 2021), it remains a canonical example of the latent CoT.

Under review as a conference paper at ICLR 2026

Table 2: Accuracy score compared with more baseline methods on GSM8K and MATH-500 datasets
with Llama3.1-8B as backbone. The best performances are highlighted in bold.

Methods | Supervision Train | Backbone | GSM8K MATH-500 | Average
CoT X Instruct 69.1 476 583
Few-Shot CoT (Lambert et al., 2025) - X Instruct 83.4 42.5 63.0
BoN Self X Instruct 76.0 512 63.6
Self-Rewarding (Yuan et al., 2025) Self v Instruct 76.0 30.2 53.1
Self-Relfection (Shinn et al., 2023) Self X Instruct 76.2 454 60.8
Self-Consistency Self X Instruct 553 48.2 51.8
ScPO (Prasad et al., 2024) Self v Instruct 71.1 31.0 51.1
CoH (Liu et al., 2023a) Self v Instruct 74.4 323 53.3
Genius (Xu et al., 2025) Self v Instruct 783 34.6 56.5
SPIN (Chen et al., 2024a) Data v Instruct 74.9 31.5 53.2
iCoT (Deng et al., 2024) Data v Instruct 47.1 - 47.1
SFT (Magpie 25K) Data v Instruct 70.8 31.0 50.9
GRPO (GSMSK Train) Data v Instruct - 50.2 50.2
SimpleRL-Zoo (Zeng et al., 2025) Data v Base 79.2 23.0 51.1
LATENTSEEK Self X Instruct 83.7 54.6 69.2

* Supervised Fine-Tuning (SFT): Following (Xu et al., 2025), we apply SFT on Magpie 25K. For
GSMBK, we also report SFT performance using its provided training set.

Sampling Method We use greedy decoding to sample from LATENTSEEK, as it is more computa-
tionally efficient and more robust. (See Appendix E.4 for an experimental comparison).

3.2 STATE-OF-THE-ART TEST-TIME REASONING PERFORMANCE

The main experimental results are presented in Table 1 and Table 2.

Best Performance on GSMS8K (Cobbe et al., 2021) and MATH-500 (Hendrycks et al., 2021).
As shown in Table 1, LATENTSEEK surpasses every baseline across all 30 settings and achieves the
best average performance over all datasets. When averaged across backbones, the improvement over
BoN is 15.23 points on GSMS8K and against Self-Reflection is 4.72 points on MATH-500. Compared
with Self-Consistency, the gap is 15.35 on GSM8K and 5.28 on MATH-500. The Qwen2.5 series
was explicitly trained with Prompt-1-distilled data (Team, 2024a), yielding strong CoT performance;
nevertheless, LATENTSEEK achieves further improvements and attains the highest scores across
baselines. Using LLaMA3.1 as the backbone, as shown in Table 2, we compare against a broader
set of baselines. On GSMS8K, our method surpasses the CoT baseline by 14.6 points and BoN by 7.7
points; on MATH-500, the improvements are 7.0 and 3.4 points, respectively. It also outperforms the
self-reward RL method Genius (Xu et al., 2025) by 5.4 points on GSM8K and 20.0 points on MATH-
500. Even compared with verifiable-feedback RL methods such as SimpleRL-Zoo (Zeng et al., 2025),
trained on the base model, LATENTSEEK leads by an average of 18.1 points across the two datasets.

Robustness Across Backbones. The robustness of our method across backbones can be evaluated
along two axes: (1) Model Families: LATENTSEEK delivers best results across different models.
Focusing on 7-8B models and using the same averaging protocol over GSM8K, MATH-500, and
both prompts, LATENTSEEK surpasses BoN by 7.67 points on Qwen?2, exceeds Self-Reflection by
4.82 on Qwen2.5, and improves over Self-Consistency by 9.65 on LLaMA3.1. (2) Model Size: At
1.5B parameters, LATENTSEEK surpasses BoN on GSM8K by 28.89 points and at 14B parameters,
the margin on MATH-500 attains 6.80 points. These results provide robust evidence of our method’s
robustness across diverse model families and scale.

Challenging Problems — AIME2024. AIME2024 results appear in Table 1. Our method consis-
tently outperforms all baselines, achieving an average gain of 6.34 points over CoT across model
families and prompt configurations. The largest improvement occurs on AIME2024 with Prompt
2, where our approach exceeds CoT by 13.33 points and outperforms BoN by 6.67 points using
Qwen2.5-7B-Instruct. Averaged over backbones, LATENTSEEK also surpasses BoN by 4.67 points,
Self-Reflection by 5.33 points, and Self-Consistency by 4.67 points, indicating strong effectiveness in

Under review as a conference paper at ICLR 2026

Table 3: Accuracy results with Perfect Sharp Reward Model (PSRM). Self: the self-reward mechanism.
The reported score is the average of both prompts.

Qwen2 Qwen2.5 LLaMA3.1 Avg
Reward ‘ 7B 1.5B 7B 14B $B
GSMSK
LATENTSEEK-Self 82.3 57.5 87.6 92.6 81.1 80.2
LATENTSEEK-Perfect Sharp Reward Model | 92.8 105 76.5:19.0 939.6.3 96.0,3.4 91.7106 90.210.0
MATH-500
LATENTSEEK-Self 51.1 45.0 66.6 75.5 50.8 57.8
LATENTSEEK-PerfEL'Z Sharp Reward Model 71.8 +20.7 66.7 1217 81.8 +15.2 86.6 +11.1 70.5 +19.7 75.5 +17.7
AIME2024
LATENTSEEK-Self 33 5.0 13.3 13.3 8.3 8.6
LATENTSEEK-Perfect Sharp Reward Model 83450 6.7 1.7 150417 2504117 10.041 .7 13.054.4
96
g2 g gos
g < t
=85 >94
g40 €80 So3
gso 3 75 3 92
Q Q Qo
g B
10 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Iterations Iterations Iterations
(a) Qwen2.5-1.5B-Instruct (b) Qwen2.5-7B-Instruct (c) Qwen2.5-14B-Instruct

Figure 2: GSM8K(Cobbe et al., 2021) Prompt 2 Accuracy changes with respect to the increasing
number of iterations. : Perfect Sharp Reward Model. Blue: Self Reward Model.

more complex settings. For the performance of a stronger model (Qwen3-4B-Instruct-2507 (Yang
et al., 2025)) on AIME2024, please refer to Appendix E.2.

3.3 IDEAL EXPERIMENT: PERFECT SHARP REWARD MODEL

To inspect the value of exploration in latent space, we evaluate a Perfect Sharp Reward Model (PSRM)
that returns 0 only when the final answer exactly matches the ground truth and —1 otherwise. This
yields an all-or-nothing signal: until the correct answer is reached, every step receives identical
feedback. Results (Table 3) show that, despite this extreme sharpness, the PSRM still delivers
substantial improvements, outperforming the self-reward variant by an average of 10.67 points across
all evaluated settings. Conceptually, this setup reduces optimization to maximizing the success rate
under a near-constant reward landscape; the search carries almost no directional information and is
therefore close to blind exploration. This demonstrate that exploration in latent space alone can
yield meaningful performance improvements, even under sharp feedback.

Small Model and Large Iterations. Following Liu et al. (2025), we analyze the small Qwen2.5-
1.5B-Instruct (Team, 2024a) under a large iteration budget to probe the limits of latent-space
exploration. As shown in Table 4, Qwen2.5-1.5B-Instruct yields a 14-point gain over GPT-40 on
AIME2024. On MATH-500, it achieves a high accuracy score, trailing ol-preview by only
2.7 points. These results demonstrate that even a 1.5B-parameter model’s latent space is highly
expressive and that LATENTSEEK can be an effective mechanism for eliciting this expressivity.

3.4 TEST-TIME SCALING: SCALING TREND ANALYSIS OF LATENTSEEK

In addition to increasing the number of generated tokens at test time Muennighoff et al. (2025);
Snell et al. (2025), we propose an alternative approach to test-time scaling: increasing the number
of LATENTSEEK iterations. The relationship between model performance on GSM8K Cobbe et al.
(2021) and the number of iterations is illustrated in Figure 2. As shown, an ideal reward model
demonstrates strong performance and yields a consistently improving trend with more iterations.
In contrast, the self-reward method exhibits rapid initial gains followed by a plateau, a behavior
we attribute to the reward model’s limited accuracy. Notably, as the number of iterations increases
further, performance eventually surpasses this plateau and continues to improve. The above shows
that test-time scaling remains attainable even under a sharply peaked reward. It further suggests

Under review as a conference paper at ICLR 2026

Table 4: Performance of Extreme Scaling on MATH-500 (Hendrycks et al., 2021) and AIME2024.
Setting the maximum update iteration to 256. K': average number of outputs or iterations.

. MATH-500 AIME2024
Model ‘ Size Type ‘ Acc K Ace K
GPT-40 - CoT 74.6 - 9.3 -
ol-preview - CoT 85.5 - 44.6 -
Qwen2.5-1.5B-Inst. 1.5B TTS (Liuetal., 2025) | 81.8 256.0 20.0 256.0
LATENTSEEK (PSRM) (Qwen2.5-1.5B-Inst.) | 1.5B Latent Search | 828 618 233 2118

that, given an appropriate reward model, searching through the latent space offers a promising

new direction for test-time scaling.

3.5 QUALITATIVE ANALYSIS

An analysis of the LATENTSEEK’s
generated responses offers insight
into its reasoning processes, with a
representative example detailed in Ta-
ble 5. These responses often contain
nonsensical or obscure tokens—such
as “andLet”, “on80ward)”, and
“BothThe”—as well as syntactically
absurd phrases like “Let find this”
and “denote the common”. This phe-
nomenon indicates that the reasoning
processes of pre-trained language
models can diverge significantly from

Table 5: Case Study. Latent optimized tokens are in blue.
Please refer to Appendix H for more cases.

QUESTION: Two trains leave San Rafael at the same time [...]
What’s the distance covered by each train in the two days?
ANSWER: 230

LATENTSEEK: Let find this,, let’ll more understand it down step
two andLet 1: BothThe the trains are same route west both first
time on80ward) on same and and can consider they the travel travel
same distance of So’s denote the common xd’ they both 80 miles
on x have write up an following: [...] [...] Since both trains travel
the same distance in each direction, the distance covered by each
train is 230 miles. The final answer is: \boxed{230}

human cognition, even when they produce a correct final output. Consequently, this suggests that
optimal reasoning paths for language models may not align with human strategies, and thus
may be more effectively sought within the latent space, which is native to LLM and therefore also a
natural choice. A more detailed qualitative analysis and additional cases are presented in Appendix H.

3.6 ALGORITHMIC STATISTICS

Table 6 reports two key statistical fea-
tures: (1) the ratio of final answer
tokens to the original CoT tokens,
and (2) the average number of update
iterations across the entire dataset.
The ratio of the final answer’s to-
ken count to that of the original CoT
rarely exceeds 1.1, confirming that
performance gains are not achieved
through verbose generation. More-
over, the method converges rapidly,
requiring an average of fewer than
two update iterations for average-level
questions. This highlights the compu-
tational efficiency and rapid conver-
gence behavior of our method.

To further demonstrate the value of

Table 6: Algorithmic Statistics: (1) The ratio of answer length
to CoT length. (2) Average update iterations.

Qwen2 Qwen2.5 LLaMA3.1
Model 7B 158 7B 14B 8B ‘ Ave
GSMS8K: Prompt 1
|Answer|/|CoT)| 0.97 099 1.00 1.00 0.94 0.98
Avg.# Iter 0.94 0.75 0.24 0.05 1.66 0.72
GSMSK: Prompt 2
|Answer|/|CoT| | 1.06 380 108 1.00 1.02 1.59
Avg # Iter 0.55 459 152 0.14 0.58 1.48
MATH-500: Prompt 1
|Answer|/|CoT]| 0.92 097 0.99 0.99 0.92 0.96
Avg.# Iter 2.09 1.93 1.10 0.62 2.35 1.62
MATH-500: Prompt 2
|Answer|/|CoT)| 1.01 094 098 097 0.90 0.96
Avg # Iter 0.72 2.19 098 049 1.65 1.21

shifting computation from training to test time, we compare Floating Point Operations (FLOPs)
against Genius (Xu et al., 2025), a strong RL-based self-rewarding baseline. As shown in Table 2,
LATENTSEEK outperforms Genius by 12.7% on GSM8K using LLaMA3.1-8B as the backbone.
For this model, a single forward pass costs approximately 2.29 x 10! FLOPs. Crucially, Genius
requires full backpropagation through the entire model to update parameters, whereas LATENTSEEK

Under review as a conference paper at ICLR 2026

backpropagates only through the language model, incurring about 1.05 x 10? FLOPs. Following our
calculations, LATENTSEEK remains more efficient for processing up to approximately 1.94 x 10°
inference instances when compared to the total cost of the Genius framework. This threshold notably
exceeds the 100k examples in Genius’s training set, underscoring the significant pratical efficiency
of our approach. Please refer to Appendix G for detailed calculation.

4 RELATED WORK

Reasoning in Language Models. Recent advances in reasoning capabilities of large language
models (Brown et al., 2020; OpenAl, 2023) have been enhanced through prompting techniques. CoT
prompting (Wei et al., 2022; Kojima et al., 2022; Zhou et al., 2022) encourages models to generate
intermediate reasoning steps. Unlike these static approaches, our method dynamically optimizes the
reasoning process for each problem instance. Compute-optimal scaling (Snell et al., 2025; Misaki
et al., 2025) adaptively adjusts inference strategies based on task complexity. Latent reasoning
methods (Hao et al., 2024; Shen et al., 2025; Cheng and Van Durme, 2024; Deng et al., 2024; Chen
et al., 2024b) replace explicit text-based reasoning with continuous representations. The broader
field of learning to reason includes techniques like process supervision (Uesato et al., 2022) and
self-critique (Huang et al., 2022).

Reinforcement Learning for Language Models. The integration of Reinforcement Learning and
LLM starts from the realm of Human Feedback (RLHF) (Ouyang et al., 2022; Bai et al., 2022;
Rafailov et al., 2023), which commonly employs algorithms such as Proximal Policy Optimization
(PPO) (Schulman et al., 2017). Recent advancements (Liu et al., 2023b; Guo et al., 2025) specifically
address reasoning tasks with RL techniques. Innovations in reward modeling have explored human
preference-based architectures (Schulman et al., 2017; Hazra et al., 2024), automated language model-
driven design (Kwon et al., 2023), and multi-agent verification frameworks (Lifshitz et al., 2025).

Controllable Generation and Test-Time Optimization. Various approaches have been developed
for controlling language model outputs, including conditioning on control codes (Keskar et al., 2019),
gradient-based steering (Dathathri et al., 2019), and prompt optimization (Qin et al., 2023). At test
time, techniques (Sun et al., 2023; Zhang et al., 2025; Wang et al., 2022) improve outputs through
sampling and selection. Some Test-Time Training(TTT) framewroks (Sun et al., 2020; 2024; Hardt
and Sun, 2023) integrate self-supervised objectives for online model updates. Our work differs from
test-time planning approaches (Hao et al., 2023) by optimizing in a continuous latent space rather
than performing a discrete search.

Prompt Tuning and Soft Prompt. Prompt Tuning adapts language models by prepending trainable
vectors to inputs or hidden states (Lester et al., 2021; Liu et al., 2024a; Li and Liang, 2021; Liu et al.,
2021). However, both require labeled data and full backpropagation, incurring high computational
cost. In contrast, our method leverages latent-space manipulation without training data or model
updates, enabling efficient, flexible adaptation.

5 CONCLUSION

In conclusion, the LATENTSEEK framework introduces a novel and efficient approach to enhancing
reasoning capabilities in LLMs by leveraging TTIA in the latent space. By optimizing latent represen-
tations through policy gradient, LATENTSEEK circumvents the need for parameter updates, offering
an alternative to methods that require substantial retraining or reinforcement learning. Empirical
results across multiple reasoning benchmarks consistently demonstrate the superior performance
of LATENTSEEK compared to existing baselines, such as CoT, BoN, and reinforcement learning-
based techniques. Furthermore, the framework proves to be computationally efficient, with rapid
convergence for average-level problems. This work also demonstrates a new possible avenue for
test-time scaling in the latent space. Ultimately, LATENTSEEK represents a significant step forward
in advancing LLMs in the realm of TTIA reasoning. Please refer to Appendix A for discussions and
future works.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on improving the reasoning capabilities of large language models (LLMs). The
research is methodological in nature and does not involve human subjects, sensitive data, or de-
ployment in real-world applications. Our contributions are confined to improving core algorithmic
aspects of LLM reasoning and do not introduce new data that could raise concerns regarding privacy,
bias, or misuse. While we recognize that LL.Ms can have broader societal impacts, particularly
when used in downstream applications, our work does not directly engage with these deployment
scenarios. We also note that enhanced reasoning capabilities may indirectly influence downstream
model behavior. However, the improvements described in this paper are academic-purpose and do not
facilitate manipulation, deception, or unethical use of LLMs. Overall, we believe that our research
poses no direct ethical or societal risks and is aligned with the responsible development of trustworthy
Al systems.

REPRODUCIBILITY STATEMENT

The findings presented in this paper are supported by a detailed disclosure of our methodology,
designed to enable full reproducibility. The core methodology and algorithmic formulation of our
approach are presented in §2. Our full experimental protocol, which covers the datasets, evaluation
benchmarks, and baselines, is detailed in §3. All requisite implementation details for replication,
including model backbones and hyperparameters, are documented in Appendix F. Taken together, the
paper and its appendices provide a complete blueprint for reproducing our work. For the statement on
our use of LLMs, please see Appendix J. The code is attached to the submission.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information
Processing Systems (NeurIPS), 35:24824-24837, 2022.

Ut Na Sio and Thomas C Ormerod. Does incubation enhance problem solving? a meta-analytic review. Psychol
Bull, 135(1):94-120, January 2009.

Simone M Ritter and Ap Dijksterhuis. Creativity-the unconscious foundations of the incubation period. Front
Hum Neurosci, 8:215, April 2014.

Asael Y. Sklar, Nir Levy, Ariel Goldstein, Roi Mandel, Anat Maril, and Ran R. Hassin. Reading and do-
ing arithmetic nonconsciously. Proceedings of the National Academy of Sciences, 109(48):19614—-19619,
2012. doi: 10.1073/pnas.1211645109. URL https://www.pnas.org/doi/abs/10.1073/pnas.
1211645100.

Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to internalize cot step
by step. CoRR, 2024.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. Training
large language models to reason in a continuous latent space. CoRR, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in Neural Information Processing Systems (NeurIPS), 35:27730-27744, 2022.

DeepSeek-Al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8:229-256, 1992.

Fangzhi Xu, Hang Yan, Chang Ma, Haiteng Zhao, Qiushi Sun, Kanzhi Cheng, Junxian He, Jun Liu, and Zhiyong
Wau. Genius: A generalizable and purely unsupervised self-training framework for advanced reasoning. CoRR,
2025.

10

https://www.pnas.org/doi/abs/10.1073/pnas.1211645109
https://www.pnas.org/doi/abs/10.1073/pnas.1211645109
https://arxiv.org/abs/2501.12948

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_
files/paper/2017/file/3f5ee243547dee91fbd053clcd4a845aa—Paper.pdf.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Language
agents with verbal reinforcement learning. Advances in Neural Information Processing Systems, 36:8634—
8652, 2023.

Shalev Lifshitz, Sheila A Mcllraith, and Yilun Du. Multi-agent verification: Scaling test-time compute with
multiple verifiers. CoRR, 2025.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li,
Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang,
Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai
Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng,
Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu,
Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren,
Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zhihao Fan. Qwen?2 technical report. CoRR, 2024.

Qwen Team. Qwen2.5: A party of foundation models, September 2024a. URL https://gwenlm.github.
io/blog/qwen2.5/.

Llama Team. The llama 3 herd of models, 2024b. URL https://arxiv.org/abs/2407.21783.

Runze Liu, Junqgi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biqing Qi, Wanli Ouyang, and Bowen Zhou. Can 1b
1Im surpass 405b 1lm? rethinking compute-optimal test-time scaling. CoRR, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to
solve math word problems. CoRR, 2021.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In Advances in Neural
Information Processing Systems (NeurlPS), 2021.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester
James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria Graf, Jena D.
Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca Soldaini, Noah A. Smith,
Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3: Pushing frontiers in open language model
post-training, 2025. URL https://arxiv.org/abs/2411.15124.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. CoRR, 2025.

Archiki Prasad, Weizhe Yuan, Richard Yuanzhe Pang, Jing Xu, Maryam Fazel-Zarandi, Mohit Bansal, Sainbayar
Sukhbaatar, Jason Weston, and Jane Yu. Self-consistency preference optimization, 2024. URL https:
//arxiv.org/abs/2411.041009.

Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. Chain of hindsight aligns language models with feedback. In
International Conference on Learning Representations (ICLR), 2023a.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-zoo:
Investigating and taming zero reinforcement learning for open base models in the wild, 2025. URL https:
//arxiv.org/abs/2503.18892.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning converts weak
language models to strong language models, 2024a.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen
Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer,
Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. s1: Simple test-time scaling. CoRR, 2025.

11

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.04109
https://arxiv.org/abs/2411.04109
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892

Under review as a conference paper at ICLR 2026

Charlie Victor Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling parameters for reasoning. In International Conference on Learning
Representations (ICLR), 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. In
Advances in Neural Information Processing Systems (NeurIPS), volume 33, pages 1877-1901, 2020.

OpenAl. Gpt-4 technical report. CoRR, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models
are zero-shot reasoners. In Advances in Neural Information Processing Systems (NeurlPS), 2022.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Olivier
Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables complex reasoning in large language
models. In International Conference on Learning Representations (ICLR), 2022.

Kou Misaki, Yuichi Inoue, Yuki Imajuku, So Kuroki, Taishi Nakamura, and Takuya Akiba. Wider or deeper?
scaling llm inference-time compute with adaptive branching tree search. CoRR, 2025.

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing chain-of-
thought into continuous space via self-distillation. CoRR, 2025.

Jeftrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through dense
representations. CoRR, 2024.

Haolin Chen, Yihao Feng, Zuxin Liu, Weiran Yao, Akshara Prabhakar, Shelby Heinecke, Ricky Ho, Phil Mui,
Silvio Savarese, Caiming Xiong, and Huan Wang. Language models are hidden reasoners: Unlocking latent
reasoning capabilities via self-rewarding, 2024b. URL https://arxiv.org/abs/2411.04282.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Michele Catasta, Johan Legrand, Jelena Luketina, Andrew
Lampinen, Aja Brownsmith, Zoya Bylinskii, Victoria Ellison, et al. Solving math word problems with
process-based and outcome-based feedback. CoRR, 2022.

Jiayuan Huang, Jierui Kwon, Kevin Cohen, and Nanyun Peng. Language models as inductive reasoners. In
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
(Volume 1: Long Papers), 2022.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen,
Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from ai feedback.
CoRR, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea Finn. Direct
preference optimization: Your language model is secretly a reward model. Advances in Neural Information
Processing Systems (NeurlPS), 36, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. CoRR, 2017.

Tianle Liu, Tianyi Zhou, Xiaofei Lin, Percy Liang, and Tao Xiao. Statistical rejection sampling improves
preference optimization. International Conference on Learning Representations (ICLR), 2023b.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
CoRR, 2025.

Rishi Hazra, Alkis Sygkounas, Andreas Persson, Amy Loutfi, and Pedro Zuidberg Dos Martires. Revolve:
Reward evolution with large language models using human feedback. In International Conference on Learning
Representations (ICLR), 2024.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language models. In
International Conference on Learning Representations (ICLR), 2023.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher. Ctrl: A conditional
transformer language model for controllable generation. CoRR, 2019.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. Plug and play language models: A simple approach to controlled text generation. In International
Conference on Learning Representations (ICLR), 2019.

12

https://arxiv.org/abs/2411.04282

Under review as a conference paper at ICLR 2026

Yao Qin, Asli Celikyilmaz, Wenjing Li, Jung H Oh, Victoria Lin, Semih Agrawal, Yang Zhou, Singaram Kumar,
Jing Shen, Mitesh M Khapra, et al. Pomp: Unsupervised controllable generation by optimizing prompts via
reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems, 2023.

David Sun, Jasmine Jiang, Terry Nguyen, James Tsai, Yizhe Xia, Kyunghyun Cho, Heng Ji, Hugo Larochelle,
Xiang Yuan, David Simchi-Levi, et al. Recitation-augmented language models. In International Conference
on Learning Representations (ICLR), 2023.

Zhaowei Zhang, Fengshuo Bai, Qizhi Chen, Chengdong Ma, Mingzhi Wang, Haoran Sun, Zilong Zheng, and
Yaodong Yang. Amulet: Realignment during test time for personalized preference adaptation of llms. In The
Thirteenth International Conference on Learning Representations, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought reasoning in language models. CoRR, 2022.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training with
self-supervision for generalization under distribution shifts. In International Conference on Machine Learning
(ICML), 2020.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei Chen, Xiaolong
Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive hidden states. CoRR, 2024.

Moritz Hardt and Yu Sun. Test-time training on nearest neighbors for large language models. In International
Conference on Learning Representations (ICLR), 2023.

Shibo Hao, Yi Wang, and Bin Xiao. Reasoning with language model is planning with world model. In Annual
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. In
Annual Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt understands, too.
Al Open, 5:208-215, 2024a.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In Annual Meeting
of the Association for Computational Linguistics (ACL), 2021.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning v2:
Prompt tuning can be comparable to fine-tuning universally across scales and tasks. In Annual Meeting of the
Association for Computational Linguistics (ACL), 2021.

Salil Vadhan and Qian Zhang. Lecture 31: Multiprover interactive proofs and probabilistically checkable proofs.
In Scribe Notes of CS221, Harvard School, 2002.

S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University Press,
2006. ISBN 978-0-521-42426-4. URL https://theory.cs.princeton.edu/complexity/
book.pdf.

Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover interactive proofs: how to
remove intractability assumptions. In Annual ACM Symposium on Theory of Computing, STOC ’88, page
113-131, New York, NY, USA, 1988. Association for Computing Machinery. ISBN 0897912640. doi:
10.1145/62212.62223. URL https://doi.org/10.1145/62212.62223.

L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time has two-prover interactive protocols. In
Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science, pages 16-25 vol.1, 1990.
doi: 10.1109/FSCS.1990.89520.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang Liu, and Yahui
Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. CoRR, 2024b.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,

YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models.
CoRR, 2024.

13

https://theory.cs.princeton.edu/complexity/book.pdf
https://theory.cs.princeton.edu/complexity/book.pdf
https://doi.org/10.1145/62212.62223
https://arxiv.org/abs/2310.06825

Under review as a conference paper at ICLR 2026

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
Llamafactory: Unified efficient fine-tuning of 100+ language models. In Annual Meeting of the Association
for Computational Linguistics (ACL), 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John

Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In International Conference on Learning
Representations (ICLR), 2023.

14

Under review as a conference paper at ICLR 2026

Appendices

Contents
A Discussion and future works 16
B Methods of Test-Time Instance-Level Reasoning 16
C Theoretical Analysis 16
C.1 Preliminaries: Multiple Prover Interactive Proofsand NEXP 16
C.2 Theoretical Analysis: Independent Updating 17
C.3 Proofs of Theorem C.10 and Corollary C.11 18
D Derivation of Policy Gradient 20
E Additional Experimental Results 21
E.1 LATENTSEEK vs BON(N=10) 21
E.2 Qwen3 AIME Performance, 21
E.3 Token Efficiency Comparison with BoN Baseline 22
E.4 Greedy Decoding vs Sampling 22
E.5 Limitations of Outcome Reward Model 23
E.6 Performance vs FractionRatio 23
F Experimental Details 23
F1 PromptDesignation e 24
F2 Backbone 24
F3 Baselines e e e e 24
F4 GSMBK e 25
ES5 MATH-500 e e 27
F6 AIME2024 e 27
G Detailed FLOPs Calculation 29
G.1 Forward Pass FLOPs Estimation 29
G.2 Total FLOPs for Genius i v ittt e e e e e 32
G.3 Total FLOPs for LATENTSEEK o v i it et e e e e e e e 32
G.4 Efficiency Threshold Analysis 32
H Qualitative Analysis and Case Studies 33
I Computational Resources 36
J The Use of Large Language Models (LLMs) 36

15

Under review as a conference paper at ICLR 2026

A DISCUSSION AND FUTURE WORKS

While our work demonstrates the effectiveness of latent space optimization, we offer some discussion
for inspiring future research.

Reward Models. A primary limitation of our current approach is its reliance on a self-rewarding
mechanism. While this proves effective, the optimization process is inherently constrained by the
base model’s own evaluation capabilities and potential biases, lacking a truly objective external signal.
The ideal scenario would involve a principled Outcome Reward Model (ORM) that assesses the final
answer and provides unambiguous guidance for the search. However, as detailed in our experiments
in Appendix E.5, we found that current publicly available ORMs are not yet sufficiently robust
or generalizable for this task; their noisy signals proved less effective for guiding the latent space
optimization than the more consistent self-reward mechanism. This highlights a critical area for
future work: the development of more powerful verifiers capable of reliably scoring complex
reasoning tasks.

Latent Optimization. We adopt standard policy-gradient methods in our implementation, leaving
the exploration of more advanced reinforcement learning algorithms—such as Proximal Policy
Optimization (PPO)—to future work. In addition, pursuing latent-space—specific optimization may
be a worth exploring direction.

Large Base Model. Our experiments are conducted on models up to 14B-parameter scale, con-
strained by available computational resources. Scaling the approach to larger base models remains an
important avenue for future investigation.

B METHODS OF TEST-TIME INSTANCE-LEVEL REASONING

We list the formulations of two classical test-time instance-level reasoning methods:

* Prompt Engineering: Given the problem instance prompt c, the reward function is simply the
language modeling distribution:

x* = argmax7(x | c))

* Best-of-N (BoN): Given N i.i.d sequences X (1), X(a), - - -, X(n) ~ 7(- | €),

x* = arg max R(x,c¢) (10)
XG{X(l),X(z) ,...,X(N>}

C THEORETICAL ANALYSIS

This section offers a theoretical framework for LATENTSEEK, with a main focus on justifying
the expressiveness of the independence among latent variables, which may be a good start for
understanding and inspecting our algorithm.

C.1 PRELIMINARIES: MULTIPLE PROVER INTERACTIVE PROOFS AND NEXP

This section introduces the concept of Multi-prover Interactive Proofs (MIP) and NEXP for complete-
ness. A comprehensive exposition of MIP is provided in Vadhan and Zhang (2002), while Arora and
Barak (20006) offers a detailed introduction to theoretical computer science, encompassing concepts
such as language and Turing Machine.

In the Multi-Prover Interactive Proof (MIP) model, provers may communicate with one another prior
to the initiation of the proof process. Once the proof process begins, however, such communication is
prohibited, and each prover interacts with the verifier in a fully private manner.

Definition C.1 (Multiple Prover Interaction). Let Py, Ps,..., P : {0,1}* — {0,1}* be func-
tions. A n-round interactions between the verifier V' and the provers Py, P, ..., Py, denoted by
((Py, Py, P3,...,P),V) (x) is the sequence of the following strings q11, 21, - - -, qk1, 11, G21,

16

Under review as a conference paper at ICLR 2026

ey QR G125+ -+ QR2y Q125 v o s BE2s « ++ s Q1ns Q2ms + -+ s Qmy - - - 5 Almy - - - » Akm, U defined as follows:

Q1 q215 - Q1 = V(2)
a1l = P1(%Q11)
as1 = Py(z,¢21)

ax1 = Pr(z, qr1)

Q12,9225 - - Qr2 = V (T, qu1, 011, - - -, Gk, k1)
ak?’n, = Pk(l‘7qkl7a‘k1a st 7q}~cn>
U= V(l"’%l’alh e 7aknaqkn)

We denote ((Py, P>, Ps, ..., Py), V), () to be last output v.

Definition C.2 (k-MIP Vadhan and Zhang (2002)). A language L is in k-MIP if there is a Turing
machine verifier V' such that on inputs x, @11, . ..,a;;, V runs in time polynomial in |z| and such
that:

» Efficiency: The number and length of all messages exchanged is at most polynomial in the
common input z.

» Completeness: © € L = 3Py, P, ..., P, Pr[((P1, P2,...,P),V)y () =1] >

* Soundness: x ¢ L = VP, P», Ps,..., Py, Pr(((P1,Pa,...,P),V)y () =1] <
Definition C.3 (MIP Vadhan and Zhang (2002)). MIP = Uik — MIP

Next, we’ll introduce NEXP.

Definition C.4 (NTIME Arora and Barak (2006)). For every function T : N — Nand L C {0, 1}*,
we say that L € NTIME(T'(n)) if there is a constant ¢ > 0 and a ¢T'(n)-time non-deterministic
Turing Machine M such that for every z € {0,1}*, z € L & M (z) = 1.

Definition C.5 (NP). NP = U,cy NTIME(n*)
Definition C.6 (NEXP). NEXP = Ujcy NTIME(2"")

C.2 THEORETICAL ANALYSIS: INDEPENDENT UPDATING

Mentioned in Section 2, the latent representations are independent, which results in the independence
of the token update process, which at first glance may constrain the model’s expressive capacity.
In this subsection, we focus on decision problems Arora and Barak (2006). Despite discrepancies
between theoretical frameworks and practical challenges, valuable insights can be gained. Specifically,
it is possible to demonstrate that the model’s expressivity remains theoretically comparable in spite
of the updating independence.

Our method is strongly related to a TCS complexity class, Multi Prover Interactive Proofs Ben-Or
et al. (1988) or simply MIP. We initially outline the notations for multiple prover interactions and
subsequently define the associated complexity class for our latent thought framework, which we later
demonstrate is equivalent to MIP and the complexity class NEXP (solved in exponential time by
a non-deterministic Turing Machine). Please refer to Appendix C.1 for preliminaries. We list the
relationship as follows:

* MIP: A verifier interacts with multiple non-communicating provers to decide membership
in a language.

* LATENTSEEK: the optimized tokens, as they are updated independently, act like the provers
who jointly determine the outcome.

* MIP-Bounded: Different from MIP, each prover in LatentSeek can only generate 1 token,
whose number of bits is bounded. Furthermore, a polynomial proportion of tokens is allowed
to be optimized, leading to a polynomial number of provers.

17

Under review as a conference paper at ICLR 2026

Definition C.7 (Multiple Prover Interaction). Let Py, P,..., Py : {0,1}* — {0,1}* be func-

tions. A n-round interactions between the verifier V' and the provers P, P, ..., P, denoted by
((Py, Py, P3,...,P), V) (x) is the sequence of the following strings qi11, ¢21, - - -, qk1, A11, G21,
ey Q1 G125+ -+ QE2y Q125 « v o s BEDs « + + s Q1ns Q2ms « s Qkmy - - - 5 Almy - - - » Akmy, U defined as follows:

q1, G215 - qr1 = V(x)
a11 = Pi(z, ¢11)
as1 = Po(z,q21)

ar1 = Py(z, qr1)

12,9225 - - Q2 = V (&, q11, @11, - -+, Gk1, Qk1)
An = Pk(maqklaakla e 7(]kn)
v="V(z,q11,a11, .., Akn, Gkn)

We denote ((Py, P>, Ps, ..., Py), V), () to be last output v.

Different from MIP, which allows each prover to output a polynomial-length string, in our method,
each prover can only output a bounded length of string (a token). We name the corresponding
complexity class of our method as MIP-Bounded.

Definition C.8 (MIP-Bounded). A language L is in MIP-Bounded if there is a Turing machine verifier
V', and a polynomial function poly(-) such that on inputs x, a;;, ¢;;, V runs in time polynomial in |z|
and such that:

* Bounded: Vi, output of P; is bounded, its output denoted as |a,;| satisfies that |a;;| < C,
where C'is a constant greater than 1.

* Completeness: x € L = 3P, P, ..., Buoiy(jz)), PrI{(P1, P2y, Bpoiy(2))): V), (2) =
1> 2

* Soundness: @ ¢ L = VP, Ps,..., Pyy(z)), Pri{(P1, Pa; ..., Ppoy(lz))), Vv (x) =
<3

Remark C.9. The constant C' in the definition can be any constant. It won’t affect the definition as
long as it’s a constant.

Theorem C.10. MIP-Bounded = MIP

Theorem C.10 establishes the efficacy of our framework. By building on the classical result of Babai
et al. (1990), we derive Corollary C.11 that clearly illustrates the expressive power of our approach.
Refer to Appendix C.3 for detailed proofs.

Corollary C.11. NP C NEXP = MIP-Bounded

C.3 PROOFS OF THEOREM C.10 AND COROLLARY C.11

Theorem C.12. MIP-Bounded = MIP

Proof. By the classical results of MIP = 2-MIP = NEXP Babai et al. (1990), it’s sufficient to consider
only two provers in the MIP class.

We will first prove that MIP C MIP-Bounded.

For all L € MIP, Vz, in the j-th turn, the proofs offered by the two provers are denoted as a1 ;, az;, the
verifier as V. According to the definition of MIP, 3 polynomial function p(-) such that |a;;| < p(|z])),

we set poly(-) = sz(.)’ which is also polynomial. We design the verifier V/ = V.

1. If z € L, 3poly(|z|) and provers P|, P, ..., P

;;oly(|w\) such that the accept rate is larger

than % in the following manner:

18

Under review as a conference paper at ICLR 2026

The first ‘a—éf' provers output a;; with each outputting C' bits, and the continuing %

provers output as; with each outputting C bits. As poly(|x|) = Lclrl) > m—é" + %, we

have enough provers to do this operation. Therefore, the outputs of P;, P}, ..., Proty' (|| 18
the same as the original two provers, as the original two provers satisfies that the accepts
probability is greater than 2, we have

Wl Do

Pr{{(P{, Py -+ Praty(ap): V', (@) = 1] =

2.If = ¢ L, YP|,P;,..., Pyy(2)» We denote their output at j-th turn as
@y, Ay Ay e 7a;01y(|x‘) ;- Let the first prover output the concat output of odd provers,

ie aj = (ay;, ay;, ..., a’Lpoly(m)J j), the second output the concat output of even provers,
P p

. / .
i.e. ag; iy (l)), j). As no two provers can make the verifier accept at a

/
= (a e iy
(|—p01y(2\ l)LJ7

probability larger than %, thus

Pr{{(P{, Py s Braty(ap): V', (@) = 1] <

W =

Therefore, L € MIP-Bounded, and thus MIP C MIP-Bounded.
Next, we are going to prove MIP-Bounded C MIP.

VL € MIP-Bounded, Vz, in the j-th turn, the proofs offer by the bounded provers are denoted

. / ! / / . / : . .
as: @y, Agjs 355 - Gpory(|2)),5° the verifier as V'. We design V as follows: for each concat string

s =(x,q11,011,---,), V first truncates the first prover’s answer to length of LIM; := C' - LMJ

bits and the second prover’s answer to length of LIM» := C' - (poly(|z|) — [%] + 1) bits. The
resulted string is denoted as " := (x, ¢11, @11,0:L1M; » §21, G21;0:L1M;, - - -)» and output V'(s").

1. If z € L, similar as above, we let the first prover output the concat output of odd provers,

ie ay; = (ay;, ay;,. .., a/L‘”‘y“’”‘)j), the second output the concat output of even provers,
B,

ie. agj = (0 pyapy oee >0l (“’El)vj)“ As |ai;| < LIMy, it won’t be truncated and
[P0 poly

las;| < LIM,, it won’t be truncated, thus V' acts exactly as V”’, and therefore

2

PT(<(P17P2)7 V>V ({E) = 1) > g

2. (Prove by contradiction) If x ¢ L, suppose 3Py, P> such that:
1

Pr(<(P1’P2)’V>V (a:) = 1) > g

As V first truncate answer, therefore, for j-turns, we can truncate a1; to a1;;0.Lm, and
a2j 10 az;.0:.LM,, and follow the division process depicted in the first case of proving
MIP C MIP-Bounded to gain P|, P}, Pj, ..., PI;oly(|:r\) provers. Thus:
Pr({(P1, P»),V)y (z) = 1) = Pr{{(P, P3; - -, Ppory(ap)): V), (2) = 1]
= PT’[<(P1/, P2/a cee 7Ppoly(|x\))/’ V/>V/ (I) = 1]

As a result,

1
Pri{(Pl, Py, Poy(a), V'), () =1] > 3
, this contradicts to Pr[((P{, Py, ., Py iz V’)V/ (z) = 1] < §. Therefore, VP, P,
we have:)
Pr({((P1, P2),V)y (z)=1) < 3
Hence, we have L € MIP, which means that MIP-Bounded C MIP.
Concluding the above, we have MIP-Bounded = MIP. O

19

Under review as a conference paper at ICLR 2026

Theorem C.13 (Babai et al. (1990)). MIP = 2-MIP = NEXP

Remark C.14. NEXP is the complexity class that a non-deterministic Turing Machine can solve in
exponential time, which means that NP C NEXP.

Based on this theorem, we can easily derive Corollary C.11.
Corollary C.15. NP C NEXP = MIP-Bounded

D DERIVATION OF POLICY GRADIENT

Our target is to derive Equation (7):
[VZJ(Z>]t = EXNﬂ(X\Z,C) [R(Xv C)Vzt logﬂ(l‘t | zt)]
Starting from the objective:

J(z) = IEXN'rr(XIZ,-:) [R(X, C)]
By taking gradient of z, we have:

V.J(z) =V, / R(x,c)m(x | z,c)dx = / R(x,¢)V (x| z,c)dx

Leveraging V,log w(x | z,¢) = yVar(x | 2, €):

1
(x|z,c

V.J(z) = / R(x,c)n(x | 2z,¢)V,logn(x | z,c)dx

T
w(xe | ze) [I w(xt|z<s, c), we have:
t=N+1

=

According to w(x | z,¢) =
¢

Il
_

N T
V.J(z) = / R(x,c)m(x | Z,C)VZ(ZIOgﬂ'(JZt | 2¢) + Z log m(x¢|x<t))dx
x t=1

t=N+1

As the second term doesn’t have z, thus we have:

N N
V,J(z) = / R(x,¢)m(x | 2,¢)V4 () logm(zy | 2))dx = Exrorn(xfzc) [R(X, €) Vo () logm(ay|2))]

t=1 t=1

Therefore, the ¢-th term is:
[vzj(z)]t = IE:xw'rr(x|z,c) [R(Xa C)vzt IOg 7T(xt|'zt)]»

which is exactly what we want.

20

Under review as a conference paper at ICLR 2026

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 LATENTSEEK VS BON (N=10)

In Table 1, we show that Best-of-N (BoN) is outperformed by LATENTSEEK, even though BoN con-
sumes a comparable compute consumption (See Figure 4). One might also ask how LATENTSEEK
compares to BoN when N = 10; in this setting, BoN requires at least five times more sequence-level
computation than LATENTSEEK. As reported in Table 7, LATENTSEEK remains superior on all
datasets and all backbone models.

Table 7: Additional Comparison Between LATENTSEEK and BoN (N=10) with Prompt 2.

Model Qwen2 Qwen2.5 LLaMA3.1 A
Methods 7B 1.5B 7B 14B 8B e
GSMS8K

BoN 72.10 7.73 80.06 92.19 81.58 66.73

LATENTSEEK 80.21+8,11 44-20+36.47 85.064_5400 92.72+0,53 83.70+2,12 77.18+10445
MATH-500

BoN 42.40 28.80 56.40 63.20 45.60 47.28

LATENTSEEK 44.80+2,40 32.20+3,40 57.60+1,20 71-00+7.80 47.00+1,40 50.52+3,24
AIME2024

BoN 3.33 0.00 6.67 10.00 3.33 4.66

LATENTSEEK 3-33+U.00 3-33+533 13-33+6.66 10-004»0‘00 6.67+3_33 7-33+2A67

E.2 QWEN3 AIME PERFORMANCE

CoT N BoN [LATENTSEEK
73.3%

70

63.3% 63.3%

60 56.7%

50

40.0%
40 /-

30

Accuracy (%)

20

10

Prompt 1

Prompt 2

Figure 3: Performance comparison of the Qwen3-4B-Instruct model on the AIME2024 dataset. The
chart illustrates the accuracy of LATENTSEEK against the Chain-of-Thought (CoT) and Best-of-N
(BoN) baselines across two distinct prompt formats.

This section provides a detailed study on the performance of the Qwen3-4B-Instruct-2507 model
on the challenging AIME2024 dataset. Figure 3 illustrates the accuracy of LATENTSEEK compared
against the Chain-of-Thought (CoT) and Best-of-N (BoN) baselines under two prompt formats.

21

Under review as a conference paper at ICLR 2026

As shown in the figure, under Prompt 1, while the BoN strategy fails to improve upon the CoT
baseline (both at 63.3% accuracy score), LATENTSEEK delivers a significant 10 points uplift to
73.3%. This advantage holds under Prompt 2, where our method’s accuracy of 56.7% surpasses CoT
by 16.7 points and BoN by 3.4 points. Taken together, these findings demonstrate that LATENTSEEK
consistently improves upon strong baselines and is valuable in scenarios where conventional search
methods are insufficient.

E.3 TOKEN EFFICIENCY COMPARISON WITH BON BASELINE

This section provides a quantitative analysis of the token efficiency of LATENTSEEK, comparing it
against the Best-of-N (BoN) baseline reported in Table 1. The analysis measures the average number

of tokens consumed per problem instance under the JSON prompt format (Prompt 2) on the GSM8SK
and MATH-500 datasets.

As shown in Figure 4, LATENTSEEK achieves higher token efficiency than BoN in all of cases across
different model families and sizes, while attaining superior reasoning accuracy as reported in Table 1.
These results demonstrates that LATENTSEEK can enhance performance without incurring additional
token overhead for all models, highlighting the efficiency of latent space optimization.

B LatentSeek ., Wm |atentSeek

1944
BoN BoN 1846, 1836

. 502 - 1679
é é 1337
§ § 1127
- e
e g
i3 i3
o o
. I I }
<’ <
Wenl qwen? 51 RVTCH A8 we“'z Quen? 51 A3 8
(a) GSMS8K dataset. (b) MATH-500 dataset.

Figure 4: Comparison of average tokens consumed per problem between LATENTSEEK and the
Best-of-N (BoN) baseline when using Prompt 2. The token consumption is comparable for the two
methods, with BoN consuming slightly more tokens in total. For experimental results where BoN
consumes extremely more calculation, please refer to Table 7.

E.4 GREEDY DECODING VS SAMPLING

Our experiments show that greedy decoding closely approximates categorical sampling while being a
better choice for reducing stochastic error. As detailed in Table 8, greedy decoding performs slightly
better than the sampling method. We hypothesize that this is because sampling can amplify the
approximation error when replacing an expected mean with an empirical one. Therefore, we use
greedy decoding for our main experiments.

Table 8: LATENTSEEK: Greedy Decoding vs Sampling (Temperature 0.7) on the MATH-500 dataset.

Model | Qwen2 Qwen2.5 LLaMA3.1
m 7B 15B 7B 14B 8B

Prompt 1

Sampling 56.80 50.00 74.00 74.00 49.60

Greedy Decoding 5740 55.60 75.60 80.00 54.60
Prompt 2

Sampling 4440 2240 5580 68.40 45.40

Greedy Decoding 4480 3440 57.60 71.00 47.00

22

Under review as a conference paper at ICLR 2026

E.5 LIMITATIONS OF OUTCOME REWARD MODEL

The performance is described in Liu et al. (2024b), with results presented in Table 9. Although this
model achieves an average score of 64.79—representing an improvement of 3.23 points over the
Chain-of-Thought (CoT) method—it remains significantly inferior to the performance attained using
a self-rewarding mechanism, which reaches 77.18. These results highlight the limitations of current
outcome-based reward models in scenarios lacking ground-truth data, underscoring the need for the
development of more robust and effective outcome reward models.

Table 9: Math Reward Model Accuracy results on GSM8k Cobbe et al. (2021), MATH-500 Hendrycks
et al. (2021), and AIME2024 datasets. The best performances are highlighted in bold, and the second-
best performances are underlined.

Model | Qwen2 Qwen2.5 LLaMA3.1 Av
Methods 7B 1.5B 7B 14B 8B g

GSM8k: Prompt 2
CoT 65.20 1531 6641 91.81 69.07 61.56

LATENTSEEK (Math) 61.18 28.28 66.64 91.05 76.80 64.79
LATENTSEEK (Self) 80.21 44.20 85.06 92.72 83.70 77.18

E.6 PERFORMANCE VS FRACTION RATIO

Figure 5 illustrates the performance trends of various instruction-tuned language models across
different fraction ratios, which range from 0.1 to 0.8. Here, we also experimented with another model:
Mistral-7B-Instruct (Jiang et al., 2023). Performance is reported as a percentage and plotted on the
y-axis, while the fraction ratio is shown on the x-axis.

* Owen2.5-14B-Instruct exhibits a relatively stable performance curve. It shows a slight
increase in performance from 0.1 to 0.6, peaking around the 0.6 fraction ratio, followed by a
minor decrease at 0.8. Overall, this model maintains consistently high performance above
91% across all fraction ratios.

* Owen2.5-7B-Instruct demonstrates a mild upward trend from 0.1 to 0.2, followed by a
steady decrease as the fraction ratio increases beyond 0.2, indicating reduced effectiveness
at higher ratios.

* Owen2-7B-Instruct shows a consistent downward trend across the full range of fraction
ratios, suggesting that its performance deteriorates steadily with increasing input fraction.

* LLaMA3.1-8B-Instruct remains relatively stable at first but shows a slight decreasing trend
overall, with performance gently declining from 0.2 onwards.

* Owen2.5-1.5B-Instruct follows a sharp non-monotonic trend. It increases markedly from 0.1
to peak at 0.2, then drops rapidly as the fraction ratio increases further, reaching its lowest
performance at 0.8.

* Mistral-7B-Instruct exhibits a subtle peak at 0.2, followed by a gradual and modest decrease
in performance as the fraction ratio increases, maintaining relatively stable performance
throughout.

In summary, the Qwen2.5-14B-Instruct model shows a slightly rising then declining trend but remains
highly stable and strong overall. Smaller models, especially Qwen2.5-1.5B-Instruct, are more sensitive
to increases in fraction ratio, with noticeable performance degradation at higher values. Mid-sized

models like Mistral-7B-Instruct and LLaMA3.1-8B-Instruct exhibit relatively mild downward trends,
indicating moderate robustness.

F EXPERIMENTAL DETAILS

In this section, we provide a detailed description of the experimental setup.

23

Under review as a conference paper at ICLR 2026

— s ,,4.\'—‘\'

o

w0

S S
o o
(5] o
c f
© ®©
: N\ 5
Ew £
L \\ —— Qwen2.5-14B-Instruct £
[} [}
o —+— Qwen2-7B-Instruct [

7

—— Qwen2.5-7B-Instruct —— Qwen2.5-1.5B-Instruct
—— llama3.1-8b-instruct —— Mistral-7B-Instruct

0.1 0.2 0.6 08 0.1 0.2 0.6 0.8

04 0.4
Fraction Ratio Fraction Ratio

Figure 5: Performance vs Fraction Ratio

F.1 PROMPT DESIGNATION

The corresponding prompts are shown in the following tables.

Prompt. The prompt of CoT is as follows.

* Prompt 1: Table 11 and Table 12.
* Prompt 2: Table 10.

Reward Prompt. The prompts are listed in Tables 19 to 22.

F.2 BACKBONE
‘We list all model backbone as follows:

e Qwen2-7B-Instruct Yang et al. (2024): A powerful model designed for instruction-
based tasks, leveraging the 7B parameter version of Qwen2. (accessible at https:
//huggingface.co/Qwen/Qwen2—-7B-Instruct)

Qwen2.5-1.5B-Instruct Team (2024a): A compact yet efficient model designed for task-
specific instructions, based on the 1.5B-parameter Qwen2.5. (accessible at https: //
huggingface.co/Qwen/Qwen2.5-1.5B-Instruct)

* Qwen2.5-7B-Instruct Team (2024a): A middle-tier model based on 7B-parameter Qwen2.5,
optimized for handling various instructions. (accessible at https://huggingface.
co/Qwen/Qwen2.5-7B-Instruct)

* Qwen2.5-14B-Instruct Team (2024a): A robust, large-scale model built on the 14B-
parameter Qwen2.5, excelling in complex instruction-based tasks. (accessible at https:
//huggingface.co/Qwen/Qwen2.5-14B-Instruct)

* LLaMA3.1-8B-Instruct Team (2024b): LLaMA’s 8B parameter version designed for

better instruction-following capabilities. (accessible at https://huggingface.co/
meta—-llama/Llama—-3.1-8B-Instruct)

F.3 BASELINES
We describe all baselines in experiments as follows:

* Chain-of-Thought (CoT): CoT refers to a structured, sequential approach to problem-solving,
wherein complex tasks are decomposed into intermediate steps, each explicitly articulated to
facilitate logical progression toward a solution. In our experiments, CoT follows the prompt
listed in Appendix F.1.

* Few-Shot CoT: Few-Shot Chain-of-Thought (CoT) prompting is a technique in natural
language processing that enhances model performance on complex reasoning tasks by
providing a small number of illustrative examples with step-by-step reasoning, enabling the
model to generalize and produce structured, logical outputs. In our experiment, we adopt
the result from Lambert et al. (2025).

24

https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

Under review as a conference paper at ICLR 2026

Table 10: Prompt 1 for GSM8k Cobbe et al. (2021), MATH-500 Hendrycks et al. (2021) and
AIME2024.

{"role": "system", "content": "Please reason step by step, and
put your final answer within \boxed\{\}." },
\{"role": "user", "content": "{g}"\}

* Best-of-IV (BoN): We draw NN independent candidates from the model, score each with a
predefined objective, and select the candidate with the highest reward. In our experiments,
we set NV = 3 so that the total computation is comparable to—while exceeding—that of
LATENTSEEK. The BoN reward is computed under the same self-reward mechanism as that
of LATENTSEEK.

* Self-Consistency: We draw N independent candidates from the model, and select the
candidate that appears with the highest frequency. In our experiments, we set N = 3 so that
the total computation is comparable to—while exceeding—that of LATENTSEEK and align
with that of BoN.

 Self-Rewarding Yuan et al. (2025): This leverages intrinsic feedback mechanisms to itera-
tively enhance model performance without reliance on external reward signals.

* ScPO Prasad et al. (2024): A framework for self-consistency preference optimization,
rigorously formalizing the alignment of decision-making processes with logically coherent
and preference-driven outcomes in complex systems.

* CoH Liu et al. (2023a): A framework which systematically aligns language models with
human feedback through a structured, iterative process, enhancing their performance in
complex reasoning tasks.

* Genius Xu et al. (2025): A purely unsupervised self-training framework designed to enhance
advanced reasoning capabilities in artificial intelligence systems, offering generalizable
performance across diverse tasks without reliance on labeled data.

» SimpleRL-Zoo Zeng et al. (2025): A reinforcement learning framework designed to enhance
sample efficiency and performance stability in complex decision-making environments
through simplified algorithmic structures and adaptive exploration strategies.

* GRPO Shao et al. (2024): Group Relative Policy Optimization (GRPO), introduced
in the DeepSeekMath framework, is a novel reinforcement learning algorithm that
enhances mathematical reasoning in large language models by optimizing policy up-
dates through group-based reward comparisons, significantly reducing memory con-
sumption compared to traditional Proximal Policy Optimization (PPO). In our ex-
periment, we adopt the result from https://www.perplexity.ai/hub/blog/
rl-training-for-math-reasoning?utm_source=chatgpt.com.

* SPIN Chen et al. (2024a): A self-play fine-tuning methodology that significantly enhances
the performance of weaker language models, transforming them into robust and highly
capable systems competitive with stronger counterparts.

* iCoT Deng et al. (2024): a transition from explicit Chain-of-Thought (CoT) reasoning to
implicit CoT internalization, proposing a step-by-step learning framework to enhance logical
reasoning capabilities in artificial intelligence systems.

* Supervised Fine-Tuning (SFT) was conducted using the LLaMA-Factory framework Zheng
et al. (2024). All models were trained with a learning rate of 1 x 10~°, employing a cosine
learning rate scheduler, a warmup ratio of 0.1, and the bfloat16 (bf16) data type.

F.4 GSMSK

We provide details for GSM8K experiments as follows:

Dataset. The GSMS8K dataset Cobbe et al. (2021), a comprehensive collection of mathemati-
cal reasoning problems, serves as a benchmark for evaluating the problem-solving capabilities
of language models. Developed by OpenAl and accessible via the Hugging Face repository at

25

https://www.perplexity.ai/hub/blog/rl-training-for-math-reasoning?utm_source=chatgpt.com
https://www.perplexity.ai/hub/blog/rl-training-for-math-reasoning?utm_source=chatgpt.com

Under review as a conference paper at ICLR 2026

Table 11: Prompt 2 for GSM8k Cobbe et al. (2021).

\{"role": "system", "content": "You are a precise math question
solver. Solve this math problem." \},

\{"role": "user", "content": "QUESTION: {gq} Let’s think step by
step. Please provide your thought process and your final answer
separately and response in Jjson format containing the keys
thought process and final answer. For example your response
should be \{‘thought process’: ‘your thought process’, ‘final
answer’: ‘your final answer’\}. Note that the final answer
should be pure numbers, not the calculation formulas, and
without any units or explanation!!!"\}

Table 12: Prompt 2 for MATH-500 Hendrycks et al. (2021) and AIME2024.

\{"role": "system", "content": "You are a precise math question
solver. Solve this math problem." \},

\{"role": "user", "content": "QUESTION: {g} Let’s think step by
step. Please provide your thought process and your final answer
separately and response in Jjson format containing the keys
thought process and final answer. For example your response
should be \{‘thought process’: ‘your thought process’, ‘final
answer’: ‘your final answer’\}." \}

Table 13: LATENTSEEK (Self) Hyperparameters on GSMS8K. Ir: learning rate. p: fraction ratio

methods \ model \ max len promptidx #GPU Ir optimizer p dtype Max Step
LATENTSEEK (Self) Qwen2-7B-Instruct 1024 1 1 A100 0.03 Adam 02 bfl6 10
LATENTSEEK (Self) Qwen2-7B-Instruct 1024 2 1L40 0.03 Adam 0.2 bf16 10
LATENTSEEK (Self) | Qwen2.5-1.5B-Instruct 1024 1 13090 0.03 Adam 0.05 bfl6 10
LATENTSEEK (Self) | Qwen2.5-1.5B-Instruct 1024 2 13090 10 Adam 0.2 bfl6 10
LATENTSEEK (Self) | Qwen2.5-7B-Instruct 1024 1 1140 0.05 Adam 0.2 bfl6 10
LATENTSEEK (Self) | Qwen2.5-7B-Instruct 1024 2 1140 0.05 Adam 02 bfl6 10
LATENTSEEK (Self) | Qwen2.5-14B-Instruct 1024 1 1L40 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) | Qwen2.5-14B-Instruct 1024 2 1140 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) | Llama-3.1-8B-Instruct 1024 1 1L40 0.03 Adam 0.2 bfl6 10
LATENTSEEK (Self) | Llama-3.1-8B-Instruct 1024 2 1140 0.03 Adam 0.2 bfl6 10

https://huggingface.co/datasets/openai/gsm8k, GSM8K comprises 8,500 metic-
ulously curated, high-quality math problems that span a diverse range of topics, including arithmetic,
algebra, and word problems. These problems are specifically designed to assess a model’s ability to
perform multi-step reasoning, interpret natural language descriptions of mathematical scenarios, and
derive accurate solutions. The dataset is partitioned into a training set of 7,473 examples and a test set
of 1,319 examples, enabling robust model training and evaluation. For the purposes of this study, we
exclusively utilize the test set to evaluate model performance, ensuring a standardized and unbiased
assessment of mathematical reasoning proficiency.

Experimental Details. For all backbones and both prompts, we use greedy decoding for inference.
For the hyperparameters of LATENTSEEK (Self) and LATENTSEEK (PSRM), please refer to Table 13
and Table 14, respectively. The mathematical reasoning prompts we employed in the self-reward
mechanism evaluate answers across four dimensions: correctness of the final answer, accuracy of
problem comprehension, correctness of numerical calculations, and provision of a clear answer,
weighted at 1:1:2:2, with the final score normalized to the range [-1, 0]. The detailed specifications of
these four evaluation prompts are provided in Tables 19 to 22.The prompt structure is consistently
applied across all backbones and both prompts. Notably, for Llama-3.1-8B-Instruct, Qwen2.5-1.5B-
Instruct and Qwen2-7B-Instruct in LATENTSEEK (Self) experiment using Prompt 1, a new format
reward following the methodology of DeepSeek-R1 is incorporated, with weights of 3, 2, and 2
assigned to format-based criteria, respectively.

Scaling. We offer more scaling figures in Figure 6.

26

https://huggingface.co/datasets/openai/gsm8k

Under review as a conference paper at ICLR 2026

S g0 Kos
>.50 85 >04
o o o
N40 © ©
g £80 Co3
330 3 3
o o Q
S0 875 892
< i ‘ <. <q
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

Iterations

(a) Qwen2.5-1.5B-Instruct

Iterations

(b) Qwen2.5-7B-Instruct

Iterations

(c) Qwen2.5-14B-Instruct

gg.g 925
92 <90.0
£90.0 £g75
2875 285.0
©85.0 £825
3 82.5 3 80.0
880.0 8775
<775 <75.0

75.0 725

2 4 6 8
Iterations

(d) LlaMA3.1-8B-Instruct

10 ’ 2 4 6 8
Iterations

10

(e) Qwen2-7B-Instruct

Figure 6: GSM8kCobbe et al. (2021) Prompt 2 Accuracy changes with respect to the increasing
number of iterations. : Perfect Sharp Reward Model. Blue: Self Reward Model.

Table 14: LATENTSEEK (PSRM) Hyperparameters on GSMS8K. Ir: learning rate. p: fraction ratio

methods \ model \ max len promptidx #GPU Ir optimizer p dtype Max Step
LATENTSEEK (PSRM) Qwen2-7B-Instruct 1024 1 1 A100 0.03 Adam 0.2 bfl6 10
LATENTSEEK (PSRM) Qwen2-7B-Instruct 1024 2 14090 0.03 Adam 0.2 bfl6 10
LATENTSEEK (PSRM) | Qwen2.5-1.5B-Instruct 1024 1 13090 0.03 Adam 0.2 bfl6 10
LATENTSEEK (PSRM) | Qwen2.5-1.5B-Instruct 1024 2 13090 0.03 Adam 0.2 bfl6 10
LATENTSEEK (PSRM) | Qwen2.5-7B-Instruct 1024 1 1 A100 0.05 Adam 0.2 bfl6 10
LATENTSEEK (PSRM) | Qwen2.5-7B-Instruct 1024 2 1L40 0.05 Adam 0.2 bfl6 10
LATENTSEEK (PSRM) | Qwen2.5-14B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bfl6 10
LATENTSEEK (PSRM) | Qwen2.5-14B-Instruct 1024 2 1 A100 0.03 Adam 0.1 Dbfl6 10
LATENTSEEK (PSRM) | Llama-3.1-8B-Instruct 1024 1 1140 0.03 Adam 0.2 bfl6 10
LATENTSEEK (PSRM) | Llama-3.1-8B-Instruct 1024 2 1L40 0.03 Adam 0.2 bfl6 10

F.5 MATH-500

We provide details for MATH-500 experiments as follows:

Dataset. The MATH-500 dataset, a curated subset of the MATH benchmark, serves as a ro-
bust resource for evaluating the mathematical reasoning capabilities of machine learning mod-
els. Sourced from the HuggingFace repository at https://huggingface.co/datasets/
HuggingFaceH4 /MATH-500 , it comprises 500 problems derived from the original MATH
benchmark developed by OpenAl (Lightman et al., 2023). Encompassing a diverse array of mathe-
matical topics and varying difficulty levels, MATH-500 provides a comprehensive and challenging
testbed for assessing model performance in mathematical problem-solving.

Experimental Details. For all backbones and both prompts, we use greedy decoding for inference.
For the hyperparameters of LATENTSEEK (Self) and LATENTSEEK (PSRM), please refer to Table 15
and Table 16, respectively. The mathematical reasoning prompts we employed in the self-reward
mechanism evaluate answers across four dimensions: correctness of the final answer, accuracy of
problem comprehension, correctness of numerical calculations, and provision of a clear answer,
weighted at 1:1:2:2, with the final score normalized to the range [-1, 0]. The prompt structure is
consistently applied across all backbones and both prompts. Notably, for Qwen2-7B-Instruct and
Llama-3.1-8B-Instruct in LATENTSEEK (Self) experiment using prompt 1, the weight ratios are
adjusted to 1:1:1:2. Additionally, for Qwen2-7B-Instruct, Qwen2.5-1.5B-Instruct, Qwen2.5-7B-
Instruct and Llama-3.1-8B-Instruct in LATENTSEEK (Self) experiment using Prompt 1, a new format
reward following the methodology of DeepSeek-R1 is incorporated, with weight of 2 assigned to
format-based criteria.

F.6 AIME2024

We provide details for AIME2024 experiments as follows:

27

https://huggingface.co/datasets/HuggingFaceH4/MATH-500
https://huggingface.co/datasets/HuggingFaceH4/MATH-500

Under review as a conference paper at ICLR 2026

Table 15: LATENTSEEK (Self) Hyperparameters on MATH-500. Ir: learning rate. p: fraction ratio

methods \ model \ max len promptidx #GPU Ir optimizer p dtype Max Step
LATENTSEEK (Self) Qwen2-7B-Instruct 1024 1 13090 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) Qwen2-7B-Instruct 1024 2 13090 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) | Qwen2.5-1.5B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bfl6 10
LATENTSEEK (Self) | Qwen2.5-1.5B-Instruct 1024 2 13090 0.03 Adam 0.05 bfl6 10
LATENTSEEK (Self) | Qwen2.5-7B-Instruct 1024 1 13090 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) | Qwen2.5-7B-Instruct 1024 2 13090 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) | Qwen2.5-14B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bfl16 10
LATENTSEEK (Self) | Qwen2.5-14B-Instruct 1024 2 1 A100 0.05 Adam 0.1 bfl6 10
LATENTSEEK (Self) | Llama-3.1-8B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) | Llama-3.1-8B-Instruct 1024 2 1 A100 0.03 Adam 0.1 bf16 10

Table 16: LATENTSEEK (PSRM) Hyperparameters on MATH-500. Ir: learning rate. p: fraction ratio

methods \ model \ maxlen promptidx #GPU Ir optimizer p dtype Max Step
LATENTSEEK (PSRM) Qwen2-7B-Instruct 1024 1 13090 0.03 Adam 0.1 bfl6 10
LATENTSEEK (PSRM) Qwen2-7B-Instruct 1024 2 13090 0.03 Adam 0.1 bfl6 10
LATENTSEEK (PSRM) | Qwen2.5-1.5B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bfl6 10
LATENTSEEK (PSRM) | Qwen2.5-1.5B-Instruct 1024 2 1 A100 0.03 Adam 0.1 bfl6 10
LATENTSEEK (PSRM) | Qwen2.5-7B-Instruct 1024 1 13090 0.03 Adam 0.1 bfl6 10
LATENTSEEK (PSRM) | Qwen2.5-7B-Instruct 1024 2 13090 0.03 Adam 0.1 bfl6 10
LATENTSEEK (PSRM) | Qwen2.5-14B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bfl6 10
LATENTSEEK (PSRM) | Qwen2.5-14B-Instruct 1024 2 1 A100 0.03 Adam 0.1 bfl6 10
LATENTSEEK (PSRM) | Llama-3.1-8B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bfl6 10
LATENTSEEK (PSRM) | Llama-3.1-8B-Instruct 1024 2 1 A100 0.03 Adam 0.1 bfl6 10

Table 17: LATENTSEEK (Self) Hyperparameters on AIME2024. Ir: learning rate. p: fraction ratio

methods ‘ model ‘ max len promptidx #GPU Ir optimizer p dtype Max Step
LATENTSEEK (Self) Qwen2-7B-Instruct 1024 1 14090 0.03 Adam 0.1 bfl6 10
LATENTSEEK (Self) Qwen2-7B-Instruct 1024 2 14090 0.03 Adam 0.1 bfl6 10
LATENTSEEK (Self) | Qwen2.5-1.5B-Instruct 1024 1 13090 0.03 Adam 0.1 bfl6 10
LATENTSEEK (Self) | Qwen2.5-1.5B-Instruct 1024 2 13090 10 Adam 0.3 bfl6 10
LATENTSEEK (Self) | Qwen2.5-7B-Instruct 1024 1 14090 0.05 Adam 0.2 bfl6 10
LATENTSEEK (Self) | Qwen2.5-7B-Instruct 1024 2 14090 0.05 Adam 0.2 bfl6 10
LATENTSEEK (Self) | Qwen2.5-14B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bfl6 10
LATENTSEEK (Self) | Qwen2.5-14B-Instruct 1024 2 1 A100 0.03 Adam 0.1 bfl6 10
LATENTSEEK (Self) | Llama-3.1-8B-Instruct 1024 1 14090 0.03 Adam 0.1 bfl6 10
LATENTSEEK (Self) | Llama-3.1-8B-Instruct 1024 2 1 A100 0.03 Adam 0.2 bfl6 10

Dataset.

The American Invitational Mathematics Examination (AIME) is a prestigious com-

petition designed to challenge high-achieving high school students with complex mathematical
problems, requiring advanced problem-solving and reasoning skills. The AIME2024 dataset, as
introduced in this context, serves as a valuable resource for evaluating the capabilities of lan-
guage models in tackling such sophisticated mathematical tasks. Sourced from the Huggingface
repository Maxwell-Jia/AIME _2024 (accessible at https://huggingface.co/datasets/
Maxwell-Jia/AIME_2024), the AIME2024 dataset comprises 30 meticulously curated prob-
lems. Although modest in quantity, each problem is deliberately designed to reflect the style, rigor, and
difficulty of the AIME, thereby providing a robust benchmark for assessing advanced mathematical
reasoning in computational models.

Experimental Details. For all backbones and both prompts, we use greedy decoding for inference.
For the hyperparameters of LATENTSEEK (Self) and LATENTSEEK (PSRM), please refer to Table 17
and Table 18, respectively. The mathematical reasoning prompts we employed in the self-reward
mechanism evaluate answers across four dimensions: correctness of the final answer, accuracy of
problem comprehension, correctness of numerical calculations, and provision of a clear answer,
weighted at 1:1:2:2, with the final score normalized to the range [-1, 0]. The prompt structure is
consistently applied across all backbones and both prompts.

28

https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024

Under review as a conference paper at ICLR 2026

Table 18: LATENTSEEK (PSRM) Hyperparameters on AIME2024. Ir: learning rate.

p: fraction ratio

methods model \ max len promptidx #GPU Ir optimizer p dtype Max Step
LATENTSEEK (PSRM) Qwen2-7B-Instruct 1024 1 13090 0.03 Adam 0.1 bfl6 10
LATENTSEEK (PSRM) Qwen2-7B-Instruct 1024 2 13090 0.03 Adam 0.1 Dbfl6 10
LATENTSEEK (PSRM) | Qwen2.5-1.5B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bflé 10
LATENTSEEK (PSRM) | Qwen2.5-1.5B-Instruct 1024 2 1 A100 0.03 Adam 0.1 Dbfl6 10
LATENTSEEK (PSRM) | Qwen2.5-7B-Instruct 1024 1 13090 0.03 Adam 0.1 bflé 10
LATENTSEEK (PSRM) | Qwen2.5-7B-Instruct 1024 2 14090 0.05 Adam 0.2 bfl6 10
LATENTSEEK (PSRM) | Qwen2.5-14B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bflé 10
LATENTSEEK (PSRM) | Qwen2.5-14B-Instruct 1024 2 1 A100 0.03 Adam 0.1 bfl6 10
LATENTSEEK (PSRM) | Llama-3.1-8B-Instruct 1024 1 14090 0.03 Adam 0.1 bfl6 10
LATENTSEEK (PSRM) | Llama-3.1-8B-Instruct 1024 2 1 A100 0.03 Adam 0.1 bfl6 10
Table 19: Prompt for answer correctness check

f"{math prefix}"

"INSTRUCTIONS:"

"Your task is to determine whether the provided answer is

correct."

"Think through the verification process carefully and

logically."

"IMPORTANT RULES:"

"l. Do NOT analyze the steps or methods used to arrive at the

answer."

"2. Only evaluate the final answer’s correctness."

"3. Your response must strictly follow the required format:"

f"- If the answer is correct, respond with:

' {VERA_ANSWER_SYMBOL}True’ ."

f"- If the answer is incorrect, respond with:

* {VERA_ANSWER_SYMBOL}False’ ."

Table 20: Prompt for calculation check

f"{math prefix}"

"INSTRUCTIONS:"

"1l. EXTRACT CALCULATION EXPRESSIONS: Extract all the

mathematical calculations from the PROPOSED SOLUTION."

"2. INDEPENDENT RECOMPUTATION: Break down the calculations

step-by-step and recompute them."

f"3. VERIFY: Compare your recomputation with the

PROPOSED SOLUTION. If any discrepancy is found, output

" {VERA_ANSWER_SYMBOL}False’. If all steps are correct, output

" {VERA_ANSWER_SYMBOL}True’ ."

"NOTE: You ONLY need to check calculations(like 1 + 1 = 2, 2 =«

3 = 6, etc). Ignore standalone numbers(like 1, 2, 3, etc) that

are not part of a computation."

G DETAILED FLOPS CALCULATION

This section provides a detailed breakdown of the Floating Point Operations (FLOPs) required for
the Genius baseline and our proposed LATENTSEEK method, using LLaMA3.1-8B-Instruct as the

backbone model.

G.1 FORWARD PAsSS FLOPS ESTIMATION

The total FLOPs for a single forward pass is estimated by summing the operational costs of its
constituent components, as detailed in Table 23. The total FLOPs for one forward pass is calculated

as follows:

FLOPStoryard = (227.5 x 10%) + (1573.1 x 10°) + (155.7 x 10%)
~ 2.29 x 10" FLOPs

29

Under review as a conference paper at ICLR 2026

Table 21: Prompt for understanding check

f"{math prefix}"

"INSTRUCTIONS:"

"1l. PROBLEM INTERPRETATION:"

" — Assess if the proposed solution clearly understands the
problem statement."

" — Ensure that the proposed solution addresses all relevant
aspects of the problem, without ignoring any key detail."

" - Flag if the solution misinterprets or overlooks the
problem’s core requirements or scope."

"2. ALIGNMENT WITH THE TASK:"

" — Verify that the solution responds to the specific question
or task outlined in the problem statement."

" - Ensure that the solution does not deviate from the
problem’s context or provides an unrelated answer."

" — Check if any critical parts of the problem have been
misinterpreted or neglected.”

"3. TERMINATION PROTOCOL:"

" — If the solution clearly misinterprets or fails to address
the problem correctly, stop and respond in the exact format:"
f" - '{VERA_ANSWER_SYMBOL}False’"

" — If the solution accurately captures the problem statement
and aligns with the required solution, respond in the exact
format:"

f" - '{VERA_ANSWER_SYMBOL}True’"

"EXAMPLES:"

"[Case 1] Problem: A shop is selling a drink at 1.5 times the
original price. If the original price is $10, what is the new
price?"

" Solution: The new price is 1.15 % $10 = $11.50."

" Assessment: The solution misinterprets the problem by
calculating 1.15 times the original price instead of 1.5
times."

f" Result: ’'{VERA_ANSWER.SYMBOL}False’"

"[Case 2] Problem: The second cup of coffee is half price. If
the first cup costs $5, how much is the second cup?"

" Solution: The second cup costs $5 % 0.5 = $2.50."

" Assessment: The solution correctly interprets the price as
half the original price for the second cup."

f" Result: '{VERA_ANSWER.SYMBOL}True’"

"[Case 3] Problem: A pizza has a radius of 8 inches. What is
the area of the pizza?"

" Solution: The area is WTZ, where r = 4 inches. The area is
l6m square inches."

" Assessment: The solution misinterprets the formula for the
area of a circle by using the radius incorrectly."

f" Result: ’{VERA_ANSWER.SYMBOL}False’"

"[Case 4] Problem: A train is moving at 60 km/h towards the
east. What is its wvelocity after 2 hours?"

" Solution: The velocity is 120 km/h west."

" Assessment: The solution correctly calculates the speed, but
misinterprets the direction as west instead of east."

f" Result: ’{VERA_ANSWER.SYMBOL}False’"

"CRITICAL REQUIREMENTS:"

"— Assess whether the solution addresses all parts of the
problem."

"— Ensure the solution does not deviate from the problem’s
intent."

"— Use exact output formats specified, showing no tolerance for
misinterpretations."

30

Under review as a conference paper at ICLR 2026

Table 22: Prompt for answer completeness check

f"{math prefix}"

"INSTRUCTIONS:"

"Your task is to verify whether the solution provides a
complete and final answer."

"Follow these rules carefully:"

"1l. Check if the solution reaches a clear and definitive final
answer."

"2. The answer must not be left incomplete, such as:"

" - Ending with an unresolved expression or formula instead of
a computed result."

" — Missing a conclusion or final statement explicitly stating
the final answer."

"3. If the solution is incomplete or lacks a final answer,
immediately stop checking further and respond in the exact
format:"

f" - ’{VERA_ANSWER_SYMBOL}False’"

"4, If the solution is complete and provides a final, explicit
answer, respond in the exact format:"

£" - "{VERA_ANSWER_SYMBOL}True’"

"Examples:"

"Example 1:"

"final answer: 8."

f"Your response: ’{VERA_ANSWER.SYMBOL}True’ (The solution
provides a final, definitive answer of 8.)"

"Example 2:"

"final answer: The area of the circle is ﬂr2, where r = 4.
f"Your response: ’{VERA_ANSWER.SYMBOL}False’ (The answer ends
with an unresolved formula, not a computed result.)"

"Example 3:"

"final answer: This question does not have an answer or I
cannot solve this problem."

f"Your response: ’{VERA_ANSWER SYMBOL}False’ (The solution lacks
a clear, final answer.)"

Table 23: Estimated FLOPs for a single forward pass of the LLaMA3.1-8B backbone model with
a context length of 512 tokens. The total is derived by summing the operational costs for both the
prefill and decode stages.

Prefill Stage (512 tokens) Decode Stage (512 tokens)
Component FLOPs Component FLOPs

q-proj 17.2G q-proj 33.6M
k_proj 4.3G k_proj 8.4M
V_proj 4.3G V_proj 8.4M
out_proj 17.2G out_proj 33.6M
gate_proj 60.1G gate_proj 117M
up-proj 60.1G up-proj 117M
down_proj 60.1G down_proj 117M
gk_matmul 2.1G gk_matmul 4.2M
sv_matmul 2.1G sv_matmul 4.2M
softmax 41.9M softmax 81.9K
attn_norm 14.7TM attn_norm 28.7K
mlp_norm 14.7M mlp_norm 28.7K
attn_add 2.1M attn_add 4.1K
mlp_add 2.1M mlp_add 4.1K
mlp_act 4.2M mlp_act 8.2K
Im_head 525M Im_head 525M

31

Under review as a conference paper at ICLR 2026

G.2 TotAL FLOPs FOR GENIUS

On the GSMSK dataset, the Genius framework involoves a full training phase on 100000 instances
followed by testing on 1319 instances. We assume a backward pass is approximately twice as
computationally expensive as a forward pass.

* Training FLOPs: For each of the 100000 instances, one forward pass and one full backward
pass are required.

FLOPSin = 100000 x (FLOPSgorwara + 2 X FLOPSforward) = 300000 X FLOPSorward

* Testing FLOPs: For each of the 1319 instances, one forward pass is required.

FLOPs st = 1319 X FLOPSgorward

FLOPSGCI’liuS = FLOPStrain + FLOPStCSt
= (300000 + 1319) x (2.29 x 10'1)
~ 6.90 x 10'°FLOPs

G.3 ToTAL FLOPS FOR LATENTSEEK

LATENTSEEK operates exclusively at test time on 1319 instances. Each iteration involoves two
forward passes (one for generation, one for reward evaluation) and one partial backward pass through
only the LM head. From Table 6, the average number of iterations on GSM8K is 1.27.

* Number of Forward Passes: 1319 instances x 1.27 iter/inst x 2 forward/iter ~ 3350

¢ Number of Backward Passes: 1319 instances x 1.27 iter/inst x 1 forward/iter ~ 1675

* Cost of Backward Pass: The backward pass is only through the LM head (525 MFLOPs
forward).

FLOPS,ackward LATENTSEEK = 2 X (525 X 106) =1.05 x 109 FLOPs
The total extimated FLOPs for LATENTSEEK is:

FLOPs; arentseek = (3350 X FLOPSgorward) + (1675 X FLOPSpackward LATENTSEEK
= (3350 x 2.29 x 10'") + (1675 x 1.05 x 10?)
~ 7.67 x 10 +1.76 x 10'?
~ 7.69 x 10'*FLOPs

G.4 EFFICIENCY THRESHOLD ANALYSIS

We calculate the number of inference instances (x) at which the total computational cost of using the
pre-trained Genius framework would equal the cost of using LATENTSEEK. This threshold is found
by solving the following equation, where the left side represents the total cost of Genius and the right
side represents the total cost of LATENTSEEK for z inferences:

6.90 x 10'° + - (2.29 x 10'") = 1.27 x (2 x 2.29 x 10'! +1.05 x 10°) - =

Solving for x yields the threshold:
r =~ 1.94 x 10°

This calculation demonstrates that LATENTSEEK remains more efficient than the Genius method
up to approximately 1.94 x 10° inference instances, which exceeds the size of Genius’s training set
(1.00 x 10° examples).

32

Under review as a conference paper at ICLR 2026

Let StepStep Let -F l n d Mbreak k u:itt(t;it”l
StepLet s s0lve A O hn §

mmmFirSt . calculate Sashathele :
(a) First Words (b) Second Words (¢) Third Words

Figure 7: Wordclouds of the first three words of the generated sequence using prompt 2 on the GSM8k
dataset with Llama3.1-8B-Instruct as the backbone.

Table 24: Case 1

QUESTION: A new program had 60 downloads in the first month.
The number of downloads in the second month was three times as
many as the downloads in the first month, but then reduced by
30% in the third month. How many downloads did the program have
total over the three months?

TRUE ANSWER: 366

ORIGINAL MODEL: {"thought process": "To find the total number
[...] Finally, we add up the number of downloads in all three
months to get the total number of downloads.", "final answer":
213}

OURS: {"thought process": "First solve the total downloads of
downloads, the three months, we need calculate the downloads
of the second month and the third month. [...] Now, we can
calculate the total downloads over the three months, total
downloads = 60 + 180 + 126 = 366.", "final answer": 366}

H QUALITATIVE ANALYSIS AND CASE STUDIES

To gain a deeper understanding of model-generated responses, we analyze the distribution of the
first three tokens produced under Prompt 1 in the GSM8K dataset Cobbe et al. (2021), using the
Llama3.1-8B-Instruct model. These distributions are visualized in the word cloud shown in Figure 7.
The appearance of nonsensical or obscure tokens—such as “thecy,” “theella,” and unrelated proper
names like “Mark” and “John”—suggests that the reasoning processes employed by language models
can diverge significantly from human reasoning, despite generating superficially plausible outputs.
Notably, consistent patterns emerge: the first generated tokens are often prepositions (e.g., “let”),
the second tokens are primarily verbs (e.g., “find,” “solve”), and the third tokens are predominantly
proper names, These findings suggest that optimal reasoning paths for language models may differ
from human strategies and could be more effectively modeled in latent space.

We present several representative cases in Tables 24 to 30 to demonstrate the divergence between
machine reasoning patterns and human cognition processes. These cases reveal that while our method
(OURS) generates linguistically anomalous expressions such as “total downloads of downloads”, let
need calculate to calculate” and ”let’ll more understand it”, it still achieves correct solutions. This
suggests that even if the decoded tokens from our updated embeddings lack syntactic and semantic
coherence, the logic and answer of the final generated output remain accurate. Notably, although the
baseline model produces erroneous answers that appear fundamentally distinct from ours (OURS) in
textual form, their latent representations exhibit structural proximity - through minimal adjustments
to embeddings in the latent space, the original output (ORIGINAL MODEL) can be transfromed
into correct solutions (OURS). These empirical evidences yield two critical implications. First, it
suggests that the reasoning paths employed by machines are fundamentally distinct from those
of humans. Second, while model errors may appear substantially deviant from correct answers
in textual outputs, they may maintain significant proximity to valid solutions in latent space.

33

Under review as a conference paper at ICLR 2026

Table 25: Case 2

QUESTION: Jen enters a lottery by picking 4 distinct numbers
from S = {1,2,3,---,9,10}. 4 numbers are randomly chosen from
S. She wins a prize if at least two of her numbers match the
chosen numbers, and wins the grand prize if all four match.
Find the conditional probability of winning the grand prize
given that she won any prize.

TRUE ANSWER: 116

ORIGINAL MODEL: {"thought process": "To solve this problem
[...] Finally, we can add m and n to get the final answer.",
"final answer": 5}

OURS: {"thought process": "First find this problem, let need

calculate to calculate the probability number of possible to
can choose a prize and the number of possible to can choose the
grand prize. [...] Therefore, the answer is $1 + 115 = 116S$.",
"final answer": 116}

Table 26: Case 3

QUESTION: Two trains leave San Rafael at the same time. They
begin traveling westward, both traveling for 80 miles. The next
day, they travel northwards, covering 150 miles. What’s the
distance covered by each train in the two days?

TRUE ANSWER: 230

ORIGINAL MODEL: To solve this problem, we need to break it down
into steps. [...] So, the distance covered by each train in the
two days is 197.5 miles. \boxed{197.5}

OURS: Let find this,, let’ll more understand it down step

two andLet 1: BothThe the trains are same route west both

first time on80ward) on same and and can consider they the
travel travel same distance of So’s denote the common xd’ they
both 80 miles on x have write up an following: [...] Since

both trains travel the same distance in each direction, the
distance covered by each train is 230 miles. The final answer
is: \boxed{230}

Table 27: Case 4

QUESTION: Carlos is planting a lemon tree. The tree will cost
$90 to plant. Each year it will grow 7 lemons, which he can
sell for $1.5 each. It costs $3 a year to water and feed the
tree. How many years will it take before he starts earning
money on the lemon tree?

TRUE ANSWER: 13

ORIGINAL MODEL: {"thought process": "To find out how many years
[...] We will continue this process for each subsequent year,
adding the maintenance cost and calculating the income until
the total income is greater than the total cost.", "final
answer": 7}

OURS: {"thought process": "Let determine the when long years
Carlos will take before the to earn earning money from his

tree tree, I first to find the revenue revenue for planting the

maintaining the tree. [...] Therefore, it will take 13 years
for Carlos to start earning money on the lemon tree.", "final
answer": 13}

34

Under review as a conference paper at ICLR 2026

Table 28: Case 5

QUESTION: Gunter is trying to count the jelly beans in a jar.
He asks his friends how many they think are in the jar. One
says 80. Another says 20 more than half the first one. A third
says 25% more than the first one. What is their average guess?
TRUE ANSWER: 80

ORIGINAL MODEL: {"thought process": "To find the average guess
[...] After finding the individual guesses, we can add them

up and divide by the number of guesses to find the average.",
"final answer": 76}

OURS: {"thought process": "First find the average of, we first
to calculate calculate each number guesses of The first friend
guesses 80. [...] Then we add the three guesses together, 80 +
60 + 100 = 240. Finally, we divide by 3 to get the average, 240
/ 3 =80.", "final answer": 80}

Table 29: Case 6

QUESTION: Frankie watches TV after he finishes his homework
every night. On Monday and Tuesday, he watched a l-hour episode
of his favorite show each night. On Wednesday, he watched a few
episodes of a 30-minute show. On Thursday, he finished homework
early and watched a l-hour episode and a 30-minute show. On
Friday, he got to stay up late for the weekend, so he watched
two l-hour episodes. If he watched 7 hours of TV in all, how
many 30-minute episodes did he watch on Wednesday?

TRUE ANSWER: 3

ORIGINAL MODEL: To determine how many 30-minute episodes
Frankie watched on Wednesday, [...] So, Frankie watched
\boxed{197.5} 30-minute episodes on Wednesday.

OURS: Let determine how many 30-minute episodes Frankie watched
on Wednesday, let will to break the total amount he spent
watching TV from night and then solve the the much time was
spent on Wednesday specificallyl, we’s summarize the time

time Frankie watching TV each day: [...] Thus, the number of
30-minute episodes Frankie watched on Wednesday is \boxed{3}.

Table 30: Case 7

QUESTION: Lloyd has an egg farm. His chickens produce 252 eggs
per day and he sells them for $2 per dozen. How much does Lloyd
make on eggs per week?

TRUE ANSWER: 294

ORIGINAL MODEL: {"thought process": "To find out how much Lloyd
makes on eggs per week, [...] Finally, we multiply the number
of dozens by the price per dozen to get the total amount Lloyd
makes in a week.", "final answer": 5880}

OURS: {"thought process": "First calculate Lloyd how much Lloyd
makes per eggs per week, first need calculate to determine out
the many eggs he produces in a week. [...] Total amount per
week = 147 x 2 = $294. Therefore, Lloyd makes $294 per week on
eggs..", "final answer": 294}

35

Under review as a conference paper at ICLR 2026

I COMPUTATIONAL RESOURCES

All experiments are performed with a single A100, or a single L40, or a single 4090, or a single 3090.

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

Our use of Large Language Models (LLMs) was strictly limited to polishing the language and
generating figures for the manuscript. All underlying research and intellectual content of this paper,
including the LATENTSEEK framework, its theoretical foundations, experimental design, and the
analysis of results, was completed entirely by the authors without assistance from LLMs.

36

	Introduction
	Test-Time Instance-Level Policy Gradient in Latent Space
	Problem Formulation: Test-Time Instance-Level Reasoning
	Reasoning via Policy Gradient in Latent Space
	LatentSeek Algorithm

	Empirical Results
	Experimental Setup
	State-of-the-art Test-time Reasoning Performance
	Ideal Experiment: Perfect Sharp Reward Model
	Test-Time Scaling: Scaling Trend Analysis of LatentSeek
	Qualitative Analysis
	Algorithmic Statistics

	Related Work
	Conclusion
	Discussion and future works
	Methods of Test-Time Instance-Level Reasoning
	Theoretical Analysis
	Preliminaries: Multiple Prover Interactive Proofs and NEXP
	Theoretical Analysis: Independent Updating
	Proofs of thm: MIP-Bounded and cor: NP-MIP-Bounded

	Derivation of Policy Gradient
	Additional Experimental Results
	LatentSeek vs BoN (N=10)
	Qwen3 AIME Performance
	Token Efficiency Comparison with BoN Baseline
	Greedy Decoding vs Sampling
	Limitations of Outcome Reward Model
	Performance vs Fraction Ratio

	Experimental Details
	Prompt Designation
	Backbone
	Baselines
	GSM8K
	MATH-500
	AIME2024

	Detailed FLOPs Calculation
	Forward Pass FLOPs Estimation
	Total FLOPs for Genius
	Total FLOPs for LatentSeek
	Efficiency Threshold Analysis

	Qualitative Analysis and Case Studies
	Computational Resources
	The Use of Large Language Models (LLMs)

