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Abstract

Reasoning encompasses two typical types: de-001
ductive reasoning and inductive reasoning. De-002
spite extensive research into the reasoning ca-003
pabilities of Large Language Models (LLMs),004
most studies have failed to rigorously differenti-005
ate between inductive and deductive reasoning,006
leading to a blending of the two. This raises an007
essential question: In LLM reasoning, which008
poses a greater challenge - deductive or induc-009
tive reasoning? While the deductive reasoning010
capabilities of LLMs, (i.e. their capacity to011
follow instructions in reasoning tasks), have012
received considerable attention, their abilities013
in true inductive reasoning remain largely unex-014
plored. To delve into the true inductive reason-015
ing capabilities of LLMs, we propose a novel016
framework, SolverLearner. This framework017
enables LLMs to learn the underlying function018
(i.e., 𝑦 = 𝑓𝑤 (𝑥)), that maps input data points019
(𝑥) to their corresponding output values (𝑦),020
using only in-context examples. By focusing021
on inductive reasoning and separating it from022
LLM-based deductive reasoning, we can isolate023
and investigate inductive reasoning of LLMs in024
its pure form via SolverLearner. Our observa-025
tions reveal that LLMs demonstrate remarkable026
inductive reasoning capabilities through Solver-027
Learner, achieving near-perfect performance028
with ACC of 1 in most cases. Surprisingly, de-029
spite their strong inductive reasoning abilities,030
LLMs tend to relatively lack deductive capabil-031
ities, particularly in tasks involving “counter-032
factual” reasoning.033

1 Introduction034

Recent years have witnessed notable progress in035

Natural Language Processing (NLP) with the de-036

velopment of Large Language Models (LLMs) like037

GPT-3 (Brown et al., 2020) and ChatGPT (Ope-038

nAI, 2023). While these models exhibit impressive039

reasoning abilities across various tasks, they face040

challenges in certain domains. For example, a re-041

cent study (Wu et al., 2023) has shown that while042

LLMs excel in conventional tasks (e.g., base-10 043

arithmetic), they often experience a notable decline 044

in accuracy when dealing “counterfactual” reason- 045

ing tasks that deviate from the conventional task 046

(e.g., base-9 arithmetic). It remains unclear to what 047

extent they are capable of reasoning. 048

In light of this, our paper seeks to investigate 049

the reasoning capabilities of LLMs. Reasoning 050

can encompasses two types: deductive reasoning 051

and inductive reasoning, as depicted in Fig. 1. De- 052

ductive reasoning starts with a general hypothesis 053

and proceeds to derive specific conclusions about 054

individual instances while inductive reasoning in- 055

volves formulating broad generalizations or princi- 056

ples from a set of instance observations. Despite 057

extensive research into the reasoning capabilities of 058

LLMs, most studies have not clearly differentiated 059

between inductive and deductive reasoning. For in- 060

stance, arithmetic reasoning task primarily focuses 061

on comprehending and applying mathematical con- 062

cepts to solve arithmetic problems, aligning more 063

with deductive reasoning. Yet, when employing 064

in-context learning for arithmetic reasoning tasks, 065

where the model is prompted with a few 〈input, 066

output〉 examples, the observed improvements are 067

often attributed to their inductive reasoning capac- 068

ity. This fusion of reasoning types poses a critical 069

question: Which is the more significant limita- 070

tion in LLM reasoning, deductive or inductive 071

reasoning? 072

To explore this question, it’s crucial to differen- 073

tiate between deductive and inductive reasoning. 074

Current methods that investigate deductive and in- 075

ductive reasoning often rely on disparate datasets, 076

making direct comparisons challenging (Xu et al., 077

2023a; Tang et al., 2023; Dalvi et al., 2021; Han 078

et al., 2022; Sinha et al., 2019; Yu et al., 2020). To 079

overcome this limitation, we have designed a set of 080

comparative experiments that utilize a consistent 081

task across different contexts, each emphasizing 082

either deductive (i.e., methods (a) and (b)) or induc- 083
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(b) Few-shot IO w/ Mapping Function

Q: Assuming that all numbers are in base-8 where
the digits are "01234567", what is 57+27?
A: The result for 57+27 is 106.
Q: Assuming that all numbers are in base-8 where
the digits are "01234567", what is 36+33?
A:

(Output) The result for 36+33 is 71.

(a) Zero-shot

Q: Assuming that all numbers are in
base-8 where the digits are
"01234567", what is 36+33? 
A:

(Output) 71

Deductive Reasoning Inductive Reasoning
General Principle Specific Conclusion

The result for 36+33 is 71.

General ➔ Specific

Deductive
Reasoning

(c) Few-shot IO w/o Mapping Function

Q: You are asked to add two numbers, the
base of which is unknown, what is 57+27?
A: The result for 57+27 is 106.
Q: You are asked to add two numbers, the
base of which is unknown, what is 36+33?
A:

(Output) The result for 36+33 is 71.

(d) SolverLearner
Q: You are asked to add two numbers, the base of which is unknown, what is 57+27?
A: The result for 57+27 is 106.
Q: What is the function to map the input to the output?
A:
(Output) def solver(n1: str, n2: str) -> str:\n # Let's analyze the given examples to find
the base\n # 57 + 27 = 106\n # It seems like the base is 8 (octal)\n\n # Convert the
input strings to integers in base 8\n num1 = int(n1, 8)\n num2 = int(n2, 8)\n\n #
Calculate the sum\n result = num1 + num2\n\n # Convert the result back to a string in
base 8\n return oct(result)[2:]

Addition in base 8
Begin from the rightmost digit, perform the addition. If the sum
exceeds 8, subtract 8, record the remainder, and carry over 1
to the next column. Repeat this process from right to left for
each column, and your final result will be the sum in base 8.

The result for 71+44 is 135.
The result for 42+70 is 132.
The result for 50+45 is 115.
The result for 61+55 is 136.
The result for 63+22 is 105.

Specific ➔ Specific Specific ➔ GeneralGeneral + Specific ➔ Specific

Specific Observation General Principle
Addition in base 8

Begin from the rightmost digit, perform the addition. If the sum
exceeds 8, subtract 8, record the remainder, and carry over 1
to the next column. Repeat this process from right to left for
each column, and your final result will be the sum in base 8.

Inductive
Reasoning

Integrate the deductive reasoning with few-shot
examples

Traditional IO prompting for inductive
reasoning 

Completely decouple inductive reasoning from deductive reasoningDeductive Reasoning

Deductive Setting (mapping function is provided) Inductive Setting (mapping function is not provided)

Figure 1: We have designed a set of comparative experiments that utilize a consistent task across different contexts, each
emphasizing either deductive (i.e., methods (a) and (b)) or inductive reasoning (i.e., methods (c) and (d)). As we move from left
to right across the figure, the methods gradually transition their primary focus from deductive reasoning to inductive reasoning.
Specifically, method (a) is designed to demonstrate the LLMs’ deductive reasoning in its pure form. Conversely, method (c)
utilizes Input-Output (IO) prompting strategies, which are prevalent for probing the inductive reasoning skills of LLMs. However,
we can observe that methods (c) cannot fully disentangle inductive reasoning from deductive reasoning as their learning process
directly moves from observations to specific instances, blurring the lines between the two. To exclusively focus on and examine
inductive reasoning, we introduce a novel framework called SolverLearner, positioned at the far right of the spectrum.

tive reasoning (i.e., methods (c) and (d)), as depicted084

in Fig 1. For instance, in an arithmetic task, the pro-085

ficiency of a LLM in deductive reasoning depends086

on its ability to apply a given input-output mapping087

function to solve problems when this function is088

explicitly provided. Conversely, an LLM’s skill089

in inductive reasoning is measured by its ability090

to infer these input-output mapping functions (i.e.,091

𝑦 = 𝑓𝑤 (𝑥)), that maps input data points (𝑥) to092

their corresponding output values (𝑦), based solely093

on in-context examples. The base system often094

serves as the input-output mapping function in an095

arithmetic task. In line with the aforementioned096

setup, we employ four methods to delve into the097

reasoning capacity of LLMs. As we move from098

left to right across Fig. 1, the methods gradually099

transition their primary focus from deductive rea-100

soning to inductive reasoning. Method (a), at the101

far left of the figure, aims to explore the deductive102

reasoning capabilities of LLMs in its pure form,103

where no prior examples are provided (zero-shot104

settings). While exploring deductive reasoning in105

its pure form appears relatively straightforward in106

zero-shot settings, untangling inductive reasoning107

poses more significant challenges. Recent studies108

have investigated the inductive reasoning abilities109

of LLMs (Yang et al., 2022; Gendron et al., 2023;110

Xu et al., 2023b), they have primarily used Input-111

Output (IO) prompting (Mirchandani et al., 2023),112

which involves providing models with a few 〈in-113

put, output〉 as demonstrations without providing114

the underlying mapping function. The models 115

are then evaluated based on their ability to han- 116

dle unseen examples, as illustrated in method (c). 117

These studies often find LLMs facing difficulties 118

with inductive reasoning. Our research suggests 119

that the use of IO prompting might not effectively 120

separate LLMs’ deductive reasoning skills from 121

their inductive reasoning abilities. This is because 122

the approach moves directly from observations to 123

specific instances, obscuring the inductive reason- 124

ing steps. Consequently, the underperformance in 125

the context of inductive reasoning tasks may be 126

attributed to poor deductive reasoning capabilities, 127

i.e., the ability of LLMs to execute tasks, rather than 128

being solely indicative of their inductive reasoning 129

capability. 130

To disentangle inductive reasoning from deduc- 131

tive reasoning, we propose a novel model, referred 132

to as SolverLearner. Given our primary focus on in- 133

ductive reasoning, SolverLearner follows a two-step 134

process to segregate the learning of input-output 135

mapping functions from the application of these 136

functions for inference. Specifically, functions are 137

applied through external interpreters, such as code 138

interpreters, to avoid incorporating LLM-based 139

deductive reasoning. 140

We evaluate the performance of GPT-4 and GPT- 141

3.5 across various tasks. LLMs consistently demon- 142

strate remarkable inductive reasoning capabilities 143

through SolverLearner, achieving near-perfect per- 144

formance with ACC of 1 in most cases. Surprisingly, 145
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despite their strong inductive reasoning abilities,146

LLMs tend to exhibit weaker deductive capabili-147

ties, particularly in tasks involving “counterfactual”148

scenarios. This finding, though unexpected, aligns149

with previous research (Wu et al., 2023). In a zero-150

shot scenario, the ability of an LLM to correctly151

execute tasks heavily relies on the frequency with152

which the model was exposed to the tasks during153

its pre-training phase.154

2 Task Definition155

Our research is focused on a relatively unexplored156

question: Which presents a greater challenge to157

LLMs - deductive reasoning or inductive reasoning?158

To explore this, we designed a set of comparative159

experiments that apply a uniform task across var-160

ious contexts, each emphasizing either deductive161

or inductive reasoning. The primary distinction162

between the deductive and inductive settings is163

whether we explicitly present input-output map-164

pings to the models. Informally, we can describe165

these mappings as a function 𝑓𝑤 : 𝑋 → 𝑌 , where166

an input 𝑥 ∈ 𝑋 is transformed into an output 𝑦 ∈ 𝑌 .167

We distinguish between the deductive and inductive168

settings as follows:169

• Deductive setting: we provide the models with170

direct input-output mappings (i.e., 𝑓𝑤).171

• Inductive setting: we offer the models a few172

examples (i.e., (𝑥, 𝑦) pairs) while intentionally173

leaving out input-output mappings (i.e., 𝑓𝑤).174

For example, consider arithmetic tasks, where the175

base system is the input-output mapping function.176

The two approaches on the left side of Fig. 1 (i.e.,177

method (a) and (b)) follow the deductive setting,178

illustrating the case where the arithmetic base is179

explicitly provided. In contrast, the two methods180

(i.e., method (c) and (d)) on right side of Fig. 1181

adhere to the inductive setting, depicting the sce-182

nario characterized by the absence of a specified183

arithmetic base, while a few input-output examples184

are provided for guidance.185

3 Our Framework for Inductive186

Reasoning: SolverLearner187

While recent studies have explored the inductive188

reasoning abilities of LLMs (Yang et al., 2022; Gen-189

dron et al., 2023; Xu et al., 2023b), they have primar-190

ily relied on Input-Output (IO) prompting (Mirchan-191

dani et al., 2023). This method involves providing192

models with a few 〈input, output〉 demonstrations 193

and then evaluating their performance on unseen 194

examples, as depicted in method (c) in Fig. 1. Our 195

research suggests that the use of IO prompting and 196

directly evaluating the final instance performance 197

might not effectively separate LLMs’ deductive 198

reasoning skills from their inductive reasoning abil- 199

ities. This is because the approach moves directly 200

from observations to specific instances, obscuring 201

the inductive reasoning steps. To better disentangle 202

inductive reasoning, we propose a novel framework, 203

SolverLearner. This framework enables LLMs to 204

learn the function (i.e., 𝑦 = 𝑓𝑤 (𝑥)), that maps in- 205

put data points (𝑥) to their corresponding output 206

values (𝑦), using only in-context examples. By 207

focusing on inductive reasoning and setting aside 208

LLM-based deductive reasoning, we can isolate and 209

investigate inductive reasoning of LLMs in its pure 210

form via SolverLearner. SolverLearner includes 211

two-stages as illustrated in Fig. 2: 212

• Function Proposal: In this initial phase, we 213

propose a function, that could be used to map 214

input data points (𝑥) to their corresponding output 215

values (𝑦). 216

• Self-Improvement: The proposed function is 217

then validated against the provided examples. 218

Based on the validation results, we refine the 219

function to cover as many examples as possible. 220

3.1 Framework 221

In this subsection, we will take the arithmetic task 222

as a case study to demonstrate the entire process. 223

Function Proposal: Given the in-context ex- 224

amples, the primary goal of LLMs is to learn a 225

function that can map input data points (𝑥) to their 226

corresponding output values (𝑦). This process of 227

learning the mapping between inputs and outputs 228

is akin to inductive reasoning, while employing 229

the learned function to address unseen queries 230

aligns with deductive reasoning. In order to sepa- 231

rate inductive reasoning from deductive reasoning, 232

the execution of the learned function should be 233

completely detached from LLMs. To achieve this 234

separation, external tools such as code interpreters 235

serve as efficient way to execute these functions in- 236

dependently. By encapsulating the learned function 237

within Python code, we can effectively detach the 238

duty of deductive reasoning from LLMs, assigning 239

it solely to these external executors. For instance, 240

in function proposal stage for an arithmetic task, 241

we have: 242

3



The result for 71+44 is 135.
The result for 42+70 is 132.
The result for 50+45 is 115.
The result for 61+55 is 136.
The result for 63+22 is 105.
The result for 72+62 is 154.
The result for 57+27 is 106.
The result for 52+76 is 150.

8 Shot Examples
Python Function

14+57
44+45

...
61+23
22+77

Test Queries

print(solver(71, 44))  # Output: 135 √
print(solver(42, 70))  # Output: 132 √
print(solver(50, 45))  # Output: 115 √
print(solver(61, 55))  # Output: 136 √
print(solver(63, 22))  # Output: 105 √
print(solver(72, 62))  # Output: 154 √
print(solver(57, 27))  # Output: 106 √
print(solver(52, 76))  # Output: 150 √

② Execute

② Verification

② Output

③ Incorrect ③ Self Improve

④ Test

① Function
Proposal

Figure 2: An overview of our framework SolverLearner for inductive reasoning. SolverLearner follows a two-step process to
segregate the learning of input-output mapping functions from the application of these functions for inference. Specifically,
functions are applied through external code interpreters, to avoid incorporating LLM-based deductive reasoning. Additionally,
SolverLearner engages in an iterative self-improvement process where the proposed functions are validated and refined against
in-context examples through external interpreters.

“You are an expert mathematician and program-243

mer. You are asked to add two numbers, the base244

of which is unknown. Below are some provided245

examples:246

The result for 76+76 is 174.247

Please identify the underlying pattern to determine248

the base being used and implement a solver() func-249

tion to achieve the goal.250

def solver(n1: str, n2: str) -> str:251

# Let’s write a Python program step by step252

# Each input is a number represented as a string.253

# The function computes the sum of these numbers254

and returns it as a string.255

After defining the solver() function, create test256

cases based on the input examples and print257

the results. An example of a test case could be258

“print(solver(“76”, “76”))”.”259

Self-Improvement: Self-Improvement plays a260

pivotal role in the process of inductive reasoning,261

where the learned function is evaluated and refined262

using few-shot examples to reduce inaccuracies in263

predictions. Likewise, our approach to inductive264

reasoning incorporates a phase of self-improvement.265

During this stage, the performance of the learned266

function is assessed using the few-shot examples,267

with the results from the code interpreter being268

fed back into the LLMs. This feedback enables269

the LLMs to improve the learned function. This270

iterative process of refinement is repeated until271

the function’s accuracy on the few shot examples272

achieves a correct target. For instance, in self-273

improvement stage for an arithmetic task, we have:274

“The generated code is:275

def solver(n1: str, n2: str) -> str:276

# From the given examples, we can infer that the277

base being used is 9278

base = 9279

# Convert the input strings to integers in base 9 280

num1 = int(n1, base) 281

num2 = int(n2, base) 282

# Calculate the sum of the numbers 283

result = num1 + num2 284

# Convert the result back to a string in base 9 285

return format(result, f’X’).replace("A", "10").re- 286

place("B", "11").replace("C", "12").replace("D", 287

"13").replace("E", "14").replace("F", "15") 288

# Test cases 289

print(solver("76", "14")) # Expected output: 101 290

... 291

By running the generated program against the test 292

cases, the following 0 test cases are correctly pre- 293

dicted: 294

[] 295

Meanwhile, 8 test cases result in incorrect predic- 296

tions. Below, we present both the correct answers 297

and the erroneous predictions for these incorrect 298

test cases: 299

The answer for print (solver("76","14")) is expected 300

to be 101. However, the prediction is incorrect, as 301

evidenced by the following result: 52 302

... 303

Please rectify the learned pattern and improve 304

the solver() function to address the inaccurate test 305

cases.” 306

4 Tasks 307

In this section, we provide a brief overview of the 308

tasks under consideration. Our focus is on inves- 309

tigating the reasoning abilities of LLMs in both 310

deductive and inductive reasoning scenarios. To 311

ensure a robust evaluation, we carefully select tasks 312

that lend themselves well to comparison. Firstly, to 313

prevent LLMs from reciting tasks seen frequently 314

during pre-training, which could artificially inflate 315
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performance in deductive reasoning, a significant316

portion of the tasks falls into the category of “coun-317

terfactual reasoning” tasks. Secondly, in the context318

of inductive reasoning, where only a few in-context319

examples are available without the mapping func-320

tion, our objective is to learn the function that321

maps inputs to outputs based on this restricted322

dataset. To achieve this, we choose tasks that are323

well-constrained, ensuring the existence of a single,324

unique function capable of fitting this limited data.325

Detailed descriptions of each task and the prompts326

used can be found in Appendix A.1 and A.4.327

Arithmetic In this study, we focus on the two-328

digit addition task previously explored in the work329

of Wu et al. (Wu et al., 2023). We investigate330

multiple numerical bases, specifically base-8, 9,331

10, 11, and 16 where base 10 corresponds to the332

commonly observed case during pretraining. In333

the context of deductive reasoning, the base is334

explicitly provided without any accompanying in-335

context examples, and the LLM is expected to336

perform the addition computation by relying on its337

inherent deductive reasoning abilities. Conversely,338

in the context of inductive reasoning, instead of339

explicitly providing the base information to LLMs,340

we provide LLMs solely with few-shot examples341

and require them to induce the base through these342

examples and subsequently generate a function to343

solve arithmetic problems.344

Basic Syntactic Reasoning In this setting, we345

concentrate on tasks related to syntactic recognition346

previously explored by Wu et al. (Wu et al., 2023).347

Our objective is to evaluate LLMs using artificially348

constructed English sentences that vary from the349

conventional subject-verb-object (SVO) word order.350

For deductive reasoning, we directly provide the351

new word order to LLMs without any contextual352

examples, challenging them to identify the subject,353

verb, and object within this artificial language. In354

contrast, for inductive reasoning, we do not give355

explicit instructions on the changes in word order.356

Instead, we introduce sentence pairs where one357

sentence follows the standard word order, and the358

other follows a modified sequence. Through this359

setting, LLMs are expected to learn the specific360

changes made to the word order and then apply this361

learned rule to identify the subject, verb, and object362

within new sentences.363

Spatial Reasoning In this task, we delve into364

the spatial reasoning previously investigated by Wu365

et al. (Wu et al., 2023). Our specific focus is on366

modifying the direction-unit vector mapping and 367

determining the object coordinates in this revised 368

system. We explore multiple systems, starting with 369

the commonly observed case during pretraining, 370

where up corresponds to north, down to south, left 371

to west, and right to east. This is compared to 372

coordinate systems with swapped, rotated, and ran- 373

domly permuted axes. For deductive reasoning, 374

we directly provide the direction-unit vector map- 375

ping without any contextual examples, requiring 376

LLMs to compute the object coordinates within 377

these systems. Conversely, in the context of induc- 378

tive reasoning, instead of directly explaining the 379

changes made to the direction-unit vector mapping 380

to LLMs, we present LLMs with a few example 381

shots and challenge them to infer the changes made 382

to the mapping. They are then expected to ap- 383

ply this learned function to determine the object 384

coordinates in the system. 385

Cipher Decryption Under this scenario, we ex- 386

plore an innovative task that we have created, con- 387

centrating on the decryption of strings encrypted 388

using specific cipher systems. We have incorpo- 389

rated three particular cipher systems for this ex- 390

ploration: the Alphabetically Sorting Cipher the 391

Caesar Cipher and the Morse Cipher. For deduc- 392

tive reasoning, we directly inform LLMs about the 393

cipher system being used, yet we do not offer any 394

contextual examples. The objective for LLMs is to 395

decode strings according to these cipher systems. 396

Conversely, in the inductive reasoning scenario, our 397

task involves providing LLMs with several exam- 398

ples, each consisting of an encrypted string and 399

its corresponding decrypted version. The main 400

challenge for the models in this scenario is first 401

to identify what cipher system was used and then 402

to apply that cipher system to decrypt an unseen 403

string. 404

5 Results 405

For each task, we evaluate our proposed Solver- 406

Learner for pure LLM inductive reasoning and 407

other settings using two different models, gpt-3.5- 408

turbo-1106 and gpt-4-1106-preview, which are de- 409

noted as GPT-3.5 and GPT-4 respectively. Since 410

both methods are closed-source, we do not provide 411

specific information about their size, architecture, 412

and pre-training particulars. Our experiments pri- 413

marily focus on investigating the reasoning abilities 414

of LLMs in both deductive and inductive reasoning 415

scenarios. Therefore, we structure our evaluation 416
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Arithmetic Basic Syntax Spatial Cipher Decryption
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Figure 3: Comparison of the deductive reasoning abilities of LLMs across various tasks. Different methods are illustrated
through color-coded bars: blue bars indicate the results achieved using Zero-shot, while orange bars show the performance of
8-IO w/ Mapping Function (MF).
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Figure 4: Comparison of the inductive reasoning abilities of LLMs across various tasks. Different methods are illustrated
through color-coded bars: blue bars indicate the results achieved using our proposed SolverLearner, while orange bars show the
performance of 8-IO w/o Mapping Function (MF).
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tasks. Different methods are illustrated through color-coded bars: blue bars indicate the results achieved using our proposed
SolverLearner for inductive reasoning, while orange bars show the performance of Zero-shot for deductive reasoning.
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across two distinct settings to highlight each type417

of reasoning. The formal definition of each setting418

is provided in Sec. 2. For the deductive setting, two419

methods are proposed for investigation:420

• Zero-shot evaluates deductive reasoning ability421

of the LLMs in its pure form. It tests the LLM’s422

ability to conclude information about specific423

individuals based solely on instructions, without424

relying on examples.425

• 8-IO w/ Mapping Function (MF) follows the426

deductive setting but enhances LLM reasoning427

further by incorporating in-context examples. It428

aligns with the most commonly used prompt429

methods for enabling LLM reasoning. With the430

inclusion of in-context examples, this approach431

can be seen as leveraging inductive reasoning to432

augment deductive reasoning.433

For the inductive setting, we propose two methods434

for evaluation:435

• 8-IO w/o Mapping Function (MF) aligns with436

traditional input-output (IO) prompting methods437

widely used to investigate the inductive reasoning438

capability of LLMs. However, as this method439

proceeds directly from a set of observations to440

specific target instances, it remains intertwined441

with LLM-based deductive reasoning.442

• 8-shot SolverLearner corresponds to our pro-443

posed framework for inductive reasoning, capable444

of evaluating inductive reasoning ability of the445

LLMs in its pure form. It segregate the learning446

of input-output mapping functions from the ap-447

plication of these functions for inference, thereby448

preventing the blend of LLM-based deductive449

reasoning into the process.450

Besides using 8-shot examples, our study also in-451

cludes experiments with 16-shot examples to assess452

how changes in the number of in-context examples453

impact the results. Eperimental results are given in454

the Appendix A.5. Generally, the results indicate455

that an increase in the number of in-context exam-456

ples yields only slight improvements across both457

deductive and inductive reasoning scenarios. Fur-458

thermore, we conduct an ablation study concerning459

our proposed SolverLearner in Appendix A.6 for460

deeper insights into its functionality. In the ablation461

study, it is noticeable that most tasks succeed with462

its initial function proposal without extra turns of463

self-improvement, indicating the remarkable induc-464

tive reasoning capabilities of LLMs.465

5.1 Main Results 466

The results for all tasks are presented from Fig. 3 467

through Fig. 5. Specifically, Fig. 3 concentrates on 468

comparing performances in the deductive setting, 469

while Fig. 4 examines comparisons in the inductive 470

setting. Additionally, Fig. 5 focuses on contrasting 471

the models’ capabilities across deductive and induc- 472

tive setting. For further reference, the prompts used 473

for all tasks are included in Appendix A.4, and the 474

full numerical results can be found in Appendix A.5. 475

LLMs exhibit poor deductive reasoning capa- 476

bilities, particularly in “counterfactual” tasks. 477

We include two methods in Fig. 3, Zero-shot and 478

8-IO w/ Mapping Function (MF), to illustrate the 479

deductive reasoning capability of LLMs. Our obser- 480

vations reveal that LLMs exhibit relatively weaker 481

deductive capabilities, especially in “counterfac- 482

tual” tasks, while showing prowers in standard 483

tasks like base-10 arithmetic. This aligns with 484

findings reported in (Wu et al., 2023). Integration 485

of in-context examples notably enhances LLMs’ 486

performance in various scenarios, suggesting that 487

their improvement stems from the acquisition of 488

knowledge through inductive reasoning from these 489

examples. This further confirms the exceptional 490

inductive reasoning abilities of LLMs. This com- 491

bined evidence suggests that LLMs face challenges 492

in precisely following instructions and executing 493

commands, especially when those instructions are 494

relate to scenarios rarely encountered during their 495

pre-training phase. 496

LLMs demonstrate remarkable inductive rea- 497

soning capabilities through SolverLearner. We 498

include two methods in Fig. 4, SolverLearner (Ours) 499

and 8-IO w/o Mapping Function (MF), to illustrate 500

the inductive reasoning capability of LLMs. While 501

8-IO w/o Mapping Function (MF) struggles with 502

inductive reasoning, SolverLearner consistently 503

achieves perfect performance with an accuracy of 504

1 across all the cases with GPT-4 and succeeds in 505

most cases when used with GPT-3.5. This discrep- 506

ancy arises because the utilization of IO prompting 507

to directly reach conclusions on target instances may 508

not effectively distinguish between LLMs’ deduc- 509

tive and inductive reasoning skills. By completely 510

disentangling the inductive reasoning of LLMs, 511

our proposed SolverLearner shows the remarkable 512

inductive reasoning capabilities inherent in LLMs. 513

It is also noteworthy that the efficacy of LLMs’ 514

inductive reasoning capability heavily depends on 515

the foundational model, with GPT-4 consistently 516
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outperforming GPT-3.5.517

Deductive reasoning presents a greater chal-518

lenge than inductive reasoning for LLMs. To519

compare the deductive reasoning capability with the520

inductive reasoning capability of LLMs, we include521

two methods in Fig. 1, SolverLearner and Zero-shot,522

demonstrating pure inductive and deductive reason-523

ing abilities. Since the entire reasoning involves524

two steps: first, obtaining the input-output function525

( 𝑓𝑤), which corresponds to inductive reasoning,526

and second, applying the function for inference,527

which corresponds to deductive reasoning. Once528

both steps are successfully completed, perfect per-529

formance is observed, as indicated by the dotted line530

in the figure. Zero-shot can be seen as replacing531

the first step with an oracle, while SolverLearner532

can be seen as replacing the second step with an533

oracle. By comparing SolverLearnerand Zero-shot,534

we can observe that in most cases, LLMs can com-535

plete the inductive step perfectly, while they rarely536

achieve perfect performance on the deductive step.537

This indicates that in LLM reasoning, deductive538

reasoning presents a greater challenge.539

6 Related Works540

6.1 In-Context Learning541

GPT-3 (Brown et al., 2020) has demonstrated its542

effectiveness in learning from a few demonstration543

examples and solve previously unseen tasks with-544

out requiring updates to its model parameters (Wei545

et al., 2022a). This remarkable capability is com-546

monly referred to as the “in-context learning ability”547

of language models. It implies that the LLMs can548

leverage its existing knowledge and generalize from549

a few demonstration examples to solve new, related550

tasks (Dong et al., 2022; Liu et al., 2021; Rubin et al.,551

2021; Gonen et al., 2022). Some notable works552

include chain-of-thought (CoT) prompting (Wei553

et al., 2022b), which elicits reasoning with inter-554

mediate steps in few-shot exemplars. Built upon555

the CoT framework, several works expand CoT by556

organizing and processing thoughts using more557

complex structures, such as trees (Yao et al., 2023)558

and graphs (Besta et al., 2023) or breaking a prob-559

lem into sub problems and then proceeds to solve560

each one independently (Zhou et al., 2022). While561

these studies have effectively improved the reason-562

ing capability of LLMs, they have failed to clearly563

distinguish between inductive and deductive reason-564

ing, let alone investigate which represents a more565

critical limitation for LLM reasoning capabilities:566

deductive reasoning or inductive reasoning. 567

6.2 Exploring LLMs’ Reasoning Skills 568

Despite the impressive achievements of LLMs in 569

various reasoning tasks, the underlying mechanisms 570

of their reasoning capabilities remain a subject of 571

debate. The question of whether LLMs genuinely 572

reason in a manner akin to human cognitive pro- 573

cesses or merely simulate aspects of reasoning 574

without true comprehension is still open (Huang 575

and Chang, 2022). For instance, Kojima et al. 576

have suggested that LLMs exhibit commendable 577

zero-shot reasoning abilities, implying that these 578

models can draw logical conclusions in scenarios 579

they have not been explicitly trained on (Kojima 580

et al., 2022). However, some researchers cast doubt 581

on the reasoning capability of LLMs. While ap- 582

proaches like the chain-of-thought method may 583

mimic human-like thought processes, it remains 584

uncertain whether LLMs are genuinely engaging in 585

reasoning or simply following patterns learned dur- 586

ing training (Wei et al., 2022b; Valmeekam et al., 587

2022). Additionally, there’s a debate regarding 588

whether LLMs are symbolic reasoners (Tang et al., 589

2023) or possess strong abstract reasoning capa- 590

bilities (Gendron et al., 2023). In light of these 591

seemingly contradictory conclusions, our research 592

aims to delve deeper into the reasoning capabili- 593

ties of LLMs. We intend to dissect the nuances 594

of inductive and deductive reasoning within the 595

context of LLMs, identifying which form of reason- 596

ing presents a more significant challenge to their 597

reasoning abilities. 598

7 Conclusion 599

This study aims to explore a less-investigated aspect 600

of LLMs: within LLM reasoning, which presents 601

a greater challenge — deductive or inductive rea- 602

soning? To delve into the inductive reasoning 603

capacities of LLMs, we introduce a novel frame- 604

work called SolverLearner. By concentrating on 605

inductive reasoning while setting aside LLM-based 606

deductive reasoning, SolverLearner can scrutinize 607

the pure form of inductive reasoning in LLMs. 608

Our findings unveil remarkable inductive reasoning 609

prowers in LLMs through SolverLearner, achieving 610

near-perfect performance with an ACC of 1 in most 611

cases. Surprisingly, despite their strong inductive 612

reasoning abilities, LLMs often exhibit weaker de- 613

ductive capabilities, particularly in tasks involving 614

“counterfactual” scenarios. 615
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Limitations616

LLMs cannot perform inductive reasoning over617

all the tasks In our inductive learning setting, LLMs618

are provided with only a limited number of contex-619

tual examples. The goal is to infer the function that620

accurately maps inputs to outputs based solely on621

this constrained dataset. In order to solve this prob-622

lem, it is significant that we can find a unique func-623

tion satisfied given these examples. For instance, a624

linear function can be precisely determined given625

just two data points, as it has a singular solution.626

However, attempting to deduce a quadratic curve627

from two points poses an insurmountable challenge628

due to the existence of infinite functions capable629

of passing through those specific points. Addition-630

ally, LLMs might struggle to discern the correct631

mapping function when the search space of the632

problem expands excessively. Consider the case633

of arithmetic tasks; without limiting the search634

space to finding a suitable base that aligns with635

the observations, the task becomes overwhelmingly636

complex. This is because the search space could en-637

compass any conceivable rule that accommodates638

the observations.639

The effectiveness of LLMs’ inductive reason-640

ing capability is heavily reliant on the founda-641

tional model While GPT-4 consistently showcase642

impressive inductive reasoning abilities through643

SolverLearner and achieve perfect performance644

with ACC of 1 across all the tasks, GPT-3.5 strug-645

gle to learn the correct input-output mapping func-646

tion in several cases. This observation suggests647

that the inductive reasoning potential of LLMs is648

significantly constrained by the underlying model.649

Chain of Thought (COT) has not been incor-650

porated into the comparison Chain of Thought651

(COT) is a significant prompting technique designed652

for use with LLMs. Rather than providing a direct653

answer, COT elicits reasoning with intermediate654

steps in few-shot exemplars. This method was not655

incorporated into our comparison as it is viewed656

as a technique to improve the deductive reasoning657

capabilities of LLMs. Although COT has proven to658

be effective across various tasks, numerous studies659

highlight a significant performance gap that COT660

still needs to bridge to achieve flawless execution.661

Ethical Considerations662

The authors foresee no ethical concerns with the663

research presented in this paper.664
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A Appendix780

A.1 Full Setups781

SolverLearner is a prompting based reasoning ap-782

proach, and we only need to perform inference with783

LLMs.784

A.1.1 Arithmetic785

The arithmetic dataset introduced in Wu et al.’s786

paper (Wu et al., 2023) comprises 1,000 randomly787

selected addition expressions, each involving two-788

digit numbers. These expressions are drawn from789

bases 8, 9, 10, 11, and 16, with separate sampling790

for each base. Importantly, all the expressions791

have been carefully chosen to yield distinct results792

when evaluated in their respective bases, thereby793

distinguishing them from one another during the794

process of rule learning.795

A.1.2 Basic Syntactic Reasoning796

In accordance with the methodology outlined in Wu797

et al.’s work (Wu et al., 2023), we have generated798

a set of 100 simple three-word sentences (e.g.,799

“bob likes bananas”) with five different word order800

variations (e.g., “bananas bob likes” in OSV format).801

Subsequently, we tasked LLMs with learning how802

to manipulate sentence order. It’s noteworthy that803

we took great care in selecting words to ensure804

that each word in a sentence can only fulfill one805

specific role, such as subject, object, or verb. For806

instance, we ensured that sentences like “bob likes807

anna” were excluded, as both “bob” and “anna”808

could potentially serve as both subjects and objects,809

violating this constraint.810

A.2 Spatial Reasoning811

The spatial reasoning dataset introduced in Wu et812

al.’s paper (Wu et al., 2023) consists of 100 rooms813

that were randomly selected, and each room con-814

tains three distinct objects. The spatial directions815

within these rooms are represented using unit vec-816

tors. For instance, north is represented as (0, 1),817

south as (0, -1), east as (1, 0), and west as (-1, 0),818

with a y-axis pointing upward serving as the default819

orientation. In our study, we have modified the map-820

ping between directions and unit vectors and tasked821

LLMs with learning this new direction-to-unit vec-822

tor relationship. We explore two direction-swapped823

scenarios (north-south and east-west), three rotated824

scenarios (by 90°, 180°, and 270°), and a randomly825

permuted scenario. The primary metric we report826

is instance-level accuracy, which necessitates that827

all three objects within a room must be correctly 828

positioned in order to be considered accurate. 829

A.3 Cipher Decryption 830

We’ve generated a collection of 100 pairs of strings 831

(e.g., “Mrxuqhb -> Journey” for Caesar Cipher) for 832

each of three cipher systems, including the Alpha- 833

betically Sorting Cipher the Caesar Cipher and the 834

Morse Cipher. Each pair comprises an encrypted 835

string (e.g., “Mrxuqhb”) and its corresponding 836

decrypted version (e.g., “Journey”). By provid- 837

ing LLMs with several examples, each containing 838

an encrypted string alongside its corresponding 839

decrypted counterpart, the primary task is to accu- 840

rately determine the cipher system employed in an 841

open-world context. 842

A.4 Full Prompts 843

We provide the prompts that we used to query the 844

LLMs for all tasks in Tables 1 to 4. We do not use 845

the system message field for any model. 846

A.5 Full Results 847

We show the full numerical results in Tables 5 to 8. 848

In addition to using 8-shot examples, these results 849

also include experiments with 16-shot examples 850

to assess how changes in the number of in-context 851

examples impact the results. 852

A.6 Ablation studies 853

LLMs struggle as executors when applying 854

learned functions. To better demonstrate the de- 855

ductive capacity of LLM, we present both GPT-3.5 856

and Python with identical code and task them with 857

applying the code to deduce the same set of queries. 858

As shown in Table 9, while the Python interpreter 859

can be considered an oracle, delivering flawless 860

performance, it proves challenging for LLMs to 861

accurately execute the code. 862

Self-improvement mechanisms do not signifi- 863

cantly contribute to enhancing performance. As 864

our objective is to compare the inductive reasoning 865

capability of LLM to its deductive reasoning capa- 866

bility, some may argue that LLM’s inductive reason- 867

ing capability could benefit significantly from self- 868

improvement mechanisms. Therefore, we include 869

the number of iterations required to successfully 870

infer the mapping function across all tasks from 871

Table 10 to Table 13. It’s noteworthy that if LLM 872

fails in a task, we report the number of iterations 873

as “-”. We observe that if the mapping function 874
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is learnable, LLM typically learns it in the initial875

proposal.876

LLMs can learn the function with very few877

examples when the inductive reasoning problem878

is well defined. To examine the impact of the879

number of few-shot examples on the inductive rea-880

soning capability of LLMs, we vary the number of881

in-context examples within [1,2,4,8,16] and assess882

performance on the spatial reasoning task using883

GPT-3.5 as presented in Table 14. We observe that884

even with very few examples, GPT-3.5 can still885

learn the mapping function if it is learnable.886
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Table 1: Prompts for the Arithmetic Task.

Mode Prompt
Zero-shot You are a mathematician. Assuming that all numbers are in base-8 where the digits are "01234567",

what is 36+33? End the response with the result in "\boxed{result}".
Few-shot IO w/ MF You are a mathematician. You are asked to add two numbers. Assuming that all numbers are in

base-8 where the digits are "01234567". Below are some provided examples:
The result for 76+76 is 174.
Please identify the base being used and determine what is 36+33? End the response with the result
in "\boxed{result}".

Few-shot IO w/o MF You are a mathematician. You are asked to add two numbers, the base of which is unknown. Below
are some provided examples:
The result for 76+76 is 174.
Please identify the base being used and determine what is 36+33? End the response with the result
in "\boxed{result}".

SolverLearner You are an expert mathematician and programmer. You are asked to add two numbers, the base of
which is unknown. Below are some provided examples:
The result for 76+76 is 174.
Please identify the underlying pattern to determine the base being used and implement a solver()
function to achieve the goal.
def solver(n1: str, n2: str) -> str:
# Let’s write a Python program step by step
# Each input is a number represented as a string.
# The function computes the sum of these numbers and returns it as a string.
After defining the solver() function, create test cases based on the input examples and print the results.
An example of a test case could be "print(solver("76", "76"))". Place the function solver() as well as
the test cases between "START_CODE" and "END_CODE".

Table 2: Prompts for the Basic Syntactic Reasoning Task.

Mode Prompt
Zero-shot You are an expert in linguistics. Imagine a language that is the same as English with the only

exception being that it uses the object-subject-verb order instead of the subject-verb-object order.
Please identity the subject, verb, and object in the following sentences from this invented language:
shirts sue hates.
Encode the identified subject, verb, and object in the form of a dictionary with the following structure:
{’subject’: ?, ’verb’: ?, ’object’: ?}.

Few-shot IO w/ MF As a linguistics expert, your objective is to analyze sentences in a constructed language that shares
English vocabulary but uses the object-subject-verb order instead of the subject-verb-object order.
Presented below are examples of valid sentences in this constructed language, accompanied by their
corresponding English translations.
A sentence in this invented language: phones mary finds. Its equivalent sentence in English reads:
mary finds phones.
Following the examples, please analyze the subject, verb, and object in the following sentences from
this invented language:
shirts sue hates.
Encode the identified subject, verb, and object in the form of a dictionary with the following structure:
{’subject’: ?, ’verb’: ?, ’object’: ?}.

Few-shot IO w/o MF As a linguistics expert, your objective is to analyze sentences in a constructed language that shares
English vocabulary but follows a unique grammatical structure. Presented below are examples of valid
sentences in this constructed language, accompanied by their corresponding English translations.
A sentence in this invented language: phones mary finds. Its equivalent sentence in English reads:
mary finds phones.
Following the examples, please analyze the subject, verb, and object in the following sentences from
this invented language:
shirts sue hates.
Encode the identified subject, verb, and object in the form of a dictionary with the following structure:
{’subject’: ?, ’verb’: ?, ’object’: ?}.

SolverLearner As a linguistics expert, your objective is to analyze sentences in a constructed language that shares
English vocabulary but follows a unique grammatical structure.Presented below are examples of valid
sentences in this constructed language, accompanied by their corresponding English translations.
A sentence in this invented language: phones mary finds. Its equivalent sentence in English reads:
mary finds phones.
Please summarize the pattern concerning the order of subject, verb and object in this invented
linguistic system. Place the pattern between START_PATTERN and END_PATTERN.
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Table 3: Prompts for the Spatial Reasoning Task.

Mode Prompt
Zero-shot You are in the middle of a room. You can assume that the room’s width and height are both 500

units. The layout of the room in the following format:
’name’: ’bedroom’, ’width’: 500, ’height’: 500, ’directions’: ’north’: [0, 1], ’south’: [0, -1], ’east’:
[1, 0], ’west’: [-1, 0], ’objects’: [’name’: ’chair’, ’direction’: ’east’, ’name’: ’wardrobe’, ’direction’:
’north’, ’name’: ’desk’, ’direction’: ’south’]
Please provide the coordinates of objects whose positions are described using cardinal directions,
under a conventional 2D coordinate system using the following format:
[’name’: ’chair’, ’x’: ’?’, ’y’: ’?’, ’name’: ’wardrobe’, ’x’: ’?’, ’y’: ’?’, ’name’: ’desk’, ’x’: ’?’, ’y’:
’?’]

Few-shot IO w/ MF You are an expert programmer. You are in the middle of a room. You can assume that the room’s
width and height are both 500 units. The layout of the room in the following format:
’name’: ’laundry room’, ’width’: 500, ’height’: 500, ’directions’: ’north’: [0, 1], ’south’: [0, -1],
’east’: [1, 0], ’west’: [-1, 0], ’objects’: [’name’: ’dryer’, ’direction’: ’east’, ’name’: ’sink’, ’direction’:
’west’, ’name’: ’washing machine’, ’direction’: ’south’]
Please provide the coordinates of objects whose positions are described using cardinal directions,
under a conventional 2D coordinate system. For example, the coordinates of objects in the above
example is:
[’name’: ’dryer’, ’x’: 500, ’y’: 250, ’name’: ’sink’, ’x’: 0, ’y’: 250, ’name’: ’washing machine’, ’x’:
250, ’y’: 0]
Following the examples, please give the coordinates of objects in the following room using the same
format:
’name’: ’bedroom’, ’width’: 500, ’height’: 500, ’directions’: ’north’: [0, 1], ’south’: [0, -1], ’east’:
[1, 0], ’west’: [-1, 0], ’objects’: [’name’: ’chair’, ’direction’: ’east’, ’name’: ’wardrobe’, ’direction’:
’north’, ’name’: ’desk’, ’direction’: ’south’]

Few-shot IO w/o MF You are in the middle of a room. You can assume that the room’s width and height are both 500
units. The layout of the room in the following format:
’name’: ’laundry room’, ’width’: 500, ’height’: 500, ’objects’: [’name’: ’dryer’, ’direction’: ’east’,
’name’: ’sink’, ’direction’: ’west’, ’name’: ’washing machine’, ’direction’: ’south’]
Please provide the coordinates of objects whose positions are described using cardinal directions,
under a conventional 2D coordinate system. For example, the coordinates of objects in the above
example is:
[’name’: ’dryer’, ’x’: 500, ’y’: 250, ’name’: ’sink’, ’x’: 0, ’y’: 250, ’name’: ’washing machine’, ’x’:
250, ’y’: 0]
Following the examples, please give the coordinates of objects in the following room using the same
format:
’name’: ’bedroom’, ’width’: 500, ’height’: 500, ’objects’: [’name’: ’chair’, ’direction’: ’east’, ’name’:
’wardrobe’, ’direction’: ’north’, ’name’: ’desk’, ’direction’: ’south’]

SolverLearner You are an expert programmer. You are in the middle of a room. You can assume that the room’s
width and height are both 500 units. The layout of the room in the following format: ’name’: ’laundry
room’, ’width’: 500, ’height’: 500, ’objects’: [’name’: ’dryer’, ’direction’: ’east’, ’name’: ’sink’,
’direction’: ’west’, ’name’: ’washing machine’, ’direction’: ’south’]
Please provide the coordinates of objects whose positions are described using cardinal directions,
under a conventional 2D coordinate system. For example, the coordinates of objects in the above
example is:
[’name’: ’dryer’, ’x’: 500, ’y’: 250, ’name’: ’sink’, ’x’: 0, ’y’: 250, ’name’: ’washing machine’, ’x’:
250, ’y’: 0]
Please summarize the pattern and implement a solver() function to achieve the goal.
def solver():
Let’s write a Python program step by step
the input is the layout of the room
the output the coordinates of objects
After defining the solver() function. Place the function solver() between "START_CODE" and
"END_CODE".
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Table 4: Prompts for the Cipher Decryption Task.

Mode Prompt
Zero-shot As an expert cryptographer and programmer, your task involves reordering the character sequence

according to the alphabetical order to decrypt secret messages. Please decode the following sequence:
spring
Please answer the question by placing the decoded sequence between "START_DECODING" and
"END_DECODING".

Few-shot IO w/ MF As an expert cryptographer and programmer, your task involves reordering the character sequence
according to the alphabetical order to decrypt secret messages. For example, given the sequence
"family," you must translate it into "afilmy." Below are further examples that demonstrate the
translation:
school -> chloos
Following the examples, please decode the following sequence:
spring
Please answer the question by placing the decoded sequence between "START_DECODING" and
"END_DECODING".

Few-shot IO w/o MF As an expert cryptographer and programmer, your task involves deciphering secret messages. For
example, given the sequence "family," you must translate it into "afilmy." Below are further examples
that demonstrate the translation:
school -> chloos
Following the examples, please decode the following sequence:
spring
Please answer the question by placing the decoded sequence between "START_DECODING" and
"END_DECODING".

SolverLearner As an expert cryptographer and programmer, your task involves deciphering secret messages. For
example, given the sequence "family," you must translate it into "afilmy." Below are further examples
that demonstrate the translation:
school -> chloos
Please deduce the encryption system and develop a solver() function for the decryption.
def solver():
# Let’s write a Python program step by step
# the input is the coded sequence
# the output is the decoded sequence
After defining the solver() function. Place the function solver() between "START_CODE" and
"END_CODE".

Table 5: Full Results for Arithmetic Task.

Method
Base 8 9 10 11 16

GPT-3.5

Zero-shot 0.330 0.117 1 0.066 0.294
8-IO w/ MF 0.376 0.089 1 0.089 0.849
8-IO w/o MF 0.120 0.027 0.905 0.057 0.587
16-IO w/ MF 0.428 0.088 1 0.098 0.912
16-IO w/o MF 0.108 0.025 0.924 0.063 0.575

8-shot SolverLearner 1 1 1 0.095 1

GPT-4

Zero-shot 0.600 0.697 0.999 0.551 0.819
8-IO w/ MF 0.576 0.717 0.860 0.540 0.862
8-IO w/o MF 0.255 0.268 0.545 0.264 0.431
16-IO w/ MF 0.543 0.720 0.817 0.534 0.840
16-IO w/o MF 0.257 0.245 0.505 0.237 0.435

8-shot SolverLearner 1 1 1 1 1
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Table 6: Full Results for Basic Syntactic Reasoning.

Method
Word Order OSV OVS SOV VOS VSO

GPT-3.5

Zero-shot 0.560 0.298 0.190 0.226 0.560
8-IO w/ MF 1 0.643 0.583 0.976 0.988
8-IO w/o MF 1 0.452 0.929 0.988 1
16-IO w/ MF 1 0.738 0.762 0.988 0.952
16-IO w/o MF 1 0.190 0.964 1 1

8-shot SolverLearner 0.988 1 1 1 1

GPT-4

Zero-shot 1 1 1 1 1
8-IO w/ MF 1 1 1 1 1
8-IO w/o MF 1 1 1 1 1
16-IO w/ MF 1 1 1 1 1
16-IO w/o MF 1 0.988 1 1 1

8-shot SolverLearner 1 1 1 1 1

Table 7: Full Results for Spatial Reasoning.

Method
Coordinates Default S-NS S-WE R90 R180 R270 Random

GPT-3.5

Zero-shot 0.273 0.702 0.143 0.012 0.310 0.060 0.024
8-IO w/ MF 0.952 0.845 0.869 0.25 0.976 0.060 0.095
8-IO w/o MF 0.369 0.726 0.310 0.083 0.690 0.107 0.071
16-IO w/ MF 0.929 0.893 0.857 0.274 0.952 0.071 0.131
16-IO w/o MF 0.452 0.667 0.452 0.083 0.798 0.131 0.083

8-shot SolverLearner 1 1 0 0 1 0 0

GPT-4

Zero-shot 0.119 0.060 0.083 0.024 0.048 0.012 0.036
8-IO w/ MF 1 1 0.964 0.643 0.952 0.679 0.190
8-IO w/o MF 1 0.976 0.929 0.560 0.976 0.429 0.333
16-IO w/ MF 1 1 0.952 0.690 0.929 0.667 0.214
16-IO w/o MF 1 0.976 0.964 0.607 0.976 0.405 0.369

8-shot SolverLearner 1 1 1 1 1 1 1

Table 8: Full Results for Cipher Decryption.

Method
Encryption System Alphabetically Sorting Cipher Caesar Cipher Morse Cipher

GPT-3.5

Zero-shot 0.560 0.036 0.512
8-IO w/ MF 0.595 0.024 0.464
8-IO w/o MF 0.560 0 0.452
16-IO w/ MF 0.619 0.024 0.536
16-IO w/o MF 0.512 0.012 0.440

8-shot SolverLearner 1 0.536 1

GPT-4

Zero-shot 0.726 0 1
8-IO w/ MF 0.774 0.060 1
8-IO w/o MF 0.75 0.583 1
16-IO w/ MF 0.798 0.179 1
16-IO w/o MF 0.738 0.583 1

8-shot SolverLearner 1 1 1
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Table 9: Results over the arithmetic task with Python interpreter as executor vs. GPT-3.5 as executor

Executor
Base 8 9 10 11 16

Python Interpreter 1 1 1 1 1
GPT-3.5 0.398 0.196 0.934 0.152 0.64

Table 10: The number of iterations required to successfully infer the mapping function over the arithmetic tasks.

LLMs
Base 8 9 10 11 16

GPT-3.5 2 3 1 - 1
GPT-4 2 2 1 1 1

Table 11: The number of iterations required to successfully infer the mapping function over the basic syntactic
reasoning task.

LLMs
Word Order OSV OVS SOV VOS VSO

GPT-3.5 1 1 1 1 1
GPT-4 1 1 1 1 1

Table 12: The number of iterations required to successfully infer the mapping function over the spatial reasoning
task.

LLMs
Coordinates Default S-NS S-WE R90 R180 R270 Random

GPT-3.5 1 1 - - 1 - -
GPT-4 1 1 1 3 1 1 1

Table 13: The number of iterations required to successfully infer the mapping function over the cipher decryption
task.

LLMs
Encryption System Alphabetically Sorting Cipher Caesar Cipher Morse Cipher

GPT-3.5 1 - 1
GPT-4 1 1 1

Table 14: Results for the spatial reasoning over GPT-3.5 w.t.r the number of few-shot examples

Shot
Coordinates Default S-NS S-WE R90 R180 R270 Random

1 1 1 0 0 0 0 0
2 1 1 0 0 1 0 0
4 1 1 0 0 1 0 0
8 1 1 0 0 1 0 0
16 1 1 0 0 1 0 0
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