
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REASONING VIA TEST-TIME INSTANCE-LEVEL POLICY
GRADIENT IN LATENT SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) typically reason through explicit, step-by-step
natural-language traces. Humans, however, also rely on non-linguistic, unconscious
processes, such as the inspirations that emerge during the incubation period.
In this work, we introduce LATENTSEEK, a novel framework designed to
enhance the reasoning capabilities of LLMs through Test-Time Instance-level
Policy Gradient within the model’s latent space—thus complementing explicit
natural-language steps. LATENTSEEK employs policy gradient optimization to
iteratively refine latent representations, guided solely by a self-generated reward
signal. This allows the model to adapt its reasoning trajectory dynamically on
a per-instance basis. Empirical evaluations across diverse benchmarks, GSM8K,
MATH-500, and AIME2024 as well as multiple LLM families (e.g., LLaMA,
Qwen) demonstrate that LATENTSEEK outperforms established baselines,
including Chain-of-Thought (CoT), Best-of-N (BoN) and training-based methods.
Further analysis indicates that LATENTSEEK is computationally efficient, typically
converging within a few optimization iterations for average-level problems.
Moreover, the model’s performance improves as the number of latent update
iterations increases, highlighting the benefits of exploring within the latent space.
These findings highlight LATENTSEEK as a lightweight and effective paradigm for
improving the reasoning capabilities of LLMs without changing their parameters.

Reinforcement Fine-tuning

Prompt Engineering

Hand-crafted Prompt Optimization

PPO, GRPO, etc.

LatentSeek

Latent Space Exploration

Latent representation

Token

Latent Spcae

Frozen

Tuned

Large

Language

Model Large Language Model

LM Head

Language
Policy
Model

Reward
Function

Reward
FunctionYou are a helpful AI assistant. Please ...

Rollout

Reward

Let’s verify step by step...

Please explain and verify...

...

Iteration

Task: John buys a house for $80,000 and then puts in
$50,000 in repairs. [...] How much profit did he make?

The calculate calculate to ...

...

...

Reward

Seeking

Figure 1: Comparison of LATENTSEEK with RL-based fine-tuning and Prompt Engineering. RL-
based fine-tuning methods generally require iterative updates to model parameters guided by reward
signals. Prompt engineering approaches depend heavily on manually designed prompts. In contrast,
LATENTSEEK performing optimization within the latent space. Of note, the output of LATENTSEEK
may be incoherent and semantically ungrounded; please refer to §3.7.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable reasoning abilities, largely unlocked
by techniques such as Chain-of-Thought (CoT) prompting, which guides them to generate step-by-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

step solutions in natural language (Achiam et al., 2023; Wei et al., 2022). This approach, however,
presupposes that the optimal reasoning path for a neural network is one that mirrors human linguistic
expression. However, research in human cognition suggests that effective reasoning is not confined to
conscious, verbal articulation (Sio and Ormerod, 2009; Ritter and Dijksterhuis, 2014); it also involves
implicit, non-verbal processes, such as the “incubation” period where inspirations can emerge without
conscious effort (Sio and Ormerod, 2009; Sklar et al., 2012). These findings suggest that constraining
LLMs to reason only in natural language may be unnecessarily restrictive.

An emerging line of research validates this concept, using specialized fine-tuning to “internalize”
reasoning steps into sequences of continuous thought vectors (Deng et al., 2024; Hao et al., 2024).
While these approaches validate the promise of latent reasoning, they rely on costly and complex
training curricula to adapt the model. As illustrated in Figure 1, this aligns them with the broader
paradigm of training-based methods such as supervised fine-tuning or reinforcement fine-tuning,
which require iterative parameter updates that are computationally intensive and permanently alter
the backbone (Ouyang et al., 2022; DeepSeek-AI, 2025). As a result, they underutilize the model’s
semantic capacity in its pre-trained latent space1 and, in practice, present inferior performance to
that of CoT. This raises a critical question: Can we take the benefits of pre-trained latent space to
perform reasoning at test time, without the need for any parameter updates?

Motivated by these observations, we present the first attempt to perform seeking in the latent space by
introducing LATENTSEEK, a framework that significantly enhances instance-level reasoning at test
time. As shown in Figure 1, LATENTSEEK operates on a frozen model, circumventing the costs of fine-
tuning. Unlike static prompt engineering, LATENTSEEK performs dynamic, iterative optimization
on instance-specific latent representations that steer the pre-trained model’s reasoning process without
modifying its parameters. These latent representations act as a planning or control mechanism that
guides the model toward better reasoning paths for each specific problem instance. We optimize latent
representations at test time using the policy gradient method (Williams, 1992) to maximize reward
(§2.3). Specifically, for each reasoning problem, we update the token-wise latent representations
using guidance from the reward function, treating them as independent variables. In each iteration,
the updated latent representations are decoded into tokens, which serve as inputs for computing the
reward. Importantly, the reward function operates in a self-rewarding manner, relying solely on the
model’s internal capabilities without incorporating any external information. The process continues
until the reward exceeds a predefined threshold or the maximum number of iterations is reached.

Our innovative latent space reasoning method is simple yet effective: Notably, LATENTSEEK yields
average gains of 15.23 points over BoN on GSM8K, 4.72 points over Self-Reflection on MATH-500,
and 6.67 points over CoT on AIME2024 (Table 1). Furthermore, when using LLaMA3.1-8B-Instruct
as the backbone, LATENTSEEK surpasses prior arts including SimpleRL-Zoo (Williams, 1992)
(+18.1) and Genius (Xu et al., 2025) (+12.7), on the GSM8K and MATH-500 datasets (Table 2).
Further experiments (§3.4) show that test-time performance improves with the number of update
iterations, suggesting a complementary scaling axis: the number of optimization steps in latent
space. To better characterize the latent space, we conduct idealized experiments using a perfect,
ground-truth verifier that issues sharp rewards. Across all evaluation settings, this yields an average
gain of 19.12 points over CoT (Table 3), highlighting the benefits of pure exploration in the
latent space. Apart from the above, our case studies (§3.7) reveal that LATENTSEEK often attains
the correct answer even when its intermediate reasoning is unintelligible to human readers. This
divergence reveals that the optimal reasoning path for LLMs need not mirror human reasoning, and
that optimization in latent space may be a more native and effective paradigm.

Our contributions can be summarized as follows:

• We introduce LATENTSEEK, an efficient yet effective method that enhances reasoning capabilities
through test-time instance-level policy gradient, and demonstrate that it outperforms all baselines.

• We conduct a scaling analysis, revealing that performance at test time improves with an increased
number of update iterations, highlighting the potential of test-time scaling in the latent space.

• We conduct a statistical analysis to demonstrate the efficiency of LATENTSEEK and the appropri-
ateness of its output length. Our qualitative analysis further indicates that language models may
adopt reasoning strategies that diverge from human intuition.

1In this work, we take the convention (Hao et al., 2024) that treats the transformers’ output space ahead of the
final language model (LM) head as latent space (Figure 1), and the vector in the space as latent representation
(Figure 1); refer to §2.2 for notations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 TEST-TIME INSTANCE-LEVEL POLICY GRADIENT IN LATENT SPACE

2.1 PROBLEM FORMULATION: TEST-TIME INSTANCE-LEVEL REASONING

Let c be the context prompt of a reasoning problem instance and π a pre-trained auto-regressive
language model (LM) composed of a Transformer backbone πTransformer (Vaswani et al., 2017) and a
LM head πLM-head. For a reasoning sequence x = (x1, x2, . . . , xT),

π(x | c) =
T∏

t=1

π(xt | x<t, c), π(xt | x<t, c) = πLM-head(xt | zt), (1)

where x<t denotes the sequence of tokens preceding position t and zt := πTransformer(x<t, c) is the
latent representation associated with xt. Following Hao et al. (2024), we refer to zt as lying in the
latent space of xt. At test time, the ground truth is unknown, and thus a reward function R(x, c)
is introduced to evaluate the reasoning token sequence. Concluding the above, the objective for a
reasoning problem is to find an optimal reasoning path:

x∗ = argmax
x

R(x, c). (2)

Please refer to Section B for examples.

2.2 REASONING VIA POLICY GRADIENT IN LATENT SPACE

To solve the problem in Equation (2), we reformulate the task as optimizing over a sequence of latent
representations rather than directly searching for tokens. Specifically, we denote a sequence of latent
representations z = (z1, z2, . . . , zN), where zt lies in the latent space of xt and N is typically an
integer smaller than or equal to T . To identify the optimal sequence of latent representations, the
to-be-optimized objective is as follows:

z∗ = argmax
z

Ex∼π(x|z,c)[R(x, c)]. (3)

To sample x ∼ π(x | z, c), we first decode the latents z into their corresponding tokens, then continue
with autoregressive generation, since the complete sequence may extend beyond the latent-initialized
reasoning path. As T is the complete sequence length, the factorization is

π(x | z, c) =
N∏
t=1

πLM-head(xt | zt)︸ ︷︷ ︸
decode from latents

T∏
t=N+1

π(xt | x<t, c)︸ ︷︷ ︸
continue generation

, (4)

where, if the generation stops at t = N , the second product is empty and equals 1.

Test-Time Optimization of Latent Representations. Given the objective in Equation (3), we
optimize the latent representations using a direct policy gradient approach based on REINFORCE
(Williams, 1992). Assuming the independence of the latent representations, the update process is:

z← z+ η∇zJ (z), (5)

where the gradient ∇zJ (z), of our objective with respect to z can be derived as:

∇zJ (z) = Ex∼π(x|z,c) [R(x, c)∇z log π(x | z, c)] . (6)

Leveraging Equation (4), the gradient of the t-th latent representation is:

[∇zJ (z)]t = Ex∼π(x|z,c) [R(x, c)∇zt log π(xt | zt)] , (7)

where the expectation is approximated using the empirical mean in practical implementation. The
independence assumption is adopted for two main reasons. (1) Enlarged Exploration Space. Without
this assumption, the autoregressive structure would force the optimization to concentrate on the first

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

latent token, since all subsequent tokens are conditioned on it. This collapses the effective search
space. By contrast, imposing independence decouples the latent components, yielding a substantially
larger exploration space and a more flexible “launch pad” for generating the subsequent reasoning
trajectory

∏T
t=N+1 π(xt | x<t, c).(2) Theoretical Guidance. Our analysis in Section C draws an

analogy to Multi-Prover Interactive Proofs (MIP), and shows that the potential loss introduced by the
independence assumption can be mitigated by both the base model’s ability to faithfully generate the
follow-up reasoning trajectory and the reward model’s ability to evaluate it. Please refer to Sections C
and D for a theoretical justification guidance of this assumption and a detailed derivation of the
policy-gradient update.

2.3 LATENTSEEK ALGORITHM

Algorithm 1 LATENTSEEK

Require: Problem c, learning rate η, pre-trained model π, reward threshold τ , fraction ratio ρ, max
iterations K
x, z← π(x | c) ▷ Initialize latent representations with CoT: Equation (1).
r ← R(x, c) ▷ Self Reward with Equation (8).
T ← |x|
z← [z1, z2, . . . , zρT] ▷ Keep a ρ fraction, such as 20%
while k ≤ K and r ≤ τ do ▷ K is typically 10

z← z+ η∇zJ (z) ▷ Update ∇zJ (z): Equations (6) and (7).
x ∼ π(x|z, c) ▷ Sample sequence: Equation (4).
r ← R(x, c) ▷ Self Reward with Equation (8).

end while
return x̃

The LATENTSEEK algorithm is summarized in Algorithm 1. At a high level, it performs an instance-
level, gradient-guided search over a latent space by iteratively refining latent representations and
querying a self-rewarding mechanism. Concretely, at iteration k, the current latents z are decoded to
a full sequence x through a sampling method. Conditioned on x and the instance context c, a scalar
reward is then obtained from a self-rewarding mechanism:

R(x, c) ∼ π(· | x, c, promptself-reward). (8)

This reward signal drives a gradient-guided refinement step that updates the latent representations,
thereby biasing subsequent decodes toward higher-reward reasoning paths. The process runs for a
small number of iterations (typically less than 3), stopping early if the reward exceeds a threshold.

Enhancing Techniques. To ensure more stable and efficient optimization, we propose the inte-
gration of two complementary techniques. First, CoT Initialization: The initial latent representation
is derived from the CoT reasoning sequence. This approach leverages the reasoning capabilities of
CoT to establish an effective starting point for subsequent optimization. Second, Fractional Sequence
Optimization: Instead of optimizing the entire sequence of latent representations z = [z1, z2, . . . , zT],
we propose to optimize only a subsequence [z1, z2, . . . , zρT], where ρ ∈ (0, 1] is a hyperparameter.
The hyperparameter ρ must strike a balance between two competing objectives: maintaining adequate
representational capacity to support effective exploration, and limiting the number of latent repre-
sentations being updated. Excessive modification of latent representations—especially when their
decoded outputs lack semantic coherence—can compromise the reliability of the reward function.

3 EMPIRICAL RESULTS

3.1 EXPERIMENTAL SETUP

In this subsection, we list our experimental setup. See Sections F.1 to F.3 and F.5 to F.7 for more
details.

Reward Mechanism We employ the mathematical reasoning prompts introduced by Lifshitz et al.
(2025) to elicit the model’s self-reward computation. The reward prompts remain consistent across all

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Accuracy results. Bold: best performance, Underlined: second-best. Numbers highlighted
in red indicate the performance gap relative to the CoT method. Each rollout baseline uses a rollout
number comparable to LATENTSEEK ’s update iterations for fairness. See Section E.1 for larger-
number comparisons, Section E.3 for token consumption, Section E.8 for performance trends across
different fraction ratios, and Figure 3 for results of Qwen3 on AIME2024. †: requires training.

Methods
Model Qwen2 Qwen2.5 LLaMA3.1 Avg7B 1.5B 7B 14B 8B

GSM8K: Prompt 1
CoT 68.01 68.08 88.86 92.03 50.19 73.43
BoN 79.76 68.31 89.08 92.27 72.93 80.47
Self-Reflection (Shinn et al., 2023) 67.85 68.84 88.48 92.21 52.16 73.91
Self-Consistency 73.24 69.07 89.23 92.19 55.34 75.81
SFT† 65.86 49.20 72.55 82.39 40.33 62.07
SFT (Magpie 25K)† 76.50 66.48 83.01 90.30 70.81 77.42
iCoT† (Deng et al., 2024) 47.54 23.28 41.02 - 47.08 39.73
LATENTSEEK (Self) 84.38+16.37 70.89+2.81 90.14+1.28 92.49+0.46 78.54+28.35 83.29+9.86

GSM8K: Prompt 2
CoT 65.20 15.31 66.41 91.81 69.07 61.56
BoN 61.33 6.14 74.04 92.27 75.97 61.95
Self-Reflection (Shinn et al., 2023) 68.16 27.98 72.63 91.96 76.22 67.39
Self-Consistency 64.37 8.79 69.22 92.49 74.30 61.83
LATENTSEEK (Self) 80.21+15.01 44.20+28.89 85.06+18.65 92.72+0.91 83.70+14.63 77.18+15.62

MATH-500: Prompt 1
CoT 51.40 54.80 72.80 77.20 47.60 60.76
BoN 53.40 47.40 75.40 78.80 51.20 61.24
Self-Reflection (Shinn et al., 2023) 53.00 53.00 72.40 75.80 45.40 59.92
Self-Consistency 53.60 51.60 73.20 77.40 50.40 61.24
SFT (Magpie 25K)† 46.60 44.40 55.40 68.20 31.00 49.12
LATENTSEEK (Self) 57.40+6.00 55.60+0.80 75.60+2.80 80.00+2.80 54.60+7.00 64.64+3.88

MATH-500: Prompt 2
CoT 37.40 29.40 53.80 68.00 40.40 45.80
BoN 41.60 29.40 55.80 64.20 44.40 47.08
Self-Reflection (Shinn et al., 2023) 43.00 32.20 55.60 70.00 35.20 47.20
Self-Consistency 43.20 17.20 57.00 65.80 45.20 45.68
LATENTSEEK (Self) 44.80+7.40 34.40+5.00 57.60+3.80 71.00+3.00 47.00+6.60 50.96+5.16

AIME2024: Prompt1
CoT 0.00 3.33 6.67 10.00 0.00 4.00
BoN 0.00 0.00 10.00 16.67 0.00 5.33
Self-Reflection (Shinn et al., 2023) 0.00 6.67 6.67 10.00 0.00 4.67
Self-Consistency 3.33 0.00 3.33 13.33 6.67 5.33
SFT (Magpie 25K)† 3.33 0.00 3.33 10.00 3.33 4.00
LATENTSEEK (Self) 3.33+3.33 6.67+3.33 13.33+6.67 16.67+6.67 10.00+10.00 10.00+6.00

AIME2024: Prompt2
CoT 0.00 0.00 0.00 3.33 0.00 0.67
BoN 3.33 0.00 6.67 10.00 6.67 5.33
Self-Reflection (Shinn et al., 2023) 0.00 3.33 0.00 6.67 6.67 3.33
Self-Consistency 3.33 0.00 3.33 3.33 0.00 2.00
LATENTSEEK (Self) 3.33+3.33 3.33+3.33 13.33+13.33 10.00+6.67 6.67+6.67 7.33+6.67

datasets. For some models on specific tasks, we further incorporate a format-based reward (DeepSeek-
AI, 2025) to enhance their instruction-following capability. To further analysis the potential of our
paradigm, we introduce a Perfect Sharp Reward Model (PSRM), the details of which are discussed in
§3.3. All generated reward is chosen to be a number between -1 and 0.

Prompt Designation For robustness consideration, we use two prompts for evaluation, with the
first requiring a wrapped answer with \boxed{} (Yang et al., 2024; Team, 2024a) (Prompt 1) and the
second asking to format the answer as a json (Prompt 2).

Backbones To evaluate the generalizability of our approach, we conduct experiments with pre-
trained LLMs of different families and sizes: Qwen2-7B-Instruct, Qwen2.5-1.5B, 7B, 14B-Instruct
(Yang et al., 2024; Team, 2024a), LLaMA3.1-8B-Instruct (Team, 2024b).

Benchmarks Following Deng et al. (2024); Liu et al. (2025), we focus on mathematical reasoning
for evaluation. We evaluate on two standard benchmarks for reasoning, GSM8K (Cobbe et al., 2021)
and MATH-500 (Hendrycks et al., 2021), and a harder dataset AIME2024.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Accuracy score compared with more baseline methods on GSM8K and MATH-500 datasets
with Llama3.1-8B as backbone. The best performances are highlighted in bold.

Methods Supervision Train Backbone GSM8K MATH-500 Average

CoT - % Instruct 69.1 47.6 58.3
Few-Shot CoT (Lambert et al., 2025) - % Instruct 83.4 42.5 63.0
BoN Self % Instruct 76.0 51.2 63.6
Self-Rewarding (Yuan et al., 2025) Self " Instruct 76.0 30.2 53.1
Self-Relfection (Shinn et al., 2023) Self % Instruct 76.2 45.4 60.8
Self-Consistency Self % Instruct 55.3 48.2 51.8
ScPO (Prasad et al., 2024) Self " Instruct 71.1 31.0 51.1
CoH (Liu et al., 2023a) Self " Instruct 74.4 32.3 53.3
Genius (Xu et al., 2025) Self " Instruct 78.3 34.6 56.5
SPIN (Chen et al., 2024a) Data " Instruct 74.9 31.5 53.2
iCoT (Deng et al., 2024) Data " Instruct 47.1 - 47.1
SFT (Magpie 25K) Data " Instruct 70.8 31.0 50.9
GRPO (GSM8K Train) Data " Instruct - 50.2 50.2
SimpleRL-Zoo (Zeng et al., 2025) Data " Base 79.2 23.0 51.1
LATENTSEEK Self % Instruct 83.7 54.6 69.2

Baselines We compare our methods against several established baselines:

• Prompting (Training-Free): CoT (Wei et al., 2022) and Few-Shot CoT (Lambert et al., 2025).
• Explicit Search (Training-Free): Best-of-N (BoN) represents a highly effective search strategy, as

demonstrated by Liu et al. (2025). Self-Reflection (Shinn et al., 2023) is a search strategy imitating
humans’ reasoning pattern. Self-Consistency, also named majority vote, is a search mechanism in
explicit space that stems from a multi-agent system.

• Reinforcement Learning: (1) Self Reward: Self-Rewarding (Yuan et al., 2025), ScPO (Prasad et al.,
2024), CoH (Liu et al., 2023a), and Genius (Xu et al., 2025). (2) Verifiable Reward: SimpleRL-Zoo
(Zeng et al., 2025), GRPO (GSM8K train set), and SPIN (Chen et al., 2024a).

• Latent Chain-of-Thought: Although iCoT (Deng et al., 2024) requires an augmented training
dataset for GSM8K (Cobbe et al., 2021), it remains a canonical example of the latent CoT.

• Supervised Fine-Tuning (SFT): Following (Xu et al., 2025), we apply SFT on Magpie 25K. For
GSM8K, we also report SFT performance using its provided training set.

Sampling Method We use greedy decoding to sample from LATENTSEEK, as it is more computa-
tionally efficient and more robust. (See Section E.4 for an experimental comparison).

3.2 STATE-OF-THE-ART TEST-TIME REASONING PERFORMANCE

The main experimental results are presented in Table 1 and Table 2.

Best Performance on GSM8K (Cobbe et al., 2021) and MATH-500 (Hendrycks et al., 2021).
As shown in Table 1, LATENTSEEK surpasses every baseline across all 30 settings and achieves the
best average performance over all datasets. When averaged across backbones, the improvement over
BoN is 15.23 points on GSM8K and against Self-Reflection is 4.72 points on MATH-500. Compared
with Self-Consistency, the gap is 15.35 on GSM8K and 5.28 on MATH-500. The Qwen2.5 series
was explicitly trained with Prompt-1–distilled data (Team, 2024a), yielding strong CoT performance;
nevertheless, LATENTSEEK achieves further improvements and attains the highest scores across
baselines. Using LLaMA3.1 as the backbone, as shown in Table 2, we compare against a broader
set of baselines. On GSM8K, our method surpasses the CoT baseline by 14.6 points and BoN by 7.7
points; on MATH-500, the improvements are 7.0 and 3.4 points, respectively. It also outperforms the
self-reward RL method Genius (Xu et al., 2025) by 5.4 points on GSM8K and 20.0 points on MATH-
500. Even compared with verifiable-feedback RL methods such as SimpleRL-Zoo (Zeng et al., 2025),
trained on the base model, LATENTSEEK leads by an average of 18.1 points across the two datasets.

Robustness Across Backbones. The robustness of our method across backbones can be evaluated
along two axes: (1) Model Families: LATENTSEEK delivers best results across different models.
Focusing on 7–8B models and using the same averaging protocol over GSM8K, MATH-500, and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Accuracy results with Perfect Sharp Reward Model (PSRM). Self : the self-reward mechanism.
The reported score is the average of both prompts.

Reward Qwen2 Qwen2.5 LLaMA3.1 Avg
7B 1.5B 7B 14B 8B

GSM8K
LATENTSEEK-Self 82.3 57.5 87.6 92.6 81.1 80.2
LATENTSEEK-Perfect Sharp Reward Model 92.8+10.5 76.5+19.0 93.9+6.3 96.0+3.4 91.7+10.6 90.2+10.0

MATH-500
LATENTSEEK-Self 51.1 45.0 66.6 75.5 50.8 57.8
LATENTSEEK-Perfect Sharp Reward Model 71.8+20.7 66.7+21.7 81.8+15.2 86.6+11.1 70.5+19.7 75.5+17.7

AIME2024
LATENTSEEK-Self 3.3 5.0 13.3 13.3 8.3 8.6
LATENTSEEK-Perfect Sharp Reward Model 8.3+5.0 6.7+1.7 15.0+1.7 25.0+11.7 10.0+1.7 13.0+4.4

(a) Qwen2.5-1.5B-Instruct (b) Qwen2.5-7B-Instruct (c) Qwen2.5-14B-Instruct

Figure 2: GSM8K(Cobbe et al., 2021) Prompt 2 Accuracy changes with respect to the increasing
number of iterations. Orange: Perfect Sharp Reward Model. Blue: Self Reward Model.

both prompts, LATENTSEEK surpasses BoN by 7.67 points on Qwen2, exceeds Self-Reflection by
4.82 on Qwen2.5, and improves over Self-Consistency by 9.65 on LLaMA3.1. (2) Model Size: At
1.5B parameters, LATENTSEEK surpasses BoN on GSM8K by 28.89 points and at 14B parameters,
the margin on MATH-500 attains 6.80 points. These results provide robust evidence of our method’s
robustness across diverse model families and scale.

Challenging Problems — AIME2024. AIME2024 results appear in Table 1. Our method consis-
tently outperforms all baselines, achieving an average gain of 6.34 points over CoT across model
families and prompt configurations. The largest improvement occurs on AIME2024 with Prompt
2, where our approach exceeds CoT by 13.33 points and outperforms BoN by 6.67 points using
Qwen2.5-7B-Instruct. Averaged over backbones, LATENTSEEK also surpasses BoN by 4.67 points,
Self-Reflection by 5.33 points, and Self-Consistency by 4.67 points, indicating strong effectiveness in
more complex settings. For the performance of a stronger model (Qwen3-4B-Instruct-2507 (Yang
et al., 2025)) on AIME2024, please refer to Section E.2.

3.3 IDEAL EXPERIMENT: PERFECT SHARP REWARD MODEL

To inspect the value of exploration in latent space, we evaluate a Perfect Sharp Reward Model (PSRM)
that returns 0 only when the final answer exactly matches the ground truth and −1 otherwise. This
yields an all-or-nothing signal: until the correct answer is reached, every step receives identical
feedback. Results (Table 3) show that, despite this extreme sharpness, the PSRM still delivers
substantial improvements, outperforming the self-reward variant by an average of 10.67 points across
all evaluated settings. Conceptually, this setup reduces optimization to maximizing the success rate
under a near-constant reward landscape; the search carries almost no directional information and is
therefore close to blind exploration. This demonstrate that exploration in latent space alone can
yield meaningful performance improvements, even under sharp feedback.

Small Model and Large Iterations. Following Liu et al. (2025), we analyze the small Qwen2.5-
1.5B-Instruct (Team, 2024a) under a large iteration budget to probe the limits of latent-space
exploration. As shown in Table 4, Qwen2.5-1.5B-Instruct yields a 14-point gain over GPT-4o on
AIME2024. On MATH-500, it achieves a high accuracy score, trailing o1-preview by only
2.7 points. These results demonstrate that even a 1.5B-parameter model’s latent space is highly
expressive and that LATENTSEEK can be an effective mechanism for eliciting this expressivity.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Performance of Extreme Scaling on MATH-500 (Hendrycks et al., 2021) and AIME2024.
Setting the maximum update iteration to 256. K: average number of outputs or iterations.

Model Size Type MATH-500 AIME2024
Acc K Acc K

GPT-4o - CoT 74.6 - 9.3 -
o1-preview - CoT 85.5 - 44.6 -
Qwen2.5-1.5B-Inst. 1.5B TTS (Liu et al., 2025) 81.8 256.0 20.0 256.0

LATENTSEEK (PSRM) (Qwen2.5-1.5B-Inst.) 1.5B Latent Search 82.8 61.8 23.3 211.8

3.4 TEST-TIME SCALING: SCALING TREND ANALYSIS OF LATENTSEEK

In addition to increasing the number of generated tokens at test time (Muennighoff et al., 2025;
Snell et al., 2025), we propose an alternative approach to test-time scaling: increasing the number of
LATENTSEEK iterations. The relationship between model performance on GSM8K (Cobbe et al.,
2021) and the number of iterations is illustrated in Figure 2. As shown, an ideal reward model
demonstrates strong performance and yields a consistently improving trend with more iterations.
In contrast, the self-reward method exhibits rapid initial gains followed by a plateau, a behavior
we attribute to the reward model’s limited accuracy. Notably, as the number of iterations increases
further, performance eventually surpasses this plateau and continues to improve. The above shows
that test-time scaling remains attainable even under a sharply peaked reward. It further suggests
that, given an appropriate reward model, searching through the latent space offers a promising
new direction for test-time scaling.

3.5 COMPARISON WITH UNGUIDED SEARCH

Table 5: Comparison with Unguided Search on GSM8K. SE:
Stochastic Exploration.

Model Qwen2 Qwen2.5 LLaMA3.1 Avg7B 1.5B 7B 14B 8B

GSM8K: Prompt 1
SE (σ2 = 0.50) 66.19 64.22 88.60 92.33 49.73 72.21
SE (σ2 = 0.75) 65.96 63.53 88.60 92.03 49.73 71.97
SE (σ2 = 1.00) 65.13 63.76 89.08 91.88 50.57 72.08
LATENTSEEK 84.38 70.89 90.14 92.49 78.54 83.29

GSM8K: Prompt 2
SE (σ2 = 0.50) 64.32 16.68 65.60 92.04 67.85 61.30
SE (σ2 = 0.75) 64.77 15.69 64.92 91.89 67.02 60.86
SE (σ2 = 1.00) 63.84 16.07 66.34 92.12 66.72 61.02
LATENTSEEK 80.21 44.20 85.06 92.72 83.70 77.18

We compare LATENTSEEK with
a single-step stochastic explorative
search in latent space on the GSM8K
(Cobbe et al., 2021), to assess the
effectiveness of our gradient-guided
search. In this baseline, instead of per-
forming iterative gradient ascent, a
Gaussian noise is added once to the
initial latent representations,

z ← z + ϵ, ϵ ∼ N (0, σ2I)

, and evaluate three noise levels σ2 =
0.5, 0.75, and 1.0. As shown in Ta-
ble 5, LATENTSEEK outperforms the
stochastic exploration baselines by an average of 13.66 points, indicating that the gains arise from
effective gradient guidance rather than random perturbations.

3.6 ANALYSIS OF SELF-REWARD MECHANISM

Table 6: Self-Reward Mechanism Percentage Accuracy on
GSM8K.

Backbone Qwen2 Qwen2.5 LLaMA3.1 Avg7B 1.5B 7B 14B 8B

Acc 85.78 77.15 80.17 89.83 80.46 82.68

To understand the role of the self-
reward mechanism, we evaluate the
accuracy of the self-reward mecha-
nism on the GSM8K test set, in which
the generation uses the prompt 2 (the
json prompt). Specifically, we collect
all explored sequences, including in-
termediate reasoning steps as well as
final generated answers, and evaluate the alignment between the reward and ground-truth correctness.
We binarized our dense [−1, 0] reward to ”Positive” (Reward > −0.2) and ”Negative” (Reward

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

≤ −0.2) and compared this against the ground-truth correctness. This yields the results in Table 6.
The table demonstrates that in approximately 80% of the cases, the self-reward mechanism is reliable.
In practice, the ability to judge an answer cooperates with the ability to generate one, and together
they lead to substantially improved overall performance.

Table 7: Comparison with Constant Reward baseline

Backbone Qwen2 Qwen2.5 LLaMA3.1 Avg7B 1.5B 7B 14B 8B

LATENTSEEK (Constant) 60.19 29.49 64.52 90.67 69.98 62.97
LATENTSEEK (Self) 80.21 44.20 85.06 92.72 83.70 77.18
∆ +20.02 +14.71 +20.54 +2.05 +13.72 +14.21

Furthermore, we replace our self-
reward mechanism with a constant
negative reward baseline to isolate the
effect of reward guidance, assigning a
constant reward of -1 at every step.
The experiment is performed on the
same condition as Table 6. A nega-
tive reward is used because any non-
negative reward would simply reinforce the current tokens under argmax decoding and hinder
exploration. As reported in Table 7, this ablation causes an average performance drop of 14.21
points(eg., 85.06% to 64.52% for Qwen2.5-7B-Instruct), demonstrating that our self-reward guid-
ance is essential for effective optimization.

3.7 QUALITATIVE ANALYSIS

Table 8: Case Study. Latent optimized tokens are in blue.
Please refer to Section I for more cases.

QUESTION: Two trains leave San Rafael at the same time [...]
What’s the distance covered by each train in the two days?
ANSWER: 230
LATENTSEEK: Let find this,, let’ll more understand it down step
two andLet 1: BothThe the trains are same route west both first
time on80ward) on same and and can consider they the travel travel
same distance of So’s denote the common xd’ they both 80 miles
on x have write up an following: [...] [...] Since both trains travel
the same distance in each direction, the distance covered by each
train is 230 miles. The final answer is: \boxed{230}

An analysis of the LATENTSEEK’s
generated responses offers insight
into its reasoning processes, with a
representative example detailed in Ta-
ble 8. These responses often contain
nonsensical or obscure tokens—such
as “andLet”, “on80ward)”, and
“BothThe”—as well as syntactically
absurd phrases like “Let find this”
and “denote the common”. This phe-
nomenon indicates that the reasoning
processes of pre-trained language
models can diverge significantly from
human cognition, even when they
produce a correct final output. Consequently, this suggests that optimal reasoning paths for
language models may not align with human strategies, and thus may be more effectively sought
within the latent space, which is native to LLM and therefore also a natural choice. A more detailed
qualitative analysis and additional cases are presented in Section I.

3.8 ALGORITHMIC STATISTICS

Table 9: Algorithmic Statistics: (1) The ratio of answer length
to CoT length. (2) Average update iterations.

Model Qwen2 Qwen2.5 LLaMA3.1 Avg7B 1.5B 7B 14B 8B

GSM8K: Prompt 1
|Answer|/|CoT| 0.97 0.99 1.00 1.00 0.94 0.98
Avg.# Iter 0.94 0.75 0.24 0.05 1.66 0.72

GSM8K: Prompt 2
|Answer|/|CoT| 1.06 3.80 1.08 1.00 1.02 1.59
Avg.# Iter 0.55 4.59 1.52 0.14 0.58 1.48

MATH-500: Prompt 1
|Answer|/|CoT| 0.92 0.97 0.99 0.99 0.92 0.96
Avg.# Iter 2.09 1.93 1.10 0.62 2.35 1.62

MATH-500: Prompt 2
|Answer|/|CoT| 1.01 0.94 0.98 0.97 0.90 0.96
Avg.# Iter 0.72 2.19 0.98 0.49 1.65 1.21

Table 9 reports two key statistical fea-
tures: (1) the ratio of final answer
tokens to the original CoT tokens,
and (2) the average number of update
iterations across the entire dataset.
The ratio of the final answer’s to-
ken count to that of the original CoT
rarely exceeds 1.1, confirming that
performance gains are not achieved
through verbose generation. More-
over, the method converges rapidly,
requiring an average of fewer than
two update iterations for average-level
questions. This highlights the compu-
tational efficiency and rapid conver-
gence behavior of our method.

To further demonstrate the value of shifting computation from training to test time, we compare
Floating Point Operations (FLOPs) against Genius (Xu et al., 2025), a strong RL-based self-rewarding

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

baseline. As shown in Table 2, LATENTSEEK outperforms Genius by 12.7% on GSM8K using
LLaMA3.1-8B as the backbone. For this model, a single forward pass costs approximately 2.29×1011
FLOPs. Crucially, Genius requires full backpropagation through the entire model to update param-
eters, whereas LATENTSEEK backpropagates only through the language model, incurring about
1.05× 109 FLOPs. Following our calculations, LATENTSEEK remains more efficient for processing
up to approximately 1.94× 105 inference instances when compared to the total cost of the Genius
framework. This threshold notably exceeds the 100k examples in Genius’s training set, underscoring
the significant pratical efficiency of our approach. Please refer to Section G for detailed calculation.

4 RELATED WORK

Reasoning in Language Models. Recent advances in reasoning capabilities of large language
models (Brown et al., 2020; OpenAI, 2023) have been enhanced through prompting techniques. CoT
prompting (Wei et al., 2022; Kojima et al., 2022; Zhou et al., 2022) encourages models to generate
intermediate reasoning steps. Unlike these static approaches, our method dynamically optimizes the
reasoning process for each problem instance. Compute-optimal scaling (Snell et al., 2025; Misaki
et al., 2025) adaptively adjusts inference strategies based on task complexity. Latent reasoning
methods (Hao et al., 2024; Shen et al., 2025; Cheng and Van Durme, 2024; Deng et al., 2024; Chen
et al., 2024b) replace explicit text-based reasoning with continuous representations. The broader
field of learning to reason includes techniques like process supervision (Uesato et al., 2022) and
self-critique (Huang et al., 2022).

Reinforcement Learning for Language Models. The integration of Reinforcement Learning and
LLM starts from the realm of Human Feedback (RLHF) (Ouyang et al., 2022; Bai et al., 2022;
Rafailov et al., 2023), which commonly employs algorithms such as Proximal Policy Optimization
(PPO) (Schulman et al., 2017). Recent advancements (Liu et al., 2023b; Guo et al., 2025) specifically
address reasoning tasks with RL techniques. Innovations in reward modeling have explored human
preference-based architectures (Schulman et al., 2017; Hazra et al., 2024), automated language model-
driven design (Kwon et al., 2023), and multi-agent verification frameworks (Lifshitz et al., 2025).

Controllable Generation and Test-Time Optimization. Various approaches have been developed
for controlling language model outputs, including conditioning on control codes (Keskar et al., 2019),
gradient-based steering (Dathathri et al., 2019), and prompt optimization (Qin et al., 2023). At test
time, techniques (Sun et al., 2023; Zhang et al., 2025; Wang et al., 2022) improve outputs through
sampling and selection. Some Test-Time Training(TTT) framewroks (Sun et al., 2020; 2024; Hardt
and Sun, 2023) integrate self-supervised objectives for online model updates. Our work differs from
test-time planning approaches (Hao et al., 2023) by optimizing in a continuous latent space rather
than performing a discrete search.

Prompt Tuning and Soft Prompt. Prompt Tuning adapts language models by prepending trainable
vectors to inputs or hidden states (Lester et al., 2021; Liu et al., 2024a; Li and Liang, 2021; Liu et al.,
2021). However, both require labeled data and full backpropagation, incurring high computational
cost. In contrast, our method leverages latent-space manipulation without training data or model
updates, enabling efficient, flexible adaptation.

5 CONCLUSION

In conclusion, the LATENTSEEK framework introduces a novel and efficient approach to enhancing
reasoning capabilities in LLMs by leveraging TTIA in the latent space. By optimizing latent represen-
tations through policy gradient, LATENTSEEK circumvents the need for parameter updates, offering
an alternative to methods that require substantial retraining or reinforcement learning. Empirical
results across multiple reasoning benchmarks consistently demonstrate the superior performance
of LATENTSEEK compared to existing baselines, such as CoT, BoN, and reinforcement learning-
based techniques. Furthermore, the framework proves to be computationally efficient, with rapid
convergence for average-level problems. This work also demonstrates a new possible avenue for
test-time scaling in the latent space. Ultimately, LATENTSEEK represents a significant step forward
in advancing LLMs in the realm of TTIA reasoning. Please refer to Section A for discussions and
future works.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on improving the reasoning capabilities of large language models (LLMs). The
research is methodological in nature and does not involve human subjects, sensitive data, or de-
ployment in real-world applications. Our contributions are confined to improving core algorithmic
aspects of LLM reasoning and do not introduce new data that could raise concerns regarding privacy,
bias, or misuse. While we recognize that LLMs can have broader societal impacts, particularly
when used in downstream applications, our work does not directly engage with these deployment
scenarios. We also note that enhanced reasoning capabilities may indirectly influence downstream
model behavior. However, the improvements described in this paper are academic-purpose and do not
facilitate manipulation, deception, or unethical use of LLMs. Overall, we believe that our research
poses no direct ethical or societal risks and is aligned with the responsible development of trustworthy
AI systems.

REPRODUCIBILITY STATEMENT

The findings presented in this paper are supported by a detailed disclosure of our methodology,
designed to enable full reproducibility. The core methodology and algorithmic formulation of our
approach are presented in §2. Our full experimental protocol, which covers the datasets, evaluation
benchmarks, and baselines, is detailed in §3. All requisite implementation details for replication,
including model backbones and hyperparameters, are documented in Section F. Taken together, the
paper and its appendices provide a complete blueprint for reproducing our work. For the statement on
our use of LLMs, please see Section K. The code is attached to the submission.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information
Processing Systems (NeurIPS), 35:24824–24837, 2022.

Ut Na Sio and Thomas C Ormerod. Does incubation enhance problem solving? a meta-analytic review. Psychol
Bull, 135(1):94–120, January 2009.

Simone M Ritter and Ap Dijksterhuis. Creativity-the unconscious foundations of the incubation period. Front
Hum Neurosci, 8:215, April 2014.

Asael Y. Sklar, Nir Levy, Ariel Goldstein, Roi Mandel, Anat Maril, and Ran R. Hassin. Reading and do-
ing arithmetic nonconsciously. Proceedings of the National Academy of Sciences, 109(48):19614–19619,
2012. doi: 10.1073/pnas.1211645109. URL https://www.pnas.org/doi/abs/10.1073/pnas.
1211645109.

Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to internalize cot step
by step. CoRR, 2024.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. Training
large language models to reason in a continuous latent space. CoRR, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in Neural Information Processing Systems (NeurIPS), 35:27730–27744, 2022.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8:229–256, 1992.

Fangzhi Xu, Hang Yan, Chang Ma, Haiteng Zhao, Qiushi Sun, Kanzhi Cheng, Junxian He, Jun Liu, and Zhiyong
Wu. Genius: A generalizable and purely unsupervised self-training framework for advanced reasoning. CoRR,
2025.

11

https://www.pnas.org/doi/abs/10.1073/pnas.1211645109
https://www.pnas.org/doi/abs/10.1073/pnas.1211645109
https://arxiv.org/abs/2501.12948

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_
files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Language
agents with verbal reinforcement learning. Advances in Neural Information Processing Systems, 36:8634–
8652, 2023.

Shalev Lifshitz, Sheila A McIlraith, and Yilun Du. Multi-agent verification: Scaling test-time compute with
multiple verifiers. CoRR, 2025.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li,
Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang,
Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai
Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng,
Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu,
Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren,
Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zhihao Fan. Qwen2 technical report. CoRR, 2024.

Qwen Team. Qwen2.5: A party of foundation models, September 2024a. URL https://qwenlm.github.
io/blog/qwen2.5/.

Llama Team. The llama 3 herd of models, 2024b. URL https://arxiv.org/abs/2407.21783.

Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biqing Qi, Wanli Ouyang, and Bowen Zhou. Can 1b
llm surpass 405b llm? rethinking compute-optimal test-time scaling. CoRR, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to
solve math word problems. CoRR, 2021.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In Advances in Neural
Information Processing Systems (NeurIPS), 2021.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester
James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria Graf, Jena D.
Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca Soldaini, Noah A. Smith,
Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3: Pushing frontiers in open language model
post-training, 2025. URL https://arxiv.org/abs/2411.15124.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. CoRR, 2025.

Archiki Prasad, Weizhe Yuan, Richard Yuanzhe Pang, Jing Xu, Maryam Fazel-Zarandi, Mohit Bansal, Sainbayar
Sukhbaatar, Jason Weston, and Jane Yu. Self-consistency preference optimization, 2024. URL https:
//arxiv.org/abs/2411.04109.

Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. Chain of hindsight aligns language models with feedback. In
International Conference on Learning Representations (ICLR), 2023a.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-zoo:
Investigating and taming zero reinforcement learning for open base models in the wild, 2025. URL https:
//arxiv.org/abs/2503.18892.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning converts weak
language models to strong language models, 2024a.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen
Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer,
Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling. CoRR, 2025.

12

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.04109
https://arxiv.org/abs/2411.04109
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling parameters for reasoning. In International Conference on Learning
Representations (ICLR), 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. In
Advances in Neural Information Processing Systems (NeurIPS), volume 33, pages 1877–1901, 2020.

OpenAI. Gpt-4 technical report. CoRR, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models
are zero-shot reasoners. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Olivier
Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables complex reasoning in large language
models. In International Conference on Learning Representations (ICLR), 2022.

Kou Misaki, Yuichi Inoue, Yuki Imajuku, So Kuroki, Taishi Nakamura, and Takuya Akiba. Wider or deeper?
scaling llm inference-time compute with adaptive branching tree search. CoRR, 2025.

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing chain-of-
thought into continuous space via self-distillation. CoRR, 2025.

Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through dense
representations. CoRR, 2024.

Haolin Chen, Yihao Feng, Zuxin Liu, Weiran Yao, Akshara Prabhakar, Shelby Heinecke, Ricky Ho, Phil Mui,
Silvio Savarese, Caiming Xiong, and Huan Wang. Language models are hidden reasoners: Unlocking latent
reasoning capabilities via self-rewarding, 2024b. URL https://arxiv.org/abs/2411.04282.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Michele Catasta, Johan Legrand, Jelena Luketina, Andrew
Lampinen, Aja Brownsmith, Zoya Bylinskii, Victoria Ellison, et al. Solving math word problems with
process-based and outcome-based feedback. CoRR, 2022.

Jiayuan Huang, Jierui Kwon, Kevin Cohen, and Nanyun Peng. Language models as inductive reasoners. In
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
(Volume 1: Long Papers), 2022.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen,
Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from ai feedback.
CoRR, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea Finn. Direct
preference optimization: Your language model is secretly a reward model. Advances in Neural Information
Processing Systems (NeurIPS), 36, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. CoRR, 2017.

Tianle Liu, Tianyi Zhou, Xiaofei Lin, Percy Liang, and Tao Xiao. Statistical rejection sampling improves
preference optimization. International Conference on Learning Representations (ICLR), 2023b.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
CoRR, 2025.

Rishi Hazra, Alkis Sygkounas, Andreas Persson, Amy Loutfi, and Pedro Zuidberg Dos Martires. Revolve:
Reward evolution with large language models using human feedback. In International Conference on Learning
Representations (ICLR), 2024.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language models. In
International Conference on Learning Representations (ICLR), 2023.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher. Ctrl: A conditional
transformer language model for controllable generation. CoRR, 2019.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. Plug and play language models: A simple approach to controlled text generation. In International
Conference on Learning Representations (ICLR), 2019.

13

https://arxiv.org/abs/2411.04282

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yao Qin, Asli Celikyilmaz, Wenjing Li, Jung H Oh, Victoria Lin, Semih Agrawal, Yang Zhou, Singaram Kumar,
Jing Shen, Mitesh M Khapra, et al. Pomp: Unsupervised controllable generation by optimizing prompts via
reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems, 2023.

David Sun, Jasmine Jiang, Terry Nguyen, James Tsai, Yizhe Xia, Kyunghyun Cho, Heng Ji, Hugo Larochelle,
Xiang Yuan, David Simchi-Levi, et al. Recitation-augmented language models. In International Conference
on Learning Representations (ICLR), 2023.

Zhaowei Zhang, Fengshuo Bai, Qizhi Chen, Chengdong Ma, Mingzhi Wang, Haoran Sun, Zilong Zheng, and
Yaodong Yang. Amulet: Realignment during test time for personalized preference adaptation of llms. In The
Thirteenth International Conference on Learning Representations, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought reasoning in language models. CoRR, 2022.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training with
self-supervision for generalization under distribution shifts. In International Conference on Machine Learning
(ICML), 2020.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei Chen, Xiaolong
Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive hidden states. CoRR, 2024.

Moritz Hardt and Yu Sun. Test-time training on nearest neighbors for large language models. In International
Conference on Learning Representations (ICLR), 2023.

Shibo Hao, Yi Wang, and Bin Xiao. Reasoning with language model is planning with world model. In Annual
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. In
Annual Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt understands, too.
AI Open, 5:208–215, 2024a.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In Annual Meeting
of the Association for Computational Linguistics (ACL), 2021.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning v2:
Prompt tuning can be comparable to fine-tuning universally across scales and tasks. In Annual Meeting of the
Association for Computational Linguistics (ACL), 2021.

Salil Vadhan and Qian Zhang. Lecture 31: Multiprover interactive proofs and probabilistically checkable proofs.
In Scribe Notes of CS221, Harvard School, 2002.

S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University Press,
2006. ISBN 978-0-521-42426-4. URL https://theory.cs.princeton.edu/complexity/
book.pdf.

Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover interactive proofs: how to
remove intractability assumptions. In Annual ACM Symposium on Theory of Computing, STOC ’88, page
113–131, New York, NY, USA, 1988. Association for Computing Machinery. ISBN 0897912640. doi:
10.1145/62212.62223. URL https://doi.org/10.1145/62212.62223.

L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time has two-prover interactive protocols. In
Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science, pages 16–25 vol.1, 1990.
doi: 10.1109/FSCS.1990.89520.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang Liu, and Yahui
Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. CoRR, 2024b.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models.
CoRR, 2024.

14

https://theory.cs.princeton.edu/complexity/book.pdf
https://theory.cs.princeton.edu/complexity/book.pdf
https://doi.org/10.1145/62212.62223
https://arxiv.org/abs/2310.06825

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
Llamafactory: Unified efficient fine-tuning of 100+ language models. In Annual Meeting of the Association
for Computational Linguistics (ACL), 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In International Conference on Learning
Representations (ICLR), 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Appendices
Contents

A Discussion and future works 18

B Methods of Test-Time Instance-Level Reasoning 18

C Theoretical Analysis 18

C.1 Preliminaries: Multiple Prover Interactive Proofs and NEXP 18

C.2 Theoretical Analysis: Independent Updating . 19

C.3 Proofs of Theorem C.10 and Theorem C.11 . 21

D Derivation of Policy Gradient 22

E Additional Experimental Results 23

E.1 LATENTSEEK vs BoN (N=10) . 23

E.2 Qwen3 AIME Performance . 23

E.3 Token Efficiency Comparison with BoN Baseline 24

E.4 Greedy Decoding vs Sampling . 24

E.5 Limitations of Outcome Reward Model . 25

E.6 Trends of Reward . 25

E.7 Comparison of Optimizing Initial-Stage Latent Tokens and Optimizing Middle-Stage
Latent Tokens . 25

E.8 Performance vs Fraction Ratio . 26

F Experimental Details 26

F.1 Prompt Designation . 27

F.2 Backbone . 27

F.3 Baselines . 27

F.4 Hyperparameter Tuning . 28

F.5 GSM8K . 29

F.6 MATH-500 . 29

F.7 AIME2024 . 31

G Detailed FLOPs Calculation 31

G.1 Total FLOPs for Genius . 35

G.2 Total FLOPs for LATENTSEEK . 35

G.3 Efficiency Threshold Analysis . 35

G.4 Comparison with iCoT . 35

H Latent Space Trajectories 36

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

I Qualitative Analysis and Case Studies 39

J Computational Resources 42

K The Use of Large Language Models (LLMs) 42

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A DISCUSSION AND FUTURE WORKS

While our work demonstrates the effectiveness of latent space optimization, we offer some discussion
for inspiring future research.

Reward Models. A primary limitation of our current approach is its reliance on a self-rewarding
mechanism. While this proves effective, the optimization process is inherently constrained by the
base model’s own evaluation capabilities and potential biases, lacking a truly objective external
signal. The ideal scenario would involve a principled Outcome Reward Model (ORM) that assesses
the final answer and provides unambiguous guidance for the search. However, as detailed in our
experiments in Section E.5, we found that current publicly available ORMs are not yet sufficiently
robust or generalizable for this task; their noisy signals proved less effective for guiding the latent
space optimization than the more consistent self-reward mechanism. This highlights a critical area
for future work: the development of more powerful verifiers capable of reliably scoring complex
reasoning tasks.

Latent Optimization. We adopt standard policy-gradient methods in our implementation, leaving
the exploration of more advanced reinforcement learning algorithms—such as Proximal Policy
Optimization (PPO)—to future work. In addition, pursuing latent-space–specific optimization may
be a worth exploring direction.

Large Base Model. Our experiments are conducted on models up to 14B-parameter scale, con-
strained by available computational resources. Scaling the approach to larger base models remains an
important avenue for future investigation.

B METHODS OF TEST-TIME INSTANCE-LEVEL REASONING

We list the formulations of two classical test-time instance-level reasoning methods:

• Prompt Engineering: Given the problem instance prompt c, the reward function is simply the
language modeling distribution:

x∗ = argmax
x

π(x | c) (9)

• Best-of-N (BoN): Given N i.i.d sequences x(1),x(2), . . . ,x(N) ∼ π(· | c),

x∗ = argmax
x∈{x(1),x(2),...,x(N)}

R(x, c) (10)

C THEORETICAL ANALYSIS

This section offers a theoretical framework for LATENTSEEK, with a main focus on justifying
the expressiveness of the independence among latent variables, which may be a good start for
understanding and inspecting our algorithm.

C.1 PRELIMINARIES: MULTIPLE PROVER INTERACTIVE PROOFS AND NEXP

This section introduces the concept of Multi-prover Interactive Proofs (MIP) and NEXP for complete-
ness. A comprehensive exposition of MIP is provided in Vadhan and Zhang (2002), while Arora and
Barak (2006) offers a detailed introduction to theoretical computer science, encompassing concepts
such as language and Turing Machine.

In the Multi-Prover Interactive Proof (MIP) model, provers may communicate with one another prior
to the initiation of the proof process. Once the proof process begins, however, such communication is
prohibited, and each prover interacts with the verifier in a fully private manner.

Definition C.1 (Multiple Prover Interaction). Let P1, P2, . . . , Pk : {0, 1}∗ → {0, 1}∗ be func-
tions. A n-round interactions between the verifier V and the provers P1, P2, . . . , Pk, denoted by
⟨(P1, P2, P3, . . . , Pk), V ⟩ (x) is the sequence of the following strings q11, q21, . . . , qk1, a11, a21,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

. . . , ak1, q12, . . . , qk2, a12, . . . , ak2, . . . , q1n, q2n, . . . , qkn, . . . , a1n, . . . , akn, v defined as follows:

q11, q21, . . . , qk1 = V (x)

a11 = P1(x, q11)

a21 = P2(x, q21)

. . .

ak1 = Pk(x, qk1)

q12, q22, . . . , qk2 = V (x, q11, a11, . . . , qk1, ak1)

. . .

akn = Pk(x, qk1, ak1, . . . , qkn)

v = V (x, q11, a11, . . . , akn, qkn)

We denote ⟨(P1, P2, P3, . . . , Pk), V ⟩V (x) to be last output v.
Definition C.2 (k-MIP Vadhan and Zhang (2002)). A language L is in k-MIP if there is a Turing
machine verifier V such that on inputs x, a11, . . . , aij , V runs in time polynomial in |x| and such
that:

• Efficiency: The number and length of all messages exchanged is at most polynomial in the
common input x.

• Completeness: x ∈ L⇒ ∃P1, P2, . . . , Pk, P r[⟨(P1, P2, . . . , Pk), V ⟩V (x) = 1] ≥ 2
3

• Soundness: x /∈ L⇒ ∀P1, P2, P3, . . . , Pk, P r(⟨(P1, P2, . . . , Pk), V ⟩V (x) = 1] ≤ 1
3

Definition C.3 (MIP Vadhan and Zhang (2002)). MIP = ∪kk −MIP

Next, we’ll introduce NEXP.
Definition C.4 (NTIME Arora and Barak (2006)). For every function T : N→ N and L ⊆ {0, 1}∗,
we say that L ∈ NTIME(T (n)) if there is a constant c > 0 and a cT (n)-time non-deterministic
Turing Machine M such that for every x ∈ {0, 1}∗, x ∈ L⇔M(x) = 1.
Definition C.5 (NP). NP = ∪k∈N NTIME(nk)

Definition C.6 (NEXP). NEXP = ∪k∈N NTIME(2n
k

)

C.2 THEORETICAL ANALYSIS: INDEPENDENT UPDATING

Mentioned in Section 2, the latent representations are independent, which results in the independence
of the token update process, which at first glance may constrain the model’s expressive capacity.
In this subsection, we focus on decision problems Arora and Barak (2006). Despite discrepancies
between theoretical frameworks and practical challenges, valuable insights can be gained. Specifically,
it is possible to demonstrate that the model’s expressivity remains theoretically comparable in spite
of the updating independence.

Our method is strongly related to a TCS complexity class, Multi Prover Interactive Proofs Ben-Or
et al. (1988) or simply MIP. We initially outline the notations for multiple prover interactions and
subsequently define the associated complexity class for our latent thought framework, which we
later demonstrate is equivalent to MIP and the complexity class NEXP (solved in exponential time
by a non-deterministic Turing Machine). Please refer to Section C.1 for preliminaries. We list the
relationship as follows:

• MIP: A verifier interacts with multiple non-communicating provers to decide membership
in a language.

• LATENTSEEK: the optimized tokens, as they are updated independently, act like the non-
communicated provers who jointly determine the outcome. After decoding the latent vectors,
where each prover proposes its own output, the subsequent autoregressive generation is
regarded as part of the verifier function V . Regarding the CoT initialization, recall that the
MIP framework permits communication among provers before the proving process begins.
Accordingly, initializing the latent vectors with a CoT prompt can be interpreted as this
pre-proof communication stage.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• MIP-Bounded (LATENTSEEK): Different from MIP, each prover in LatentSeek can only
generate 1 token, whose number of bits is bounded. Furthermore, a polynomial proportion
of tokens (such as, ρ = 0.2) is allowed to be optimized, leading to a polynomial number of
provers.

Definition C.7 (Multiple Prover Interaction). Let P1, P2, . . . , Pk : {0, 1}∗ → {0, 1}∗ be func-
tions. A n-round interactions between the verifier V and the provers P1, P2, . . . , Pk, denoted by
⟨(P1, P2, P3, . . . , Pk), V ⟩ (x) is the sequence of the following strings q11, q21, . . . , qk1, a11, a21,
. . . , ak1, q12, . . . , qk2, a12, . . . , ak2, . . . , q1n, q2n, . . . , qkn, . . . , a1n, . . . , akn, v defined as follows:

q11, q21, . . . , qk1 = V (x)

a11 = P1(x, q11)

a21 = P2(x, q21)

. . .

ak1 = Pk(x, qk1)

q12, q22, . . . , qk2 = V (x, q11, a11, . . . , qk1, ak1)

. . .

akn = Pk(x, qk1, ak1, . . . , qkn)

v = V (x, q11, a11, . . . , akn, qkn)

We denote ⟨(P1, P2, P3, . . . , Pk), V ⟩V (x) to be last output v.

Different from MIP, which allows each prover to output a polynomial-length string, in our method,
each prover can only output a bounded length of string (a token). We name the corresponding
complexity class of our method as MIP-Bounded.
Definition C.8 (MIP-Bounded). A language L is in MIP-Bounded if there is a Turing machine verifier
V , and a polynomial function poly(·) such that on inputs x, aij , qij , V runs in time polynomial in |x|
and such that:

• Bounded: ∀i, output of Pi is bounded, its output denoted as |aij | satisfies that |aij | ≤ C,
where C is a constant greater than 1.

• Completeness: x ∈ L ⇒ ∃P1, P2, . . . , Ppoly(|x|), P r[⟨(P1, P2, . . . , Ppoly(|x|)), V ⟩V (x) =

1] ≥ 2
3

• Soundness: x /∈ L ⇒ ∀P1, P2, . . . , Ppoly(|x|), P r[⟨(P1, P2, . . . , Ppoly(|x|)), V ⟩V (x) =

1] ≤ 1
3

Remark C.9. The constant C in the definition can be any constant. It won’t affect the definition as
long as it’s a constant.
Theorem C.10. MIP-Bounded = MIP

Theorem C.10 establishes the efficacy of our framework. By building on the classical result of Babai
et al. (1990), we derive Theorem C.11 that clearly illustrates the expressive power of our approach.
Refer to Section C.3 for detailed proofs.
Corollary C.11. NP ⊂ NEXP = MIP-Bounded

The collollary indicates that if the verifier and the provers satisfy some condition, the LatentSeek
framework is strong enough, and the independence assumption can be amended. Intuitively speaking,
the independence between the provers can be controlled by the verifier, such as the verifier can ask
for dependence between the generated tokens.

There is a limitation in this theoretical analysis, which is why we present it in the appendix: it should
be viewed only as an indication or heuristic guideline rather than a rigorous validation. In particular,
we do not account for the change through gradient updates. As a result, there is no guarantee that
every token becomes reachable in each step, especially when each prover relies solely on the gradients
from the language-model head for guidance.

All in all, the theorem indicates that with a “strong” base model and a “well-aligned” reward
model, the deficit introduced by the independence assumption can be effectively mitigated.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.3 PROOFS OF THEOREM C.10 AND THEOREM C.11

Theorem C.12. MIP-Bounded = MIP

Proof. By the classical results of MIP = 2-MIP = NEXP Babai et al. (1990), it’s sufficient to consider
only two provers in the MIP class.

We will first prove that MIP ⊆ MIP-Bounded.

For all L ∈ MIP, ∀x, in the j-th turn, the proofs offered by the two provers are denoted as a1j , a2j , the
verifier as V . According to the definition of MIP, ∃ polynomial function ρ(·) such that |aij | ≤ ρ(|x|)),
we set poly(·) = 2ρ(·)

C , which is also polynomial. We design the verifier V ′ = V .

1. If x ∈ L, ∃ poly(|x|) and provers P ′
1, P

′
2, . . . , P

′
poly(|x|) such that the accept rate is larger

than 2
3 in the following manner:

The first |a1j |
C provers output a1j with each outputting C bits, and the continuing |a2j |

C

provers output a2j with each outputting C bits. As poly(|x|) = 2ρ(|x|)
C ≥ |a1j |

C +
|a2j |
C , we

have enough provers to do this operation. Therefore, the outputs of P ′
1, P

′
2, . . . , Ppoly′(|x|) is

the same as the original two provers, as the original two provers satisfies that the accepts
probability is greater than 2

3 , we have

Pr[⟨(P ′
1, P

′
2, . . . , P

′
poly(|x|)), V

′⟩
V ′ (x) = 1] ≥ 2

3

2. If x /∈ L, ∀P ′
1, P

′
2, . . . , Ppoly′(|x|), we denote their output at j-th turn as

a′1j , a
′
2j , a

′
3j , . . . , a

′
poly(|x|),j . Let the first prover output the concat output of odd provers,

i.e. a1j = (a′1j , a
′
2j , . . . , a

′
⌊ poly(|x|)

2 ⌋,j
), the second output the concat output of even provers,

i.e. a2j = (a′
⌈ poly(|x|)

2 ⌉,j
, . . . , a′poly(|x|),j). As no two provers can make the verifier accept at a

probability larger than 1
3 , thus

Pr[⟨(P ′
1, P

′
2, . . . , P

′
poly(|x|)), V

′⟩
V ′ (x) = 1] ≤ 1

3

Therefore, L ∈ MIP-Bounded, and thus MIP ⊆ MIP-Bounded.

Next, we are going to prove MIP-Bounded ⊆ MIP.

∀L ∈ MIP-Bounded, ∀x, in the j-th turn, the proofs offer by the bounded provers are denoted
as: a′1j , a

′
2j , a

′
3j , . . . , a

′
poly(|x|),j , the verifier as V ′. We design V as follows: for each concat string

s = (x, q11, a11, . . . ,), V first truncates the first prover’s answer to length of LIM1 := C · ⌊ poly(|x|)
2 ⌋

bits and the second prover’s answer to length of LIM2 := C · (poly(|x|)− ⌈ poly(|x|)
2 ⌉+ 1) bits. The

resulted string is denoted as s′ := (x, q11, a11;0:LIM1
, q21, a21;0:LIM2

. . .), and output V ′(s′).

1. If x ∈ L, similar as above, we let the first prover output the concat output of odd provers,
i.e. a1j = (a′1j , a

′
2j , . . . , a

′
⌊ poly(|x|)

2 ⌋,j
), the second output the concat output of even provers,

i.e. a2j = (a′
⌈ poly(|x|)

2 ⌉,j
, . . . , a′poly(|x|),j).. As |a1j | ≤ LIM1, it won’t be truncated and

|a2j | ≤ LIM2, it won’t be truncated, thus V acts exactly as V ′, and therefore

Pr(⟨(P1, P2), V ⟩V (x) = 1) ≥ 2

3

2. (Prove by contradiction) If x /∈ L, suppose ∃P1, P2 such that:

Pr(⟨(P1, P2), V ⟩V (x) = 1) >
1

3

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

As V first truncate answer, therefore, for j-turns, we can truncate a1j to a1j;0:LIM1
and

a2j to a2j;0:LIM2
, and follow the division process depicted in the first case of proving

MIP ⊆ MIP-Bounded to gain P ′
1, P

′
2, P

′
3, . . . , P

′
poly(|x|) provers. Thus:

Pr(⟨(P1, P2), V ⟩V (x) = 1) = Pr[⟨(P ′
1, P

′
2, . . . , P

′
poly(|x|)), V ⟩V (x) = 1]

= Pr[⟨(P ′
1, P

′
2, . . . , Ppoly(|x|))

′, V ′⟩
V ′ (x) = 1]

As a result,

Pr[⟨(P ′
1, P

′
2, . . . , P

′
poly(|x|)), V

′⟩
V ′ (x) = 1] >

1

3
, this contradicts to Pr[⟨(P ′

1, P
′
2, . . . , P

′
poly(|x|)), V

′⟩
V ′

(x) = 1] ≤ 1
3 . Therefore, ∀P1, P2,

we have:
Pr(⟨(P1, P2), V ⟩V (x) = 1) ≤ 1

3

Hence, we have L ∈ MIP, which means that MIP-Bounded ⊆ MIP.

Concluding the above, we have MIP-Bounded = MIP.

Theorem C.13 (Babai et al. (1990)). MIP = 2-MIP = NEXP
Remark C.14. NEXP is the complexity class that a non-deterministic Turing Machine can solve in
exponential time, which means that NP ⊂ NEXP.

Based on this theorem, we can easily derive Theorem C.11.
Corollary C.15. NP ⊂ NEXP = MIP-Bounded

D DERIVATION OF POLICY GRADIENT

Our target is to derive Equation (7):

[∇zJ (z)]t = Ex∼π(x|z,c) [R(x, c)∇zt log π(xt | zt)]

Starting from the objective:
J (z) := Ex∼π(x|z,c) [R(x, c)]

By taking gradient of z, we have:

∇zJ (z) = ∇z

∫
x

R(x, c)π(x | z, c)dx =

∫
x

R(x, c)∇zπ(x | z, c)dx

Leveraging ∇z log π(x | z, c) = 1
π(x|z,c)∇zπ(x | z, c):

∇zJ (z) =
∫
x

R(x, c)π(x | z, c)∇z log π(x | z, c)dx

According to π(x | z, c) =
N∏
t=1

π(xt | zt)
T∏

t=N+1

π(xt|x<t, c), we have:

∇zJ (z) =
∫
x

R(x, c)π(x | z, c)∇z(

N∑
t=1

log π(xt | zt) +
T∑

t=N+1

log π(xt|x<t))dx

As the second term doesn’t have z, thus we have:

∇zJ (z) =
∫
x

R(x, c)π(x | z, c)∇z(

N∑
t=1

log π(xt | zt))dx = Ex∼π(x|z,c)[R(x, c)∇z(

N∑
t=1

log π(xt|zt))]

Therefore, the t-th term is:

[∇zJ (z)]t = Ex∼π(x|z,c)[R(x, c)∇zt log π(xt|zt)],
which is exactly what we want.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 LATENTSEEK VS BON (N=10)

In Table 1, we show that Best-of-N (BoN) is outperformed by LATENTSEEK, even though BoN con-
sumes a comparable compute consumption (See Figure 4). One might also ask how LATENTSEEK
compares to BoN when N = 10; in this setting, BoN requires at least five times more sequence-level
computation than LATENTSEEK. As reported in Table 10, LATENTSEEK remains superior on all
datasets and all backbone models.

Table 10: Additional Comparison Between LATENTSEEK and BoN (N=10) with Prompt 2.

Methods
Model Qwen2 Qwen2.5 LLaMA3.1 Avg7B 1.5B 7B 14B 8B

GSM8K
BoN 72.10 7.73 80.06 92.19 81.58 66.73
LATENTSEEK 80.21+8.11 44.20+36.47 85.06+5.00 92.72+0.53 83.70+2.12 77.18+10.45

MATH-500
BoN 42.40 28.80 56.40 63.20 45.60 47.28
LATENTSEEK 44.80+2.40 32.20+3.40 57.60+1.20 71.00+7.80 47.00+1.40 50.52+3.24

AIME2024
BoN 3.33 0.00 6.67 10.00 3.33 4.66
LATENTSEEK 3.33+0.00 3.33+3.33 13.33+6.66 10.00+0.00 6.67+3.33 7.33+2.67

E.2 QWEN3 AIME PERFORMANCE

Figure 3: Performance comparison of the Qwen3-4B-Instruct model on the AIME2024 dataset. The
chart illustrates the accuracy of LATENTSEEK against the Chain-of-Thought (CoT) and Best-of-N
(BoN) baselines across two distinct prompt formats.

This section provides a detailed study on the performance of the Qwen3-4B-Instruct-2507 model
on the challenging AIME2024 dataset. Figure 3 illustrates the accuracy of LATENTSEEK compared
against the Chain-of-Thought (CoT) and Best-of-N (BoN) baselines under two prompt formats.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

As shown in the figure, under Prompt 1, while the BoN strategy fails to improve upon the CoT
baseline (both at 63.3% accuracy score), LATENTSEEK delivers a significant 10 points uplift to
73.3%. This advantage holds under Prompt 2, where our method’s accuracy of 56.7% surpasses CoT
by 16.7 points and BoN by 3.4 points. Taken together, these findings demonstrate that LATENTSEEK
consistently improves upon strong baselines and is valuable in scenarios where conventional search
methods are insufficient.

E.3 TOKEN EFFICIENCY COMPARISON WITH BON BASELINE

This section provides a quantitative analysis of the token efficiency of LATENTSEEK, comparing it
against the Best-of-N (BoN) baseline reported in Table 1. The analysis measures the average number
of tokens consumed per problem instance under the JSON prompt format (Prompt 2) on the GSM8K
and MATH-500 datasets.

As shown in Figure 4, LATENTSEEK achieves higher token efficiency than BoN in all of cases across
different model families and sizes, while attaining superior reasoning accuracy as reported in Table 1.
These results demonstrates that LATENTSEEK can enhance performance without incurring additional
token overhead for all models, highlighting the efficiency of latent space optimization.

(a) GSM8K dataset. (b) MATH-500 dataset.

Figure 4: Comparison of average tokens consumed per problem between LATENTSEEK and the
Best-of-N (BoN) baseline when using Prompt 2. The token consumption is comparable for the two
methods, with BoN consuming slightly more tokens in total. For experimental results where BoN
consumes extremely more calculation, please refer to Table 10.

E.4 GREEDY DECODING VS SAMPLING

Our experiments show that greedy decoding closely approximates categorical sampling while being
a better choice for reducing stochastic error. As detailed in Table 11, greedy decoding performs
slightly better than the sampling method. We hypothesize that this is because sampling can amplify
the approximation error when replacing an expected mean with an empirical one. Therefore, we use
greedy decoding for our main experiments.

Table 11: LATENTSEEK: Greedy Decoding vs Sampling (Temperature 0.7) on the MATH-500 dataset.

Methods
Model Qwen2 Qwen2.5 LLaMA3.1

7B 1.5B 7B 14B 8B

Prompt 1
Sampling 56.80 50.00 74.00 74.00 49.60
Greedy Decoding 57.40 55.60 75.60 80.00 54.60

Prompt 2
Sampling 44.40 22.40 55.80 68.40 45.40
Greedy Decoding 44.80 34.40 57.60 71.00 47.00

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(a) Qwen2.5-1.5B-Instruct (b) Qwen2.5-7B-Instruct (c) Qwen2.5-14B-Instruct

(d) LlaMA3.1-8B-Instruct (e) Qwen2-7B-Instruct

Figure 5: Trends of reward on GSM8K dataset. Generation uses the prompt 2 (the Json prompt).

E.5 LIMITATIONS OF OUTCOME REWARD MODEL

The performance is described in Liu et al. (2024b), with results presented in Table 12. Although this
model achieves an average score of 64.79—representing an improvement of 3.23 points over the
Chain-of-Thought (CoT) method—it remains significantly inferior to the performance attained using
a self-rewarding mechanism, which reaches 77.18. These results highlight the limitations of current
outcome-based reward models in scenarios lacking ground-truth data, underscoring the need for the
development of more robust and effective outcome reward models.

Table 12: Math Reward Model Accuracy results on GSM8k Cobbe et al. (2021), MATH-500
Hendrycks et al. (2021), and AIME2024 datasets. The best performances are highlighted in bold, and
the second-best performances are underlined.

Methods
Model Qwen2 Qwen2.5 LLaMA3.1 Avg7B 1.5B 7B 14B 8B

GSM8k: Prompt 2
CoT 65.20 15.31 66.41 91.81 69.07 61.56
LATENTSEEK (Math) 61.18 28.28 66.64 91.05 76.80 64.79
LATENTSEEK (Self) 80.21 44.20 85.06 92.72 83.70 77.18

E.6 TRENDS OF REWARD

We plot the reward trends in Figure 5, which empirically illustrates how the update dynamics guide
the model from a low-reward region toward a higher-reward region. The reward curves are obtained
by running LATENTSEEK on the GSM8K dataset, with generation constrained by a JSON-formatted
prompt.

E.7 COMPARISON OF OPTIMIZING INITIAL-STAGE LATENT TOKENS AND OPTIMIZING
MIDDLE-STAGE LATENT TOKENS

One may wonder how performance changes when we instead optimize middle-stage tokens. Formally,
this corresponds to the factorization

π(x | z, c) =
N1∏
t=1

π(xt | x<t, c)

N∏
t=N1+1

πLM-head(xt | zt)
T∏

t=N+1

π(xt | x<t, c).

Intuitively, because the prefix tokens x1 to xN1
do not depend on the optimized middle-stage tokens

xN1+1:N , the model may be unable to fully exploit the improved latent representations, potentially

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 13: Comparison with Optimizing the Middle-Stage Tokens on GSM8K. The best preformances
are highlighted in bold.

Model Qwen2 Qwen2.5 LLaMA3.1 Avg7B 1.5B 7B 14B 8B

GSM8K: Prompt 1
CoT 68.01 68.08 88.86 92.03 50.19 73.43
LATENTSEEK (middle) 74.68 69.07 89.31 92.49 65.21 78.15
LATENTSEEK 84.38 70.89 90.14 92.49 78.54 83.29

GSM8K: Prompt 2
CoT 65.20 15.31 66.41 91.81 69.07 61.56
LATENTSEEK (middle) 70.73 22.44 72.93 92.49 77.26 67.17
LATENTSEEK 80.21 44.20 85.06 92.72 83.70 77.18

causing performance degradation. To test this hypothesis, we conduct an additional experiment where
we optimize tokens starting from (40%) into the sequence. The results, shown in Table 13, confirm
our intuition: although optimizing middle-stage tokens yields a 5.16-point improvement over CoT
on average, it still underperforms the version that optimizes the initial-stage tokens by 7.58 points.
This gap supports our hypothesis that prefix independence limits the effectiveness of optimizing
middle-stage tokens.

E.8 PERFORMANCE VS FRACTION RATIO

Figure 6 illustrates the performance trends of various instruction-tuned language models across
different fraction ratios, which range from 0.1 to 0.8. Here, we also experimented with another model:
Mistral-7B-Instruct (Jiang et al., 2023). Performance is reported as a percentage and plotted on the
y-axis, while the fraction ratio is shown on the x-axis.

• Qwen2.5-14B-Instruct exhibits a relatively stable performance curve. It shows a slight
increase in performance from 0.1 to 0.6, peaking around the 0.6 fraction ratio, followed by a
minor decrease at 0.8. Overall, this model maintains consistently high performance above
91% across all fraction ratios.

• Qwen2.5-7B-Instruct demonstrates a mild upward trend from 0.1 to 0.2, followed by a
steady decrease as the fraction ratio increases beyond 0.2, indicating reduced effectiveness
at higher ratios.

• Qwen2-7B-Instruct shows a consistent downward trend across the full range of fraction
ratios, suggesting that its performance deteriorates steadily with increasing input fraction.

• LLaMA3.1-8B-Instruct remains relatively stable at first but shows a slight decreasing trend
overall, with performance gently declining from 0.2 onwards.

• Qwen2.5-1.5B-Instruct follows a sharp non-monotonic trend. It increases markedly from 0.1
to peak at 0.2, then drops rapidly as the fraction ratio increases further, reaching its lowest
performance at 0.8.

• Mistral-7B-Instruct exhibits a subtle peak at 0.2, followed by a gradual and modest decrease
in performance as the fraction ratio increases, maintaining relatively stable performance
throughout.

In summary, the Qwen2.5-14B-Instruct model shows a slightly rising then declining trend but remains
highly stable and strong overall. Smaller models, especially Qwen2.5-1.5B-Instruct, are more sensitive
to increases in fraction ratio, with noticeable performance degradation at higher values. Mid-sized
models like Mistral-7B-Instruct and LLaMA3.1-8B-Instruct exhibit relatively mild downward trends,
indicating moderate robustness.

F EXPERIMENTAL DETAILS

In this section, we provide a detailed description of the experimental setup.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 6: Performance vs Fraction Ratio

F.1 PROMPT DESIGNATION

The corresponding prompts are shown in the following tables.

Prompt. The prompt of CoT is as follows.

• Prompt 1: Table 15 and Table 16.
• Prompt 2: Table 14.

Reward Prompt. The prompts are listed in Tables 23 to 26.

F.2 BACKBONE

We list all model backbone as follows:

• Qwen2-7B-Instruct Yang et al. (2024): A powerful model designed for instruction-
based tasks, leveraging the 7B parameter version of Qwen2. (accessible at https:
//huggingface.co/Qwen/Qwen2-7B-Instruct)

• Qwen2.5-1.5B-Instruct Team (2024a): A compact yet efficient model designed for task-
specific instructions, based on the 1.5B-parameter Qwen2.5. (accessible at https://
huggingface.co/Qwen/Qwen2.5-1.5B-Instruct)

• Qwen2.5-7B-Instruct Team (2024a): A middle-tier model based on 7B-parameter Qwen2.5,
optimized for handling various instructions. (accessible at https://huggingface.
co/Qwen/Qwen2.5-7B-Instruct)

• Qwen2.5-14B-Instruct Team (2024a): A robust, large-scale model built on the 14B-
parameter Qwen2.5, excelling in complex instruction-based tasks. (accessible at https:
//huggingface.co/Qwen/Qwen2.5-14B-Instruct)

• LLaMA3.1-8B-Instruct Team (2024b): LLaMA’s 8B parameter version designed for
better instruction-following capabilities. (accessible at https://huggingface.co/
meta-llama/Llama-3.1-8B-Instruct)

F.3 BASELINES

We describe all baselines in experiments as follows:

• Chain-of-Thought (CoT): CoT refers to a structured, sequential approach to problem-solving,
wherein complex tasks are decomposed into intermediate steps, each explicitly articulated to
facilitate logical progression toward a solution. In our experiments, CoT follows the prompt
listed in Section F.1.

• Few-Shot CoT: Few-Shot Chain-of-Thought (CoT) prompting is a technique in natural
language processing that enhances model performance on complex reasoning tasks by
providing a small number of illustrative examples with step-by-step reasoning, enabling the
model to generalize and produce structured, logical outputs. In our experiment, we adopt
the result from Lambert et al. (2025).

27

https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 14: Prompt 1 for GSM8k Cobbe et al. (2021), MATH-500 Hendrycks et al. (2021) and
AIME2024.

{"role": "system", "content": "Please reason step by step, and
put your final answer within \boxed\{\}." },
\{"role": "user", "content": "{q}"\}

• Best-of-N (BoN): We draw N independent candidates from the model, score each with a
predefined objective, and select the candidate with the highest reward. In our experiments,
we set N = 3 so that the total computation is comparable to—while exceeding—that of
LATENTSEEK. The BoN reward is computed under the same self-reward mechanism as that
of LATENTSEEK.

• Self-Consistency: We draw N independent candidates from the model, and select the
candidate that appears with the highest frequency. In our experiments, we set N = 3 so that
the total computation is comparable to—while exceeding—that of LATENTSEEK and align
with that of BoN.

• Self-Rewarding Yuan et al. (2025): This leverages intrinsic feedback mechanisms to itera-
tively enhance model performance without reliance on external reward signals.

• ScPO Prasad et al. (2024): A framework for self-consistency preference optimization,
rigorously formalizing the alignment of decision-making processes with logically coherent
and preference-driven outcomes in complex systems.

• CoH Liu et al. (2023a): A framework which systematically aligns language models with
human feedback through a structured, iterative process, enhancing their performance in
complex reasoning tasks.

• Genius Xu et al. (2025): A purely unsupervised self-training framework designed to enhance
advanced reasoning capabilities in artificial intelligence systems, offering generalizable
performance across diverse tasks without reliance on labeled data.

• SimpleRL-Zoo Zeng et al. (2025): A reinforcement learning framework designed to enhance
sample efficiency and performance stability in complex decision-making environments
through simplified algorithmic structures and adaptive exploration strategies.

• GRPO Shao et al. (2024): Group Relative Policy Optimization (GRPO), introduced
in the DeepSeekMath framework, is a novel reinforcement learning algorithm that
enhances mathematical reasoning in large language models by optimizing policy up-
dates through group-based reward comparisons, significantly reducing memory con-
sumption compared to traditional Proximal Policy Optimization (PPO). In our ex-
periment, we adopt the result from https://www.perplexity.ai/hub/blog/
rl-training-for-math-reasoning?utm_source=chatgpt.com.

• SPIN Chen et al. (2024a): A self-play fine-tuning methodology that significantly enhances
the performance of weaker language models, transforming them into robust and highly
capable systems competitive with stronger counterparts.

• iCoT Deng et al. (2024): a transition from explicit Chain-of-Thought (CoT) reasoning to
implicit CoT internalization, proposing a step-by-step learning framework to enhance logical
reasoning capabilities in artificial intelligence systems.

• Supervised Fine-Tuning (SFT) was conducted using the LLaMA-Factory framework Zheng
et al. (2024). All models were trained with a learning rate of 1× 10−5, employing a cosine
learning rate scheduler, a warmup ratio of 0.1, and the bfloat16 (bf16) data type.

F.4 HYPERPARAMETER TUNING

To determine the best choices for ρ and the learning-rate hyperparameters, we perform a grid search
on a held-out subset of the training data. For GSM8K, for example, we randomly sample 500 training
instances and use this subset exclusively for hyperparameter tuning.

28

https://www.perplexity.ai/hub/blog/rl-training-for-math-reasoning?utm_source=chatgpt.com
https://www.perplexity.ai/hub/blog/rl-training-for-math-reasoning?utm_source=chatgpt.com

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 15: Prompt 2 for GSM8k Cobbe et al. (2021).

\{"role": "system", "content": "You are a precise math question
solver. Solve this math problem." \},
\{"role": "user", "content": "QUESTION: {q} Let’s think step by
step. Please provide your thought process and your final answer
separately and response in json format containing the keys
thought process and final answer. For example your response
should be \{‘thought process’: ‘your thought process’, ‘final
answer’: ‘your final answer’\}. Note that the final answer
should be pure numbers, not the calculation formulas, and
without any units or explanation!!!"\}

Table 16: Prompt 2 for MATH-500 Hendrycks et al. (2021) and AIME2024.

\{"role": "system", "content": "You are a precise math question
solver. Solve this math problem." \},
\{"role": "user", "content": "QUESTION: {q} Let’s think step by
step. Please provide your thought process and your final answer
separately and response in json format containing the keys
thought process and final answer. For example your response
should be \{‘thought process’: ‘your thought process’, ‘final
answer’: ‘your final answer’\}." \}

F.5 GSM8K

We provide details for GSM8K experiments as follows:

Dataset. The GSM8K dataset Cobbe et al. (2021), a comprehensive collection of mathemati-
cal reasoning problems, serves as a benchmark for evaluating the problem-solving capabilities
of language models. Developed by OpenAI and accessible via the Hugging Face repository at
https://huggingface.co/datasets/openai/gsm8k, GSM8K comprises 8,500 metic-
ulously curated, high-quality math problems that span a diverse range of topics, including arithmetic,
algebra, and word problems. These problems are specifically designed to assess a model’s ability to
perform multi-step reasoning, interpret natural language descriptions of mathematical scenarios, and
derive accurate solutions. The dataset is partitioned into a training set of 7,473 examples and a test set
of 1,319 examples, enabling robust model training and evaluation. For the purposes of this study, we
exclusively utilize the test set to evaluate model performance, ensuring a standardized and unbiased
assessment of mathematical reasoning proficiency.

Experimental Details. For all backbones and both prompts, we use greedy decoding for inference.
For the hyperparameters of LATENTSEEK (Self) and LATENTSEEK (PSRM), please refer to Table 17
and Table 18, respectively. The mathematical reasoning prompts we employed in the self-reward
mechanism evaluate answers across four dimensions: correctness of the final answer, accuracy of
problem comprehension, correctness of numerical calculations, and provision of a clear answer,
weighted at 1:1:2:2, with the final score normalized to the range [-1, 0]. The detailed specifications of
these four evaluation prompts are provided in Tables 23 to 26.The prompt structure is consistently
applied across all backbones and both prompts. Notably, for Llama-3.1-8B-Instruct, Qwen2.5-1.5B-
Instruct and Qwen2-7B-Instruct in LATENTSEEK (Self) experiment using Prompt 1, a new format
reward following the methodology of DeepSeek-R1 is incorporated, with weights of 3, 2, and 2
assigned to format-based criteria, respectively.

Scaling. We offer more scaling figures in Figure 7.

F.6 MATH-500

We provide details for MATH-500 experiments as follows:

Dataset. The MATH-500 dataset, a curated subset of the MATH benchmark, serves as a ro-
bust resource for evaluating the mathematical reasoning capabilities of machine learning mod-

29

https://huggingface.co/datasets/openai/gsm8k

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

(a) Qwen2.5-1.5B-Instruct (b) Qwen2.5-7B-Instruct (c) Qwen2.5-14B-Instruct

(d) LlaMA3.1-8B-Instruct (e) Qwen2-7B-Instruct

Figure 7: GSM8kCobbe et al. (2021) Prompt 2 Accuracy changes with respect to the increasing
number of iterations. Orange: Perfect Sharp Reward Model. Blue: Self Reward Model.

Table 17: LATENTSEEK (Self) Hyperparameters on GSM8K. lr: learning rate. ρ: fraction ratio

methods model max len prompt idx #GPU lr optimizer ρ dtype Max Step
LATENTSEEK (Self) Qwen2-7B-Instruct 1024 1 1 A100 0.03 Adam 0.2 bf16 10
LATENTSEEK (Self) Qwen2-7B-Instruct 1024 2 1 L40 0.03 Adam 0.2 bf16 10
LATENTSEEK (Self) Qwen2.5-1.5B-Instruct 1024 1 1 3090 0.03 Adam 0.05 bf16 10
LATENTSEEK (Self) Qwen2.5-1.5B-Instruct 1024 2 1 3090 10 Adam 0.2 bf16 10
LATENTSEEK (Self) Qwen2.5-7B-Instruct 1024 1 1 L40 0.05 Adam 0.2 bf16 10
LATENTSEEK (Self) Qwen2.5-7B-Instruct 1024 2 1 L40 0.05 Adam 0.2 bf16 10
LATENTSEEK (Self) Qwen2.5-14B-Instruct 1024 1 1 L40 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) Qwen2.5-14B-Instruct 1024 2 1 L40 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) Llama-3.1-8B-Instruct 1024 1 1 L40 0.03 Adam 0.2 bf16 10
LATENTSEEK (Self) Llama-3.1-8B-Instruct 1024 2 1 L40 0.03 Adam 0.2 bf16 10

Table 18: LATENTSEEK (PSRM) Hyperparameters on GSM8K. lr: learning rate. ρ: fraction ratio

methods model max len prompt idx #GPU lr optimizer ρ dtype Max Step
LATENTSEEK (PSRM) Qwen2-7B-Instruct 1024 1 1 A100 0.03 Adam 0.2 bf16 10
LATENTSEEK (PSRM) Qwen2-7B-Instruct 1024 2 1 4090 0.03 Adam 0.2 bf16 10
LATENTSEEK (PSRM) Qwen2.5-1.5B-Instruct 1024 1 1 3090 0.03 Adam 0.2 bf16 10
LATENTSEEK (PSRM) Qwen2.5-1.5B-Instruct 1024 2 1 3090 0.03 Adam 0.2 bf16 10
LATENTSEEK (PSRM) Qwen2.5-7B-Instruct 1024 1 1 A100 0.05 Adam 0.2 bf16 10
LATENTSEEK (PSRM) Qwen2.5-7B-Instruct 1024 2 1 L40 0.05 Adam 0.2 bf16 10
LATENTSEEK (PSRM) Qwen2.5-14B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Qwen2.5-14B-Instruct 1024 2 1 A100 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Llama-3.1-8B-Instruct 1024 1 1 L40 0.03 Adam 0.2 bf16 10
LATENTSEEK (PSRM) Llama-3.1-8B-Instruct 1024 2 1 L40 0.03 Adam 0.2 bf16 10

els. Sourced from the HuggingFace repository at https://huggingface.co/datasets/
HuggingFaceH4/MATH-500 , it comprises 500 problems derived from the original MATH
benchmark developed by OpenAI (Lightman et al., 2023). Encompassing a diverse array of mathe-
matical topics and varying difficulty levels, MATH-500 provides a comprehensive and challenging
testbed for assessing model performance in mathematical problem-solving.

Experimental Details. For all backbones and both prompts, we use greedy decoding for inference.
For the hyperparameters of LATENTSEEK (Self) and LATENTSEEK (PSRM), please refer to Table 19
and Table 20, respectively. The mathematical reasoning prompts we employed in the self-reward
mechanism evaluate answers across four dimensions: correctness of the final answer, accuracy of
problem comprehension, correctness of numerical calculations, and provision of a clear answer,
weighted at 1:1:2:2, with the final score normalized to the range [-1, 0]. The prompt structure is
consistently applied across all backbones and both prompts. Notably, for Qwen2-7B-Instruct and
Llama-3.1-8B-Instruct in LATENTSEEK (Self) experiment using prompt 1, the weight ratios are
adjusted to 1:1:1:2. Additionally, for Qwen2-7B-Instruct, Qwen2.5-1.5B-Instruct, Qwen2.5-7B-
Instruct and Llama-3.1-8B-Instruct in LATENTSEEK (Self) experiment using Prompt 1, a new format

30

https://huggingface.co/datasets/HuggingFaceH4/MATH-500
https://huggingface.co/datasets/HuggingFaceH4/MATH-500

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 19: LATENTSEEK (Self) Hyperparameters on MATH-500. lr: learning rate. ρ: fraction ratio

methods model max len prompt idx #GPU lr optimizer ρ dtype Max Step
LATENTSEEK (Self) Qwen2-7B-Instruct 1024 1 1 3090 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) Qwen2-7B-Instruct 1024 2 1 3090 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) Qwen2.5-1.5B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) Qwen2.5-1.5B-Instruct 1024 2 1 3090 0.03 Adam 0.05 bf16 10
LATENTSEEK (Self) Qwen2.5-7B-Instruct 1024 1 1 3090 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) Qwen2.5-7B-Instruct 1024 2 1 3090 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) Qwen2.5-14B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) Qwen2.5-14B-Instruct 1024 2 1 A100 0.05 Adam 0.1 bf16 10
LATENTSEEK (Self) Llama-3.1-8B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) Llama-3.1-8B-Instruct 1024 2 1 A100 0.03 Adam 0.1 bf16 10

Table 20: LATENTSEEK (PSRM) Hyperparameters on MATH-500. lr: learning rate. ρ: fraction ratio

methods model max len prompt idx #GPU lr optimizer ρ dtype Max Step
LATENTSEEK (PSRM) Qwen2-7B-Instruct 1024 1 1 3090 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Qwen2-7B-Instruct 1024 2 1 3090 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Qwen2.5-1.5B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Qwen2.5-1.5B-Instruct 1024 2 1 A100 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Qwen2.5-7B-Instruct 1024 1 1 3090 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Qwen2.5-7B-Instruct 1024 2 1 3090 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Qwen2.5-14B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Qwen2.5-14B-Instruct 1024 2 1 A100 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Llama-3.1-8B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Llama-3.1-8B-Instruct 1024 2 1 A100 0.03 Adam 0.1 bf16 10

reward following the methodology of DeepSeek-R1 is incorporated, with weight of 2 assigned to
format-based criteria.

F.7 AIME2024

We provide details for AIME2024 experiments as follows:

Dataset. The American Invitational Mathematics Examination (AIME) is a prestigious com-
petition designed to challenge high-achieving high school students with complex mathematical
problems, requiring advanced problem-solving and reasoning skills. The AIME2024 dataset, as
introduced in this context, serves as a valuable resource for evaluating the capabilities of lan-
guage models in tackling such sophisticated mathematical tasks. Sourced from the Huggingface
repository Maxwell-Jia/AIME 2024 (accessible at https://huggingface.co/datasets/
Maxwell-Jia/AIME_2024), the AIME2024 dataset comprises 30 meticulously curated prob-
lems. Although modest in quantity, each problem is deliberately designed to reflect the style, rigor, and
difficulty of the AIME, thereby providing a robust benchmark for assessing advanced mathematical
reasoning in computational models.

Experimental Details. For all backbones and both prompts, we use greedy decoding for inference.
For the hyperparameters of LATENTSEEK (Self) and LATENTSEEK (PSRM), please refer to Table 21
and Table 22, respectively. The mathematical reasoning prompts we employed in the self-reward
mechanism evaluate answers across four dimensions: correctness of the final answer, accuracy of
problem comprehension, correctness of numerical calculations, and provision of a clear answer,
weighted at 1:1:2:2, with the final score normalized to the range [-1, 0]. The prompt structure is
consistently applied across all backbones and both prompts.

G DETAILED FLOPS CALCULATION

This section provides a detailed breakdown of the Floating Point Operations (FLOPs) required for
the Genius baseline and our proposed LATENTSEEK method, using LLaMA3.1-8B-Instruct as the
backbone model.

31

https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 21: LATENTSEEK (Self) Hyperparameters on AIME2024. lr: learning rate. ρ: fraction ratio

methods model max len prompt idx #GPU lr optimizer ρ dtype Max Step
LATENTSEEK (Self) Qwen2-7B-Instruct 1024 1 1 4090 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) Qwen2-7B-Instruct 1024 2 1 4090 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) Qwen2.5-1.5B-Instruct 1024 1 1 3090 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) Qwen2.5-1.5B-Instruct 1024 2 1 3090 10 Adam 0.3 bf16 10
LATENTSEEK (Self) Qwen2.5-7B-Instruct 1024 1 1 4090 0.05 Adam 0.2 bf16 10
LATENTSEEK (Self) Qwen2.5-7B-Instruct 1024 2 1 4090 0.05 Adam 0.2 bf16 10
LATENTSEEK (Self) Qwen2.5-14B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) Qwen2.5-14B-Instruct 1024 2 1 A100 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) Llama-3.1-8B-Instruct 1024 1 1 4090 0.03 Adam 0.1 bf16 10
LATENTSEEK (Self) Llama-3.1-8B-Instruct 1024 2 1 A100 0.03 Adam 0.2 bf16 10

Table 22: LATENTSEEK (PSRM) Hyperparameters on AIME2024. lr: learning rate. ρ: fraction ratio

methods model max len prompt idx #GPU lr optimizer ρ dtype Max Step
LATENTSEEK (PSRM) Qwen2-7B-Instruct 1024 1 1 3090 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Qwen2-7B-Instruct 1024 2 1 3090 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Qwen2.5-1.5B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Qwen2.5-1.5B-Instruct 1024 2 1 A100 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Qwen2.5-7B-Instruct 1024 1 1 3090 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Qwen2.5-7B-Instruct 1024 2 1 4090 0.05 Adam 0.2 bf16 10
LATENTSEEK (PSRM) Qwen2.5-14B-Instruct 1024 1 1 A100 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Qwen2.5-14B-Instruct 1024 2 1 A100 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Llama-3.1-8B-Instruct 1024 1 1 4090 0.03 Adam 0.1 bf16 10
LATENTSEEK (PSRM) Llama-3.1-8B-Instruct 1024 2 1 A100 0.03 Adam 0.1 bf16 10

Table 23: Prompt for answer correctness check

f"{math prefix}"
"INSTRUCTIONS:"
"Your task is to determine whether the provided answer is
correct."
"Think through the verification process carefully and
logically."
"IMPORTANT RULES:"
"1. Do NOT analyze the steps or methods used to arrive at the
answer."
"2. Only evaluate the final answer’s correctness."
"3. Your response must strictly follow the required format:"
f"- If the answer is correct, respond with:
’{VERA ANSWER SYMBOL}True’."
f"- If the answer is incorrect, respond with:
’{VERA ANSWER SYMBOL}False’."

Table 24: Prompt for calculation check

f"{math prefix}"
"INSTRUCTIONS:"
"1. EXTRACT CALCULATION EXPRESSIONS: Extract all the
mathematical calculations from the PROPOSED SOLUTION."
"2. INDEPENDENT RECOMPUTATION: Break down the calculations
step-by-step and recompute them."
f"3. VERIFY: Compare your recomputation with the
PROPOSED SOLUTION. If any discrepancy is found, output
’{VERA ANSWER SYMBOL}False’. If all steps are correct, output
’{VERA ANSWER SYMBOL}True’."
"NOTE: You ONLY need to check calculations(like 1 + 1 = 2, 2 *
3 = 6, etc). Ignore standalone numbers(like 1, 2, 3, etc) that
are not part of a computation."

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 25: Prompt for understanding check

f"{math prefix}"
"INSTRUCTIONS:"
"1. PROBLEM INTERPRETATION:"
" - Assess if the proposed solution clearly understands the
problem statement."
" - Ensure that the proposed solution addresses all relevant
aspects of the problem, without ignoring any key detail."
" - Flag if the solution misinterprets or overlooks the
problem’s core requirements or scope."
"2. ALIGNMENT WITH THE TASK:"
" - Verify that the solution responds to the specific question
or task outlined in the problem statement."
" - Ensure that the solution does not deviate from the
problem’s context or provides an unrelated answer."
" - Check if any critical parts of the problem have been
misinterpreted or neglected."
"3. TERMINATION PROTOCOL:"
" - If the solution clearly misinterprets or fails to address
the problem correctly, stop and respond in the exact format:"
f" - ’{VERA ANSWER SYMBOL}False’"
" - If the solution accurately captures the problem statement
and aligns with the required solution, respond in the exact
format:"
f" - ’{VERA ANSWER SYMBOL}True’"
"EXAMPLES:"
"[Case 1] Problem: A shop is selling a drink at 1.5 times the
original price. If the original price is $10, what is the new
price?"
" Solution: The new price is 1.15 * $10 = $11.50."
" Assessment: The solution misinterprets the problem by
calculating 1.15 times the original price instead of 1.5
times."
f" Result: ’{VERA ANSWER SYMBOL}False’"
"[Case 2] Problem: The second cup of coffee is half price. If
the first cup costs $5, how much is the second cup?"
" Solution: The second cup costs $5 * 0.5 = $2.50."
" Assessment: The solution correctly interprets the price as
half the original price for the second cup."
f" Result: ’{VERA ANSWER SYMBOL}True’"
"[Case 3] Problem: A pizza has a radius of 8 inches. What is
the area of the pizza?"
" Solution: The area is πr2, where r = 4 inches. The area is
16π square inches."
" Assessment: The solution misinterprets the formula for the
area of a circle by using the radius incorrectly."
f" Result: ’{VERA ANSWER SYMBOL}False’"
"[Case 4] Problem: A train is moving at 60 km/h towards the
east. What is its velocity after 2 hours?"
" Solution: The velocity is 120 km/h west."
" Assessment: The solution correctly calculates the speed, but
misinterprets the direction as west instead of east."
f" Result: ’{VERA ANSWER SYMBOL}False’"
"CRITICAL REQUIREMENTS:"
"- Assess whether the solution addresses all parts of the
problem."
"- Ensure the solution does not deviate from the problem’s
intent."
"- Use exact output formats specified, showing no tolerance for
misinterpretations."

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 26: Prompt for answer completeness check

f"{math prefix}"
"INSTRUCTIONS:"
"Your task is to verify whether the solution provides a
complete and final answer."
"Follow these rules carefully:"
"1. Check if the solution reaches a clear and definitive final
answer."
"2. The answer must not be left incomplete, such as:"
" - Ending with an unresolved expression or formula instead of
a computed result."
" - Missing a conclusion or final statement explicitly stating
the final answer."
"3. If the solution is incomplete or lacks a final answer,
immediately stop checking further and respond in the exact
format:"
f" - ’{VERA ANSWER SYMBOL}False’"
"4. If the solution is complete and provides a final, explicit
answer, respond in the exact format:"
f" - ’{VERA ANSWER SYMBOL}True’"
"Examples:"
"Example 1:"
"final answer: 8."
f"Your response: ’{VERA ANSWER SYMBOL}True’ (The solution
provides a final, definitive answer of 8.)"
"Example 2:"
"final answer: The area of the circle is πr2, where r = 4."
f"Your response: ’{VERA ANSWER SYMBOL}False’ (The answer ends
with an unresolved formula, not a computed result.)"
"Example 3:"
"final answer: This question does not have an answer or I
cannot solve this problem."
f"Your response: ’{VERA ANSWER SYMBOL}False’ (The solution lacks
a clear, final answer.)"

Table 27: Estimated FLOPs for a single forward pass of the LLaMA3.1-8B backbone model with
a context length of 512 tokens. The total is derived by summing the operational costs for both the
prefill and decode stages.

Prefill Stage (512 tokens) Decode Stage (512 tokens)
Component FLOPs Component FLOPs
q proj 17.2G q proj 33.6M
k proj 4.3G k proj 8.4M
v proj 4.3G v proj 8.4M
out proj 17.2G out proj 33.6M
gate proj 60.1G gate proj 117M
up proj 60.1G up proj 117M
down proj 60.1G down proj 117M
qk matmul 2.1G qk matmul 4.2M
sv matmul 2.1G sv matmul 4.2M
softmax 41.9M softmax 81.9K
attn norm 14.7M attn norm 28.7K
mlp norm 14.7M mlp norm 28.7K
attn add 2.1M attn add 4.1K
mlp add 2.1M mlp add 4.1K
mlp act 4.2M mlp act 8.2K
lm head 525M lm head 525M

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

G.1 TOTAL FLOPS FOR GENIUS

On the GSM8K dataset, the Genius framework involoves a full training phase on 100000 instances
followed by testing on 1319 instances. We assume a backward pass is approximately twice as
computationally expensive as a forward pass.

• Training FLOPs: For each of the 100000 instances, one forward pass and one full backward
pass are required.

FLOPstrain = 100000× (FLOPsforward + 2× FLOPsforward) = 300000× FLOPsforward

• Testing FLOPs: For each of the 1319 instances, one forward pass is required.
FLOPstest = 1319× FLOPsforward

FLOPsGenius = FLOPstrain + FLOPstest

= (300000 + 1319)× (2.29× 1011)

≈ 6.90× 1016FLOPs

G.2 TOTAL FLOPS FOR LATENTSEEK

LATENTSEEK operates exclusively at test time on 1319 instances. Each iteration involoves two
forward passes (one for generation, one for reward evaluation) and one partial backward pass through
only the LM head. From Table 9, the average number of iterations on GSM8K is 1.27.

• Number of Forward Passes: 1319 instances× 1.27 iter/inst× 2 forward/iter ≈ 3350

• Number of Backward Passes: 1319 instances× 1.27 iter/inst× 1 forward/iter ≈ 1675

• Cost of Backward Pass: The backward pass is only through the LM head (525 MFLOPs
forward).

FLOPsbackward LATENTSEEK = 2× (525× 106) = 1.05× 109 FLOPs

The total extimated FLOPs for LATENTSEEK is:
FLOPsLATENTSEEK = (3350× FLOPsforward) + (1675× FLOPsbackward LATENTSEEK

= (3350× 2.29× 1011) + (1675× 1.05× 109)

≈ 7.67× 1014 + 1.76× 1012

≈ 7.69× 1014FLOPs

G.3 EFFICIENCY THRESHOLD ANALYSIS

We calculate the number of inference instances (x) at which the total computational cost of using the
pre-trained Genius framework would equal the cost of using LATENTSEEK. This threshold is found
by solving the following equation, where the left side represents the total cost of Genius and the right
side represents the total cost of LATENTSEEK for x inferences:

6.90× 1016 + x · (2.29× 1011) = 1.27× (2× 2.29× 1011 + 1.05× 109) · x
Solving for x yields the threshold: x ≈ 1.94× 105. This calculation demonstrates that LATENTSEEK
remains more efficient than the Genius method up to approximately 1.94× 105 inference instances,
which exceeds the size of Genius’s training set (1.00× 105 examples).

G.4 COMPARISON WITH ICOT

To the best of our knowledge, all latent reasoning methods experience a training stage, and iCoT
(Deng et al., 2024) is one of the representative. We perform FLOPs comparison with iCoT using
Llama3.1-8B-Instruct evaluated on the GSM8K test set. As shown in Table 28, the total FLOPs
of LatentSeek are roughly 104 times smaller than those of iCoT. This efficiency comes from
eliminating the need of training: LatentSeek performs latent updates only at test time, and each
update requires just a single forward–backward pass of the language-model head, making the
procedure efficient. Moreover, as shown in Table 9, LatentSeek typically converges in fewer than two
update iterations during inference.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 28: FLOPs comparison with iCoT (Deng et al., 2024)

Name Type # Train Dataset # Train Epoch # Test Dataset Acc (%) Total FLOPs

LatentSeek Latent 0 0 1.3K 83.7 7.69× 1014

iCoT Latent 37.8K 200 1.3K 47.08 5.19× 1018

H LATENT SPACE TRAJECTORIES

Figure 8: Examples of latent-space optimization trajectories. Blue: initial latent vector; Black:
intermediate steps; Green: final latent vector; Red: optimization trajectory. For more trajectories,
please refer to Figure 9 and Figure 10

To better understand the optimization dynamics within the continuous latent space, we conduct a
visualization study of latent-vector trajectories. Specifically, for each token position t and optimization
step k, we collect the corresponding latent representations z

(k)
t and apply Principal Component

Analysis (PCA) to project these high-dimensional vectors into a three-dimensional space.

As shown in Figure 9 and Figure 10 below, we visualize the projected trajectories of token latents
across different positions (1st to 80th). Furthermore, Figure 8 highlights three representative patterns
of latent-space optimization. The Blue dot denotes the initial latent vector, the Black dots indicate
intermediate latent states, the Green dot marks the final latent vector, and the Red line traces the
optimization trajectory. As illustrated in the figures, some token-specific latents exhibit zig-zag search,
others follow a consistent unidirectional trajectory, and still others trace an V-shaped search path.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Figure 9: Latent-space trajectories for tokens at positions 1–40. Blue: initial latent vector; Black:
intermediate steps; Green: final latent vector; Red: trajectory.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Figure 10: Latent-space trajectories for tokens at positions 41–80. Blue: initial latent vector; Black:
intermediate steps; Green: final latent vector; Red: trajectory.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

(a) First Words (b) Second Words (c) Third Words

Figure 11: Wordclouds of the first three words of the generated sequence using prompt 2 on the
GSM8k dataset with Llama3.1-8B-Instruct as the backbone.

I QUALITATIVE ANALYSIS AND CASE STUDIES

To gain a deeper understanding of model-generated responses, we analyze the distribution of the
first three tokens produced under Prompt 1 in the GSM8K dataset Cobbe et al. (2021), using the
Llama3.1-8B-Instruct model. These distributions are visualized in the word cloud shown in Figure 11.
The appearance of nonsensical or obscure tokens—such as “thecy,” “theella,” and unrelated proper
names like “Mark” and “John”—suggests that the reasoning processes employed by language models
can diverge significantly from human reasoning, despite generating superficially plausible outputs.
Notably, consistent patterns emerge: the first generated tokens are often prepositions (e.g., “let”),
the second tokens are primarily verbs (e.g., “find,” “solve”), and the third tokens are predominantly
proper names, These findings suggest that optimal reasoning paths for language models may differ
from human strategies and could be more effectively modeled in latent space.

We present several representative cases in Tables 29 to 35 to demonstrate the divergence between
machine reasoning patterns and human cognition processes. These cases reveal that while our method
(OURS) generates linguistically anomalous expressions such as ”total downloads of downloads”, ”let
need calculate to calculate” and ”let’ll more understand it”, it still achieves correct solutions. This
suggests that even if the decoded tokens from our updated embeddings lack syntactic and semantic
coherence, the logic and answer of the final generated output remain accurate. Notably, although the
baseline model produces erroneous answers that appear fundamentally distinct from ours (OURS) in
textual form, their latent representations exhibit structural proximity - through minimal adjustments
to embeddings in the latent space, the original output (ORIGINAL MODEL) can be transfromed
into correct solutions (OURS). These empirical evidences yield two critical implications. First, it
suggests that the reasoning paths employed by machines are fundamentally distinct from those
of humans. Second, while model errors may appear substantially deviant from correct answers
in textual outputs, they may maintain significant proximity to valid solutions in latent space.

Table 29: Case 1

QUESTION: A new program had 60 downloads in the first month.
The number of downloads in the second month was three times as
many as the downloads in the first month, but then reduced by
30% in the third month. How many downloads did the program have
total over the three months?
TRUE ANSWER: 366
ORIGINAL MODEL: {"thought process": "To find the total number
[...] Finally, we add up the number of downloads in all three
months to get the total number of downloads.", "final answer":
213}
OURS: {"thought process": "First solve the total downloads of
downloads, the three months, we need calculate the downloads
of the second month and the third month. [...] Now, we can
calculate the total downloads over the three months, total
downloads = 60 + 180 + 126 = 366.", "final answer": 366}

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Table 30: Case 2

QUESTION: Jen enters a lottery by picking 4 distinct numbers
from S = {1, 2, 3, · · · , 9, 10}. 4 numbers are randomly chosen from
S. She wins a prize if at least two of her numbers match the
chosen numbers, and wins the grand prize if all four match.
Find the conditional probability of winning the grand prize
given that she won any prize.
TRUE ANSWER: 116
ORIGINAL MODEL: {"thought process": "To solve this problem
[...] Finally, we can add m and n to get the final answer.",
"final answer": 5}
OURS: {"thought process": "First find this problem, let need
calculate to calculate the probability number of possible to
can choose a prize and the number of possible to can choose the
grand prize. [...] Therefore, the answer is $1 + 115 = 116$.",
"final answer": 116}

Table 31: Case 3

QUESTION: Two trains leave San Rafael at the same time. They
begin traveling westward, both traveling for 80 miles. The next
day, they travel northwards, covering 150 miles. What’s the
distance covered by each train in the two days?
TRUE ANSWER: 230
ORIGINAL MODEL: To solve this problem, we need to break it down
into steps. [...] So, the distance covered by each train in the
two days is 197.5 miles. \boxed{197.5}
OURS: Let find this,, let’ll more understand it down step
two andLet 1: BothThe the trains are same route west both
first time on80ward) on same and and can consider they the
travel travel same distance of So’s denote the common xd’ they
both 80 miles on x have write up an following: [...] Since
both trains travel the same distance in each direction, the
distance covered by each train is 230 miles. The final answer
is: \boxed{230}

Table 32: Case 4

QUESTION: Carlos is planting a lemon tree. The tree will cost
$90 to plant. Each year it will grow 7 lemons, which he can
sell for $1.5 each. It costs $3 a year to water and feed the
tree. How many years will it take before he starts earning
money on the lemon tree?
TRUE ANSWER: 13
ORIGINAL MODEL: {"thought process": "To find out how many years
[...] We will continue this process for each subsequent year,
adding the maintenance cost and calculating the income until
the total income is greater than the total cost.", "final
answer": 7}
OURS: {"thought process": "Let determine the when long years
Carlos will take before the to earn earning money from his
tree tree, I first to find the revenue revenue for planting the
maintaining the tree. [...] Therefore, it will take 13 years
for Carlos to start earning money on the lemon tree.", "final
answer": 13}

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Table 33: Case 5

QUESTION: Gunter is trying to count the jelly beans in a jar.
He asks his friends how many they think are in the jar. One
says 80. Another says 20 more than half the first one. A third
says 25% more than the first one. What is their average guess?
TRUE ANSWER: 80
ORIGINAL MODEL: {"thought process": "To find the average guess
[...] After finding the individual guesses, we can add them
up and divide by the number of guesses to find the average.",
"final answer": 76}
OURS: {"thought process": "First find the average of, we first
to calculate calculate each number guesses of The first friend
guesses 80. [...] Then we add the three guesses together, 80 +
60 + 100 = 240. Finally, we divide by 3 to get the average, 240
/ 3 = 80.", "final answer": 80}

Table 34: Case 6

QUESTION: Frankie watches TV after he finishes his homework
every night. On Monday and Tuesday, he watched a 1-hour episode
of his favorite show each night. On Wednesday, he watched a few
episodes of a 30-minute show. On Thursday, he finished homework
early and watched a 1-hour episode and a 30-minute show. On
Friday, he got to stay up late for the weekend, so he watched
two 1-hour episodes. If he watched 7 hours of TV in all, how
many 30-minute episodes did he watch on Wednesday?
TRUE ANSWER: 3
ORIGINAL MODEL: To determine how many 30-minute episodes
Frankie watched on Wednesday, [...] So, Frankie watched
\boxed{197.5} 30-minute episodes on Wednesday.
OURS: Let determine how many 30-minute episodes Frankie watched
on Wednesday, let will to break the total amount he spent
watching TV from night and then solve the the much time was
spent on Wednesday specifically1, we’s summarize the time
time Frankie watching TV each day: [...] Thus, the number of
30-minute episodes Frankie watched on Wednesday is \boxed{3}.

Table 35: Case 7

QUESTION: Lloyd has an egg farm. His chickens produce 252 eggs
per day and he sells them for $2 per dozen. How much does Lloyd
make on eggs per week?
TRUE ANSWER: 294
ORIGINAL MODEL: {"thought process": "To find out how much Lloyd
makes on eggs per week, [...] Finally, we multiply the number
of dozens by the price per dozen to get the total amount Lloyd
makes in a week.", "final answer": 5880}
OURS: {"thought process": "First calculate Lloyd how much Lloyd
makes per eggs per week, first need calculate to determine out
the many eggs he produces in a week. [...] Total amount per
week = 147 * 2 = $294. Therefore, Lloyd makes $294 per week on
eggs..", "final answer": 294}

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

J COMPUTATIONAL RESOURCES

All experiments are performed with a single A100, or a single L40, or a single 4090, or a single 3090.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

Our use of Large Language Models (LLMs) was strictly limited to polishing the language and
generating figures for the manuscript. All underlying research and intellectual content of this paper,
including the LATENTSEEK framework, its theoretical foundations, experimental design, and the
analysis of results, was completed entirely by the authors without assistance from LLMs.

42

	Introduction
	Test-Time Instance-Level Policy Gradient in Latent Space
	Problem Formulation: Test-Time Instance-Level Reasoning
	Reasoning via Policy Gradient in Latent Space
	LatentSeek Algorithm

	Empirical Results
	Experimental Setup
	State-of-the-art Test-time Reasoning Performance
	Ideal Experiment: Perfect Sharp Reward Model
	Test-Time Scaling: Scaling Trend Analysis of LatentSeek
	Comparison with Unguided Search
	Analysis of Self-Reward Mechanism
	Qualitative Analysis
	Algorithmic Statistics

	Related Work
	Conclusion
	Discussion and future works
	Methods of Test-Time Instance-Level Reasoning
	Theoretical Analysis
	Preliminaries: Multiple Prover Interactive Proofs and NEXP
	Theoretical Analysis: Independent Updating
	Proofs of thm: MIP-Bounded and cor: NP-MIP-Bounded

	Derivation of Policy Gradient
	Additional Experimental Results
	LatentSeek vs BoN (N=10)
	Qwen3 AIME Performance
	Token Efficiency Comparison with BoN Baseline
	Greedy Decoding vs Sampling
	Limitations of Outcome Reward Model
	Trends of Reward
	Comparison of Optimizing Initial-Stage Latent Tokens and Optimizing Middle-Stage Latent Tokens
	Performance vs Fraction Ratio

	Experimental Details
	Prompt Designation
	Backbone
	Baselines
	Hyperparameter Tuning
	GSM8K
	MATH-500
	AIME2024

	Detailed FLOPs Calculation
	Total FLOPs for Genius
	Total FLOPs for LatentSeek
	Efficiency Threshold Analysis
	Comparison with iCoT

	Latent Space Trajectories
	Qualitative Analysis and Case Studies
	Computational Resources
	The Use of Large Language Models (LLMs)

