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Abstract
Natural language is generated by people, yet001
traditional language modeling views words002
or documents as if generated independently.003
Here, we propose human language modeling004
(HuLM), a hierarchical extension to the lan-005
guage modeling problem where by a human-006
level exists to connect sequences of documents007
(e.g. social media messages) and capture the008
notion that human language is moderated by009
changing human states. We introduce, HaRT,010
a large-scale transformer model for solving011
HuLM, pre-trained on approximately 100,000012
social media users, and demonstrate it’s effec-013
tiveness in terms of both language modeling014
(perplexity) for social media and fine-tuning015
for 4 downstream tasks spanning document-016
and user-levels. Results on all tasks meet or017
surpass the current state-of-the-art.018

1 Introduction019

The large language models of today, while fun-020

damental to much of modern NLP, are typically021

absent the notion of a human that is responsible022

for producing the natural language. A need for023

integrating the human context into language mod-024

els can be seen from two perspectives: (i) From025

psychological theory, human behavior, including026

language use, is moderated by underlying human027

states of being (Mehl and Pennebaker, 2003; Flee-028

son, 2001). (ii) From statistical modeling, the029

treatment of multiple observations (i.e. docu-030

ments) from the same people as independent is the031

ecological fallacy (Piantadosi et al., 1988; Steel032

and Holt, 1996). These suggest that a higher order033

structure, representing a human state that induces034

dependence between messages of the same per-035

son can produce a more accurate language model036

as well as form the basis for more powerful fine-037

tuned approaches to message-level or user-level038

downstream tasks.039

To this end, we first introduce the task of human040

language modeling (HULM) where the notion of041

the human context in which the text is generated 042

is integrated into the problem definition. In partic- 043

ular, the HULM task incorporates the human con- 044

text by requiring models to predict the probability 045

of tokens conditioning not only on the previous to- 046

kens within the message, but also on the tokens in 047

the previous messages written by the same indi- 048

vidual. This framing allows for modeling the no- 049

tion of a user without having to explicitly model 050

their identity. As we show later, this principle of 051

incorporating other messages written by the user 052

can also be applied easily to downstream tasks. 053

This framing of human language modeling can 054

be seen as a generalization of multiple recent ad- 055

vances toward human centered natural language 056

processing (Hovy, 2015; Lynn et al., 2017; Hovy 057

and Yang, 2021) and personalized language mod- 058

eling (PLM) (King and Cook, 2020). Rather than 059

post-hoc incorporation of human factors (explicit 060

or text-derived) into the text representation, or 061

learn a user specific, personalized copy of a lan- 062

guage model as in the PLM, our formulation in- 063

corporates the notion of a human by conditioning 064

on their previous messages. 065

To build a language model that effectively ad- 066

dresses the HULM task, we develop HaRT, a 067

human-aware recurrent transformer. HaRT is built 068

using standard self-attention based transformer 069

layers and a new user-state based attention layer 070

that incorporates the human context. This modi- 071

fied attention layer produces contextualized token 072

representations informed by a recurrent user state. 073

The recurrent user state allows HaRT to effectively 074

model long contexts necessary to handle all the 075

previous messages written by an individual. 076

We train HaRT on the HULM task defined over 077

a large collection of social media texts spanning 078

100K users. We apply this pre-trained HaRT 079

model on 2 downstream message-level tasks: 080

stance detection (Mohammad et al., 2016), and 081

sentiment analysis (Nakov et al., 2013) as well as 2 082
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human-level tasks: age estimation and personality083

assessment (Schwartz et al., 2013). For message-084

level tasks HaRT can take advantage of the human085

context by using the other messages written by the086

same user and can deal with unseen users seam-087

lessly.088

Contributions. In summary our contributions089

are three-fold: (1) We introduce the task of hu-090

man langauge modeling (HULM); (2) We pro-091

pose HaRT, a novel transformer-based model for092

performing HULM and capable of being fine-093

tuned to specific tasks, (3) We evaluate HaRT,094

demonstrating state-of-the art performance on so-095

cial media language modeling (perplexity), two096

message-level tasks (sentiment analysis and stance097

detection), and two user-level tasks (personality–098

openness assessment, and age estimation).099

2 Related Work100

Recent advances in language model pre-training101

have led to learned representation of text. Pre-102

training methods have been designed with differ-103

ent training objectives, including masked language104

modeling (Devlin et al., 2019) and permutation-105

based auto-regressive language modeling (Yang106

et al., 2019). These have contributed in build-107

ing deep autoencoding architectures, allowing the108

same pre-trained model to successfully tackle a109

broad set of NLP tasks. These contain world110

knowledge, however, are devoid of the informa-111

tion about the text creator.112

Recently, it has been suggested that the NLP113

community address the social and human factors114

to get closer to the goal of human-like language115

understanding (Hovy and Yang, 2021). This call116

builds on a series of studies suggesting that inte-117

grating the human context into natural language118

processing approaches leads to greater accuracy119

across many applications in providing personal-120

ized information access (Dou et al., 2007; Tee-121

van et al., 2005) and recommendations (Guy et al.122

(2009); Li et al. (2010), Morales et al. (2012)).123

The idea of contextualizing language with extra124

linguistic information has been the basis for mul-125

tiple models: Hovy (2015) learn age- and gender-126

specific word embeddings, leading to significant127

improvements for three text classification tasks.128

Lynn et al. (2017) proposed a domain adaptaion-129

inspired method for composing user-level, extra-130

linguistic information with message level features,131

leading to improvements for multiple text classifi-132

cation tasks. Welch et al. (2020a) propose a new 133

form of personalized word embeddings that use 134

demographic-specific word representations. 135

In addition to addressing to social and human 136

factors, plenty of recent work has been focused on 137

personalized language models (King and Cook, 138

2020; Jaech and Ostendorf, 2018) learning au- 139

thor representations (Delasalles et al., 2019) and 140

personalized word embeddings (Lin et al., 2017) 141

pointing out the importance of personalized se- 142

mantics in understanding language. Welch et al. 143

(2020b) explore personalized versus generic word 144

representations showing the benefits of both com- 145

bined. While these models are trained for singu- 146

lar user, Mireshghallah et al. (2021) trains a single 147

shared model for all users for personalized senti- 148

ment analysis. However, the approach is not scal- 149

able as it is still user specific and expects a unique 150

user identifier. 151

While we propose human language modeling 152

as an effective approach to extend the context 153

(in terms of user’s historical information) dur- 154

ing language modeling, others have been pursuing 155

additional approaches to enable learning depen- 156

dency beyond a fixed context length (Dai et al., 157

2018); Keskar et al. (2019) and Dathathri et al. 158

(2020) propose controllable language generation 159

using one or more attribute classifiers or control 160

codes. Guu et al. (2020) propose augmented lan- 161

guage model pretraining with a latent knowledge 162

retriever which allows the model to retrieve and at- 163

tend over documents from a large corpus. Yoshida 164

et al. (2020) show adding recurrence to a pre- 165

trained language model can effectively extend the 166

context length without significant change in ar- 167

chitecture. However, as per our knowledge, none 168

have explored the large pretrained language mod- 169

els along user context. These advances point to the 170

importance of modeling user information in large 171

language models. 172

3 Human Language Modeling (HULM) 173

Our goal is to re-formulate the language modeling 174

task into one that directly enables a higher-order 175

dependence structure that represents a human gen- 176

erating the language. 177

Language modeling formulations pose prob- 178

abilistic questions over text represented as se- 179

quences of tokens. The main goal is to model the 180

probability of observing a given token sequence in 181

the language as a whole. In particular language 182
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models (LMs) estimate the joint probability of the183

tokens in the string, defined in terms of the proba-184

bilities of each token in the sequence conditioned185

on the previous tokens.1 Given a string W ∈ L, a186

sequence of n tokens ⟨w1, w2,⋯, wn⟩, the proba-187

bility of observing the string W in the language L188

is computed as:189

Pr(W) =
n

∏
i=1

Pr(wi∣w1∶i−1) (1)190

We pose the human language modeling problem191

(HuLM), where the goal is to model the probabil-192

ities of observing a sequence from the language193

as generated by a specific person. An initial idea194

might be to pose this task as conditioning the prob-195

ability of a string, wi on a static representation of196

the person (or user, Ustatic):197

Pr(W∣Ustatic) =
n

∏
i=1

Pr(wi∣w1∶i−1,Ustatic)

(2)198

This addresses the first of the two goals we pre-199

sented in the introduction, namely avoiding the200

ecological fallacy of assuming sequences from the201

same person are independent. However, it does202

not respect the idea that people vary in mood203

and can change. More precisely, human behav-204

iors (language use) are influenced by dynamic hu-205

man states of being (Fleeson, 2001; Mehl and Pen-206

nebaker, 2003). Thus, we pose HuLM with a more207

general formulation that enables the idea of a dy-208

namic representation of humans, the user state Ut:209

Pr(Wt∣Ut) =
n

∏
i=1

Pr(wt,i∣wt,1∶i−1,U1∶t−1)

(3)210

where t indexes a particular sequence of utterances211

(e.g. a document, social media message, block of212

language patterns). In the extreme, U1∶t−1 could213

model all previous tokens in all previous docu-214

ments by the person. In the opposite extreme, U1∶t215

could all be assumed equal representing a static216

human representation or even static across users217

reducing the formulation to traditional LMs. Still,218

modeling a user via their previous documents pro-219

vides a seamless way to integrate the user infor-220

mation into language models – the only change is221

that the models will now have to incorporate more222

1Traditional LMs provide estimates of the conditional
probabilities often relying on further simplifying assumptions
(e.g. Markovian assumptions to handle long sequences.).

text when they are making predictions. Note that 223

this problem formulation does not directly require 224

explicit modeling of the identity of a user. This 225

makes it easier to handle new users in downstream 226

tasks and test instances, or creating models that 227

can be further fine-tuned to both document- and 228

user-level tasks. 229

HuLM in Practice. Like traditional langauge 230

models, there are two steps to applying HuLM to 231

most tasks and applications: pre-training and fine- 232

tuning. During pre-training, the model is trained 233

on unlabeled data over User Language Modeling 234

(ULM) pre-training task (defined in Section 4.2). 235

For finetuning, a HuLM model is first initialized 236

with the pre-trained parameters, and all of the pa- 237

rameters are fine-tuned using labeled data from the 238

downstream tasks. Each downstream task has sep- 239

arate fine-tuned models, even though they are ini- 240

tialized with the same pre-trained parameters. 241

4 Human-aware Recurrent Transformer 242

This section introduces, HaRT, a human-aware re- 243

current transformer that trains on the human lan- 244

guage modeling (HULM) formulation. 245

HaRT is designed to produce human-aware con- 246

textual representations of texts at multiple-levels. 247

HaRT’s design is motivated by two goals. First, 248

the contexts, i.e. the set of all messages written 249

by a user, is significantly longer than the typical 250

sizes considered for the widely-used transformer- 251

based language models. For example, GPT-2 uses 252

a context size of 1024 tokens, whereas our esti- 253

mate of the average context size for a Twitter user 254

is more than 12000 tokens. Second, to support 255

human-level tasks (e.g. personality assessment 256

(Lynn et al., 2020)), we need effective represen- 257

tations of the entire set of messages written by a 258

user. 259

HaRT addresses the long context issue by pro- 260

cessing the context in blocks and using a recur- 261

rence structure which summarizes the information 262

into a user state vector, which is then used to in- 263

form the attention between tokens in the subse- 264

quent block. This is similar in spirit to Yoshida 265

et al. (2020)’s work on adding recurrence to pre- 266

trained transformers for handling long contexts. 267

For human-level tasks the aggregate of user states 268

can be used as the representation of the entire con- 269

text for the user. 270
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Figure 1: HaRT architecture: HaRT processes a user’s
messages in blocks. It produces contextualized rep-
resentations of messages in each block conditioning
on a recurrently computed user state. The user state
is inserted into one of the earlier layers (layer 2) to
inform the self-attention computation via a modified
query transform. The previous user state is then recur-
rently extended using the output of a later layer (layer
11).

4.1 HaRT Architecture271

Figure 1 shows the overall architecture for HaRT.272

It consists of standard self-attention based trans-273

former layers from a pre-trained transformer274

(GPT-2) and one modified transformer layer with275

a user-state based self-attention mechanism.276

Inputs and Outputs Each input instance to HaRT277

consists of a temporally ordered sequence of mes-278

sages from a given user a, Ma = ⟨M1,⋯,Mn⟩.279

We segment these messages into fixed sized280

blocks, Ba = ⟨B1,⋯, Bk⟩. We sequentially fit281

messages into blocks, separating messages using282

a newly introduced special token < ∣insep∣ >. If283

the number of tokens in a block falls short of the284

block size, we fill it with padded tokens.285

For each block Bi, HaRT outputs (i) contextual-286

ized representations of the tokens within the block287

conditioned on the previous user state (Ui−1), and288

(ii) an updated representation of the user state, Ui,289

which now also includes the information from the290

current block Bi. We use the representation of the291

last non-pad token of a message as its representa-292

tion for message-level tasks, and use the average293

of the user-states from all the blocks of a user as294

that user’s representation for user-level tasks.295

User-State based Self-Attention HaRT con-296

structs a user-state representation vector by com-297

bining information from each block in a recurrent298

manner. After processing the inputs in a given299

block Bi, HaRT extends the previous user state300

Ui−1 with information from current block Bi us-301

ing the output representations H
(E) from one of 302

the later layers (we denote as the extract layer LE). 303

The recurrence that produces the new user state Ui 304

is given by: 305

Ui = tanh(WUUi−1 +WHH
(E)) (4) 306

The user state for the first block U0 is initialized 307

with the average of the (pretrained GPT-2) layer 308

11 outputs for words from the messages of more 309

than 500 users (of the train set) computed using 310

Schwartz et al. (2017). 311

To produce the user-state conditioned contex- 312

tual representations at a given layer, HaRT uses 313

a modified self-attention procedure to one of the 314

earlier layers, which we denote as the insert layer 315

(LIN ). The idea is to create a new query transform 316

which includes the user-state vector, so that the 317

attention between tokens is informed by the con- 318

text of the previous messages written by the user. 319

To this end, we take input hidden states to this 320

insert layer HIN−1
i , concatenate it with the user- 321

state vector from the previous block Ui−1 and then 322

apply a linear transformation (using Wq) to ob- 323

tain the query vectors (QIN
i ) for the self-attention 324

computation. 325

Q
IN
i =W

T
q [H (IN−1 )

i ;Ui−1 ] (5) 326

The key, value transforms and the rest of the 327

self-attention computation and further processing 328

in the transformer to produce the output represen- 329

tations from the layer, all remain the same as in the 330

original GPT-2 model. 331

Implementation Choices There are multiple al- 332

ternatives for a HaRT implementation including 333

how to construct the user state, where and how 334

to inject user state information. In our prelimi- 335

nary experiments we experimented with different 336

extract layers but found that constructing user state 337

from the penultimate layer (Layer 11) and inject- 338

ing the user state in a single earlier layer (Layer 2 339

used by Yoshida et al. (2020)) to modify the query 340

transformation was the most effective empirically. 341

4.2 Pre-training HaRT 342

HaRT is pre-trained using the HULM task in an 343

autoregressive manner. 344

The HULM task as defined in Equation 3 asks 345

to predict a token that appears in a token sequence 346

(i.e. a user’s social media message) given the pre- 347

vious tokens in the sequence while also condition- 348

ing on previous user states. We turn this task into 349
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a pre-training objective defined over block seg-350

mented token sequences from a user. For each351

block of a given user, the task is to predict each352

token in the block while conditioning on (i) the353

previous tokens within the current block which354

are directly available as input, and also (ii) the to-355

kens from the previous blocks that are available to356

HaRT through the recurrent user state. Formally,357

the pre-training objective is to maximize:358

∏
k∈Users

∣Bk∣
∏
t=1

∣Bk,t∣
∏
i=1

Pr(wt,i∣wt,1,⋯, wt,i−1, Bk,1∶t−1)

(6)359

where, wij is the i
th token in the t

th sequence360

block (Bk,t) for user k.361

Pre-training data For the pre-training corpus362

we combine a subset of the Facebook posts dataset363

from Park et al. (2015), a subset of the County364

Tweet Lexical Bank (Giorgi et al., 2018) appended365

with newer 2019 and 2020 tweets, in total span-366

ning 2009 through 2020. We filter the datasets to367

only include tweets marked as English from users368

who have at least 50 total posts and at least 1000369

words in total, ensuring moderate language his-370

tory for each user. The resulting dataset consists371

of just over 100,000 unique users, which we split372

into a train dataset from 96,000 users, and separate373

development and test sets which include instances374

from 2,000 users each. No user from the train is375

present either in the development or the test set.2376

We refer to this as the HuLM-Corpus (HLC).377

4.3 Fine-tuning HaRT378

In the tradition of transformers for traditional lan-379

guage modeling, HaRT shares the same archi-380

tecture for both pre-training and fine-tuning ex-381

cept for the output layers. It has a unified ar-382

chitecture across different downstream tasks. For383

finetuning, HaRT is first initialized with the pre-384

trained parameters, and all of the parameters are385

fine-tuned using labeled data from the downstream386

tasks. Each downstream task has separate fine-387

tuned models, even though they are initialized388

with the same pre-trained parameters. Apart from389

using the labeled data from the downstream tasks,390

we also use the historical messages (when avail-391

able) from the respective users to replicate the for-392

mat of pre-training inputs and to benefit from the393

knowledge of the user.394

2see Appendix for tests over users included during HuLM
training

5 Evaluation: Human Language 395

Modeling 396

We seek to compare HaRT with a standard lan- 397

guage model that is exposed to the same the same 398

data but without modeling the notion of a user. 399

Thus, we compare HaRT’s human language mod- 400

eling performance to the model it was based, GPT- 401

2. For calibration we report performance on GPT- 402

2’s original pre-trained version (GPT-2frozen), and 403

a version of the LM that was fine-tuned on the 404

HuLM-Corpus (GPT-2HLC). 405

We train and evaluate the models using the train 406

and test splits of the HuLM-Corpus described in 407

Section 4.2. Each training instance for HaRT is 408

capped to 8-blocks of 1024-tokens each. Fol- 409

lowing previous work fine-tuning transformer lan- 410

guage models for social media (V Ganesan et al., 411

2021), GPT-2 was trained over individual mes- 412

sages. We train both for five epochs and set the 413

learning rate, batch size, and stopping patience 414

based on the development set (see Appendix A.3). 415

For HaRT, we initialize all GPT-2 self-attention 416

layers with the corresponding weights in the pre- 417

trained GPT-2. The user-state based self-attention 418

layer weights (query, key, and value) are normal 419

initialized with 0 mean and 0.02 standard devia- 420

tion. 421

Perplexity Table 1 reports the perplexity of all 422

three models on the development and test splits 423

of HuLM-Corpus. The frozen pre-trained GPT- 424

2 (GPT-2frozen) fares poorly to the domain mis- 425

match while the fine-tuned version (GPT-2HLC) 426

fares much better. However, the human language 427

model HaRT achieves the best performance by a 428

large margin, with a significant reduction in per- 429

plexity by more than 43% on the test set (p < 430

.001).3 431

Effect of History Size. We further analyze the 432

effect of history size by varying the amount of lan- 433

guage, in terms of blocks, used per user. Figure 2 434

shows that adding more history in general helps, 435

with a big reduction in perplexity going from 2 to 436

4 blocks and a further reduction going from 4 to 8 437

blocks. Adding more context can induce a need to 438

effectively balance likelihood of finding more im- 439

portant signals against the increasing chances of it 440

drowning in less important information. 441

3In addition to this improvement for unseen users, we also
see similar relative benefits when tested on instances from
seen users which we report in Appendix A.2.
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Model Dev (ppl) Test (ppl)
GPT-2frozen 112.82 116.35
GPT-2HLC 47.61 48.51
HaRT 28.59* 27.49*

Table 1: Comparing HaRT as a language model to
GPT-2frozen, the frozen pre-trained GPT-2 and GPT-2HLC,
the GPT-2 model fine-tuned on the HuLM-Corpus.
HaRT shows large gains with a substantial reduction in
perplexity compared to both versions of GPT-2. Bold
font indicates best in column and * indicates statistical
significance p < .05 via permutation test w.r.t GPT-2HLC

Figure 2: . Perplexity scores, on test sets as a func-
tion of history size (number of blocks) used when
training HaRT. Each block consists of 1024 tokens.
Adding more history improves language modeling per-
formance with big reduction going from 2 to 4 blocks
and a smaller reduction from 4 to 8 blocks.

6 Evaluation: Fine-tuning for442

Downstream Tasks443

Here, we evaluate the utility of fine-tuning HaRT444

for document- and user-level tasks. Just as stan-445

dard transformer language models are fine-tuned446

for tasks, we take our pre-trained HaRT model and447

fine-tune it for stance detection, sentiment classifi-448

cation, age estimation, and personality (openness)449

assessment tasks. For both sets of tasks we com-450

pare fine-tuning the GPT-2HLC as a non-user-based451

LM baseline and also report previously published452

results from other task specific models. All hy-453

perparameter settings and training details for the454

GPT-2HLC and HaRT models for each task are listed455

in Appendix A.3.456

6.1 Document-Level Tasks457

We consider two document-level tasks that require458

models to read an input document (message) writ-459

ten by a user and output a label (stance of the460

user towards a topic or the sentiment expressed461

Model Age
(r)

OPE
(rdis)

Stance
(F1)

Sentiment
(F1)

GPT-2HLC 0.555 0.292 68.38 76.61
HaRT 0.868* 0.619* 71.10* 78.25*

Table 2: We fine-tune HaRT and GPT-2HLC (GPT-2
fine-tuned for LM on the same data) for 4 downstream
tasks: Age, Openness (OPE), Stance, and Sentiment,
and find HaRT to perfrom better on all 4 tasks. For
age and openness, we fine-tune HaRT only for the re-
currence module, and fine-tune only the last 2 layers of
GPT-2HLC. For stance and sentiment, we fine-tune full
models. Bold indicates best in column and * indicates
statistical significance p < .05 via permtuation test.

in the text). To fine-tune HaRT on these tasks, 462

with each document we collect and attach previ- 463

ous messages written by the same users, repre- 464

sented using the procedure we outlined in Sec- 465

tion 4.3. Thus, HaRT processes this input to pro- 466

duce message- and human-contextualized token- 467

level representations. We represent the document 468

by its last non-padded token representation and 469

feed it to classification layer for predicting the out- 470

put label. GPT-2HLC, without hierarchical struc- 471

ture, only uses the input document to make pre- 472

dictions. We fine-tune all parameters of HaRT 473

and GPT-2HLC, as well as the classification layer 474

weights using the standard cross-entropy loss (cal- 475

culated only over the last non-padded token of the 476

target (labeled) messages). 477

Stance Detection. For stance detection we use 478

the SemEval2016 dataset (Mohammad et al., 479

2016), which contains tweets annotated as be- 480

ing in favor of, against, or neutral toward one 481

of five targets: atheism, climate change as a real 482

concern, feminism, Hillary Clinton, and legaliza- 483

tion of abortion. This data only includes labeled 484

tweets from users and not any history, so we use 485

the extended dataset from Lynn et al. (2019) and 486

preserve the train/dev/test split of the same. To 487

maintain temporal accuracy in our autoregressive 488

model, we only used the part of the extended 489

dataset (history) that consists of messages posted 490

earlier than the labeled messages. 491

Sentiment Analysis. We use message-level sen- 492

timent annotations indicating positive, negative, 493

and neutral categories from the SemEval-2013 494

dataset (Nakov et al., 2013). As with stance, we 495

use a part of the extended dataset from Lynn et al. 496

(2019) to get associated message history, and pre- 497
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Model Stance
(F1)

Sentiment
(F1)

MFC 54.2 28.0
Lynn et al. (2019) 65.9 69.5
MeLT 66.6 63.0
BERTweet 68.8 77.9
HaRT 71.1* 78.3*

Table 3: We compare HaRT’s performance on docu-
ment level downstream tasks: Stance and Sentiment,
against state of the art results. We also fine-tuned pre-
trained GPT-2, BERTweet (Nguyen et al., 2020), and
MeLT (Matero et al., 2021) on both tasks for baselines.
HaRT performs the best in both tasks with a substan-
tial gain. Bold indicates best in column and * indicates
statistical significance p < .05 w.r.t BERTweet via per-
mutation test.

serve the train/dev/test split of the same.498

6.2 User-Level Tasks499

We evaluate HaRT for age estimation and person-500

ality (openness) assessment, social scientific tasks501

which require producing outcomes at the user-502

level. We use a subset of the data from con-503

senting users of Facebook who shared their Face-504

book posts along with demographic and personal-505

ity scores (Kosinski et al., 2013; Park et al., 2015).506

For these user-level tasks we can leverage the507

recurrent user states in HaRT to produce a repre-508

sentation of the user. We represent the input as de-509

scribed in Section 4.3, and use the averaged vector510

of layer-normed user-states from the non-padded511

blocks of each user to make predictions using a512

linear classifying layer to predict 1 label (regres-513

sion task).514

For GPT-2HLC, since it can’t directly handle all515

of the users text in one go, we replicate the user516

label for each message of the respective users and517

train the model to predict the label for each mes-518

sage using the last non-padded token of the mes-519

sage. To make the final prediction, we average520

the predictions across all messages from respec-521

tive users and calculate the performance metric us-522

ing this average.523

For these user level tasks that require aggregate524

information, for both models, we find that fine-525

tuning the entire set of parameters was worse than526

fine-tuning fewer layers. For GPT-2HLC fine-tuning527

only the last two layers gave the best performance.528

For HaRT, we find that fine-tuning only the recur-529

rence module gave the best performance on devel-530

Model Age (r) OPE (rdis)
V Ganesan et al. (2021) 0.795 0.511
Sap et al. (2014) 0.831 -
Lynn et al. (2020) - 0.626
HaRT 0.868* 0.619

Table 4: We compare HaRT’s performance on user
level downstream tasks: Age and Openness (OPE),
against state of the art results. HaRT does better in pre-
dicting age and is only slightly lacking for openness
prediction. The baseline from V Ganesan et al. (2021)
use lesser number of users (10000) in training. Here,
we use a bootstrap sampling test and find no statisti-
cal difference between HaRT and (Lynn et al., 2020)
(p = .35) but do find significance between HaRT and
(Sap et al., 2014) (p < .05).

opment sets. We report results with these best set- 531

tings. We use the mean squared error (MSE) as the 532

training loss. 533

Age Estimation Similar to the pre-training data, 534

we filtered the above dataset for English language 535

instances and included only the users with a min- 536

imum of 50 posts and a minimum of 1000 words. 537

Age was self-reported and limited to those 65 538

years or younger. This resulted in a dataset of 539

56,930 users in train, 1836 users in dev, and 4438 540

users in test which was a subset of the test set 541

(5000 users) from Park et al. (2015). We evalu- 542

ate on both the test sets and report Pearson corre- 543

lation (r) metric on the latter for comparison pur- 544

poses. We include results with the filtered data in 545

Appendix (Table 7). 546

Personality Assessment. We evaluate on the as- 547

sessment of openness based on language (one’s 548

tendency to be open to new ideas) (Schwartz et al., 549

2013). To allow for direct comparisons, we use the 550

same test set (n=1,943) as Lynn et al. (2020) and 551

use a subset of their training set (66,764 users) of 552

which 10% were sampled as dev set, and report 553

disattenuated pearson correlation (rdis). As before 554

(in Age estimation), we experimented with the fil- 555

tered dataset as well and report those results in Ap- 556

pendix (Table 7). 557

6.3 Results 558

Comparison with the non-user based LM Base- 559

line Table 2 compares the performance of HaRT 560

against the simple baseline of fine-tuning a non- 561

human-aware language model, GPT-2HLC. We see 562

that HaRT yields substantial gains over GPT-2HLC 563
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Model Sentiment
(F1)

Stance
(F1)

Test
(ppl)

HaRT NOT PT 63.47 66.26 –
HaRT W/O RECUR 77.04 68.73 27.34
HaRT 78.25* 71.10* 27.49

Table 5: Results with the ablation experiments on
Stance and Sentiment downstream tasks. We experi-
ment without the recurrence module (W/o recur), and
HaRT without HuLM PT, and compare with HaRT.
Bold indicates best in column and * indicates statisti-
cal significance p < .05 via permutation test w.r.t HaRT
w/o recur.

across both user-level and document-level tasks,564

demonstrating clear benefits in all settings.565

Comparison with Document-Level Task Spe-566

cific Baselines Table 3 compares HaRT with task-567

specific baselines for stance and sentiment detec-568

tion. Stance results are an average of weighted569

F1 scored over five different topics from respec-570

tive topic-specific fine-tuned models. HaRT out-571

performs all compared models including Lynn572

et al. (2019) that incorporates explicit and text-573

derived latent human factors, and a recent hi-574

erarchical model MeLT (Matero et al., 2021)575

which uses contextual message prediction task,576

and BERTweet (Nguyen et al., 2020) which is a577

BERT model pre-trained on a large collection of578

english tweets. This result demonstrates the sub-579

stantial benefits of human language modeling for580

these document-level downstream tasks.581

Comparison with User-Level Task Specific582

Baselines Table 4 compares HaRT with task-583

specific baselines for Age and Openness tasks. For584

Age, HaRT outperforms all baselines including585

a strong non-neural lexica based predictor (Sap586

et al., 2014), and a RoBERTa (Liu et al., 2019)587

based system that uses carefully chosen frozen588

embeddings (V Ganesan et al., 2021). For Open-589

ness, HaRT is better than the frozen RoBERTa590

(Liu et al., 2019) embeddings and is comparable to591

Lynn et al. (2020)’s hierarchical attention model.592

These results also suggest the potential of HaRT’s593

user states as a representation for user-level tasks.594

6.4 Ablation Studies595

In this section, we perform ablation experiments596

on HaRT to better understand their relative impor-597

tance and report the results in Table 5.598

Pre-training We assess the impact of pre-training599

by evaluating the downstream performance of a600

version of the HaRT model that has not been pre- 601

trained on the HuLM task. Instead of using the 602

weights from HuLM pre-training, we use HaRT 603

with initialized weights as described in Section 5. 604

The results in table 5 show HuLM pre-training 605

benefits – pre-training adds substantial gain of 606

14.78 points and 4.84 points in weighted F1 score 607

for sentiment analysis and stance detection respec- 608

tively. 609

Recurrence We assess the importance of recur- 610

rent user state by first pre-training HaRT without 611

its recurrent module and then fine-tuning it for the 612

downstream tasks. We still use the same batch- 613

ing as described in Section 4.2 but the informa- 614

tion from a block no longer propagates to the next 615

block in the forward pass, and backpropagation is 616

still done on all blocks of a user together. Without 617

the recurrence module we see a drop of 1.21 points 618

and 2.37 points in the weighted F1 measure for 619

sentiment and stance respectively. Interestingly, 620

HaRT performs better on downstream tasks even 621

though it has a slightly worse perplexity score than 622

HaRT without recurrence, consistent with the idea 623

that models benefit from user history on tasks that 624

involve a user. 625

7 Conclusions 626

Language is deeply human. Yet, language mod- 627

els in wide-spread use today lack a notion of the 628

human that generates the language. Motivated 629

by by other advances in human-centered language 630

processing and psychological theory that suggest 631

language is moderated by human states, we in- 632

troduced a human language modeling formulation 633

that extends the standard LM task to now also 634

consider the notion of a user and their states via 635

their previous messages. We developed a human- 636

aware transformer (HaRT) that uses a recurrence 637

mechanism to model user states and show that 638

pre-training this transformer on the human lan- 639

guage modeling task yields significant gains in 640

both generation as well as for fine-tuning on mul- 641

tiple downstream document- and user-level tasks. 642

Overall, state-of-the-art results with HaRT, a 643

model neither trained on substantially larger data 644

nor adding many parameters, suggests progress 645

for transformers not based on massive increases in 646

data or parameters but on a task grounded in lan- 647

guage’s “natural” generators, people. 648
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8 Ethical Considerations649

While the multi-level human-document-word650

structure within HULM can enable bias correcting651

and fairness techniques (discussed next), the abil-652

ity to better model language in its human context653

also presents opportunities for unintended harms654

or nefarious exploitation. For example, mod-655

els that improve psychological assessment are not656

only useful for research and clinical applications,657

but could be used to target content for individuals658

without their awareness or consent. In the con-659

text of use for psychological research, such mod-660

els may risk release of private research participant661

information. To negate this potential, we plan to662

only release a version of HaRT that without the663

Facebook data, and only the version with Face-664

book if we can prove that users participating in665

the study can not be identified by via pre-trained666

HART.667

HULM aims to join a growing body of work to668

make AI more human-centered, and thus more ap-669

plicable for interdisciplinary study of the human670

condition and new clinical tools for psychologi-671

cal health. At this point, our models are not in-672

tended to be used in practice for mental health673

care nor labeling of individuals publicly with per-674

sonality or age scores. While modeling the hu-675

man context presents opportunities for reducing676

AI bias, prior to clinical or applied use, such mod-677

els should be evaluated for failure modes such as678

error across target populations for error or out-679

come disparities (Shah et al., 2020). All user-level680

tasks presented here was reviewed and approved681

or exempted by an academic institutional review682

board (IRB).683
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A Appendix912

A.1 Pre-training913

Twitter Data Collection As mentioned, in section914

4.2, we use a combination of data from both Twit-915

ter and Facebook data sources. However, since916

the main Twitter corpus (Giorgi et al., 2018) only917

spans the years 2009 - 2015, we wanted to supple-918

ment our total corpus with newer language data.919

Generally, we follow the same procedures for data 920

collection as introduced for the 2009 - 2015 years. 921

Thus, we started with a 1% random sample of pub- 922

licly available tweets that can be mapped to US 923

counties. On top of this we also applied the fol- 924

lowing filters: (1) Removal of non-English tweets, 925

(2) Removal of users who did not tweet at least 926

3 times a week, (3) Removal of any duplicates 927

among the collected data, and (4) Removal of any 928

tweets containing URLs. We will be including this 929

additional data as part of the CTLB project4. 930

Data Size and Splits We sample evenly be- 931

tween Facebook and Twitter at the user-level to 932

collect 50,000 from each and apply the same min- 933

imum language use requirement of 1,000 words 934

spanning 50 messages. We show the details of the 935

splits across training/development/testing as well 936

as seen/unseen user categories in figure 3. We 937

keep 4,000 users for development and testing, 2k 938

for each split, that are not at all present in the train- 939

ing portion. For users that we do train on, we se- 940

lect 4,500 to keep 20% of their messages for de- 941

velopment and testing sets. 942

A.2 Perplexity on Seen versus Unseen Users 943

Benefit of Seen users. By default, our experi- 944

ments are run under an ‘unseen user’ condition 945

where by the test corpus contains users that were 946

not in HaRT’s training corpus. However, one 947

could argue that this is an unnecessary impairment 948

since further training the human language model 949

doesn’t require labels and can often be run on test 950

data. We compare the effect of having seen users 951

during HaRT training by calculating perplexity on 952

dev and test sets with seen users. To make it a fair 953

comparison, since we found our “seen user” cor- 954

pus was more difficult (perplexity on seen users 955

test set was higher than unseen users test set for 956

GPT-2HLC as well), we use an adjusted perplexity, 957

defined as the ratio of the model’s perplexity di- 958

vided by a non-HULM upper-bound perplexity on 959

the same test set (GPTLM−FT ), normalizing by 960

the difficulty of the test set. As shown in Table 961

6, we find a small but significant benefit to having 962

seen the users during training. 963

A.3 Experimental Settings 964

We use Open AI’s pre-trained GPT-2 base model 965

from Radford et al. (2019) made available by the 966

Hugging Face library from Wolf et al. (2019) as 967

4https://github.com/wwbp/county_tweet_lexical_bank
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Figure 3: Structure of our pre-training dataset visually showing the data source(FB vs Twt), train-
ing/development/testing splits, and seen/unseen users for training and testing. Our dataset totals 100,000 users
and approximately 37 million messages.

Unseen users Seen users
Model ppl adj-ppl ppl adj-ppl

GPT2 LM-FT 48.5 1.00 53.7 1.00
HaRT 27.5 0.57* 29.0 0.54*

Table 6: Evaluation of benefit of having seen the users
during HaRT training. We use adjusted perplexity (adj-
ppl): the ratio of the perplexity to the upper-bound from
not using HaRT during training (i.e.GPT-2HLC) on the
same test set – lower implies better performance when
normalized by difficulty of the test set. Seen users test
set is the set with the messages from the users also
available in the train set, while unseen users test set
does not have users common with the train set and is
the same as the test set in Table 1. Seen users test
set is harder for both models. However, normalizing
the scores show HaRT to have better performance over
seen users test set. Bold font indicates best in column
and * indicates statistical significance p < .05 via per-
mutation test.

our base model. We also make use of Hugging968

Face’s code base to implement HuLM. Our train-969

ing procedure involves all the default training hy-970

perparameters from Hugging Face’s GPT2 config971

except learning rate and the other specific hyper-972

params mentioned in above sections. We run a973

learning rate search sweep on a sampled dataset,974

for both HaRT and GPT2LM−FT , using the Op-975

tuna framework from Akiba et al. (2019): 1) in a976

range of 5e-6 to 5e-4, with 3 trials each of 5 epochs977

for pre-training, 2) in a range of 5e-6 to 5e-4, with978

10 trials each of 15 epochs for fine-tuning stance979

detection, and 3) in a range of 1e-7 to 1e-5, with 5980

trials each of 15 epochs for fine-tuning sentiment981

analysis. We also setup an early stopping criteria982

for the downstream task trials, such that we con- 983

tinue the epoch runs till we hit an increase in loss 984

for 3 consecutive runs, and pick the model with 985

the best F1 score. We couldn’t run a similar sweep 986

for user-level tasks due to compute time limits 987

so we try a couple learning rates from document- 988

level tasks but found the same learning rate that we 989

use for pre-training to be better. Many of the ex- 990

perimental/hyperparameters (batch sizes, window 991

sequence sizes and cappings) settings mentioned 992

throughout this work including the number of tri- 993

als and the number of epochs vary because of com- 994

putational limitations based on data size and train- 995

ing time. 996

All pre-training runs are trained on 2 Tesla V100 997

GPUs of 32GB. Training HaRT takes approx 16 998

hours for 1 epoch (with train data consisting of 999

8 blocks (each of 1024 tokens) of 96000 users). 1000

Fine-tuning tasks run on a mix of Tesla V100, 1001

Quadro RTX 8000, and A100 GPUs based on 1002

compute availability. All batch sizes mentioned 1003

are per GPU. 1004

Pre-training Settings We use 2.4447e-4 as the 1005

learning rate for training HaRT, with 1 user train 1006

batch size, 15 users eval batch size and early stop- 1007

ping patience set to 3. For GPT-2HLC, we cap we 1008

use the default settings from (Wolf et al., 2019) 1009

with train and eval batch size set to 60 and early 1010

stopping patience set to 3. 1011

Document-level Fine-tuning Settings We fine- 1012

tune HaRT for document-level tasks on their 1013

respective training data with an input instance 1014

capped to 8 blocks of 1024 tokens each, and no 1015
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capping during evaluation. We train for 15 epochs1016

using train and dev sets - along with history where1017

available - with 1 user train batch size, 20 users1018

eval batch size and early stopping patience set to1019

6. All models converge within 5 epochs except one1020

stance target - feminism. GPT-2HLC is fine-tuned1021

with the same data - but not history - using the1022

same settings except a different learning rate (from1023

the hyperparameter sweep mentioned above), train1024

and eval batch size of 60, and max tokens per mes-1025

sage set to 200 (consistent with pre-training).1026

User-level Fine-tuning Settings We fine-tune1027

HaRT for user-level tasks with an input instance1028

capped to 4 blocks of 1024 tokens each, and evalu-1029

ation data capped to 63 blocks (to allow for dev set1030

evaluation due to compute limitations). For fine-1031

tuning HaRT, we use 4 user train batch size and1032

20 eval batch size with early stopping patience set1033

to 3. We layer norm the user-states (hidden states1034

of the user state vector) from HaRT, and linearly1035

transform (to embedding dimensions) before aver-1036

aging the user-states to make the user’s age esti-1037

mation. We train for 30 epochs with warmup steps1038

equivalent to 10 epochs, and a weight decay set to1039

0.01. We find that for the task of Age estimation1040

the model converges at epoch 21, however for Per-1041

sonality Assessment we find a simple classifica-1042

tion linear layer to show better performance (with1043

a convergence seen at epoch 28 when run for 351044

epochs). In case of GPT-2HLC we with the same1045

data (split into into individual messages capped to1046

200 tokens per message as in pre-training), for 151047

epochs (much higher training time as compared to1048

HaRT) with train and eval batch size set to 400,1049

and early stopping patience set to 3.1050

MeLT – Sentiment Fine-tuning Settings To1051

apply MeLT (Matero et al., 2021) to the senti-1052

ment task we use use optuna (Akiba et al., 2019) to1053

search both learning rate and weight decay param-1054

eters using a search space between 6e-6 and 3e-1055

3 and between 1 and 1e-4 respectively. We keep1056

the same architecture as described in the original1057

MeLT paper, however we make 1 change during1058

fine-tuning and that is the message-vector repre-1059

sentation from MeLT is concatenated with the av-1060

erage of the observed tokens for the labeled mes-1061

sage to include both local and global context into1062

the fine-tuning layers.1063

Model Age (r) OPE (rdis)
HaRT (Full test set) 0.868 0.619
HaRT (Filtered test set) 0.872 0.635

Table 7: HaRT’s performance on user level down-
stream tasks: Age and Openness (OPE), on full test
sets from (Park et al., 2015) and (Lynn et al., 2020), as
well as on the resulting test set (4438 users and 1745
users respectively for Age and OPE) after filtering the
dataset for English language with users having a min-
imum of 50 posts and 1000 words (as we do for our
pre-training data).
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