
Benchmarking Autoregressive Conditional Diffusion Models
for Turbulent Flow Simulation

Georg Kohl 1 Li-Wei Chen 1 Nils Thuerey 1

Abstract
Simulating turbulent flows is crucial for a wide
range of applications, and machine learning-based
solvers are gaining increasing relevance. How-
ever, achieving temporal stability when general-
izing to longer rollout horizons remains a per-
sistent challenge for learned PDE solvers. In
this work, we analyze if fully data-driven fluid
solvers that utilize an autoregressive rollout based
on conditional diffusion models are a viable op-
tion to address this challenge. We investigate ac-
curacy, posterior sampling, spectral behavior, and
temporal stability, while requiring that methods
generalize to flow parameters beyond the train-
ing regime. To quantitatively and qualitatively
benchmark the performance of a range of flow
prediction approaches, three challenging scenar-
ios including incompressible and transonic flows,
as well as isotropic turbulence are employed. We
find that even simple diffusion-based approaches
can outperform multiple established flow predic-
tion methods in terms of accuracy and temporal
stability, while being on par with state-of-the-art
stabilization techniques like unrolling at training
time. Such traditional architectures are superior
in terms of inference speed, however, the proba-
bilistic nature of diffusion approaches allows for
inferring multiple predictions that align with the
statistics of the underlying physics.

1. Introduction
Simulations based on partial differential equations (PDEs),
particularly those involving turbulent fluid flows, consti-
tute a crucial research area with applications ranging from
medicine (Olufsen et al., 2000) to climate research (Wyn-
gaard, 1992), as well as numerous engineering fields (Moin

1Technical University of Munich, Germany. Correspondence
to: Georg Kohl <georg.kohl@tum.de>.

AI for Science Workshop at the 41 st International Conference on
Machine Learning, Vienna, Austria. 2024. Copyright 2024 by the
author(s).

& Mahesh, 1998; Verma et al., 2018). Historically, such
flows have been simulated via iterative numerical solvers
for the Navier-Stokes equations. Recently, there has been
a growing interest in combining or replacing traditional
solvers with deep learning. However, despite the significant
progress made in this field, a major remaining challenge
is the ability to predict rollouts that maintain both stability
and accuracy over longer temporal horizons (Kochkov et al.,
2021; Um et al., 2020). Fluid simulations are inherently
complex and dynamic, and therefore, it is highly challenging
to accurately capture the intricate physical phenomena that
occur over extended periods of time. Additionally, due to
their chaotic nature, even small ambiguities of the spatially
averaged states used for simulations can lead to fundamen-
tally different solutions over time (Pope, 2000). However,
most learned methods and traditional numerical solvers pro-
cess simulation trajectories deterministically, and thus only
provide a single answer.

We explore these issues by investigating the usefulness of
the recently emerging conditional diffusion models (Ho
et al., 2020; Song et al., 2021b) for turbulent flows, which
serve as representatives for more general PDE-based simu-
lations. Specifically, we are interested in the probabilistic
prediction of fluid flow trajectories from an initial condition.
We aim for answering the question: Are autoregressive diffu-
sion models competitive tools for modeling fluid simulations
compared to other established architectures? For this pur-
pose, we analyze model accuracy, temporal rollout stability,
spectral behavior, posterior sampling capabilities, as well
as computational costs for different approaches. The cen-
tral aims and outcomes of this work are as follows: (i) We
combine a conditional diffusion approach with an autore-
gressive rollout to produce a probabilistic surrogate flow
simulator, that represents state of the art diffusion models
applied to flow prediction. (ii) We broadly compare this
approach on flow prediction problems with increasing dif-
ficulty against a range of common architectures in terms
of accuracy, posterior sampling, temporal stability, and sta-
tistical correspondence to the underlying physical behav-
ior. (iii) We show that even simple, diffusion-based flow
predictors are remarkably competitive with state-of-the-art
stabilization techniques like unrolling at training time, while
providing diverse, physically plausible posterior samples.

1

Benchmarking Autoregressive Conditional Diffusion Models

2. Related Work
Fluid Solvers utilizing Machine Learning A variety of
works have used machine learning as means to improve nu-
merical solvers. Several approaches focus on learning com-
putational stencils (Bar-Sinai et al., 2019; Kochkov et al.,
2021) or additive corrections (de Avila Belbute-Peres et al.,
2020; List et al., 2022; Um et al., 2020) to increase sim-
ulation accuracy. When the solver is not integrated into
the computational graph, typically a data-driven surrogate
model is trained to replace the solver. Convolutional neural
networks (CNNs) for such flow prediction problems are very
popular, and often employ an encoder-processor-decoder
architecture. For the latent space processor, multilayer per-
ceptrons (Kim et al., 2019) as well as LSTMs (Wiewel et al.,
2019) were proposed. As particularly successful latent ar-
chitectures, transformers (Vaswani et al., 2017) have also
been combined with CNN-based encoders as reduced-order
models (Hemmasian & Farimani, 2023; Geneva & Zabaras,
2022). Alternatives do not rely on an autoregressive latent
model, e.g., by using spatio-temporal 3D convolutions (Deo
et al., 2023), dilated convolutions (Stachenfeld et al., 2022),
or problem-specific multi-scale architectures (Wang et al.,
2020). Furthermore, various works utilize message passing
architectures (Brandstetter et al., 2022; Pfaff et al., 2021).
Adding noise to training inputs was likewise proposed to
improve temporal prediction stability for graph networks
(Sanchez-Gonzalez et al., 2020). Transformer-based latent
models have also been combined with a graph network en-
coder and decoder in previous work (Han et al., 2021).

Diffusion Models Diffusion models (Hyvärinen, 2005;
Sohl-Dickstein et al., 2015) became popular after diffusion
probabilistic models and denoising score matching were
combined for high-quality unconditional image generation
(Ho et al., 2020). This approach has since been improved in
many aspects, e.g., with meaningful latent representations
(Song et al., 2021a) or better sampling (Nichol & Dhariwal,
2021). Diffusion models for image generation are typically
conditioned on simple class labels (Dhariwal & Nichol,
2021) or textual inputs (Saharia et al., 2022). Pre-trained
diffusion models were employed for inverse image problems
(Kawar et al., 2022), and different conditioning approaches
were compared for score-based models on similar tasks (Bat-
zolis et al., 2021). An unconditional diffusion model has
also been combined with inverse problem solving for medi-
cal applications (Song et al., 2022). For an in-depth review
of diffusion approaches we refer to Yang et al. (2024).

Diffusion for Fluids and Temporal Prediction Selected
works have applied diffusion models to temporal prediction
tasks like unconditional or text-based video generation, as
well as video prediction (e.g. Harvey et al., 2022; Ho et al.,
2022; Höppe et al., 2022). These methods typically directly
include time as a third dimension or re-use the batch dimen-

sion (Blattmann et al., 2023). As a result, autoregressive
rollouts are only used to create longer output sequences
compared to the training domain, with the drawback that
predictions quickly accumulate errors or lose temporal co-
herence. Few works exist that apply diffusion methods
to transient physical processes. To solve inverse physics
problems score matching was utilized (Holzschuh et al.,
2023), and physics-informed diffusion models for a frame-
by-frame super-resolution task for physics simulations exist
(Shu et al., 2023). Early steps towards turbulent flows in 3D
were taken, via a purely generative diffusion setup based
on boundary geometry information (Lienen et al., 2023).
Instead of an autoregressive approach, using physical time
as a conditioning for diffusion-based fluid field prediction
has been investigated, but the authors report stability issues
and unphysical predictions as a result (Yang & Sommer,
2023). A multi-step refinement process similar to diffusion
models was proposed to improve PDE predictions (Lippe
et al., 2023), which is also analyzed below. While it is possi-
ble to achieve stability improvements with this approach, it
provided little variance in posterior samples and was highly
sensitive to hyperparameters in our experiments. Predictor-
interpolator schemes inspired by diffusion models were also
introduced (Cachay et al., 2023). This method combines
a predictor, that equates the diffusion time step with the
physical time step of the simulation, with a probabilistic,
Bayesian interpolator model. As a result, compared to the
direct application of diffusion models analyzed here, this
allows for larger time steps and potential performance im-
provements, while having drawbacks in terms of posterior
coverage and temporal coherence.

3. Background on Diffusion Models
A denoising diffusion probabilistic model (DDPM) is a
generative model based on a parameterized Markov chain,
and contains a fixed forward and a learned reverse process
(Ho et al., 2020) over R steps. For any r ∈ 0, 1, . . . , R, the
forward process

q(xr|xr−1) = N (xr;
√
1− βrxr−1, βrI) (1)

incrementally adds Gaussian noise to the original data x0

according to a variance schedule β1, . . . , βR resulting in the
latent variable xR, that corresponds to pure Gaussian noise.
The reverse process

pθ(xr−1|xr) = N (xr−1;µθ(xr, r),Σθ(xr, r)) (2)

contains learned transitions, i.e. µθ and Σθ are computed
by a neural network parameterized by θ given xr and r. The
network is trained via the variational lower bound (ELBO)
using reparameterization. During inference the initial latent
variable xR ∼ N (0, I) as well as the intermediate diffusion
steps are sampled, leading to a probabilistic generation of
x0 with a distribution similar to the training data.

2

Benchmarking Autoregressive Conditional Diffusion Models

To condition the DDPM on information like the initial state
and characteristic dimensionless quantities for flow predic-
tion, we employ a concatenation-based conditioning ap-
proach (Batzolis et al., 2021): Each element x0 = (d0, c0)
of the diffusion process now consists of a data component
d0 that is only available during training and a conditioning
component c0 that is always given. Correspondingly, the in-
ference task is the conditional prediction P (d0|c0). During
training, the basic DDPM algorithm remains unchanged as

xr = (cr,dr); cr ∼ q(· |cr−1); dr ∼ q(· |dr−1) (3)

is still produced by the incremental addition of noise during
the forward process. During inference dR ∼ N (0, I) is
sampled and processed in the reverse process, while c0 is
known and any cr thus can be obtained from Eq. (1), i.e.,

xr = (cr,dr); cr ∼ q(· |cr−1); dr ∼ pθ(· |xr+1). (4)

Here, q(cr|cr−1) denotes the forward process for c, and
dr ∼ pθ(· |xr+1) is realized by discarding the prediction of
cr when evaluating pθ. A visualization of this conditioning
technique is shown in Fig. 1. We found the addition of
noise to the conditioning, instead of simply using c0 over
the entire diffusion process, to be crucial for the temporal
stability of the simulation rollout as detailed in Sec. 6.

xR

dR

cR

xr

dr

cr

xr−1

dr−1

cr−1

x0

d 0

c0

pθ (xr−1∣xr)

q(xr∣xr−1)

T
ra
in
in
g

xR

dR

cR

xr

dr

cr

xr−1

dr−1

cr−1

x0

d 0

c0

pθ (dr−1∣xr)

q(cr∣cr−1)

In
fe
re
n
c
e

Figure 1. Diffusion conditioning approach with the forward (black)
and reverse process (red) during training and inference. White
backgrounds for c or d indicate given information, i.e., inputs for
each phase. In the context of the autoregressive surrogate simulator,
c0 contains information about the simulated process like Reynolds
or Mach number, as well as the initial or previous simulation state.
d0 contains the next target simulation state during training, and is
the resulting prediction of the next state during inference.

4. Flow Prediction Architectures
Our problem setting is the following: a temporal trajectory
s1, s2, . . . , sT of states should be predicted given an initial
state s0. Each st consists of dense simulation fields like
velocity or pressure, combined with simulation parameters
like the Reynolds or Mach number, as constant, spatially
expanded channels (see right of Fig. 2). Numerical solvers
f iteratively predict st = f(st−1), and here we similarly

investigate neural surrogate models fθ with parameters θ to
autoregressively predict st = fθ(s

t−1), or st ∼ fθ(s
t−1)

for probabilistic methods. In the following, it is important to
distinguish this simulation rollout via fθ from the diffusion
rollout pθ. The former corresponds to physical time and con-
sists of simulation- or time steps denoted by t ∈ 0, 1, . . . , T
superscripts. The latter refers to diffusion steps inside the
Markov chain, denoted by r ∈ 0, 1, . . . , R subscripts as
above. To ensure a fair comparison, all models were param-
eterized with a similar parameter count, and suitable key
hyperparameters were determined with a broad search for
each architecture. Implementation details for each of the
following architectures can be found in App. B.

4.1. Autoregressive Conditional Diffusion Models

To extend the conditional DDPM described in Sec. 3 to
temporal tasks, we build on autoregressive single-step pre-
diction, with k previous steps: st ∼ fθ(· |st−k, . . . , st−1).

Training and Inference fθ is trained in the following
manner: Given a data set with different physical simulation
trajectories, a random simulation state st ∈ s0, s1, . . . , sT

is selected from a sequence as the prediction target d0. The
corresponding conditioning consists of k previous simula-
tion states c0 = (st−k, . . . , st−1). Next, a random diffusion
time step r is sampled, leading to xr via the forward process.
The network learns to predict the added noise level via the
ELBO as in the original DDPM (Ho et al., 2020).

The training objective above allows for producing a sin-
gle subsequent time step as the final output of the diffu-
sion process d0 during inference. We can then employ
this single-step prediction for sampling simulation rollouts
with arbitrary length by autoregressively reusing generated
states as conditioning for the next iteration: For each simu-
lation step, Eq. (4) is unrolled from xt

R to xt
0 starting from

dt
R ∼ N (0, I) and ct0 = (st−k, . . . , st−1). Then, the pre-

dicted next time step is st = dt
0. This process is visualized

in Fig. 2, and we denote such models as autoregressive
conditional diffusion models (ACDMs) in the following.

Conditioning c0
0

State s0

Data dR
0

State s1 Noise

Conditioning c0
1

State s1

Data dR
1

State s2 NoiseState s0

Conditioning c0
2

State s2

Data dR
2

State s3 NoiseState s1State s0

State s2 State s3State s1State s0 State s4 State st

Fields
velocity v t

density ρt

pressure pt

…

Parameters

Reynolds
number Ret

Mach
number Mat

…

Figure 2. Autoregressive simulation rollout with diffusion models
for k = 2 input steps (left), and simulation state contents (right).

The motivation for this combination of conditioning and
simulation rollout is the hypothesis that perturbations to the

3

Benchmarking Autoregressive Conditional Diffusion Models

conditioning can be compensated during the diffusion roll-
out, leading to improved temporal stability. Especially so,
when smaller inference errors inevitably accumulate over
the course of long simulation rollouts. In addition, the au-
toregressive rollout ensures that the network produces a tem-
porally coherent trajectory for every step along the inferred
sequence. This stands in contrast to explicitly conditioning
the DDPM on physical time t, i.e. treating it in the same
way as the diffusion step r (see Yang & Sommer, 2023).
For a probabilistic model it is especially crucial to have
access to previously generated outputs during the prediction,
as otherwise temporal coherence can only be achieved via
tricks such as fixed spatio-temporal noise patterns.

Implementation We employ a widely used U-Net (based
on Ronneberger et al., 2015) with various established ar-
chitecture modernizations (Dhariwal & Nichol, 2021; Ho
et al., 2020), to learn the reverse process. A standard, linear
DDPM variance schedule is used. We use k = 2 previous
steps for the model input, and achieved high-quality samples
with 20–100 diffusion steps R, depending on how strongly
each setting is conditioned. Combining d0 and c0 to form
x0, as well as aggregating multiple states for c0 is achieved
via concatenation along the channel dimension.

4.2. U-Net Variants

A crucial question is how much difference the diffusion
training itself makes in comparison to more traditional train-
ing approaches of the same backbone architecture. Hence,
we investigate a range of model variants with identical net-
work architecture to the ACDM model, that are optimized
with different supervised setups.

Classic Next-step Predictor As a first, simple baseline,
the backbone architecture is trained with an MSE loss to
directly predict one future simulation state with a single
model pass. It is denoted by U-Net in the following.

Unrolled Training Several works have reported improve-
ments from unrolling predictions during training (Geneva &
Zabaras, 2020; Lusch et al., 2018). We also analyze U-Net
architectures with such an unrolled training (U-Netut) over
m steps, where the gradient is fully backpropagated through
the entire training trajectory. This additional complexity
during training results in substantial stability improvements,
due to a reduced data shift during inference. For this ap-
proach, we found m = 8 to be ideal across experiments.

Training Noise The usage of training noise was proposed
to reduce error accumulation during inference by explicitly
learning to compensate errors in the training data (Sanchez-
Gonzalez et al., 2020). We investigate adding normally
distributed noise to the U-Net input with varying standard
deviation n, and denote this model with training noise by
U-Nettn. We found values around n = 10−2 to work well.

PDE-Refiner PDE-Refiner is a multi-step refinement pro-
cess to improve the stability of learned PDE predictions
(Lippe et al., 2023). It relies on starting from the predictions
of a trained one-step model, and iteratively refining them
by adding noise of decreasing variance and denoising the
result with the same model. The resulting model is then
autoregressively unrolled to form a prediction trajectory. We
re-implement this method, closely following the authors’
pseudocode, only changing the backbone network to our
U-Net implementation for a fair comparison against the re-
maining architectures. PDE-Refiner, denoted by Refiner
below, relies on two key hyperparameters, the number of
refinement steps R, and the minimum noise variance σ. We
found this approach to be highly sensitive to both parame-
ters as detailed in App. I.6. Here, we report representative
results using R = 4 and σ = 10−6 (σ = 10−5 for Iso), in
line with the authors’ recommendations (Lippe et al., 2023).

4.3. ResNets and Fourier Neural Operators

As additional popular approaches from the class of direct
next-step predictor models, we investigate dilated ResNets
(based on Stachenfeld et al., 2022) and Fourier Neural Oper-
ators (FNOs) (Li et al., 2021). For the former, the proposed
dilated ResNet (ResNetdil.) as well as the same architecture
without dilations (ResNet) are included. For the latter, we
investigate models using (16, 8) Fourier modes in x- and
y-direction (FNO16), as well as (32, 16) modes (FNO32).

4.4. Latent-space Transformers

The success of transformer architectures (Vaswani et al.,
2017) and their recent application to physics predictions
(Geneva & Zabaras, 2022; Han et al., 2021) raises the ques-
tion how the other approaches fare in comparison to state-
of-the-art transformer architectures. Being tailored to se-
quential processing with a long-term observation horizon,
these models operate on a latent space with a reduced size.
In contrast, the other investigated architectures by construc-
tion operate on the full spatial resolution. Specifically, we
test the encoder-processor-decoder architecture from Han
et al. (2021) adopted to regular grids via a CNN-encoding,
denoted by TFMGN below. Furthermore, we provide an im-
proved variant (TFEnc) that allows to simulate flows with
varying parameters over the simulation rollout, and varies
key transformer parameters. Compared to TFMGN it relies
on transformer encoder layers and uses full latent predic-
tions instead of residual predictions. Lastly, we test the
transformer-based prediction in conjunction with a prob-
abilistic variational autoencoder, denoted by TFVAE. All
transformer architectures have access to a large number
of previous steps and use a rollout schedule in line with
the work from Han et al. (2021) during training, however
teacher forcing is removed. By default we use a 30 step
input window and a training rollout length of 60.

4

Benchmarking Autoregressive Conditional Diffusion Models
Si
m
ul
at
io
n

Re
sN

et
di
l.

FN
O
16

TF
En

c
U
-N
et

ut
Re

fin
er

t=15

AC
D
M

t=30 t=45 t=60

−0.2

−0.1

0.0

0.1

0.2 Si
m
ul
at
io
n

Re
sN

et
di
l.

FN
O
16

TF
En

c
U
-N
et

ut
Re

fin
er

t=10

AC
D
M

t=50 t=130 t=210

0.2

0.3

0.4

0.5

0.6

0.7

Si
m
ul
at
io
n

Re
sN

et
di
l.

FN
O
32

TF
En

c
U
-N
et

ut
Re

fin
er

t=10

AC
D
M

t=40 t=70 t=100
−20

−2−1

−2−2

−2−3

−2−4

−2−5

0

2−5

2−4

2−3

2−2

2−1

20

Figure 3. Trajectories from Inchigh with Re = 1000 (left, vorticity), Tralong with Ma = 0.64 (middle, pressure), and Iso with
z = 280 (right, vorticity). Shown are the simulation reference and key architectures of each model class (also see accompanying videos).

5. Experiments
We quantitatively and qualitatively benchmark the inves-
tigated architectures on three flow prediction scenarios
with increasing difficulty: (i) an incompressible wake flow,
(ii) a transonic cylinder flow with shock waves, and (iii) an
isotropic turbulence flow. Test cases for each scenario con-
tain out-of-distribution data via simulation parameters out-
side of the training data range. Further experimental details
are provided in App. A. Examples of the solver trajectory as
well as predictions from key architectures from each model
class are shown in Fig. 3, with further visualization in App. J
and the supplementary videos.

Incompressible Wake Flow Our first case targets incom-
pressible wake flows. These flows already encompass the
full complexity of the Navier-Stokes equations with bound-
ary interactions, but due to their direct unsteady periodic
nature represent the simplest of our three scenarios. We
simulate a fully developed incompressible Karman vortex
street behind a cylindrical obstacle with PhiFlow (Holl et al.,
2020) for a varying Reynolds number Re ≤ 1000. The
corresponding flows capture the transition from laminar to
the onset of turbulence. Models are trained on data from
simulation sequences with Re ∈ [200, 900]. We evalu-
ate generalization on the extrapolation test sets Inclow
with Re ∈ [100, 180] for T = 60, and Inchigh with
Re ∈ [920, 1000] for T = 60. While all training is done
with constant Re, we add a case with varying Re as a par-
ticularly challenging test set: Incvar features a sequence
of T = 250 steps with a smoothly varying Re from 200 to
900 over the course of the simulation time.

Transonic Cylinder Flow As a significantly more com-
plex scenario we target transonic flows. They require the
simulation of a varying density, and exhibit the formation of
shock waves interacting with the flow, especially at higher
Mach numbers Ma . These properties make the problem
highly chaotic and longer prediction rollouts especially chal-
lenging. We simulate a fully developed compressible Kar-
man vortex street using SU2 (Economon et al., 2015) with
Re = 10000, while varying Ma in a transonic regime where
shock waves start to occur. Models are trained on sequences
with Ma ∈ [0.53, 0.63] ∪ [0.69, 0.90]. We evaluate extrap-
olation on Traext with Ma ∈ [0.50, 0.52] for T = 60, in-
terpolation via Traint with Ma ∈ [0.66, 0.68] for T = 60,
and longer rollouts of about 8 vortex shedding periods using
Tralong with Ma ∈ [0.64, 0.65] for T = 240.

Isotropic Turbulence As a third scenario we evaluate the
inference of planes from 3D isotropic turbulence. This case
is inherently difficult, due to its severely underdetermined
nature, as the information provided in a 2D plane allows for
a large space of possible solutions, depending on the 3D mo-
tion outside of the plane. Thus, it is expected that deviations
from the reference trajectories occur across methods, and
we use R = 100 diffusion steps in ACDM as a consequence.
For this setup, we observed a tradeoff between accuracy and
sampling speed, where additional diffusion steps continued
to improve prediction quality. As training data, we utilize
2D z-slices of 3D data from the Johns Hopkins Turbulence
Database (Perlman et al., 2007). Models are trained on se-
quences with z ∈ [1, 199]∪ [351, 1000], and we test on Iso
with sequences from z ∈ [200, 350] for T = 100.

5

https://ge.in.tum.de/publications/2023-acdm-kohl/
https://ge.in.tum.de/publications/2023-acdm-kohl/

Benchmarking Autoregressive Conditional Diffusion Models

Table 1. Quantitative comparison for different network architectures (best and second best results are highlighted for each test set).

Inclow Inchigh Traext Traint Iso

MSE LSiM MSE LSiM MSE LSiM MSE LSiM MSE LSiM
Method (10−4) (10−2) (10−5) (10−2) (10−3) (10−1) (10−3) (10−1) (10−2) (10−1)

ResNet 10± 9.1 17± 7.8 16± 3.0 5.9± 1.6 2.3± 0.9 1.4± 0.2 1.8± 1.0 1.0± 0.3 6.7± 2.4 9.1± 2.2
ResNetdil. 1.6± 1.8 7.7± 5.5 1.5± 0.8 2.6± 0.7 1.7± 1.0 1.2± 0.3 1.7± 1.4 1.0± 0.5 5.7± 2.1 8.2± 2.0

FNO16 2.8± 3.1 8.8± 7.1 8.9± 3.8 2.5± 1.2 4.8± 1.2 3.4± 1.1 5.5± 2.6 2.6± 1.1 2m± 6m 15± 1.5
FNO32 160± 50 80± 5.4 1k ± 140 57± 4.9 4.9± 1.9 3.6± 0.9 6.8± 3.4 3.1± 1.1 14± 5.3 8.9± 1.2

TFMGN 5.7± 4.3 13± 6.4 10± 2.9 3.5± 0.4 3.9± 1.0 1.8± 0.3 6.3± 4.4 2.2± 0.7 8.7± 3.8 7.0± 2.2
TFEnc 1.5± 1.7 6.3± 4.2 0.6± 0.3 1.0± 0.3 3.3± 1.2 1.8± 0.3 6.2± 4.2 2.2± 0.7 11± 5.2 7.2± 2.1
TFVAE 5.4± 5.5 13± 7.2 14± 19 4.1± 1.4 4.1± 0.9 2.4± 0.2 7.2± 3.0 2.7± 0.6 11± 5.1 7.5± 2.1

U-Net 1.0± 1.1 5.8± 3.2 2.7± 0.6 2.6± 0.6 3.1± 2.1 3.9± 2.8 2.3± 2.0 3.3± 2.8 26± 35 11± 3.9
U-Netut 0.8± 1.1 4.5± 4.0 0.2± 0.1 0.5± 0.2 1.6± 0.7 1.1± 0.2 1.5± 1.5 1.0± 0.5 4.5± 2.8 2.4± 0.5
U-Nettn 1.0± 1.0 5.6± 3.1 0.9± 0.6 1.5± 0.6 1.4± 0.8 1.1± 0.3 1.8± 1.1 1.0± 0.4 3.1± 0.9 4.5± 2.5

Refiner 1.3± 1.4 7.1± 4.2 3.5± 2.2 2.5± 1.0 5.4± 2.1 2.3± 0.5 7.1± 2.1 3.0± 1.7 121± 200 10.2± 3.5

ACDMncn 0.9± 0.8 6.6± 2.7 5.6± 2.6 3.6± 1.2 4.1± 1.9 1.9± 0.6 2.8± 1.3 1.7± 0.4 18.3± 2.5 8.9± 1.5
ACDM 1.7± 2.2 6.9± 5.7 0.8± 0.5 1.0± 0.3 2.3± 1.4 1.3± 0.3 2.7± 2.1 1.3± 0.6 3.7± 0.8 3.3± 0.7

6. Results
In the following, we benchmark the investigated methods
in terms of accuracy, and temporal stability using a range
of different metrics. Posterior sampling and the statistical
match to the underlying physics are analyzed in Appen-
dices E and F, and Appendices G to I contain additional
results and evaluations for various aspects discussed in the
following. Unless denoted otherwise, mean and standard
deviation over all sequences from each data set, multiple
training runs, and multiple random model evaluations are re-
ported. We evaluate two training runs with different random
seeds for Iso, and three for Inc and Tra. For the proba-
bilistic methods TFVAE, Refiner, and ACDM, five random
model evaluations are taken into account per trained model.

Accuracy As the basis for assessing the quality of flow
predictions, we first measure direct errors towards the
ground truth sequence. We use a mean-squared-error (MSE)
and LSiM, a similarity metric for numerical simulations
(Kohl et al., 2020). Both metrics are rollout errors, i.e., com-
puted per time step and field, and averaged over the temporal
rollout, where lower values indicate better reconstruction
accuracy. Table 1 shows the accuracy results, consisting of
mean and standard deviation over all sequences from each
data set, multiple training runs, and multiple random model
evaluations. Errors of models diverging during inference
are displayed with factors of 103 (k) or 106 (m).

For the easiest test case Inc, all model classes can do
well, as shown by the overall low errors. The performance
of ResNetdil., TFEnc, U-Netut, and ACDM is quite similar.
FNO16 and Refiner also work well on Inclow, but are
slightly less accurate on Inchigh. On the more complex
Tra case, all transformer-based and FNO architectures, as
well as Refiner are already noticeably less accurate, com-

pared to the remaining methods. ACDM is on par in terms
of error with the established ResNet variants, as well as
U-Net models with unrolling or training noise. However,
for the longer rollouts in Tralong the behavior of the archi-
tectures is different as temporal stability issues can occur,
as discussed below.

On Iso, all models are struggling due to the highly un-
derdetermined nature of this experiment, indicated by the
higher errors overall. The transformer-based methods lack
accuracy, as the compressed latent representations are un-
able to capture the high frequency details of this data set.
The other architectures with lower relative accuracy accu-
mulate errors over the rollout. This is especially noticeable
for U-Net, Refiner, and the ResNet and FNO variants. The
architectures that remain most stable and accurate are U-
Netut and U-Nettn, which are equipped with state of the art
stabilization techniques like unrolled training or training
noise. Surprisingly, ACDM remains fully stable on Iso
without modification, and achieves comparable accuracy to
U-Netut and U-Nettn. Below, we will mostly focus on the
more successful architecture variant in each model class if
the behavior is relatively similar, i.e. ResNetdil. as the supe-
rior ResNet model, TFEnc for the latent-space transformer
architectures, and FNO16 (FNO32 for Iso).

The improved performance of ResNetdil. compared to
ResNet, and the generally weak results of FNO on our
more complex tasks confirm the findings from previous
work (Stachenfeld et al., 2022). The benefits of unrolling
U-Net or adding training noise, also become evident on
our more complex cases Tra and Iso: while both require
additional parameters and training effort, substantial gains
in accuracy can be achieved. The regular U-Net, despite
its network structure being identical to ACDM, frequently
performs worse than ACDM on Tra and Iso. Thus, we in-

6

Benchmarking Autoregressive Conditional Diffusion Models

clude an ablation on ACDM, that behaves similarly to U-Net
in terms of error propagation: For the ACDMncn model no
conditioning noise is applied, i.e., c0 is used over the entire
diffusion process. This variant performs substantially worse
than ACDM across cases, as it does not prevent the buildup
of errors similar to the U-Net or ResNet models, due to the
tight coupling between conditioning and prediction. This
highlights the benefits of creating the next step prediction
from scratch, leading to less error propagation and increased
temporal stability for ACDM.

Temporal Stability A central motivation for analysing
diffusion models in the context of transient simulations is
the hypothesis that the stochastic training procedure leads
to a more robust temporal behavior at inference time. This
is especially crucial for practical applications of fluid simu-
lations, where rollouts with thousands of steps are common.
To assess temporal stability, we measure the magnitude of
the rate of change of s, computed as ∥(st−st−1)/∆t∥1 for
every normalized time step. Compared to a correlation
analysis, this metric stays meaningful even for long rollout
times on complex data, where sequences can diverge from
the specific solution trajectory while still remaining physi-
cal. It indicates whether a simulator preserves the expected
evolution of states as given by the reference simulation: If
predictions explode, the rate of change substantially grows
beyond the reference, and if they collapse into an incorrect
steady state, the change approaches zero.

Simulation
ResNetdil.

FNO16
FNO32

TFEnc
U-Net

U-Netut
U-Nettn

Refiner
ACDMncn

ACDM

0 50 100 150 200 250
Time step t

0.005

0.010

0.015

0.020

0.025

‖(
st

−
st

−
1)

/Δ
t‖

1

Tralong

0 20 40 60 80 100
Time step t

0.005

0.010

0.015

0.020

‖(
st

−
st

−
1)

/Δ
t‖

1

Iso

Figure 4. Stability analysis on Tralong (top) and Iso (bottom).
Standard deviations are omitted for visual clarity.

Figure 4 shows this evaluation for Tralong and Iso. Model
variants from each class that are omitted perform similar
to the included variant in both cases. For Tralong, the ref-
erence simulation features steady oscillations as given by
the main vortex shedding frequency. Note that these vortex
shedding oscillations are averaged out over posterior sam-
ples and training runs in this evaluation, once architecture
diverge from the exact reference trajectory. Refiner is highly
unstable in this evaluations across its hyperparameters. Even
though some trained models and samples are fully stable,
the temporal stability on average is worst across the investi-
gated architectures. Next-step predictor architectures like
ResNetdil., FNO16, U-Net diverge at different points during
the Tralong rollout and mostly settle into a stable but wrong
state of a mean flow prediction without vortices. ACDMncn

which does not explicitly target error mitigation performs
similar as well. TFEnc generally remains stable due to the
long training rollout, indicated by a mostly constant rate
of change. However, it exhibits minor temporal inconsis-
tencies and slightly undershoots compared to the reference,
most likely due to temporal updates being performed sub-
optimally in the latent space. U-Nettn is stable, however
early deterioration signs are visible towards the end of the
trajectory. ACDM and U-Netut remain fully stable, even for
many additional rollouts steps.

At the bottom in Fig. 4, the stability is evaluated for the Iso
experiment. Its isotropic nature in combination with forcing
leads to an almost constant rate of change over time for
the reference simulation. All methods struggle to replicate
this accurately due the highly underdetermined learning
task. In addition to issues with the reconstruction quality,
TFEnc exhibits undesirable spikes corresponding to their
temporal prediction window of k = 25 previous steps. It
also undershoots after one rollout window, making it highly
undesirable for this task. Similar as observed on Tralong,
next-step predictor architectures like ResNetdil., FNO32, and
U-Net initially predict a quite accurate rate of change, but
diverge at different points over the rollout. Refiner is also
highly unstable across trained models and samples. Here,
the common failure mode across models is an incorrect
addition of energy to the system that causes a quick and
significant divergence from the reference.

U-Netut and U-Nettn show the best temporal stability in this
experiment, however both exhibit minor issues at the start
or end of the simulation rollout. For U-Netut, this can be
further mitigated via a learning schedule to incrementally
increase the rollout during training, or by pre-training with
few rollout steps. Despite the initially slightly larger rate
of change, and the decay corresponding to an overly dis-
sipative prediction, ACDM fares well and remains stable
over the simulation rollout. For this case, we did observe
mild temporal coherence issues in the vorticity computed
from the ACDM velocity predictions, which are analyzed

7

Benchmarking Autoregressive Conditional Diffusion Models

Table 2. Overview with our assessment of advantages and drawbacks for different flow prediction approaches at similar training memory
(✓✓✓: excellent, ✓✓: good, ✓: acceptable, ✗: suboptimal, ✗✗: bad, N/A: not available, —: not investigated in detail)

Aspect Latent-space FNO Dilated U-Net U-Net U-Net PDE Autoreg.
Transformer ResNet (train. noise) (unrolled) Refiner Diffusion

Training Speed ✓✓ ✓✓✓ ✗✗ ✓ ✓ ✗✗ ✓ ✓
Inference Speed ✓✓✓ ✓✓ ✓✓ ✓ ✓ ✓ ✗ ✗✗

Accuracy (Inc) ✓✓✓ ✓ ✓✓✓ ✓✓ ✓✓✓ ✓✓✓ ✓✓ ✓✓✓
Accuracy (Tra) ✓ ✓ ✓✓✓ ✓ ✓✓✓ ✓✓✓ ✓ ✓✓✓
Accuracy (Iso) ✗ ✗✗ ✓ ✗✗ ✓✓✓ ✓✓✓ ✗✗ ✓✓✓

Posterior Sample Diversity ✗ (VAE) N/A N/A N/A N/A N/A ✓ ✓✓✓

Temporal Stability (Inc) ✓✓✓ ✓✓✓ ✓✓ ✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Temporal Stability (Tra) ✓✓ ✗ ✓ ✗ ✓✓ ✓✓✓ ✓ ✓✓✓
Temporal Stability (Iso) ✗✗ ✗ ✗ ✗✗ ✓✓ ✓✓✓ ✗ ✓✓

Key Hyperparameters Latent Fourier Dilation # Up/Down Noise Rollout Diff. Steps, Diffusion
Size Modes Rates Blocks Variance Length Noise Var. Steps

Key Hyperparameter Stability — ✗ — — ✗ ✓ ✗✗ ✓✓

in more detail in App. H. Nevertheless, these experiments
clearly show the increased error tolerance of ACDM com-
pared to ACDMncn, as the latter performs very similar to
U-Net for both experiments in Fig. 4, while ACDM remains
fully stable.

In an additional stability evaluation (see App. G), we un-
rolled the three most stable architectures U-Netut, U-Nettn,
and ACDM for T = 200 000 steps to investigate extremely
long prediction horizons which are highly desirable for
e.g. climate prediction models (Watt-Meyer et al., 2023).
All architectures remained fully stable and statistically ac-
curate on extended sequences from Inchigh. In addition,
we considered more challenging extended sequences from
Traext: while one training run from U-Nettn did diverge,
all runs from ACDM and U-Netut were fully stable across
the entire prediction horizon, indicating their potential for
future applications.

Discussion and Overview We summarize the findings of
the performed experiments in Tab. 2, and include additional
results for performance and posterior sampling from Ap-
pendices C and E. In general, latent-space transformers and
FNO variants are fast to train and evaluate. As they use an
identical backbone model, U-Net, U-Netut, and U-Nettn have
the same inference speed. Note however, that U-Netut re-
quires substantially more time and memory during training
due to the additional rollout steps. Diffusion-based models
like PDE-Refiner and ACDM have an inference slow-down
factor roughly proportional to the number of diffusion steps
R, i.e. 2–8 for PDE-Refiner and 20–100 for ACDM. Further-
more, the stability with respect to key hyperparameters for
some architectures is reported, experiments for which can
be found in App. I. To summarize, we draw the following
main conclusions:

(i) Latent-space transformers are highly accurate and sta-

ble, if the input space can be compressed easily.

(ii) Next-step predictors like ResNetdil., FNO, and U-Net
work very well for simple tasks, but require explicit
stabilization techniques for more complex cases.

(iii) If training and inference performance are of concern,
training noise can provide substantial stabilization.

(iv) Unrolling is resource-intensive during training and re-
quires tuning of the rollout length, but pays off in terms
of improved accuracy and stability.

(v) Autoregressive diffusion models like ACDM are as ac-
curate and stable as unrolled training at lower training
cost, but are expensive during inference.

(vi) PDE-Refiner can improve the temporal stability com-
pared to U-Net, however for complex cases it is very
sensitive to repeated sampling or training, and its hy-
perparameters.

(vii) If accurate and diverse posterior samples are required,
ACDM models are the ideal option.

7. Conclusion and Future Work
We investigated the attractiveness of autoregressive condi-
tional diffusion models for the simulation of complex flow
phenomena. Our results show that using even a simple
diffusion-based approach is on par with established stabi-
lization approaches, while at the same time enabling proba-
bilistic inference. In the future, the inference performance
of ACDMs can be improved, e.g., via better sampling proce-
dures such as distillation (Salimans & Ho, 2022). Naturally,
considering other PDEs, or larger, three-dimensional flows
is likewise a highly interesting direction. For the latter,
single-step diffusion approaches are particularly attractive,
as they avoid the substantial costs of temporal training roll-
outs (Sirignano et al., 2020) to achieve stability.

8

Benchmarking Autoregressive Conditional Diffusion Models

Acknowledgments
This work was supported by the ERC Consolidator Grant
SpaTe (CoG-2019-863850). We would also like to thank
Björn List and Benjamin Holzschuh for helpful discussions
and comments during the creation of this work.

References
de Avila Belbute-Peres, F., Economon, T. D., and Kolter, J. Z.

Combining differentiable pde solvers and graph neural networks
for fluid flow prediction. In Proceedings of the 37th International
Conference on Machine Learning (ICML 2020), volume 119,
pp. 2402–2411, 2020. URL http://proceedings.mlr.
press/v119/de-avila-belbute-peres20a.html.

Bar-Sinai, Y., Hoyer, S., Hickey, J., and Brenner, M. P. Learn-
ing data driven discretizations for partial differential equa-
tions. Proceedings of the National Academy of Sciences,
116(31):15344–15349, 2019. ISSN 0027-8424, 1091-6490.
doi:10.1073/pnas.1814058116.

Batzolis, G., Stanczuk, J., Schönlieb, C.-B., and Etmann, C. Con-
ditional image generation with score-based diffusion models.
arXiv, 2021. doi:10.48550/arXiv.2111.13606.

Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim, S. W.,
Fidler, S., and Kreis, K. Align your latents: High-resolution
video synthesis with latent diffusion models. In 2023 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pp. 22563–22575, 2023. doi:10.1109/CVPR52729.2023.02161.

Brandstetter, J., Worrall, D. E., and Welling, M. Message pass-
ing neural pde solvers. In 10th International Conference on
Learning Representations (ICLR 2022), 2022. URL https:
//openreview.net/forum?id=vSix3HPYKSU.

Cachay, S. R., Zhao, B., Joren, H., and Yu, R. Dyffu-
sion: A dynamics-informed diffusion model for spa-
tiotemporal forecasting. In Advances in Neural In-
formation Processing Systems 36, 2023. URL http:
//papers.nips.cc/paper_files/paper/2023/
hash/8df90a1440ce782d1f5607b7a38f2531-
Abstract-Conference.html.

Deo, I. K., Gao, R., and Jaiman, R. Combined space–time reduced-
order model with three-dimensional deep convolution for extrap-
olating fluid dynamics. Physics of Fluids, 35(4):043606, 2023.
ISSN 1070-6631. doi:10.1063/5.0145071.

Dhariwal, P. and Nichol, A. Q. Diffusion models beat gans
on image synthesis. In Advances in Neural Informa-
tion Processing Systems 34, pp. 8780–8794, 2021. URL
https://proceedings.neurips.cc/paper/2021/
hash/49ad23d1ec9fa4bd8d77d02681df5cfa-
Abstract.html.

Dosovitskiy, A. and Brox, T. Generating images with perceptual
similarity metrics based on deep networks. In Advances in Neu-
ral Information Processing Systems 29, pp. 658–666, 2016. URL
https://proceedings.neurips.cc/paper/2016/
hash/371bce7dc83817b7893bcdeed13799b5-
Abstract.html.

Dryden, H. L. A review of the statistical theory of turbulence.
Quarterly of Applied Mathematics, 1(1):7–42, 1943. ISSN

0033569X, 15524485. URL http://www.jstor.org/
stable/43633324.

Economon, T., Palacios, F., Copeland, S., Lukaczyk, T., and Alonso,
J. Su2: An open-source suite for multiphysics simulation and
design. AIAA Journal, 54:1–19, 2015. doi:10.2514/1.J053813.

Geneva, N. and Zabaras, N. Modeling the dynamics of
pde systems with physics-constrained deep auto-regressive
networks. Journal of Computational Physics, 403, 2020.
doi:10.1016/j.jcp.2019.109056.

Geneva, N. and Zabaras, N. Transformers for modeling
physical systems. Neural Networks, 146:272–289, 2022.
doi:10.1016/j.neunet.2021.11.022.

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT
Press, 2016. URL http://www.deeplearningbook.
org.

Han, X., Gao, H., Pfaff, T., Wang, J.-X., and Liu, L. Predicting
physics in mesh-reduced space with temporal attention. In 10th
International Conference on Learning Representations (ICLR
2022), 2021. URL https://openreview.net/forum?
id=XctLdNfCmP.

Harvey, W., Naderiparizi, S., Masrani, V., Weilbach, C., and Wood,
F. Flexible diffusion modeling of long videos. In Advances in
Neural Information Processing Systems 35, 2022. URL http:
//papers.nips.cc/paper_files/paper/2022/
hash/b2fe1ee8d936ac08dd26f2ff58986c8f-
Abstract-Conference.html.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning
for image recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.
doi:10.1109/CVPR.2016.90.

Hemmasian, A. P. and Farimani, A. B. Reduced-order modeling of
fluid flows with transformers. Physics of Fluids, 35(5):057126,
2023. ISSN 1070-6631. doi:10.1063/5.0151515.

Ho, J., Jain, A., and Abbeel, P. Denoising diffu-
sion probabilistic models. In Advances in Neural
Information Processing Systems 33, 2020. URL
https://proceedings.neurips.cc/paper/2020/
hash/4c5bcfec8584af0d967f1ab10179ca4b-
Abstract.html.

Ho, J., Salimans, T., Gritsenko, A. A., Chan, W., Norouzi, M.,
and Fleet, D. J. Video diffusion models. In Advances in
Neural Information Processing Systems 35, 2022. URL http:
//papers.nips.cc/paper_files/paper/2022/
hash/39235c56aef13fb05a6adc95eb9d8d66-
Abstract-Conference.html.

Holl, P., Thuerey, N., and Koltun, V. Learning to control pdes
with differentiable physics. In 8th International Conference on
Learning Representations (ICLR 2020), 2020. URL https:
//openreview.net/forum?id=HyeSin4FPB.

Holzschuh, B. J., Vegetti, S., and Thuerey, N. Solving inverse
physics problems with score matching. In Advances in Neural
Information Processing Systems 36, 2023. URL http:
//papers.nips.cc/paper_files/paper/2023/
hash/c2f2230abc7ccf669f403be881d3ffb7-
Abstract-Conference.html.

9

http://proceedings.mlr.press/v119/de-avila-belbute-peres20a.html
http://proceedings.mlr.press/v119/de-avila-belbute-peres20a.html
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.48550/arXiv.2111.13606
https://doi.org/10.1109/CVPR52729.2023.02161
https://openreview.net/forum?id=vSix3HPYKSU
https://openreview.net/forum?id=vSix3HPYKSU
http://papers.nips.cc/paper_files/paper/2023/hash/8df90a1440ce782d1f5607b7a38f2531-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/8df90a1440ce782d1f5607b7a38f2531-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/8df90a1440ce782d1f5607b7a38f2531-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/8df90a1440ce782d1f5607b7a38f2531-Abstract-Conference.html
https://doi.org/10.1063/5.0145071
https://proceedings.neurips.cc/paper/2021/hash/49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/371bce7dc83817b7893bcdeed13799b5-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/371bce7dc83817b7893bcdeed13799b5-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/371bce7dc83817b7893bcdeed13799b5-Abstract.html
http://www.jstor.org/stable/43633324
http://www.jstor.org/stable/43633324
https://doi.org/10.2514/1.J053813
https://doi.org/10.1016/j.jcp.2019.109056
https://doi.org/10.1016/j.neunet.2021.11.022
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://openreview.net/forum?id=XctLdNfCmP
https://openreview.net/forum?id=XctLdNfCmP
http://papers.nips.cc/paper_files/paper/2022/hash/b2fe1ee8d936ac08dd26f2ff58986c8f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b2fe1ee8d936ac08dd26f2ff58986c8f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b2fe1ee8d936ac08dd26f2ff58986c8f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b2fe1ee8d936ac08dd26f2ff58986c8f-Abstract-Conference.html
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1063/5.0151515
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/39235c56aef13fb05a6adc95eb9d8d66-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/39235c56aef13fb05a6adc95eb9d8d66-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/39235c56aef13fb05a6adc95eb9d8d66-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/39235c56aef13fb05a6adc95eb9d8d66-Abstract-Conference.html
https://openreview.net/forum?id=HyeSin4FPB
https://openreview.net/forum?id=HyeSin4FPB
http://papers.nips.cc/paper_files/paper/2023/hash/c2f2230abc7ccf669f403be881d3ffb7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/c2f2230abc7ccf669f403be881d3ffb7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/c2f2230abc7ccf669f403be881d3ffb7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/c2f2230abc7ccf669f403be881d3ffb7-Abstract-Conference.html

Benchmarking Autoregressive Conditional Diffusion Models

Höppe, T., Mehrjou, A., Bauer, S., Nielsen, D., and Dittadi, A.
Diffusion models for video prediction and infilling. Trans-
actions on Machine Learning Research, 2022. ISSN 2835-
8856. URL https://openreview.net/forum?id=
lf0lr4AYM6.

Hu, T. and Liao, S. On the risks of using dou-
ble precision in numerical simulations of spatio-temporal
chaos. Journal of Computational Physics, 418:109629, 2020.
doi:10.1016/j.jcp.2020.109629.

Hyvärinen, A. Estimation of non-normalized statistical models
by score matching. Journal of Machine Learning Research,
6:695–709, 2005. URL http://jmlr.org/papers/v6/
hyvarinen05a.html.

Johnson, J., Alahi, A., and Fei-Fei, L. Perceptual losses for real-
time style transfer and super-resolution. In Computer Vision -
ECCV 2016, volume 9906, pp. 694–711, 2016. doi:10.1007/978-
3-319-46475-6_43.

Kawar, B., Elad, M., Ermon, S., and Song, J. Denoising
diffusion restoration models. In Advances in Neural In-
formation Processing Systems 35, 2022. URL http:
//papers.nips.cc/paper_files/paper/2022/
hash/95504595b6169131b6ed6cd72eb05616-
Abstract-Conference.html.

Kim, B., Azevedo, V. C., Thuerey, N., Kim, T., Gross, M. H.,
and Solenthaler, B. Deep fluids: A generative network for
parameterized fluid simulations. Computer Graphics Forum, 38
(2):59–70, 2019. doi:10.1111/cgf.13619.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimiza-
tion. In 3rd International Conference on Learning Representa-
tions (ICLR 2015), 2015. URL http://arxiv.org/abs/
1412.6980.

Kingma, D. P. and Welling, M. Auto-encoding variational bayes.
In 2nd International Conference on Learning Representations
(ICLR 2014), 2014. URL http://arxiv.org/abs/1312.
6114.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner,
M. P., and Stephan Hoyer. Machine learning–accelerated
computational fluid dynamics. Proceedings of the Na-
tional Academy of Sciences, 118(21):e2101784118, 2021.
doi:10.1073/pnas.2101784118.

Kohl, G., Um, K., and Thuerey, N. Learning similarity metrics for
numerical simulations. In Proceedings of the 37th International
Conference on Machine Learning (ICML 2020), volume 119,
pp. 5349–5360, 2020. URL http://proceedings.mlr.
press/v119/kohl20a.html.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., Liu, B., Bhattacharya,
K., Stuart, A. M., and Anandkumar, A. Fourier neural op-
erator for parametric partial differential equations. In 9th In-
ternational Conference on Learning Representations (ICLR
2021), 2021. URL https://openreview.net/forum?
id=c8P9NQVtmnO.

Lienen, M., Hansen-Palmus, J., Lüdke, D., and Günnemann, S.
From zero to turbulence: Generative modeling for 3d flow simu-
lation. arXiv, 2023. doi:10.48550/arXiv.2306.01776.

Lippe, P., Veeling, B., Perdikaris, P., Turner, R. E., and
Brandstetter, J. Pde-refiner: Achieving accurate long
rollouts with neural pde solvers. In Advances in Neural
Information Processing Systems 36, 2023. URL http:
//papers.nips.cc/paper_files/paper/2023/
hash/d529b943af3dba734f8a7d49efcb6d09-
Abstract-Conference.html.

List, B., Chen, L.-W., and Thuerey, N. Learned turbulence mod-
elling with differentiable fluid solvers: Physics-based loss func-
tions and optimisation horizons. Journal of Fluid Mechanics,
949:A25, 2022. doi:10.1017/jfm.2022.738.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., and
Xie, S. A convnet for the 2020s. In 2022 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 11966–
11976, 2022. doi:10.1109/CVPR52688.2022.01167.

Lusch, B., Kutz, J. N., and Brunton, S. L. Deep learning for univer-
sal linear embeddings of nonlinear dynamics. Nature Communi-
cations, 9(1):4950, 2018. ISSN 2041-1723. doi:10.1038/s41467-
018-07210-0.

Moin, P. and Mahesh, K. Direct numerical simulation: A tool in
turbulence research. Annual Review of Fluid Mechanics, 30(1):
539–578, 1998. doi:10.1146/annurev.fluid.30.1.539.

Nichol, A. Q. and Dhariwal, P. Improved denoising diffusion
probabilistic models. In Proceedings of the 38th International
Conference on Machine Learning (ICML 2021), volume 139,
pp. 8162–8171, 2021. URL http://proceedings.mlr.
press/v139/nichol21a.html.

Olufsen, M. S., Peskin, C. S., Kim, W. Y., Pedersen, E. M., Nadim,
A., and Larsen, J. Numerical simulation and experimental val-
idation of blood flow in arteries with structured-tree outflow
conditions. Annals of Biomedical Engineering, 28(11):1281–
1299, 2000. doi:10.1114/1.1326031.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.
Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems
32, pp. 8024–8035, 2019. doi:10.48550/arXiv.1912.01703.

Perlman, E., Burns, R., Li, Y., and Meneveau, C. Data ex-
ploration of turbulence simulations using a database clus-
ter. In Proceedings of the ACM/IEEE Conference on High
Performance Networking and Computing, pp. 1–11, 2007.
doi:10.1145/1362622.1362654.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and Battaglia, P. W.
Learning mesh-based simulation with graph networks. In 9th
International Conference on Learning Representations (ICLR
2021), 2021. URL https://openreview.net/forum?
id=roNqYL0_XP.

Pope, S. Turbulent Flows. Cambridge University Press, 2000.
ISBN 978-0-511-84053-1. doi:10.1017/CBO9780511840531.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolutional
networks for biomedical image segmentation. In Medical Im-
age Computing and Computer-Assisted Intervention (MICCAI),
volume 9351, pp. 234–241, 2015. doi:10.1007/978-3-319-24574-
4_28.

10

https://openreview.net/forum?id=lf0lr4AYM6
https://openreview.net/forum?id=lf0lr4AYM6
https://doi.org/10.1016/j.jcp.2020.109629
http://jmlr.org/papers/v6/hyvarinen05a.html
http://jmlr.org/papers/v6/hyvarinen05a.html
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43
http://papers.nips.cc/paper_files/paper/2022/hash/95504595b6169131b6ed6cd72eb05616-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/95504595b6169131b6ed6cd72eb05616-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/95504595b6169131b6ed6cd72eb05616-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/95504595b6169131b6ed6cd72eb05616-Abstract-Conference.html
https://doi.org/10.1111/cgf.13619
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.1073/pnas.2101784118
http://proceedings.mlr.press/v119/kohl20a.html
http://proceedings.mlr.press/v119/kohl20a.html
https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=c8P9NQVtmnO
https://doi.org/10.48550/arXiv.2306.01776
http://papers.nips.cc/paper_files/paper/2023/hash/d529b943af3dba734f8a7d49efcb6d09-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d529b943af3dba734f8a7d49efcb6d09-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d529b943af3dba734f8a7d49efcb6d09-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d529b943af3dba734f8a7d49efcb6d09-Abstract-Conference.html
https://doi.org/10.1017/jfm.2022.738
https://doi.org/10.1109/CVPR52688.2022.01167
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1146/annurev.fluid.30.1.539
http://proceedings.mlr.press/v139/nichol21a.html
http://proceedings.mlr.press/v139/nichol21a.html
https://doi.org/10.1114/1.1326031
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1145/1362622.1362654
https://openreview.net/forum?id=roNqYL0_XP
https://openreview.net/forum?id=roNqYL0_XP
https://doi.org/10.1017/CBO9780511840531
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28

Benchmarking Autoregressive Conditional Diffusion Models

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E. L.,
Ghasemipour, S. K. S., Lopes, R. G., Ayan, B. K., Salimans, T.,
Ho, J., Fleet, D. J., and Norouzi, M. Photorealistic text-to-image
diffusion models with deep language understanding. In Advances
in Neural Information Processing Systems 35, 2022. URL http:
//papers.nips.cc/paper_files/paper/2022/
hash/ec795aeadae0b7d230fa35cbaf04c041-
Abstract-Conference.html.

Salimans, T. and Ho, J. Progressive distillation for fast sam-
pling of diffusion models. In 10th International Conference
on Learning Representations (ICLR 2022), 2022. URL https:
//openreview.net/forum?id=TIdIXIpzhoI.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec,
J., and Battaglia, P. W. Learning to simulate complex physics
with graph networks. In Proceedings of the 37th International
Conference on Machine Learning (ICML 2020), volume 119,
pp. 8459–8468, 2020. URL http://proceedings.mlr.
press/v119/sanchez-gonzalez20a.html.

Shen, Z., Zhang, M., Zhao, H., Yi, S., and Li, H. Efficient at-
tention: Attention with linear complexities. In IEEE Winter
Conference on Applications of Computer Vision, pp. 3530–3538,
2021. doi:10.1109/WACV48630.2021.00357.

Shu, D., Li, Z., and Farimani, A. B. A physics-informed
diffusion model for high-fidelity flow field reconstruc-
tion. Journal of Computational Physics, 478:111972, 2023.
doi:10.1016/j.jcp.2023.111972.

Sirignano, J. A., MacArt, J. F., and Freund, J. B. Dpm: A deep
learning pde augmentation method with application to large-
eddy simulation. Journal of Computational Physics, 423:109811,
2020. doi:10.1016/j.jcp.2020.109811.

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and Gan-
guli, S. Deep unsupervised learning using nonequilibrium ther-
modynamics. In Proceedings of the 32nd International Confer-
ence on Machine Learning (ICML 2015), volume 37, pp. 2256–
2265, 2015. URL http://proceedings.mlr.press/
v37/sohl-dickstein15.html.

Song, J., Meng, C., and Ermon, S. Denoising diffusion implicit
models. In 9th International Conference on Learning Represen-
tations (ICLR 2021), 2021a. URL https://openreview.
net/forum?id=St1giarCHLP.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon,
S., and Poole, B. Score-based generative modeling through
stochastic differential equations. In 9th International Conference
on Learning Representations (ICLR 2021), 2021b. URL https:
//openreview.net/forum?id=PxTIG12RRHS.

Song, Y., Shen, L., Xing, L., and Ermon, S. Solving inverse
problems in medical imaging with score-based generative mod-
els. In 10th International Conference on Learning Represen-
tations (ICLR 2022), 2022. URL https://openreview.
net/forum?id=vaRCHVj0uGI.

Spalart, P., Deck, S., Shur, M. L., Squires, K., Strelets, M., and
Travin, A. A new version of detached-eddy simulation, resis-
tant to ambiguous grid densities. Theoretical and Computa-
tional Fluid Dynamics, 20(3):181–195, 2006. ISSN 1432-2250.
doi:10.1007/s00162-006-0015-0.

Stachenfeld, K. L., Fielding, D. B., Kochkov, D., Cranmer, M. D.,
Pfaff, T., Godwin, J., Cui, C., Ho, S., Battaglia, P. W., and
Sanchez-Gonzalez, A. Learned coarse models for efficient
turbulence simulation. In 10th International Conference on
Learning Representations (ICLR 2022), 2022. URL https:
//openreview.net/forum?id=msRBojTz-Nh.

Thuerey, N., Weissenow, K., Prantl, L., and Hu, X. Deep
learning methods for reynolds-averaged navier-stokes simu-
lations of airfoil flows. AIAA Journal, 58(1):25–36, 2020.
doi:10.2514/1.J058291.

Um, K., Brand, R., Fei, Y., Holl, P., and Thuerey, N.
Solver-in-the-loop: Learning from differentiable physics
to interact with iterative pde-solvers. In Advances in
Neural Information Processing Systems 33, 2020. URL
https://proceedings.neurips.cc/paper/2020/
hash/43e4e6a6f341e00671e123714de019a8-
Abstract.html.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems 30, pp. 5998–6008, 2017. URL
https://proceedings.neurips.cc/paper/2017/
hash/3f5ee243547dee91fbd053c1c4a845aa-
Abstract.html.

Verma, S., Novati, G., and Petros Koumoutsakos. Efficient collec-
tive swimming by harnessing vortices through deep reinforce-
ment learning. Proceedings of the National Academy of Sciences,
115(23):5849–5854, 2018. doi:10.1073/pnas.1800923115.

Wang, R., Kashinath, K., Mustafa, M., Albert, A., and Yu, R.
Towards physics-informed deep learning for turbulent flow
prediction. In 26th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, pp. 1457–1466, 2020.
doi:10.1145/3394486.3403198.

Watt-Meyer, O., Dresdner, G., McGibbon, J., Clark, S. K., Henn, B.,
Duncan, J., Brenowitz, N. D., Kashinath, K., Pritchard, M. S.,
Bonev, B., Peters, M. E., and Bretherton, C. S. Ace: A fast,
skillful learned global atmospheric model for climate prediction.
arXiv, 2023. doi:10.48550/arXiv.2310.02074.

Wiewel, S., Becher, M., and Thuerey, N. Latent space physics:
Towards learning the temporal evolution of fluid flow. Com-
puter Graphics Forum, 38(2):71–82, 2019. ISSN 1467-8659.
doi:10.1111/cgf.13620.

Wu, Y. and He, K. Group normalization. In Computer Vision -
ECCV 2018, volume 11217, pp. 3–19, 2018. doi:10.1007/978-3-
030-01261-8_1.

Wyngaard, J. C. Atmospheric turbulence. Annual
Review of Fluid Mechanics, 24(1):205–234, 1992.
doi:10.1146/annurev.fl.24.010192.001225.

Yang, G. and Sommer, S. A denoising diffusion model for fluid
field prediction. arXiv, 2023. doi:10.48550/arXiv.2301.11661.

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y., Zhang,
W., Cui, B., and Yang, M.-H. Diffusion models: A compre-
hensive survey of methods and applications. ACM Computing
Surveys, 56(4):105:1–105:39, 2024. doi:10.1145/3626235.

11

http://papers.nips.cc/paper_files/paper/2022/hash/ec795aeadae0b7d230fa35cbaf04c041-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ec795aeadae0b7d230fa35cbaf04c041-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ec795aeadae0b7d230fa35cbaf04c041-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ec795aeadae0b7d230fa35cbaf04c041-Abstract-Conference.html
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI
http://proceedings.mlr.press/v119/sanchez-gonzalez20a.html
http://proceedings.mlr.press/v119/sanchez-gonzalez20a.html
https://doi.org/10.1109/WACV48630.2021.00357
https://doi.org/10.1016/j.jcp.2023.111972
https://doi.org/10.1016/j.jcp.2020.109811
http://proceedings.mlr.press/v37/sohl-dickstein15.html
http://proceedings.mlr.press/v37/sohl-dickstein15.html
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=vaRCHVj0uGI
https://openreview.net/forum?id=vaRCHVj0uGI
https://doi.org/10.1007/s00162-006-0015-0
https://openreview.net/forum?id=msRBojTz-Nh
https://openreview.net/forum?id=msRBojTz-Nh
https://doi.org/10.2514/1.J058291
https://proceedings.neurips.cc/paper/2020/hash/43e4e6a6f341e00671e123714de019a8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/43e4e6a6f341e00671e123714de019a8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/43e4e6a6f341e00671e123714de019a8-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1073/pnas.1800923115
https://doi.org/10.1145/3394486.3403198
https://doi.org/10.48550/arXiv.2310.02074
https://doi.org/10.1111/cgf.13620
https://doi.org/10.1007/978-3-030-01261-8_1
https://doi.org/10.1007/978-3-030-01261-8_1
https://doi.org/10.1146/annurev.fl.24.010192.001225
https://doi.org/10.48550/arXiv.2301.11661
https://doi.org/10.1145/3626235

Benchmarking Autoregressive Conditional Diffusion Models

A. Data Details
In the following, we provide details for each simulation
setup: the incompressible wake flow Inc in App. A.1, the
transonic cylinder flow Tra in App. A.2, and the isotropic
turbulence Iso in App. A.3. Further details can be found in
our source code at https://github.com/tum-pbs/
autoreg-pde-diffusion.

A.1. Incompressible Flow Simulation

To create the incompressible cylinder flow we employ the
fluid solver PhiFlow1 (Holl et al., 2020). Velocity data is
stored on a staggered grid, we employ an advection scheme
based on the MacCormack method, and use the adaptive
conjugate gradient method as a pressure solver. We enforce
a given Reynolds number in [100, 1000] via an explicit dif-
fusion step.

0.7

0.7

0.7

2.70.
6

Figure 5. Simulation domain for incompressible flow simulation.

Our domain setup is illustrated in Fig. 5. We use Neumann
boundary conditions in vertical x-direction of the domain
and around the cylinder, and a Dirichlet boundary condition
for the outflow on the right of the domain. For the inflow
on the left of the domain we prescribe a fixed freestream
velocity of

(
0
0.5

)
during the simulation. To get oscillations

started, the y-component of this velocity is replaced with
0.5 · (cos(π · x) + 1), where x denotes normalized vertical
domain coordinates in [0, 1], during a warmup of 20 time
steps. We run and export the simulation for 1300 iterations
at time step 0.05, using data after a suitable warmup period
t > 300. The spatial domain discretization is 256 × 128,
but we train and evaluate models on a reduced resolution via
downsampling the data to 128× 64. Velocities are resam-
pled to a regular grid before exporting, and pressure values
are exported directly. In addition, we normalize all fields
and scalar components to a standard normal distribution.
The velocity is normalized in terms of magnitude. During
inference we do not evaluate the cylinder area; i.e., all val-
ues inside the cylinder are set to zero via a multiplicative
binary mask before every evaluation or loss computation.

1https://github.com/tum-pbs/PhiFlow

We generated a data set of 91 sequences with Reynolds
number Re ∈ {100, 110, . . . , 990, 1000}. Running and
exporting the simulations on a machine with an NVIDIA
GeForce GTX 1080 Ti GPU and an Intel Core i7-6850k
CPU with 6 cores at 3.6 GHz took about 5 days. Mod-
els are trained using the data of 81 sequences with Re ∈
{200, 210, . . . , 890, 900} for t ∈ [800, 1300]. Training and
test sequences employ a temporal stride of 2. As test sets
we use:

• Inclow: five sequences with t ∈ [1000, 1120) and
thus T = 60, for Re ∈ {100, 120, 140, 160, 180}.

• Inchigh: five sequences with t ∈ [1000, 1120) and
thus T = 60, for Re ∈ {920, 940, 960, 980, 1000}.

• Incvar: one sequence for t ∈ [300, 800) with T =
250, and a smoothly varying Re from 200 to 900 dur-
ing the simulation. This is achieved via linearly inter-
polating the diffusivity to the corresponding value at
each time step.

For the Incvar test set, we replace the model predictions of
Re that are learned to be constant for ACDM, U-Net, ResNet,
and FNO with the linearly varying Reynolds numbers over
the simulation rollout during inference. The transformer-
based methods TFEnc and TFVAE receive all scalar simulation
parameters as an additional input to the latent space for each
iteration of the latent processor. Note that the architectural
design of TFMGN does not allow for varying simulation
parameters over the rollout, as only one fixed parameter
embedding is provided as a first input step for the latent
processor, i.e. the model is expected to diverge quickly due
to the data shift in such cases.

A.2. Transonic Flow Simulation

To create the transonic cylinder flow we use the simulation
framework SU22 (Economon et al., 2015). We employ the
delayed detached eddy simulation model (SA-DDES) for
turbulence closure, which is derived from the one-equation
Spalart-Allmaras model (Spalart et al., 2006). By modi-
fying the length scale, the model behaves like RANS for
the attached flow in the near wall region and resolves the
detached flows in the other regions. No-slip and adiabatic
conditions are applied on the cylinder surface. The farfield
boundary conditions are treated by local, one-dimensional
Riemann-invariants. The governing equations are numeri-
cally solved by the finite-volume method. Spatial gradients
are computed with weighted least squares, and the bicon-
jugate gradient stabilized method (BiCGSTAB) is used as
the implicit linear solver. For the freestream velocity we
enforce a given Mach number in [0.5, 0.9] while keeping
the Reynolds number at a constant value of 104.

2https://su2code.github.io

12

https://github.com/tum-pbs/autoreg-pde-diffusion
https://github.com/tum-pbs/autoreg-pde-diffusion
https://github.com/tum-pbs/PhiFlow
https://su2code.github.io

Benchmarking Autoregressive Conditional Diffusion Models

To prevent issues with shockwaves from the initial flow
phase, we first compute a steady RANS solution for each
case for 1000 solver iterations and use that as the initial-
ization for the unsteady simulation. We run the unsteady
simulation for 150 000 iterations overall, and use every
50th step once the vortex street is fully developed after the
first 100 000 iterations. This leads to T = 1000 exported
steps with velocity, density, and pressure fields. The non-
dimensional time step for each simulation is 0.002∗ D̃/Ũ∞,
where D̃ is the dimensional cylinder diameter, and Ũ∞ the
free-stream velocity magnitude.

1.0

2.5

2.5

10.0
1.
0 20.529.5

28.0

28.0

Figure 6. Full simulation mesh with highlighted resampling area
(top) and resampling domain setup (bottom) for the transonic flow
simulation.

The computational mesh is illustrated on the top in Fig. 6.
Inference is focused on the near field region around the
obstacle (marked in red on the top, and shown in detail on
the bottom). To interpolate from the original mesh to the
resampled training and testing domain, which is a regular,
Cartesian grid with resolution 128× 64, we use an interpo-
lation based on radial basis functions. It employs a linear

basis function across the 5 nearest data points of the origi-
nal mesh. In terms of field normalization and masking the
cylinder area during inference, we treat this case in the same
way as described in App. A.1.

We created a data set of 41 sequences with Mach num-
ber Ma ∈ {0.5, 0.51, . . . , 0.89, 0.90} at Reynolds number
104 with the T = 1000 exported steps each. We sequen-
tially ran the simulations on one CPU cluster node that
contains 28 Intel Xeon E5-2690 v3 CPU cores at 2.6 GHz
in about 5 days. Each simulation was computed in parallel
with 56 threads, and one separate thread simultaneously
resampled and processed the simulation outputs online dur-
ing the simulation. All models are trained on the data of
33 sequences with Ma ∈ {0.53, 0.54, . . . , 0.62, 0.63} ∪
{0.69, 0.70, . . . , 0.89, 0.90}. Training and test sequences
use a temporal stride of 2. The used test cases for this
compressible, transonic flow setup are:

• Traext: six sequences from Ma ∈ {0.50, 0.51, 0.52},
for t ∈ [500, 620) and for t ∈ [620, 740) with T = 60.

• Traint: six sequences from Ma ∈ {0.66, 0.67, 0.68},
for t ∈ [500, 620) and for t ∈ [620, 740) with T = 60.

• Tralong: four sequences from Ma ∈ {0.64, 0.65},
for t ∈ [0, 480) and for t ∈ [480, 960) with T = 240.

A.3. Isotropic Turbulence

For the isotropic turbulence experiment, we make use of the
3D isotropic1024coarse simulation from the Johns Hopkins
Turbulence Database3 (Perlman et al., 2007). It contains
simulations of forced turbulence with a direct numerical
simulation (DNS) using a pseudo-spectral method on 10243

nodes for 5028 time steps. The database allows for direct
download queries of parameterized simulation cutouts; fil-
tering and interpolation are already provided. We utilize
sequences of individual 2D slices with a spatio-temporal
starting point of (sx, sy, sz, st) = (1, 1, z, 1) and end point
of (ex, ey, ez, et) = (256, 128, z + 1, 1000) for different
values of z. A spatial striding of 2 leads to the training
and evaluation resolution of 128 × 64. We use the pres-
sure, as well as the velocity field including the velocity
z-component. We normalize all fields to a standard nor-
mal distribution before training and inference. In this case,
the velocity components are normalized individually, which
is statistically comparable to a normalization in terms of
magnitude for isotropic turbulence.

We utilize 1000 sequences with z ∈ {1, 2, . . . , 999, 1000}
and T = 1000. Models are trained on 849 sequences with
z ∈ {1, 2, . . . , 198, 199}∪{351, 352, . . . , 999, 1000}. The
test set in this case is Iso using 16 sequences from z ∈
{200, 210, . . . , 340, 350} for t ∈ [500, 600), meaning T =
100.

3https://turbulence.pha.jhu.edu/

13

https://turbulence.pha.jhu.edu/

Benchmarking Autoregressive Conditional Diffusion Models

B. Implementation and Model Details
Using the data generated with the techniques described
above, the deep learning aspects of this work are imple-
mented in PyTorch (Paszke et al., 2019). For every model
we optimize network weights using the Adam optimizer
(Kingma & Ba, 2015) with a learning rate of 10−4 (using
β1 = 0.9 and β2 = 0.999), where the batch size is chosen
as 64 by default. If models would exceed the available GPU
memory, the batch size is reduced accordingly. For each
epoch, the long training sequences are split into shorter parts
according to the required training sequence length for each
model and the temporal strides described in App. A. To
prevent issues with a bias towards certain initial states, the
start (and corresponding end) of each training sequence is
randomly shifted forwards or backwards in time by half the
sequence length every time the sequence is loaded. This
is especially crucial for the oscillating cylinder flows when
training models with longer rollouts. For instance, training a
model with a training rollout length of 60 steps on a data set
that contains vortex shedding oscillations with a period of
30 steps would lead to a correlation between certain vortex
arrangements and the temporal position in the rollout during
training (and inference). This could potentially lead to gen-
eralization problems when the model is confronted with a
different vortex arrangement than expected at a certain time
point in the rollout. The sequences for each test set are used
directly without further modifications. In the following, we
provide architectural and training details for the different
model architectures discussed in the main paper.

B.1. ACDM Implementation

For the ACDM models, we employ a “modern” U-Net archi-
tecture commonly used for diffusion models: The setup at its
core follows the traditional U-Net architecture (Ronneberger
et al., 2015) with an initial convolution layer, several down-
sampling blocks, one bottleneck block, and several upsam-
pling blocks followed by a final convolution layer. The
downsampling and upsampling block at one resolution are
connected via skip connections in addition to the connec-
tions through lower layers. The modernizations mainly af-
fect the number and composition of the blocks: We use three
feature map resolutions (128× 64, 64× 32, and 32× 16),
i.e. three down- and three upsamling blocks, with a constant
number of channels of 128 at each resolution level. The
down- and upsampling block at each level consists of two
ConvNeXt blocks (Liu et al., 2022) and a linear attention
layer (Shen et al., 2021). The bottleneck block uses a reg-
ular multi-head self-attention layer (Vaswani et al., 2017)
instead. As proposed by Ho et al. (2020), we:

• use group normalization (Wu & He, 2018) throughout
the blocks,

• use a diffusion time embedding for the diffusion step

r via a Transformer sinusoidal position embedding
layer (Vaswani et al., 2017) combined with an MLP
consisting of two fully connected layers, that is added
to the input of every ConvNeXt block,

• train the model via reparameterization,

• and employ a linear variance schedule.

Since the variance hyperparameters provided by Ho et al.
(2020) only work for a large number of diffusion steps
R, we adjust them accordingly to fewer diffusion steps:
β0 = 10−4 ∗(500/R) and βR = 0.02∗(500/R). We generally
found R = 20 to be sufficient on the strongly conditioned
data set Inc and Tra, but on the highly complex Iso data,
ACDM showed improvements up to about R = 100. The
same value of R is used during training and inference. In
early exploration runs, we found k = 2 input steps to show
slightly better performance compared to k = 1 used by
U-Net below, and kept this choice for consistency across dif-
fusion evaluations. However, the differences for changing
the number of input steps from k ∈ {1, 2, 3, 4} are minor
compared to the performance difference between architec-
tures. The resulting models are trained for 3100 epochs on
Inc and Tra, and 100 epochs on Iso. All setups use a
batch size of 64 during training, and employ a Huber loss,
which worked better than an MSE loss. However, the perfor-
mance difference between the losses are marginal, compared
to the difference between architectures.

For the ACDMncn variants, we leave all these architecture
and training parameters untouched, and only change the
conditioning integration: Instead of adding noise to c0 in
the forward and reverse diffusion process at training and
inference time, c0 is used without alterations over the entire
diffusion rollout.

B.2. Implementation of U-Net and Variants with
Stabilization

For the implementation of U-Net we use an identical U-Net
architecture as described above in App. B.1. The only differ-
ence being that the diffusion time embeddings are not neces-
sary. The resulting model is trained with an MSE loss on the
subsequent time step. In early exploration runs, we found
k = 1 input steps to perform best for this direct next-step
prediction setup with U-Net (and similarly for ResNet and
FNO below), when investigating k ∈ {1, 2, 3, 4}. However,
compared to the difference between architectures, these
changes are minor.

The additional U-Net variants with time unrolling during
training share the same architecture. They are likewise
trained with an MSE loss applied equally to every step
of the predicted rollout with length m against the ground
truth. A U-Net trained with, e.g., m = 8 is denoted by
U-Netm8 below. To keep a consistent memory level during

14

Benchmarking Autoregressive Conditional Diffusion Models

training, the batch size is reduced correspondingly when m
is increased. Thus, the training time of U-Net significantly
depends on m. While m = 2 allows for a batch size of 64,
m = 4 reduces that to 32, m = 4 leads to 16, and finally,
for m = 16 the batch size is only 8.

We also analyze U-Net variants with training noise to stabi-
lize predictions (Sanchez-Gonzalez et al., 2020). Normally
distributed noise with standard deviation n is added to every
model input during training, while leaving the prediction
target untouched. At inference time, the models operate
identically to their counterparts without training noise. In
the following, U-Net models trained with training noise of
e.g., n = 10−1, are denoted by U-Netn1e-1. All U-Net vari-
ants were trained for 1000 epochs on Inc and Tra, and
100 epochs on Iso.

B.3. PDE-Refiner Implementation

PDE-Refiner is a recently proposed multi-step refinement
process to improve the stability of learned PDE predictions
(Lippe et al., 2023). This approach relies on starting from
the predictions of a trained one-step model, and iteratively
refining them by adding noise of decreasing variances and
denoising the result. The resulting model is then autoregres-
sively unrolled to form a prediction trajectory. This method
implies, that only probabilistic refinements are applied to a
deterministic initial prediction. To train a model that can pre-
dict and refine at the same time, a random step r ∈ [0, R] in
the refinement process is sampled, and the model is trained
with a next-step MSE objective if r = R and with a stan-
dard denoising objective otherwise4. We re-implement this
method, closely following the provided pseudocode in their
paper, only changing the backbone network to our U-Net
implementation (see App. B.2) for a fair comparison against
our architectures. The resulting models are trained for 3000
epochs on Inc and Tra, and 100 epochs on Iso, with a
batch size of 64 and k = 1 input steps.

The authors report that Refiner models with around R = 4
refinement steps perform best, when paired with a custom,
exponential noise schedule, parameterized with a minimum
noise variance5 around σ = 10−6. As such, we use these
values in the main paper (only changing σ = 10−5 for
Iso). Below, we additionally sweep over combinations of
R ∈ {2, 4, 8} and σ ∈ {10−7, 10−6, 10−5, 10−4, 10−3}, to
investigate the stability with respect to these hyperparam-
eters in our setting. We denote models trained with e.g.,
R = 2 and σ = 10−3 by RefinerR2,σ1e-3 in the following.

4Compared to Lippe et al. (2023), we switch the notation to
R being the first step in the reverse process here, in line with our
notation above, which also matches the notation in the original
DDPM (Ho et al., 2020).

5For brevity, we use σ for the minimum noise variance here,
Lippe et al. (2023) refer to it as σ2

min.

B.4. Implementation of dilated ResNets

For the implementation of ResNetdil. and ResNet, we follow
the setup proposed in (Stachenfeld et al., 2022) that relies
on a relatively simple architecture: both models consist
of 4 blocks connected with skip connections as originally
proposed in (He et al., 2016). Furthermore, one encoder
layer before and one decoder convolution layer after the
blocks are used to achieve the desired number of input
and output channels. Each block contains 7 convolution
layers with kernel size 3, stride 1, and 144 feature channels,
followed by ReLU activations. For the ResNetdil. model,
the convolution layers in each block employ the following
dilation and padding values: (1, 2, 4, 8, 4, 2, 1). For ResNet,
all dilation and padding values are set to 1. Both models
use a batch size of 64, receive k = 1 input steps, predict a
single next step, and are trained via an mean-squared-error
(MSE) on the prediction against the simulation trajectory as
described in App. B.2.

B.5. Implementation of FNOs

For the implementation of the FNO variants, we follow
the official PyTorch FNO implementation.6 The lifting and
projection block setups are directly replicated from Li et al.
(2021), and all models use 4 FNO layers. We vary the
number of modes that are kept in in x- and y-direction
in each layer as follows: FNO16 uses (16, 8) modes and
FNO32 uses (32, 16) modes. To ensure a fair comparison,
the hidden size of all models are parameterized to reach a
number of trainable parameters similar to ACDM, i.e. 112
for FNO16 and 56 for FNO32. Both models use a batch size
of 64, receive k = 1 input steps, predict a single next step,
and are trained via an mean-squared-error (MSE) on the
prediction against the simulation trajectory as described in
App. B.2.

B.6. Latent Transformer Implementation

To adapt the approach from Han et al. (2021) to regular
grids instead of graphs, we rely on CNN-based networks
to replace their Graph Mesh Reducer (GMR) network for
encoding and their Graph Mesh Up-Sampling (GMUS) net-
work for decoding. Our encoder model consists of convo-
lution+ReLU blocks with MaxPools and skip connections.
In the following, convolution parameters are given as "in-
put channels → output channels, kernel size, stride, and
padding". Pooling parameters are given as "kernel size,
stride", and Upsampling parameters are give as "scale fac-
tor in x, scale factor in y, interpolation mode". The number
of channels of the original flow state are denoted by in , the
encoder width is we, the decoder width is wd, and L is the

6https://github.com/NeuralOperator/
neuraloperator

15

https://github.com/NeuralOperator/neuraloperator
https://github.com/NeuralOperator/neuraloperator

Benchmarking Autoregressive Conditional Diffusion Models

size of the latent space. The encoder layers are:

1. Conv(in → we, 11, 4, 5) + ReLU + MaxPool(2, 2)

2. Conv(we + in1 → 3 ∗ we, 5, 1, 2) + ReLU + MaxPool(2, 2)

3. Conv(3 ∗ we + in2 → 6 ∗ we, 3, 1, 1) + ReLU

4. Conv(6 ∗ we + in2 → 4 ∗ we, 3, 1, 1) + ReLU

5. Conv(4 ∗ we + in2 → we, 3, 1, 1) + ReLU

6. Conv(we + in2 → L, 1, 1, 0) + ReLU + MaxPool(2, 2)

Here, in1 and in2 are skip connections to spatially reduced
inputs that are computed directly on the original encoder
input with an AvgPool(8, 8) and AvgPool(16, 16) layer, re-
spectively. Finally, the output from the last convolution
layer is spatially reduced to a size of 1 via an adaptive av-
erage pooling operation. This results in a latent space with
L elements. This latent space is then decoded with the fol-
lowing decoder model based on convolution+ReLU blocks
with Upsampling layers:

1. Conv(L → wd, 1, 1, 0) + ReLU + Up(4, 2,nearest)

2. Conv(wd + L → wd, 3, 1, 1) + ReLU + Up(2, 2,nearest)

3. Conv(wd + L → wd, 3, 1, 1) + ReLU + Up(2, 2,nearest)

4. Conv(wd + L → wd, 3, 1, 1) + ReLU + Up(2, 2,nearest)

5. Conv(wd + L → wd, 3, 1, 1) + ReLU + Up(2, 2,nearest)

6. Conv(wd + L → wd, 3, 1, 1) + ReLU + Up(2, 2, bilinear)

7. Conv(wd + L → wd, 5, 1, 2) + ReLU

8. Conv(wd + L → wd, 3, 1, 1) + ReLU

9. Conv(wd → in, 3, 1, 1)

Here, the latent space is concatenated along the channel di-
mension and spatially expanded to match the corresponding
spatial input size of each layer for the skip connections. In
our implementation, an encoder width of we = 32, a de-
coder width of wd = 96 with a latent space dimensionality
of L = 32 worked best across experiments. For the model
TFEnc on the experiments Inc and Tra, we employ L = 31
and concatenate the scalar simulation parameter that is used
for conditioning, i.e., Reynolds number for Inc and Mach
number for Tra, to every instance of the latent space. For
TFVAE we proceed identically, but here every latent space ele-
ment consists of two network weights for mean and variance
via reparameterization as detailed in (Kingma & Welling,
2014). For TFMGN, we use an additional first latent space
of size L that contains a simulation parameter encoding via
an MLP as proposed in (Han et al., 2021). Compared to
our improved approach, this means TFMGN is not capable to
change this quantity over the course of the simulation.

For the latent processor in TFMGN we directly follow the
original transformer specifications in (Han et al., 2021) via
a single transformer decoder layer with four attention heads
and a layer width of 1024. Latent predictions are learned as
a residual from the previous step. For our adaptations TFEnc

and TFVAE, we instead use a single transformer encoder
layer and learn a full new latent state instead of a residual
prediction.

To train the different transformer variants end-to-end, we
always use a batch size of 8. We train each model with a
training rollout of m = 60 steps (m = 50 for Iso) using
a transformer input window of k = 30 steps (k = 25 for
Iso). We first only optimize the encoder and decoder to
obtain a reasonably stable latent space, and then the training
rollout is linearly increased step by step as proposed in (Han
et al., 2021). We start increasing the rollout at epoch 300 (40
for Iso) until the full sequence length is reached at epoch
1200 (160 for Iso). Each model is trained with an MSE
loss over the full sequence (adjusted to the current rollout
length). On Inc and Tra these transformer-based models
were trained for 5000 epochs, and on Iso for 200 epochs.

We do not train the decoder to recover values inside the
cylinder area for Inc and Tra, by applying a binary mask-
ing (also see App. A.1 for details) before the training loss
computation. Note that this masking is not suitable for au-
toregressive approaches in the input space, as the masking
can cause a distribution shift via unexpected values in the
masked area during inference, leading to instabilities. The
pure reconstruction, i.e. the first step of the sequence that
is not processed by the latent processor, receives a relative
weight of 1.0, and all steps of the rollout jointly receive a
weight of 1.0 as well, to ensure that the model balances re-
construction and prediction quality. For TFVAE, an additional
regularization via a Kullback–Leibler divergence on the la-
tent space with a relative weight of 0.1 is used. As detailed
in (Kingma & Welling, 2014), for a given mean lim and log
variance liv of each latent variable li with i ∈ 0, 1, . . . , L,
the regularization LKL is computed as

LKL = −0.5 ∗ 1

L
∗

L∑
i=0

1 + liv − lim
2 − el

i
v .

C. Training and Inference Performance
All model architectures were trained, evaluated, and bench-
marked on a server with an NVIDIA RTX A5000 GPU with
24GB of video memory and an Intel Xeon Gold 6242R CPU
with 20 cores at 3.1 GHz. A performance overview across
models can be found in Tab. 3. The training time column
indicates how many hours are approximately required to
fully train a single model according to the epochs and batch
size given further left. For each architecture, we train 3

16

Benchmarking Autoregressive Conditional Diffusion Models

Table 3. Overview of training and inference performance for different model architectures.
Architecture Training Batch Training Training Speed Inference Inference

Epochs Size Time [h] per Epoch [min] Speed [s] Speed [s]
Inc / Tra / Iso Inc / Tra / Iso Inc / Tra / Iso without I/O with I/O

ACDMR20 3100 / 3100 / 100 64 66 / 42 / 62 0.80 / 0.74 / 37.4 193.9 195.7
ACDMR100 973.2 975.0

U-Net

1000 / 1000 / 100

64 26 / 19 / 90 1.16 / 1.10 / 55.0

9.4 11.1U-Netm4 32 34 / 31 / 156 1.97 / 1.82 / 95.3
U-Netm8 16 45 / 43 / 217 2.67 / 2.49 / 130.8
U-Netm16 8 54 / 51 / 262 3.20 / 3.03 / 161.1

TFMGN

5000 / 5000 / 200 8
43 / 42 / 69 0.51 / 0.48 / 20.8 0.8 2.8

TFEnc 38 / 38 / 67 0.42 / 0.43 / 19.9 0.6 2.8
TFVAE 38 / 38 / 68 0.42 / 0.42 / 20.0 0.7 2.7

ResNetdil. 1000 / 1000 / 100 64 52 / 49 / 263 3.15 / 2.95 / 152.5 4.2 6.0ResNet

FNO16 2000 / 2000 / 200 64 13 / 12 / 55 0.36 / 0.34 / 16.5 2.3 4.1
FNO32 8 / 8 / 33 0.22 / 0.21 / 9.9 2.5 4.2

RefinerR2

3000 / 3000 / 100 64 59 / 55 / 61 1.18 / 1.10 / 37.2
30.5 32.8

RefinerR4 60.7 63.2
RefinerR8 92.7 94.4

models (2 for Iso) based on randomly seeded runs for the
evaluations in the paper, and report the maximum training
time. The training speed per epoch in minutes in the next
column is averaged over a set of training epochs across all
trained models.

All model architectures were trained on each data set un-
til their training loss curves were visually fully converged.
This means, architectures with more complex learning ob-
jectives require more epochs compared to simpler methods.
As such, the transformer variants are highly demanding,
as they first need to learn a good latent embedding via the
encoder and decoder, and afterwards need to learn the trans-
former unrolling schedule that is faded in during training
time. ACDM which needs to learn a full denoising schedule
via random sampling can also require more training itera-
tions compared to direct next-step predictors such as U-Net,
ResNet, or FNO. Furthermore, we found the performance
of next-step predictors to degrade when trained substantially
past the point of visual convergence in early exploration
runs. As mentioned above, the default training batch size of
64 is reduced for architectures that exceed available GPU
memory, so the training time comparison is performed at
roughly equal memory. Thus, training unrolled U-Net mod-
els is highly expensive, especially on Iso, both via higher
memory requirements that result in a lower batch size, but
also in the number of computations required for the training
rollout.

The right side of Tab. 3 features the inference speed of each
method. It is measured on a single example sequence con-
sisting of T = 1000 time steps. We report the overall time
in seconds that each architecture required during inference

for this sequence. Shown in the table is the pure model
inference time, as well as the performance including I/O
operations and data transfers from CPU to GPU. Note that
compared to the performance of U-Net, the inference speed
slowdown factor of the diffusion-based architecture Refiner
and ACDM is closely related to the number of refinement or
diffusion steps R. This directly corresponds to the number
of backbone model evaluations.

D. Accuracy Evaluation with LSiM
The LSiM metric (Kohl et al., 2020) is a deep learning-based
similarity measure for data from numerical simulations. It is
designed to more accurately capture the similarity behavior
of larger patterns or connected structures that are neglected
by the element-wise nature of point-based metrics like MSE.
As a simple example, consider a vortex inside a fluid flow
that is structurally correctly predicted, but spatially mis-
placed compared to a reference simulation. While MSE
would result in a large distance value, LSiM results in a rel-
atively low distance, especially compared to another vortex
that is spatially correctly positioned, but structurally differ-
ent. LSiM works by embedding both inputs that should
be compared in a latent space of a feature extractor net-
work, computing an element-wise difference, and aggregat-
ing this difference to a scalar distance value via different
operations. The metric is trained on a range of data sets
consisting of different transport-based PDE simulations like
advection-diffusion equations, Burgers’ equation, or the full
Navier-Stokes equations. It has been shown to generalize
well to flow simulation data outside its training domain like
isotropic turbulence.

17

Benchmarking Autoregressive Conditional Diffusion Models
t=

80

Sim. (50 × 50)

t=
13

0

Sample 1 Sample 2 Sample 3 Std. Dev. 0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16TFVAE

t=
80

Sim. (50 × 50)

t=
13

0

Sample 1 Sample 2 Sample 3 Std. Dev. 0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16Refiner

t=
80

Sim. (50 × 50)

t=
13

0

Sample 1 Sample 2 Sample 3 Std. Dev. 0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16ACDM

Figure 7. Large-scale posterior sample comparison with standard
deviation on Tralong with Ma = 0.64 (pressure) at different time
steps t (also see accompanying posterior sampling videos).

E. Posterior Sampling Analysis
One of the most attractive aspects of a DDPM-based simu-
lator is posterior sampling, i.e., the ability to create different
samples from the solution manifold for one initial condi-
tion. Below, we qualitatively and quantitatively evaluate the
posterior samples of the investigated probabilistic methods
TFVAE, Refiner, and ACDM. For this purpose, we focus
on the transonic flow experiment as a representative case
with medium difficulty. For Inc, it is visually difficult to
discern predictions due the simpler learning task, while it
can be difficult to judge the larger discrepancies from the
simulation reference that can occur for the underdetermined
Iso experiment.

Qualitative Analysis Figures 7 and 8 visualize random,
exemplary posterior samples from the different methods at
different spatial zoom levels, alongside the snapshot of the
corresponding Tralong reference simulation. Furthermore,
the spatially varying standard deviations across the five
computed samples from each method are included. First, it
becomes apparent that TFVAE achieves barely any visual or
physical differences across samples, as the general vortex
structure downstream of the cylinder remain highly similar,

Sim. (26 × 26)

t=
60

Sample 1 Sample 2 Sample 3 Std. Dev. 0.00

0.05

0.10

0.15TFVAE

Sim. (26 × 26)

t=
60

Sample 1 Sample 2 Sample 3 Std. Dev. 0.00

0.05

0.10

0.15Refiner

Sim. (26 × 26)

t=
60

Sample 1 Sample 2 Sample 3 Std. Dev. 0.00

0.05

0.10

0.15ACDM

Figure 8. Small-scale posterior sample comparison with according
standard deviation on a sequence from Tralong with Ma = 0.64
(pressure) at different time steps t.

even far into the trajectory. Refiner fares better and creates
differences in the predictions, especially for large t. How-
ever, as clearly visible in Fig. 8, both approaches struggle
to create physically important, small-scale details with high
frequencies, such as the strongly varying formation of shock
waves near the immersed cylinder. The predictions from
TFVAE lack these features entirely, while Refiner is sometime
able to create them, however in a quite similar and some-
times unphysical manner. The diffusion approach produces
the most realistic, and diverse features, while even being
able to recreate physically plausible shock wave configura-
tions. As expected, the spatial standard deviation increases
over time due to the chaotic nature of this test case. The
locations of high variance for ACDM match areas that are
more difficult to predict, such as vortices and shock wave
regions.

Quantitative Analysis To analyze the quality of a distribu-
tion of predicted simulation trajectories from a probabilistic
algorithm, it is naturally not sufficient to directly compare
to a single target sequence, as even highly accurate numeri-
cal simulations would eventually decorrelate from a target
simulation over time (Hu & Liao, 2020). Instead, our ex-
perimental setup allows for using temporal and spatial eval-
uations to measure whether different samples statistically
match the reference simulation, as established by turbulence
research (Dryden, 1943). Two metrics for a sequence from
Tralong are analyzed here: We evaluate the wavenumber
of the horizontal motion across a vertical line in the flow
(averaged over time), and the temporal frequency of the
vertical motion at a point probe. The mean and variance
across trained models and samples of the resulting spectra
are shown in Fig. 9. While similar at first glance, some key
differences between the spectra of the different architectures

18

https://ge.in.tum.de/publications/2023-acdm-kohl/

Benchmarking Autoregressive Conditional Diffusion Models

2−7 2−5 2−3 2−1

Temporal frequency f (at point downstream)

10−4

10−2

100

v y
 A

m
pl

itu
de

 *f
2 TralongSimulation

TFVAE

2−7 2−5 2−3 2−1

Temporal frequency f (at point downstream)

10−3

10−1

101

v y
 A

m
pl

itu
de

 *f
2 TralongSimulation

Refiner

2−7 2−5 2−3 2−1

Temporal frequency f (at point downstream)

10−3

10−1

101

v y
 A

m
pl

itu
de

 *f
2 TralongSimulation

ACDM

2−2 2−1 20 21 22

Wavenumber κ along vertical line downstream

10−3

10−1

v x
 A

m
pl

itu
de

 *κ
4 Tralong

Simulation
TFVAE

2−2 2−1 20 21 22

Wavenumber κ along vertical line downstream

10−2

100

v x
 A

m
pl

itu
de

 *κ
4 Tralong

Simulation
Refiner

2−2 2−1 20 21 22

Wavenumber κ along vertical line downstream

10−3

10−2

10−1

v x
 A

m
pl

itu
de

 *κ
4 Tralong

Simulation
ACDM

Figure 9. Temporal (top) and spatial (bottom) frequency analysis across posterior samples for a full sequence from Tralong with
Ma = 0.65. The shaded area shows the 5th to 95th percentile across all trained models and posterior samples.

can be observed. For the temporal analysis, both TFVAE and
Refiner fail to accurately reproduce the main vortex shed-
ding frequency indicated by the peak around a frequency of
2−5, while ACDM comes very close to the reference. The
high frequency content on the right side of the spectrum is
on average also best reproduced by ACDM, as for example
visible by the minor peak around a frequency of 2−3. In
terms of the spatial spectra at the bottom of Fig. 9, Refiner
fails to capture the behavior of the reference simulation. The
most important low spatial frequencies have high variance,
and the amplitudes for medium and high frequencies do not
match the reference entirely. TFVAE and ACDM result in
much better spatial spectra, and both accurately capture the
major low frequencies. ACDM overshoots in the medium
frequency regime while TFVAE has minor discrepancies for
high frequencies. Overall, the samples from ACDM stati-
cally most accurately reflect the physical behavior of the
reference simulation.

F. Comparing Spectral Statistics
Spectral statistics also highlight the differences between the
other model architectures under consideration. On Iso, the
temporal frequency of the x-velocity is evaluated and shown
at the top of Fig. 10. As this case is isotropic, we average
the evaluation across every spatial point for a more stable
analysis. Furthermore, we also analyze the spatial behavior
on Iso via an energy spectrum at the bottom of Fig. 10. In
that case, the turbulent kinetic energy (TKE) is evaluated
and aggregated in x- and y-direction, and averaged across all
time steps of the simulation. TFEnc is lacking on the spatial
and temporal frequency band, and TFMGN and TFVAE which
are not shown behave similarly. This behavior is caused by
the compression to the latent space, where spatial details are
lost, and meaningful temporal evolution is challenging due
to the overall complexity of the Iso experiment.

Architectures which operate as direct next-step predictors
such as ResNetdil., FNO16, U-Net, and ACDMncn clearly
overshoot, due to the direct error propagation that causes

Simulation
ResNetdil.

FNO32
TFEnc

U-Net
U-Netut

U-Nettn ACDMncn ACDM

23 24 25 26 27 28

Temporal frequency f (spatial average)

103

104

v x
 A

m
pl

itu
de

 *f
2

Iso

21 22 23 24 25

Wavenumber κ (temporal average)

103

104

TK
E

*κ
2

Iso

Figure 10. Temporal (top) and spatial (bottom) frequency analysis
on a sequence from Iso with z = 300. The shaded area shows
the 5th to 95th percentile across all trained models and posterior
samples. PDE-Refiner is omitted here, as some of its models
and samples are unstable, leading to substantially worse results
compared to all other methods on both evaluations.

instabilities. Introducing explicit stabilization techniques
via unrolling or training noise to U-Net substantially im-
proves spatial and temporal spectral behavior, making them
the most accurate architectures in this evaluation. However,
early signs of instabilities can be observed for U-Nettn, as
additional energy is introduced in high spatial frequencies
compared to the reference which will eventually result in
instabilities. ACDM follows close behind the stabilized U-
Net variants: High temporal and low spatial frequencies are
modeled well, but it deviates in terms of lower temporal
and higher spatial frequencies. This is most likely caused
by the strongly under-determined nature of Iso. It causes
ACDM to unnecessarily dissipate spatial high-frequency mo-

19

Benchmarking Autoregressive Conditional Diffusion Models

U
-N
et

ut
U
-N
et

tn

t=1000

AC
D
M

t=40000 t=80000 t=120000 t=160000 t=200000

−0.2

−0.1

0.0

0.1

0.2
U
-N
et

ut
U
-N
et

tn

t=1000

AC
D
M

t=40000 t=80000 t=120000 t=160000 t=200000 −0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Figure 11. Predictions (vorticity) from the most temporally stable architectures, when unrolled for T = 200 000 steps on a sequence from
Inchigh with Re = 1000 (top), and on a sequence from Traext with Ma = 0.52 (bottom).

tions, which in turn impacts low temporal frequencies over
longer rollouts. Refiner is omitted in both visualizations, as
several posterior samples across training runs were unsta-
ble, causing substantially worse result compared to all other
methods.

G. Stability on Extremely Long Rollouts
To further investigate the temporal stability of the most sta-
ble methods U-Netut, U-Nettn, and ACDM in our compari-
son, we provide results on extremely long inference rollouts.
We choose sequences from the extrapolation areas of our
data sets for this purpose: three sequences from Inchigh
with Re ∈ {960, 980, 1000} and three from Traext with
Ma ∈ {0.50, 0.51, 0.52}. Every architecture is unrolled
over T = 200 000 steps, for the three training runs each.
Figure 11 visualizes the resulting predictions. All meth-
ods and training runs remain fully stable over the entire
rollout on the sequence from Inchigh. Since this case is
unsteady but fully periodic, the results of all models is a
simple, periodic trajectory that prevents error accumula-
tion. For the sequences from Traext, one from the three
trained U-Nettn models has stability issues within the first
few thousand steps and deteriorates to a simple, mean flow
prediction without vortices. The remaining training runs do
however remain stable. U-Netut and ACDM on the other
hand are fully stable across training runs for this case, in-
dicating a fundamentally higher resistance to rollout errors
which eventually could cause instabilities. Due to its highly
chaotic nature, relying on simple, periodic predictions is

not sufficient for this case: As displayed in Fig. 11, the
predictions of U-Netut, but especially ACDM, exhibit dif-
ferences at the same stage of the vortex shedding period.
This is most clearly visible when comparing the predictions
for t = 120 000, t = 160 000, and t = 200 000, where a
blue vortex facing downwards is about to detach behind the
cylinder.

Simulation U-Netut U-Nettn ACDM

2−6 2−5 2−4 2−3 2−2 2−1

Wavenumber κ along vertical line downstream

10−8

10−6

10−4

v x
 A

m
pl

itu
de

 *κ
4

Inchigh
10−7

10−6

2−2 2−1 20 21 22

Wavenumber κ along vertical line downstream

10−3

10−1

v x
 A

m
pl

itu
de

 *κ
4 Traext

Figure 12. Spatial frequency along a vertical line downstream for a
sequence from Inchigh with Re = 1000 (top), and on a sequence
from Traext with Ma = 0.50 (bottom). The prediction spectra
are computed on the mean flow achieved from averaging every
100th step from a prediction with a horizon of T = 200 000 steps.

20

Benchmarking Autoregressive Conditional Diffusion Models

In Fig. 12, the statistical match of these long-term predic-
tions to the physical behavior of the simulation trajectories
is analyzed. We evaluate the spatial frequency spectrum
of the mean horizontal flow velocity along a vertical line
downstream of the cylinder. For the predictions, every 100th

step of the predicted rollout from every training run is used
to compute the mean flow. Note that the corresponding sim-
ulation spectrum is only computed over the simulated time
range of t ∈ [300, 1300) for Inchigh, and t ∈ [0, 1000) for
Traext with temporal strides of 2 leading to T = 500 time
steps for this evaluation. For the rather simple sequence
from Inchigh, all methods perfectly match the simulation
spectrum. For the sequence from Traext, the spectrum
from U-Nettn has a high standard deviation across the fre-
quency band due the diverging training run. U-Netut and
ACDM statistically match the low simulation frequencies
here very well, and only exhibit minor deviations for the
higher frequencies, indicating that the predictions do not
drift substantially over extremely long rollout horizons.

G.1. Stability Criteria for Unrolled Training

For the U-Net models with unrolled training we also in-
vestigated key criteria to achieve fully stable rollouts over
extremely long horizons. For this purpose, different ablation
architectures are evaluated on the long rollout experiments
over T = 200 000 rollout steps described above. Figure 14
displays the percentage of stable runs across architectures
for three trained models for every sequence from Traext,
as well as an average stability. As shown above ACDM
remains fully stable while only two out of three U-Nettn

are stable. The most important stability criterion for U-Net
trained with unrolling is the number of unrolling steps m:
while models with m ≤ 4 do not achieve stable rollouts,
using m ≥ 8 is sufficient for stability across Mach numbers.

Three factors that did not substantially impact rollout stabil-
ity in our experiments are (i) the prediction strategy, (ii) the
amount of training data, and (iii) the backbone architecture.
First, using residual predictions, i.e., st = st−1 + fθ(s

t−1)
instead of st = fθ(s

t−1) does not impact stability for differ-
ent values of m as shown in the middle of Fig. 14. Second,
the stability is not affected when reducing the amount of
available training data by a factor of 8 from 1000 steps per
Mach number to 125 steps. These models are also trained
with 8× more epochs to ensure a fair comparison. This train-
ing data reduction still retains the full physical behavior, i.e.,
complete vortex shedding periods. Third, it possible to train
other backbone architectures with unrolling to achieve fully
stable rollouts, as shown on the right in Fig. 14: ResNetdil.

models trained with m = 8 are also able to keep predictions
stable across the entire prediction horizon. For ResNet only
one trained model is stable, most likely due to the reduced
receptive field. However, we expect achieving full stability
is also possible with longer training rollout horizons.

4 8 16
Rollout Length m

1

2

4

8

16

Ba
tc

h
Si

ze

Traext 40
45
50
55
60
65
70

Tr
ai

ni
ng

 T
im

e
[h

]

4 8 16
Rollout Length m

1
2
4
8

16
32

Ba
tc

h
Si

ze

Inchigh 5

10

15

20

25

30

Tr
ai

ni
ng

 T
im

e
[h

]

Figure 13. Training time for different combinations of rollout
length m and batch size on Traext (top) and Inchigh (bottom).
Only configurations that result in highly stable rollouts are shown
(percentage of stable runs across three trained models and three
sequences ≥ 89%). Note that the training time increases faster for
smaller batches compared to longer rollouts.

Finally, we observed that the batch size can impact the
stability of models trained with unrolling. In the image
domain, it has been documented that smaller batch sizes
exhibit better generalization properties compared to larger
mini-batch sizes or even full gradient decent without mini-
batches (Goodfellow et al., 2016). As described in more
detail in App. B.2, we adjust the batch size of U-Net for
different values of m, such that each batch contains the same
amount of data, e.g., halving the batch size when doubling
m. By default, we chose the largest possible batch size that
fits in GPU memory in the remainder of this work, to ensure
computational efficiency. Here, we investigate different
configurations by varying of batch size and rollout length
on Traext and Inchigh in Figs. 15 and 16, respectively.
Training models with smaller batches for the same amount
of network updates did not improve stability, so all networks
are trained with the same amount of data, i.e., an equal
number of epochs with more network updates for small
batch sizes. Note that the width of the U-Net architecture
was substantially reduced by a factor of 8 across all network
layers for Inchigh in Fig. 16 to artificially increase the
difficulty of the learning task, as otherwise every model
configuration would be fully stable.

For both test sets, U-Netm4 with the largest batch size that
fits in memory is not stable, while perfect stability can
be achieved with lowering the batch size. However, this
effect can not fully replace the stabilization from longer
training rollouts, as U-Netm2 is never stable. Furthermore,

21

Benchmarking Autoregressive Conditional Diffusion Models

ACDM

Average

Ma = 0.50

Ma = 0.51

Ma = 0.52

100%

100%

100%

100%

U-Nettn

66%

66%

66%

66%

m = 2 m = 4 m = 6 m = 8 m = 16

Unrolled U-Net:
 m unrolling steps

0% 0% 66% 100% 100%

0% 0% 66% 100% 100%

0% 0% 66% 100% 100%

0% 0% 66% 100% 100%

m = 4 m = 8

Unrolled U-Net:
 predict residual

0% 100%

0% 100%

0% 100%

0% 100%

m = 4 m = 8

Unrolled U-Net:
train data ×0.125

0% 100%

0% 100%

0% 100%

0% 100%

m = 4 m = 8

Unrolled
ResNet

0% 44%

0% 33%

0% 33%

0% 66%

m = 4 m = 8

Unrolled
ResNetdil.

0% 100%

0% 100%

0% 100%

0% 100%

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f s
ta

bl
e

pr
ed

ict
io

ns

Figure 14. Important aspects to achieve stable models for extremely long rollouts on Traext. Shown is the percentage of stable runs for
three model seeds across sequences with Ma ∈ {0.50, 0.51, 0.52} and their average. While ACDM is fully stable out-of-the-box, one
U-Nettn model diverges across Mach numbers. The most important aspect for fully stable unrolled U-Net models is the rollout length m,
as displayed in the third block. However, the training methodology of predicting residuals instead of full next states did not impact the
stability. Similarly, reducing the training data by a factor of 8 (with an 8× longer training) did not alter the results across values of m.
Other architectures like ResNet and ResNetdil. are also capable to achieve full stability when trained with unrolling, even though ResNet
requires slightly larger m for consistent stability.

64 32 16 8 4 2 1
Batch size

2

4

8

16

Ro
llo

ut
 le

ng
th

 m

0% 0% 0% 0% 0% 0% 0%

mem 0% 33% 33% 100% 89% 100%

mem mem 100% 100% 66% 89%

mem mem mem 100% 100% 100%
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f s
ta

bl
e

pr
ed

ict
io

ns

64 32 16 8 4 2 1
Batch size

2

4

8

16

Ro
llo

ut
 le

ng
th

 m
19h 22h 26h 30h 39h 60h 106h

mem 31h 37h 42h 52h 63h 103h

mem mem 43h 48h 58h 64h

mem mem mem 51h 61h 64h
20

30

40

50

60

Tr
ai

ni
ng

 ti
m

e
pe

r m
od

el

Figure 15. Stability investigation for unrolled U-Net models with different combinations of batch size and rollout length m on Traext.
Shown are the percentage of stable predictions across three models and three sequences with T = 200 000 steps each (left) and
approximate training time for each parameter combination (right). Grey configurations are infeasible due to memory constraints (mem) or
omitted due to high computational resource demands (–). Notice that decreases in batch size can lead to more stable models for medium
m, but incur a higher training cost compared to increasing m.

64 32 16 8 4 2 1
Batch size

2

4

8

16

Ro
llo

ut
 le

ng
th

 m

0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 33% 33% 100% 100%

mem 100% 100% 100% 100% 100%

mem mem 100% 100% 100% 100%
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f s
ta

bl
e

pr
ed

ict
io

ns

64 32 16 8 4 2 1
Batch size

2

4

8

16

Ro
llo

ut
 le

ng
th

 m

3.1h 3.4h 4.2h 7.5h 14.3h 29.0h 54.1h

4.3h 4.7h 5.0h 7.0h 13.9h 28.0h 51.9h

mem 5.3h 5.5h 7.1h 12.9h 26.4h

mem mem 5.7h 7.3h 12.7h 25.5h 5

10

15

20

25

30
Tr

ai
ni

ng
 ti

m
e

pe
r m

od
el

Figure 16. Stability investigation for unrolled U-Net models (with a width reduced by a factor of 8) with different combinations of rollout
length m and batch size on Inchigh. Shown are the percentage of stable predictions across three sequences with T = 200 000 steps and
three models each (left) and approximate training time for each configurations (right). Grey parameter combinations are infeasible due to
memory constraints (mem) or omitted due to high computational resource demands (–). Similar to Fig. 15 decreasing the batch size can
lead to higher stability models for medium m, but this affects training cost. Note that there is barely any overhead for additional unrolling
steps, as the model is small and longer training rollouts are implemented via fewer training sequences.

22

Benchmarking Autoregressive Conditional Diffusion Models
Si
m
ul
at
io
n

Re
sN

et
di
l.

FN
O
32

TF
En

c
TF

VA
E

U
-N
et

ut
Re

fin
er

t=0

AC
D
M

t=1 t=2
−20

−2−1

−2−2

−2−3

−2−4

−2−5

0

2−5

2−4

2−3

2−2

2−1

20

Si
m
ul
at
io
n

Re
sN

et
di
l.

FN
O
32

TF
En

c
TF

VA
E

U
-N
et

ut
Re

fin
er

‖ (s1− s0)‖1

AC
D
M

‖ (s2− s0)‖1
0.00

0.02

0.04

0.06

0.08

0.10

Figure 17. Temporal coherence analysis of different model architectures. Model predictions (left) and the differences between the first and
following two prediction steps (right) are shown an example from Iso with z = 300 (also see accompanying temporal coherence videos).

smaller batch sizes are less memory efficient meaning model
training takes longer. Since we implement longer training
rollouts via fewer training sequences, larger values of m
do not necessarily induce higher training times as shown
for the small U-Net on Inchigh in Fig. 16. Nevertheless,
larger training rollouts did lead to longer training times for
the full-size U-Net model as shown in Fig. 15 and also
listed in Tab. 3. Thus, we investigate the most efficient
combination of rollout length and batch size to achieve
fully stable rollouts. As shown in Fig. 13, choosing longer
rollouts over smaller batches leads to high stability at lower
training cost, for both Inchigh and Traext. However, the
difference did change depending on the model size in our
experiments. To summarize, the most important criterion
for full stable models is the training rollout length. While
lowering the batch size did have an effect, choosing large
batch sizes was superior in terms of training time.

H. Evaluating Temporal Coherence
Here, we analyze the temporal coherence between individ-
ual time steps of the architectures under consideration. In
Fig. 17 on the left, we display the first three simulation
steps of a sequence from Iso, along with the correspond-

ing predictions of models from each architecture class. In
addition, the spatial changes between the first two predicted
steps and s0 are visualized on the right. Most architectures
do not exhibit issues with temporal coherence and closely
follow to difference pattern produced by the simulation, ex-
cept from the transformer variants: both, TFEnc or TFVAE,
struggle to reproduce the original vorticity field at t = 0,
and furthermore show large difference between prediction
steps. The key difference for these architectures is, that the
decoders of TFEnc or TFVAE do not have access to previously
generated time steps, as their input is only a sample from the
latent space at every step. This leads to temporal artifacts
where large differences between consecutive time steps can
occur. Note that this problem is in general worse for TFVAE

indicated by the larger overall difference magnitude, as the
probabilistic nature of the model makes temporal coherence
even more challenging. ACDM with R = 100 does show
some coherence issues in the vorticity, indicated by some
very small, slightly darker areas in the difference field, es-
pecially for s2 (see accompanying videos). However, they
are quite minor, only visible in the vorticity and not in the
raw predicted velocities, and can be further mitigated with
additional diffusion steps.

23

https://ge.in.tum.de/publications/2023-acdm-kohl/
https://ge.in.tum.de/publications/2023-acdm-kohl/

Benchmarking Autoregressive Conditional Diffusion Models

Table 4. Accuracy ablation for different diffusion steps R.
Traext Traint Iso

MSE LSiM MSE LSiM MSE LSiM
Method R (10−3) (10−1) (10−3) (10−1) (10−2) (10−1)

ACDM 10 3.8± 1.4 1.8± 0.3 6.2± 2.5 2.1± 0.6 15.1± 7.4 6.6± 1.4
ACDM 15 2.5± 1.5 1.4± 0.3 2.7± 2.0 1.4± 0.5 4.8± 1.6 4.3± 1.0
ACDM 20 2.3± 1.4 1.3± 0.3 2.7± 2.1 1.3± 0.6 4.5± 1.3 4.1± 0.8
ACDM 30 2.5± 1.9 1.4± 0.4 2.7± 2.3 1.3± 0.6 4.8± 1.9 4.1± 0.9
ACDM 50 2.3± 1.4 1.3± 0.3 2.4± 2.1 1.3± 0.6 3.4± 0.9 3.4± 0.7
ACDM 100 2.3± 1.3 1.3± 0.3 3.1± 2.7 1.4± 0.6 3.7± 0.8 3.3± 0.7
ACDM 500 2.5± 1.5 1.4± 0.4 3.1± 2.5 1.4± 0.6 3.5± 0.9 3.2± 0.7

I. Ablations
In the following, we provide various ablation studies on the
number of diffusion steps in App. I.1, as well as ablations
on the stabilization techniques of longer training rollouts
in App. I.2 and training noise in App. I.3. We investigate
different loss formulations in App. I.4, and analyze the
impact of the recently proposed architecture modernizations
for U-Nets in App. I.5. Finally, we provide ablations on the
PDE-Refiner method (Lippe et al., 2023) in App. I.6.

I.1. Ablation on Diffusion Steps

In the following, we will investigate the ACDM approach
with respect to the effect of the number of diffusion steps R
in each autoregressive prediction step. We use the adjusted
linear variance schedule as discussed in App. B.1, according
to the investigated diffusion step R. At training and infer-
ence time, models always use R diffusion steps. Prediction
examples for this evaluation can be found in Figs. 36 and 37
in App. K.

Accuracy Tab. 4 contains the accuracy, of ACDM models
with a different number of diffusion steps R. While too
few diffusion steps on Tra are detrimental, as visible for
ACDMR10, adding more steps after around R = 20 does not
improve accuracy. However, on Iso the accuracy of ACDM
does continue to improve slightly with increased values of
R up to our evaluation limit of R = 500. We believe this
results from the highly underdetermined setting of the Iso
experiment. Note that there is a relatively sharp boundary
between too few and a sufficient number of steps; in our
experiments 15 − 20 steps on Tra and 50 − 100 steps on
Iso.

Temporal Stability In Fig. 18, we evaluate the temporal
stability via the magnitude of the rate of change of s, as
detailed in the main paper. Here, different behavior for the
ablation models with respect to the number of diffusion
steps emerges on Tralong and Iso. For the former, too
little steps, i.e., for ACDMR10, result in unwanted, high-
frequency temporal spikes that are also visible as slightly
noisy predictions. For 15− 20 diffusion steps, these issues

Simulation
ACDMR10

ACDMR15
ACDMR20

ACDMR30
ACDMR50

ACDMR100
ACDMR500

0 50 100 150 200 250
Time step t

0.015

0.016

0.017

0.018

0.019

0.020

‖(
st

−
st

−
1)

/Δ
t‖

1

Tralong

0 20 40 60 80 100
Time step t

0.010

0.015

0.020

0.025

0.030

‖(
st

−
st

−
1)

/Δ
t‖

1

Iso

Figure 18. Temporal stability evaluation via error to previous time
step for different diffusion steps R on Tralong (top) and Iso
(bottom). Standard deviations are omitted for visual clarity.

vanished, and adding further iterations does not substantially
improve temporal stability. Only a slightly higher rate of
change can be observed for ACDMR50 and ACDMR500.

On Iso, a tradeoff between prediction accuracy and sam-
pling speed occurs. Even though there are some minor
temporal inconsistencies in the first few time steps for very
low R, all variants result in a stable prediction. However,
the magnitude of the rate of change consistently matches the
reference trajectory more closely when increasing R. This
also corresponds to a slight reduction in the overly diffu-
sive prediction behavior for large R, both visually and in a
spatial spectral analysis via the TKE, as shown in Fig. 19.
We believe this tradeoff is caused by the highly underdeter-

24

Benchmarking Autoregressive Conditional Diffusion Models

Table 5. Accuracy ablation for different training rollout lengths m and pre-training (Pre.).
Traext Traint Iso

MSE LSiM MSE LSiM MSE LSiM
Method m Pre. (10−3) (10−1) (10−3) (10−1) (10−2) (10−1)

U-Net 2 no 3.1± 2.1 3.9± 2.8 2.3± 2.0 3.3± 2.8 25.8± 35 11.3± 3.9
U-Net 4 no 1.6± 1.0 1.4± 0.8 1.1± 1.0 0.9± 0.4 3.7± 0.8 2.8± 0.5
U-Net 8 no 1.6± 0.7 1.1± 0.2 1.5± 1.5 1.0± 0.5 4.5± 2.8 2.4± 0.5
U-Net 16 no 2.2± 1.1 1.3± 0.3 2.4± 1.3 1.3± 0.5 13.0± 11 3.8± 1.5

U-Net 4 yes — — — — 5.7± 2.6 3.6± 0.8
U-Net 8 yes — — — — 2.6± 0.6 2.3± 0.5
U-Net 16 yes — — — — 2.9± 1.4 2.3± 0.5

mined nature of the Iso experiment, that leads to a weaker
conditioned learning setting, that naturally requires more
diffusion steps for high-quality results. Furthermore, the
predictions of ACDMR100 exhibit minor visually visible tem-
poral coherence issues on Iso, where small-scale details
can flicker quickly. This is caused by highly underdeter-
mined nature of Iso, and can be mitigate by more diffusion
steps as well, as ACDMR500 reduces this behavior.

Simulation
ACDMR10

ACDMR15
ACDMR20

ACDMR30
ACDMR50

ACDMR100
ACDMR500

21 22 23 24 25

Wavenumber κ (temporal average)

103

3 × 102
4 × 102

6 × 102

2 × 103

TK
E

*κ
2

Iso

Figure 19. Spatial frequency analysis via the turbulent kinetic en-
ergy (TKE) on a sequence from Isowith z = 300 for the diffusion
step ablation.

Summary ACDM works well out-of-the-box with a large
number of diffusion steps, but R can be used to balance
accuracy and inference performance. Finding the number
of diffusion steps for the best tradeoff is dependent on the
data set and learning problem formulation. Generally, se-
tups with stronger conditioning work with few diffusion
steps, while less restrictive learning problems can benefit
from more diffusion samples. In our experiments, the ideal
thresholds emerged relatively clearly.

I.2. Ablation on Training Rollout

Here, we investigate the impact of unrolling the U-Net
model at training time, via varying the training rollout length
m. For these models, we use the U-Net architecture as de-
scribed in App. B.2 with k = 1 input steps. However,

gradients are propagated through multiple state predictions
during training, and corresponding MSE loss over all pre-
dicted steps is applied. Prediction examples can be found in
Figs. 38 and 39 in App. K.

Accuracy Table 5 shows models trained with different
rollout lengths, and also includes the performance of U-Net
with m = 2 for reference. For the transonic flow, m = 4
is already sufficient to substantially improve the accuracy
compared to U-Net for the relatively short rollout of T = 60
steps during inference for Traext and Traint. Increas-
ing the training rollout further does not lead to additional
improvements and only slightly changes the accuracy. How-
ever, note that there is still a substantial difference between
the temporal stability of U-Netm4 compared to U-Netm8 or U-
Netm16 for cases with a longer inference rollout as analyzed
below.

On Iso, the behavior of U-Net models with longer training
rollout is clearly different as models with m > 4 substan-
tially degrade compared to m = 4. The main reason for this
behavior is that gradients from longer rollouts can be less
useful for complex data when predictions strongly diverge
from the ground truth in early training stages. Thus, we
also considered variants, with m > 2 that are finetuned
from an initialization of a trained basic U-Net, denoted by
e.g., U-Netm4,Pre. With this pre-training the previous behav-
ior emerges, and U-Netm8,Pre even clearly improves upon
U-Netm4.

Temporal Stability In Fig. 20, we evaluate the temporal
stability via the magnitude of the rate of change of s, as
detailed in the main paper. On Tralong all models perform
similar until about t = 50 where U-Net deteriorates. U-
Netm4 also exhibits similar signs of deterioration around t =
130 during the rollout. Only U-Netm8 and U-Netm16 are fully
stable across the entire rollout of T = 240 steps. On Iso,
U-Netm8 achieves comparable stability to ACDM, with an
almost constant rate of change for the entire rollout. Models
with shorter rollouts, i.e., U-Net and U-Netm4 deteriorate
after an initial phase, and longer rollouts prevent effective
training for U-Netm16 as explained above. The variants with

25

Benchmarking Autoregressive Conditional Diffusion Models

Table 6. Accuracy ablation for different training noise standard deviations n.
Traext Traint Iso

MSE LSiM MSE LSiM MSE LSiM
Method n (10−3) (10−1) (10−3) (10−1) (10−2) (10−1)

U-Net — 3.1± 2.1 3.9± 2.8 2.3± 2.0 3.3± 2.8 25.8± 35 11.3± 3.9
U-Net 1e–4 2.7± 1.8 3.9± 2.1 1.9± 0.8 2.4± 2.1 16.0± 22 9.6± 3.0
U-Net 1e–3 5.6± 2.2 3.3± 2.5 3.5± 1.6 3.0± 2.2 36.4± 39 12.9± 2.2
U-Net 1e–2 1.4± 0.8 1.1± 0.3 1.8± 1.1 1.0± 0.4 3.1± 0.9 4.5± 2.5
U-Net 1e–1 1.8± 0.8 1.2± 0.2 2.2± 2.0 1.2± 0.6 3.2± 0.5 2.9± 0.6
U-Net 1e0 4.0± 1.5 1.8± 0.3 11.4± 6.3 2.9± 1.3 16.2± 7.8 7.5± 2.7

ACDMncn — 4.1± 1.9 1.9± 0.6 2.8± 1.3 1.7± 0.4 18.3± 2.5 8.9± 1.5
ACDMncn 1e–4 3.8± 1.5 2.0± 0.3 4.3± 2.3 1.7± 0.4 14.2± 1.7 8.1± 1.2
ACDMncn 1e–3 3.6± 1.4 2.2± 0.3 3.9± 2.3 1.8± 0.4 11.1± 3.8 8.5± 1.6
ACDMncn 1e–2 3.6± 1.6 1.7± 0.4 2.6± 2.3 1.3± 0.5 26.7± 25 12.2± 2.8
ACDMncn 1e–1 3.6± 1.9 1.5± 0.4 2.5± 2.2 1.2± 0.6 2.8± 0.6 4.0± 2.2
ACDMncn 1e0 4.2± 1.7 1.8± 0.4 6.2± 2.8 2.0± 0.6 11.1± 1.4 6.2± 0.9

additional pre-training are also included: U-Netm4,Pre does
not substantially improve upon U-Netm4, and U-Netm8,Pre

performs very well, similar to U-Netm8. Only for the longer
rollouts in the U-Netm16,Pre model pre-training clearly helps,
as U-Netm16,Pre is also fully stable.

Simulation
U-Net

U-Netm4
U-Netm8

U-Netm16
U-Netm4, Pre

U-Netm8, Pre
U-Netm16, Pre

0 50 100 150 200 250
Time step t

0.010

0.012

0.014

0.016

0.018

‖(
st

−
st

−
1)

/Δ
t‖

1

Tralong

0 20 40 60 80 100
Time step t

0.01

0.02

0.03

0.04

‖(
st

−
st

−
1)

/Δ
t‖

1

Iso

Figure 20. Temporal stability evaluation via error to previous time
step for different training rollout lengths m on Tralong (top) and
Iso (bottom). Standard deviations are omitted for visual clarity.

Summary Compared to ACDM, the variants of U-Net
with longer training rollouts can achieve similar or slightly
higher accuracy and a equivalent temporal stability at a
faster inference speed. However, this method requires ad-

ditional computational resources during training, both in
terms of memory over the rollout as well as training time.
For example, U-Netm16,Pre on Iso increases the required
training time (90h of pre-training + 260h of refinement)
by a factor of more than 5.6× at equal epochs and mem-
ory compared to ACDMR100 as shown in Tab. 3. Naturally,
longer training rollouts do not provide U-Net with the ability
for posterior sampling.

I.3. Ablation on Training Noise

We investigate the usage of training noise (Sanchez-
Gonzalez et al., 2020) to stabilize predictions, as it features
interesting connections to our method. Instead of generating
predictions from noise to achieve temporal stability, this
method relies on the addition of noise to the training inputs,
to simulate error accumulation during training. In this way,
the model adapts to disturbances during training, such that
the data shift is reduced once errors inevitably accumulate
during the inference rollout, leading to increased temporal
stability. We test this approach on U-Net and on ACDMncn.
The latter evaluation serves as an example to understand
if the lost tolerance for error accumulation in ACDMncn,
the setup without conditioning noise, can be replaced with
training noise. This ACDMncn version is not intended as a
practical architecture as it inherits the drawbacks of both
methods, the inference cost from diffusion models, and the
overhead and additional hyperparameters from added train-
ing noise. For this ablation, we use the ACDMncn model
as described in App. B.1, but add training noise to every
model input in the same way as for the U-Net with training
noise (see App. B.2). Here, U-Net or ACDMncn models
trained using training noise with a standard deviation of
e.g., n = 10−1, are denoted by U-Netn1e-1 or ACDMncn,n1e-1

respectively. Prediction examples can be found in Figs. 40
and 41 in App. K.

26

Benchmarking Autoregressive Conditional Diffusion Models

Simulation
U-Net

U-Netn1e−4
U-Netn1e−3

U-Netn1e−2
U-Netn1e−1

U-Netn1e0 Simulation
ACDMncn

ACDMncn, n1e−4
ACDMncn, n1e−3

ACDMncn, n1e−2
ACDMncn, n1e−1

ACDMncn, n1e0

0 50 100 150 200 250
Time step t

0.0100

0.0125

0.0150

0.0175

‖(
st

−
st

−
1)

/Δ
t‖

1

Tralong

0 50 100 150 200 250
Time step t

0.005

0.010

0.015

0.020

‖(
st

−
st

−
1)

/Δ
t‖

1

Tralong

0 20 40 60 80 100
Time step t

0.02

0.04

0.06

‖(
st

−
st

−
1)

/Δ
t‖

1

Iso

0 20 40 60 80 100
Time step t

0.02

0.04

0.06

0.08

‖(
st

−
st

−
1)

/Δ
t‖

1

Iso

Figure 21. Temporal stability evaluation for different training noise standard deviations n of U-Net (left) and ACDMncn (right) on Tralong
(top) and Iso (bottom). Standard deviations are omitted for visual clarity.

Accuracy The accuracy of U-Net and ACDMncn setups
with training noise using different standard deviations n
is analyzed in Tab. 6. On Tra, the accuracy trend is not
fully consistent. Small values of n such as 10−4 and 10−3

occasionally even reduce the final performance, but training
noise with a well-tuned standard deviation between 10−2

and 10−1 does increase accuracy. Choosing very large stan-
dard deviations corrupts the training data too much, and
reduces accuracy again as expected. The results on the
isotropic turbulence experiment show a similar behavior for
U-Net as well as ACDMncn.

Temporal Stability In Fig. 21, we evaluate the temporal
stability of models with training noise via the magnitude
of the rate of change of s, as detailed in the main paper.
On Tralong both architectures U-Net and ACDMncn behave
similarly: while training noise with a standard deviation
n that is too low does not improve the stability and occa-
sionally even deteriorates it, finding a suitable magnitude is
key for stable inference rollouts. In both cases, values of n
between 10−2 and 10−1 produce the best results. Increasing
the noise further has detrimental effects, as for example
slight overshooting and high-frequency fluctuations occur
for ACDMncn,n1e0 or predictions can diverge early from the
simulation for U-Netn1e0. On Iso, a similar stabilizing ef-
fect from training noise can be observed, given the noise
magnitude is tuned sufficiently: While lower standard devi-
ations barely alter the time point t = 40, where predictions
diverge from the reference simulation, too much training

Simulation
U-Net

U-Netn1e−4
U-Netn1e−3

U-Netn1e−2
U-Netn1e−1

U-Netn1e0

21 22 23 24 25

Wavenumber κ (temporal average)

103

104

TK
E

*κ
2

Iso

Simulation
ACDMncn

ACDMncn, n1e−4
ACDMncn, n1e−3

ACDMncn, n1e−2
ACDMncn, n1e−1

ACDMncn, n1e0

21 22 23 24 25

Wavenumber κ (temporal average)

103

104

105

TK
E

*κ
2

Iso

Figure 22. Spatial frequency analysis via the turbulent kinetic en-
ergy (TKE) on a sequence from Iso with z = 300 for the training
noise ablations on U-Net (top) and ACDMncn (bottom).

noise already causes major problems at the very beginning
of the prediction. This behavior can also be observed on
a spatial spectral analysis via the TKE in Fig. 22, where

27

Benchmarking Autoregressive Conditional Diffusion Models

Table 7. Accuracy ablation for training with LSiM losses of different strengths λ.
Traext Traint Iso

MSE LSiM MSE LSiM MSE LSiM
Method λ (10−3) (10−1) (10−3) (10−1) (10−2) (10−1)

U-Net — 3.1± 2.1 3.9± 2.8 2.3± 2.0 3.3± 2.8 25.8± 35 11.3± 3.9
U-Net 1e–5 4.2± 2.9 4.5± 3.0 2.6± 2.2 2.1± 2.0 67.4± 75.7 12.4± 3.8
U-Net 1e–4 2.3± 1.2 3.7± 2.6 1.6± 1.4 2.0± 1.8 12.3± 9.3 11.8± 2.5
U-Net 1e–3 2.9± 1.9 1.7± 0.8 2.2± 2.3 1.5± 0.9 6.3± 3.1 9.4± 2.8
U-Net 1e–2 4.5± 1.3 3.5± 1.1 3.0± 2.3 1.8± 0.9 0.1b± 0.2b 15.3± 1.2
U-Net 1e–1 5.8± 1.8 3.0± 0.8 5.2± 1.9 2.3± 0.6 12b± 29b 15.0± 1.0
U-Net 1e0 6.8± 1.5 4.8± 1.1 6.6± 3.0 2.4± 0.7 17b± 552b 14.9± 1.0

the training noise can balance predictions between under-
and overshooting. For both U-Net and ACDMncn, training
noise with a suitable magnitude can result in a compara-
ble temporal stability to ACDM, that includes noise on the
conditioning.

Summary Training U-Net with training noise can achieve
similar or slightly higher accuracy and a competitive tem-
poral stability compared to ACDM. While this method
exhibits faster inference speeds, it does rely on the addi-
tional noise variance hyperparameter, that can even reduce
performance if not tuned well. Furthermore, training noise
does not provide deterministic models with the ability for
posterior sampling. Interestingly, the lost error tolerance of
the ACDMncn architecture without conditioning noise, can
be mostly restored with training noise of suitable magnitude.

I.4. Ablation on Training with an LSiM Loss

In this section, we investigate usage of the LSiM metric
(Kohl et al., 2020) as an additional loss term, similar to
perceptual losses in the computer vision domain (Dosovit-
skiy & Brox, 2016; Johnson et al., 2016). This means, in
addition to training U-Net with an MSE loss as above, the
differentiable learned LSiM metric model is also used dur-
ing back-propagation. Given a predicted state st and the
corresponding ground truth state ŝt, we evaluate the training
loss as

LMSE+LSiM =
(
st − ŝt

)2
+ λ ∗ LSiM(st, ŝt)

while leaving the inference of the models untouched. To use
LSiM, each field from both states is individually normalized
to [0, 255]. The resulting loss values are aggregated with an
average operation across fields. Fields containing the scalar
simulation parameters are not evaluated with this metric. In
the following, the impact of λ, the weight that controls the
influence of the LSiM loss, is investigated. U-Net models
trained with e.g., λ = 10−1, are denoted by U-Netλ1e-1.

Accuracy In terms of accuracy, adding very small
amounts of the LSiM term with λ = 10−5 to the MSE
loss does decrease performance, most likely due to subop-

timal gradient signals through the additional steps during
back-propagation, as shown in Tab. 7. Similarly, adding too
much, such that it predominantly influences the overall loss
causes problems. Especially on Iso, this causes models to
aggressively diverge after 30− 40 prediction steps, leading
to errors in the range of 109 (b) in Tab. 7. As expected,
choosing a suitable loss magnitude around λ = 10−3 sub-
stantially reduces errors in terms of LSiM across test sets.
However, the added loss term does also improve perfor-
mance in terms of MSE, as similarly observed in the image
domain (Dosovitskiy & Brox, 2016; Johnson et al., 2016).

Temporal Stability In line with the accuracy results, U-
Netλ1e-3 exhibits improved temporal stability compared to

Simulation
U-Net

U-Netλ1e−5
U-Netλ1e−4

U-Netλ1e−3
U-Netλ1e−2

U-Netλ1e−1
U-Netλ1e0

0 50 100 150 200 250
Time step t

0.000

0.005

0.010

0.015

0.020

‖(
st

−
st

−
1)

/Δ
t‖

1

Tralong

0 20 40 60 80 100
Time step t

0.00

0.01

0.02

0.03

0.04

0.05

‖(
st

−
st

−
1)

/Δ
t‖

1

Iso

Figure 23. Temporal stability evaluation of U-Net for training with
LSiM losses of different strengths λ on Tralong (top) and Iso
(bottom). Standard deviations are omitted for visual clarity.

28

Benchmarking Autoregressive Conditional Diffusion Models

Table 8. Accuracy of the “modern” U-Net architecture compared to DFP.
Traext Traint Iso

MSE LSiM MSE LSiM MSE LSiM
Method (10−3) (10−1) (10−3) (10−1) (10−2) (10−1)

U-Net 3.1± 2.1 3.9± 2.8 2.3± 2.0 3.3± 2.8 25.8± 35 11.3± 3.9
DFP 4.5± 1.3 3.9± 0.7 4.8± 2.1 3.6± 1.7 5.1± 1.3 5.1± 2.0

ACDM 2.3± 1.4 1.3± 0.3 2.7± 2.1 1.3± 0.6 3.7± 0.8 3.3± 0.7
DFPACDM NaN NaN NaN NaN NaN NaN

U-Net as displayed in Fig. 23. Choosing unsuitable λ causes
models to diverge earlier from the reference trajectory when
evaluating the difference between predictions steps, for both
Tralong and Iso. When analyzing the frequency behavior
of the models trained with LSiM in Fig. 24 the results are
similar: Improved performance across the frequency band
can be observed for U-Netλ1e-3, while smaller values of
λ are less potent and can be detrimental or only slightly
beneficial compared to U-Net.

Simulation
U-Net

U-Netλ1e−5
U-Netλ1e−4

U-Netλ1e−3
U-Netλ1e−2

U-Netλ1e−1
U-Netλ1e0

2−2 2−1 20 21 22

Wavenumber κ along vertical line downstream

10−3

10−1

101

v x
 A

m
pl

itu
de

 *κ
4 Tralong

23 24 25 26 27 28

Temporal frequency f (spatial average)

103

104

105

v x
 A

m
pl

itu
de

 *f
2

Iso

Figure 24. Spatial frequency along a vertical line downstream on
Tralong (top) and temporal frequency analysis on a sequence from
Iso with z = 300 (bottom) for the LSiM loss ablation models.

Summary Training U-Net with LSiM as an additional
loss term, can increase accuracy, temporal stability, and fre-
quency behavior across evaluations. However, the resulting
models are neither competitive compared to other stabiliza-
tion techniques discussed above, such as training rollouts or
training noise, nor to the proposed diffusion architecture.

I.5. Ablation on U-Net Modernizations

As described in App. B.2, our U-Net implementation fol-
lows established diffusion model architectures, that contain

a range of modernizations compared to the original approach
proposed by Ronneberger et al. (2015). Here, we compare
to a more traditional U-Net architecture which is known to
work well for fluid problems. We adapted the DFP model
implementation7 of Thuerey et al. (2020) for our settings.
The architecture features:

• batch normalization instead group normalization, and
no attention layers in the blocks,

• six downsampling blocks consisting of strided convo-
lutions and leaky ReLU layers,

• six upsampling blocks consisting of convolution, bilin-
ear upsamling, and ReLU layers,

• six feature map levels with spatial sizes of 64 × 32,
32× 16, 16× 8, 8× 4, 4× 2, and 2× 1,

• an increasing number of channels for deeper features,
i.e., 72, 72, 144, 288, 288, and 288.

It is trained as a direct one-step predictor (DFP) in the same
way as described in App. B.2, as well as employing it in the
diffusion setup as a backbone architecture (DFPACDM). In
both cases, we keep all other hyperparameters identical with
the corresponding baseline architecture.

Accuracy Table 8 shows a comparison of both architec-
tures compared to U-Net and ACDM on our more chal-
lenging data sets Tra and Iso. Training DFPACDM as a
diffusion backbone (with additional time embeddings for the
diffusion step r as discussed in App. B.1) failed to general-
ize beyond the first few prediction time steps across test sets
in our experiments. This highlights the general usefulness of
the recently introduced modernizations to the U-Net archi-
tecture. There is a noticeable drop in accuracy on Tra for
DFP compared to U-Net, but it performs clearly better than
U-Net on Iso, however still lacking compared to ACDM.
This unexpected trend in accuracy is mainly caused by the
different rollout behavior of these architectures discussed in
the following.

Temporal Stability Figure 25 shows temporal stability
evaluations of the variants on Tralong and Iso, that il-
lustrate the different rollout behavior of DFP compared to

7https://github.com/thunil/Deep-Flow-
Prediction

29

https://github.com/thunil/Deep-Flow-Prediction
https://github.com/thunil/Deep-Flow-Prediction

Benchmarking Autoregressive Conditional Diffusion Models

U-Net depending on the data set. On Tralong on the top,
DFP diverges earlier and more substantially compared to
U-Net, when measured via the difference to the previously
predicted time step. However, the rollout behavior is dif-
ferent on Iso, as illustrated via the Pearson correlation
coefficient to the ground truth trajectory on the bottom in
Fig. 25. The simpler DFP model decorrelates more quickly
for the first 50 steps, while keeping a relatively constant
decorrelation rate. U-Net is initially more in line with the
reference, however it sharply decreases after about 50 steps,
meaning errors accumulate more quickly after an initial
phase of higher stability.

Simulation U-Net DFP ACDM DFPACDM

0 50 100 150 200 250
Time step t

0.005

0.010

0.015

0.020

0.025

‖(
st

−
st

−
1)

/Δ
t‖

1

Tralong

0 20 40 60 80 100
Time step

0.7

0.8

0.9

1.0

Co
rre

la
tio

n
to

 S
im

.

Iso

Figure 25. Temporal stability evaluation via error to previous time
step on Tralong (top) and the correlation to the ground truth on
Iso (bottom) for the U-Net modernization ablation.

Summary We found the recently proposed architecture
modernizations to U-Nets to be an important factor, when
employing them as backbones in a diffusion-based setup.
For some direct prediction cases, the modernizations can
delay diverging behavior due to unrolling during inference
to some degree. On other data, using no modernizations
can be beneficial for longer rollouts in direct prediction
setting, but this comes at the costs of less initial accuracy,
and lacking capacities as a diffusion backbone.

I.6. Ablations on PDE-Refiner

Here, we investigate PDE-Refiner in more detail, espe-
cially with respect to the number of refinement steps R
and the minimum noise variance σ, its key hyperparame-
ters. We sweep over combinations of R ∈ {2, 4, 8} and
σ ∈ {10−7, 10−6, 10−5, 10−4, 10−3}, and report accuracy,

temporal stability, and posterior sampling results. Due to
computational constraints for this large sweep, only one
model per combination is trained. Five samples from each
model are considered, as above. We denote models trained
with e.g., R = 2 and σ = 10−3 by RefinerR2,σ1e-3 in the
following. Prediction examples can be found in Figs. 42
and 43 in App. K.

Accuracy Table 9 evaluates the accuracy of these PDE-
Refiner variants compared to ACDM and U-Net on our data
sets Tra and Iso. Overall, the performance of Refiner
across data sets, number of refinement steps R, and noise
variances σ is highly unpredictable. There is neither a clear
accuracy trend over few or many refinement steps, nor high
or low noise variance. Furthermore, a high accuracy on Tra
is not directly correlated with a high accuracy on Iso either.
As Refiner essentially improves upon one-step predictions
of U-Net via additional refinement steps, the results of a
direct comparison are interesting: On Tra, while Refiner
consistently outperforms U-Net in terms of LSiM, it just
as consistently remains worse in terms of the MSE across
hyperparameter combinations. We hypothesize that these re-
sults are linked to the fundamentally different spectral behav-
ior of Refiner described by Lippe et al. (2023), but further
research is required in this direction. On Iso, Refiner ei-
ther improves upon U-Net or substantially diverges (marked
in grey in Tab. 9), especially for small σ. Overall, PDE-
Refiner is less effective than the stabilization techniques
discussed in Appendices I.2 and I.3 in terms of accuracy
improvements, and thus consistently falls short with respect
to ACDM across test sets and hyperparameter combinations.

Temporal Stability To investigate the temporal stability
of Refiner, we analyze the difference to the previous time
step in Fig. 26. First, it is shown that there are combinations
of R and σ that substantially improve the rollout stability
of Refiner compared to U-Net, confirming the results from
Lippe et al. (2023). However, as observed in terms of accu-
racy above, there is no consistent trend across hyperparame-
ters and data sets. Especially, finding a suitable minimum
noise variance σ depends on both, data set and number of re-
finement steps R: While σ = 10−6 works best on Tralong
for R = 2, σ = 10−7 is ideal for R = 8. On Iso, R = 2
only works with σ = 10−3, R = 4 requires σ = 10−4, and
R = 8 is most stable with σ = 10−5. This unpredictable
behavior with respect to important hyperparameters makes
PDE-Refiner resource-intensive and difficult to employ in
practice. The best Refiner variants on Iso, while more
stable compared to U-Net, are nevertheless showing signs
of instabilities around t = 70. This means the refinement
increases stability, but still falls short compared to the other
discussed stabilization techniques.

Posterior Sampling As PDE-Refiner relies on determin-
istic predictions combined with probabilistic refinements,

30

Benchmarking Autoregressive Conditional Diffusion Models

Table 9. Accuracy comparison for PDE-Refiner using different refinement steps R and noise variances σ.
Traext Traint Iso

MSE LSiM MSE LSiM MSE LSiM
Method R σ (10−3) (10−1) (10−3) (10−1) (10−2) (10−1)

ACDM — — 2.3± 1.4 1.3± 0.3 2.7± 2.1 1.3± 0.6 3.7± 0.8 3.3± 0.7
U-Net — — 3.1± 2.1 3.9± 2.8 2.3± 2.0 3.3± 2.8 25.8± 35 11.3± 3.9

Refiner 2 1e–3 3.3± 1.3 1.4± 0.3 3.9± 1.6 1.4± 0.3 6.1± 1.9 7.2± 1.6
Refiner 2 1e–4 12.7± 2.9 4.2± 0.5 10.1± 1.5 2.4± 0.3 0.1m± 0.3m 12.5± 5.2
Refiner 2 1e–5 4.8± 1.4 2.6± 0.3 4.0± 3.1 2.1± 0.5 3.3e30 15.2± 0.9
Refiner 2 1e–6 5.0± 1.9 2.0± 0.3 3.6± 2.6 1.9± 0.4 0.1m± 0.2m 16.1± 1.0
Refiner 2 1e–7 13.6± 9.9 6.1± 4.0 54.6± 68.7 6.7± 5.0 22k ± 13k 14.9± 0.9

Refiner 4 1e–3 5.3± 0.8 3.2± 0.4 6.0± 1.2 2.6± 0.4 5.1± 1.8 4.7± 0.8
Refiner 4 1e–4 3.4± 2.0 1.9± 0.3 5.7± 2.4 1.9± 0.5 7.0± 3.1 5.0± 1.0
Refiner 4 1e–5 7.0± 1.7 2.7± 0.4 3.1± 0.8 1.7± 0.2 4.9± 2.0 7.6± 2.1
Refiner 4 1e–6 3.5± 1.1 2.1± 0.5 8.8± 0.9 4.3± 2.1 66.1± 38.4 11.7± 0.7
Refiner 4 1e–7 5.4± 1.0 3.1± 0.2 8.3± 2.2 2.7± 0.2 1.9e18 14.8± 1.0

Refiner 8 1e–3 7.1± 1.5 3.5± 0.4 4.4± 1.8 2.7± 0.4 5.5± 1.3 6.9± 1.0
Refiner 8 1e–4 13.8± 2.3 5.0± 0.5 8.6± 4.2 2.4± 0.7 5.1± 1.3 5.9± 1.1
Refiner 8 1e–5 6.3± 1.1 3.5± 0.4 6.0± 1.8 2.4± 0.6 4.7± 0.7 5.4± 1.2
Refiner 8 1e–6 3.1± 1.3 2.2± 0.2 6.4± 2.1 2.0± 0.4 0.1k ± 0.3k 6.1± 4.3
Refiner 8 1e–7 4.3± 1.4 2.1± 0.3 3.3± 1.2 1.6± 0.3 88± 70 6.2± 1.9

achieving a broad and diverse posterior distribution is
difficult. In Fig. 27, we visualize posterior samples for
Tralong from ACDM and Refiner with R ∈ {2, 4, 8} and
σ ∈ {10−5, 10−6, 10−7}. While ACDM creates a broad
range of samples as discussed in the main paper above,
RefinerR2,σ1e-6, RefinerR4,σ1e-6, and RefinerR4,σ1e-7 do not
create any noticeable variance. While additional refine-
ment steps slightly improve the spread across samples, even
RefinerR8,σ1e-6 can only create minor differences with very
similar spatial structures. Note that the Refiner models are
in general unable to create the detailed shockwaves below
the cylinder that are found in the simulation and the ACDM
samples. In addition, unphysical predictions after longer
rollouts can be observed across refinement steps and noise
variances in the visualizations in Fig. 42. Using very larger
values of σ should theoretically allow Refiner to focus on
a larger range of frequencies. However, this increased the
stability issues further and did not substantially improve the
quality or diversity of posterior samples over Fig. 27.

Summary While the stability benefits of a well-tuned
setup with PDE-Refiner compared to a simple one-step
prediction with U-Net are highly desirable and can be
achieved with less inference overhead compared to ACDM,
the method has several disadvantages: We found the setup
to be very sensitive regarding changes to refinement steps,
data set, or noise variance. This means, a large amount
of computational resources are required for parameter tun-
ing, which is crucial to obtain good results. Suboptimal
combinations of refinement steps and noise variance show
substantially degraded performance compared to U-Net in
our experiments, and even tuned setup did exhibit instabili-

ties across training runs and model samples. Furthermore,
Refiner is less accuracy, and has limits in terms of the pos-
terior sampling compared to a more direct application of
diffusion models in ACDM.

J. Prediction Examples
Over the following pages, prediction examples from all ana-
lyzed methods in the main paper are displayed. Shown are
the different fields contained in an exemplary test sequence
from each experiment. Figures 28 and 29 feature the Incvar
case, Figs. 30 to 32 contain an example from Tralong with
Ma = 0.64, and Figs. 33 to 35 display a sequence from
Iso with z = 280. Supplementary videos of model predic-
tions for some example sequences from each data set are
provided alongside this work, as they can visualize several
aspects like temporal stability, temporal coherence, and vi-
sual quality better than still images. We also include videos
of posterior samples from the probabilistic architectures,
and a temporal coherence analysis of ACDM. All videos
can be found alongside this work at https://ge.in.
tum.de/publications/2023-acdm-kohl/.

K. Ablation Study Prediction Examples
Below the prediction examples for the model architectures,
we display prediction examples from different ablation study
models provided in Appendices I.1 to I.3 and I.6. Shown
are the pressure field from Tralong with Ma = 0.64, as
well as a vorticity sequence from Iso with z = 280.

31

https://ge.in.tum.de/publications/2023-acdm-kohl/
https://ge.in.tum.de/publications/2023-acdm-kohl/

Benchmarking Autoregressive Conditional Diffusion Models

Simulation U-Net RefinerR2, σ1e−3 RefinerR2, σ1e−4 RefinerR2, σ1e−5 RefinerR2, σ1e−6 RefinerR2, σ1e−7

0 50 100 150 200 250
Time step t

0.000

0.005

0.010

0.015

0.020

0.025

0.030

‖(
st

−
st

−
1)

/Δ
t‖

1

Tralong

0 20 40 60 80 100
Time step t

0.00

0.01

0.02

0.03

0.04

0.05

‖(
st

−
st

−
1)

/Δ
t‖

1

Iso

Simulation U-Net RefinerR4, σ1e−3 RefinerR4, σ1e−4 RefinerR4, σ1e−5 RefinerR4, σ1e−6 RefinerR4, σ1e−7

0 50 100 150 200 250
Time step t

0.000

0.005

0.010

0.015

0.020

0.025

0.030

‖(
st

−
st

−
1)

/Δ
t‖

1

Tralong

0 20 40 60 80 100
Time step t

0.00

0.01

0.02

0.03

0.04

0.05

‖(
st

−
st

−
1)

/Δ
t‖

1

Iso

Simulation U-Net RefinerR8, σ1e−3 RefinerR8, σ1e−4 RefinerR8, σ1e−5 RefinerR8, σ1e−6 RefinerR8, σ1e−7

0 50 100 150 200 250
Time step t

0.000

0.005

0.010

0.015

0.020

0.025

0.030

‖(
st

−
st

−
1)

/Δ
t‖

1

Tralong

0 20 40 60 80 100
Time step t

0.00

0.01

0.02

0.03

0.04

0.05

‖(
st

−
st

−
1)

/Δ
t‖

1

Iso

Figure 26. Temporal stability evaluation via error to previous time step on Tralong (left) and on Iso (right) for PDE-Refiner with
different hyperparameter combinations of refinement steps R and noise variances σ. Standard deviations are omitted for visual clarity.
The temporally most stable Refiner configuration is highly inconsistent, and for a given R depends on the data set and noise variance.

Sim. (26 × 26)

t=
60

Sample 1 Sample 2 Sample 3 Std. Dev. 0.00

0.05

0.10

0.15ACDM

Sim. (26 × 26)

t=
60

Sample 1 Sample 2 Sample 3 Std. Dev. 0.00

0.05

0.10

0.15RefinerR2, σ1e− 6

Sim. (26 × 26)

t=
60

Sample 1 Sample 2 Sample 3 Std. Dev. 0.00

0.05

0.10

0.15RefinerR4, σ1e− 5

Sim. (26 × 26)

t=
60

Sample 1 Sample 2 Sample 3 Std. Dev. 0.00

0.05

0.10

0.15RefinerR4, σ1e− 6

Sim. (26 × 26)

t=
60

Sample 1 Sample 2 Sample 3 Std. Dev. 0.00

0.05

0.10

0.15RefinerR4, σ1e− 7

Sim. (26 × 26)

t=
60

Sample 1 Sample 2 Sample 3 Std. Dev. 0.00

0.05

0.10

0.15RefinerR8, σ1e− 6

Figure 27. Posterior samples on Tralong from ACDM (top left) compared to PDE-Refiner ablation models with different refinement steps
R and noise variances σ (other). Refiner lacks sample diversity and quality compared to ACDM across values for R and σ.

32

Benchmarking Autoregressive Conditional Diffusion Models
Si
m
ul
at
io
n

Re
sN

et
Re

sN
et

di
l.

FN
O
16

FN
O
32

TF
M
G
N

TF
En

c
TF

VA
E

U
-N
et

U
-N
et

ut
U
-N
et

tn
Re

fin
er

AC
D
M

nc
n

t=5

AC
D
M

t=30 t=85 t=140 t=195 t=250

−0.2 −0.1 0.0 0.1 0.2

Figure 28. Vorticity predictions for the Incvar sequence.

33

Benchmarking Autoregressive Conditional Diffusion Models
Si
m
ul
at
io
n

Re
sN

et
Re

sN
et

di
l.

FN
O
16

FN
O
32

TF
M
G
N

TF
En

c
TF

VA
E

U
-N
et

U
-N
et

ut
U
-N
et

tn
Re

fin
er

AC
D
M

nc
n

t=5

AC
D
M

t=30 t=85 t=140 t=195 t=250

−0.010 −0.005 0.000 0.005 0.010

Figure 29. Pressure predictions for the Incvar sequence.

34

Benchmarking Autoregressive Conditional Diffusion Models
Si
m
ul
at
io
n

Re
sN

et
Re

sN
et

di
l.

FN
O
16

FN
O
32

TF
M
G
N

TF
En

c
TF

VA
E

U
-N
et

U
-N
et

ut
U
-N
et

tn
Re

fin
er

AC
D
M

nc
n

t=5

AC
D
M

t=30 t=80 t=130 t=180 t=230

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Figure 30. Vorticity predictions for an example sequence from Tralong with Ma = 0.64.

35

Benchmarking Autoregressive Conditional Diffusion Models
Si
m
ul
at
io
n

Re
sN

et
Re

sN
et

di
l.

FN
O
16

FN
O
32

TF
M
G
N

TF
En

c
TF

VA
E

U
-N
et

U
-N
et

ut
U
-N
et

tn
Re

fin
er

AC
D
M

nc
n

t=5

AC
D
M

t=30 t=80 t=130 t=180 t=230

0.2 0.3 0.4 0.5 0.6 0.7

Figure 31. Pressure predictions for an example sequence from Tralong with Ma = 0.64.

36

Benchmarking Autoregressive Conditional Diffusion Models
Si
m
ul
at
io
n

Re
sN

et
Re

sN
et

di
l.

FN
O
16

FN
O
32

TF
M
G
N

TF
En

c
TF

VA
E

U
-N
et

U
-N
et

ut
U
-N
et

tn
Re

fin
er

AC
D
M

nc
n

t=5

AC
D
M

t=30 t=80 t=130 t=180 t=230

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Figure 32. Density predictions for an example sequence from Tralong with Ma = 0.64.

37

Benchmarking Autoregressive Conditional Diffusion Models
Si
m
ul
at
io
n

Re
sN

et
Re

sN
et

di
l.

FN
O
16

FN
O
32

TF
M
G
N

TF
En

c
TF

VA
E

U
-N
et

U
-N
et

ut
U
-N
et

tn
Re

fin
er

AC
D
M

nc
n

t=5

AC
D
M

t=20 t=40 t=60 t=80 t=100

−20 −2−1 −2−2 −2−3 −2−4 −2−5 0 2−5 2−4 2−3 2−2 2−1 20

Figure 33. Vorticity predictions (only z-component) for an example sequence from Iso with z = 280.

38

Benchmarking Autoregressive Conditional Diffusion Models
Si
m
ul
at
io
n

Re
sN

et
Re

sN
et

di
l.

FN
O
16

FN
O
32

TF
M
G
N

TF
En

c
TF

VA
E

U
-N
et

U
-N
et

ut
U
-N
et

tn
Re

fin
er

AC
D
M

nc
n

t=5

AC
D
M

t=20 t=40 t=60 t=80 t=100

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

Figure 34. Z-velocity predictions for an example sequence from Iso with z = 280.

39

Benchmarking Autoregressive Conditional Diffusion Models
Si
m
ul
at
io
n

Re
sN

et
Re

sN
et

di
l.

FN
O
16

FN
O
32

TF
M
G
N

TF
En

c
TF

VA
E

U
-N
et

U
-N
et

ut
U
-N
et

tn
Re

fin
er

AC
D
M

nc
n

t=5

AC
D
M

t=20 t=40 t=60 t=80 t=100

−0.6 −0.4 −0.2 0.0 0.2 0.4

Figure 35. Pressure predictions for an example sequence from Iso with z = 280.

40

Benchmarking Autoregressive Conditional Diffusion Models
Si
m
ul
at
io
n

AC
D
M

R1
0

AC
D
M

R1
5

AC
D
M

R2
0

AC
D
M

R3
0

AC
D
M

R5
0

AC
D
M

R1
00

t=5

AC
D
M

R5
00

t=30 t=80 t=130 t=180 t=230

0.2 0.3 0.4 0.5 0.6 0.7

Figure 36. Diffusion Step Ablation (see App. I.1): Pressure predictions from Tralong.

41

Benchmarking Autoregressive Conditional Diffusion Models
Si
m
ul
at
io
n

AC
D
M

R1
0

AC
D
M

R1
5

AC
D
M

R2
0

AC
D
M

R3
0

AC
D
M

R5
0

AC
D
M

R1
00

t=5

AC
D
M

R5
00

t=20 t=40 t=60 t=80 t=100

−20 −2−1 −2−2 −2−3 −2−4 −2−5 0 2−5 2−4 2−3 2−2 2−1 20

Figure 37. Diffusion Step Ablation (see App. I.1): Vorticity predictions from Iso.

42

Benchmarking Autoregressive Conditional Diffusion Models
Si
m
ul
at
io
n

U
-N
et

U
-N
et

m
4

U
-N
et

m
8

t=5

U
-N
et

m
16

t=30 t=80 t=130 t=180 t=230

0.2 0.3 0.4 0.5 0.6 0.7

Figure 38. Training Rollout Ablation (see App. I.2): Pressure predictions from Tralong.

Si
m
ul
at
io
n

U
-N
et

U
-N
et

m
4

U
-N
et

m
4,
Pr
e

U
-N
et

m
8

U
-N
et

m
8,
Pr
e

U
-N
et

m
16

t=5U
-N
et

m
16

,P
re

t=20 t=40 t=60 t=80 t=100

−20 −2−1 −2−2 −2−3 −2−4 −2−5 0 2−5 2−4 2−3 2−2 2−1 20

Figure 39. Training Rollout Ablation (see App. I.2): Vorticity predictions from Iso.

43

Benchmarking Autoregressive Conditional Diffusion Models
Si
m
ul
at
io
n

U
-N
et

U
-N
et

n1
e
−
4

U
-N
et

n1
e
−
3

U
-N
et

n1
e
−
2

U
-N
et

n1
e
−
1

U
-N
et

n1
e0

AC
D
M

nc
n

AC
D
M

nc
n,
n1

e
−
4

AC
D
M

nc
n,
n1

e
−
3

AC
D
M

nc
n,
n1

e
−
2

AC
D
M

nc
n,
n1

e
−
1

t=5

AC
D
M

nc
n,
n1

e0

t=30 t=80 t=130 t=180 t=230

0.2 0.3 0.4 0.5 0.6 0.7

Figure 40. Training Noise Ablation (see App. I.3): Pressure predictions from Tralong.

44

Benchmarking Autoregressive Conditional Diffusion Models
Si
m
ul
at
io
n

U
-N
et

U
-N
et

n1
e
−
4

U
-N
et

n1
e
−
3

U
-N
et

n1
e
−
2

U
-N
et

n1
e
−
1

U
-N
et

n1
e0

AC
D
M

nc
n

AC
D
M

nc
n,
n1

e
−
4

AC
D
M

nc
n,
n1

e
−
3

AC
D
M

nc
n,
n1

e
−
2

AC
D
M

nc
n,
n1

e
−
1

t=5

AC
D
M

nc
n,
n1

e0

t=20 t=40 t=60 t=80 t=100

−20 −2−1 −2−2 −2−3 −2−4 −2−5 0 2−5 2−4 2−3 2−2 2−1 20

Figure 41. Training Noise Ablation (see App. I.3): Vorticity predictions from Iso.

45

Benchmarking Autoregressive Conditional Diffusion Models

Si
m
ul
at
io
n

Re
fin

er
R2

,σ
1e

−
3

Re
fin

er
R2

,σ
1e

−
4

Re
fin

er
R2

,σ
1e

−
5

Re
fin

er
R2

,σ
1e

−
6

Re
fin

er
R2

,σ
1e

−
7

Re
fin

er
R4

,σ
1e

−
3

Re
fin

er
R4

,σ
1e

−
4

Re
fin

er
R4

,σ
1e

−
5

Re
fin

er
R4

,σ
1e

−
6

Re
fin

er
R4

,σ
1e

−
7

Re
fin

er
R8

,σ
1e

−
3

Re
fin

er
R8

,σ
1e

−
4

Re
fin

er
R8

,σ
1e

−
5

Re
fin

er
R8

,σ
1e

−
6

t=5

Re
fin

er
R8

,σ
1e

−
7

t=30 t=80 t=130 t=180 t=230

0.2 0.3 0.4 0.5 0.6 0.7

Figure 42. Comparison to PDE-Refiner (see App. I.6): Pressure predictions from Tralong.

46

Benchmarking Autoregressive Conditional Diffusion Models

Si
m
ul
at
io
n

Re
fin

er
R2

,σ
1e

−
3

Re
fin

er
R2

,σ
1e

−
4

Re
fin

er
R2

,σ
1e

−
5

Re
fin

er
R2

,σ
1e

−
6

Re
fin

er
R2

,σ
1e

−
7

Re
fin

er
R4

,σ
1e

−
3

Re
fin

er
R4

,σ
1e

−
4

Re
fin

er
R4

,σ
1e

−
5

Re
fin

er
R4

,σ
1e

−
6

Re
fin

er
R4

,σ
1e

−
7

Re
fin

er
R8

,σ
1e

−
3

Re
fin

er
R8

,σ
1e

−
4

Re
fin

er
R8

,σ
1e

−
5

Re
fin

er
R8

,σ
1e

−
6

t=5

Re
fin

er
R8

,σ
1e

−
7

t=20 t=40 t=60 t=80 t=100

−20 −2−1 −2−2 −2−3 −2−4 −2−5 0 2−5 2−4 2−3 2−2 2−1 20

Figure 43. Comparison to PDE-Refiner (see App. I.6): Vorticity predictions from Iso.

47

