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Abstract

Analogy, a quintessential human cognitive ca-
pability, has long been studied for its role in
transferring knowledge across domains, from
generating novel analogies to evaluating their
quality. The field of artificial intelligence (AI)
has long sought to model the analogical reason-
ing process computationally, from using log-
ical representations to adopting connectionist
methods. However, the rapidly improving capa-
bilities of large language models (LLMs) have
led to the creation of new families of LLM-
powered analogy generation systems, creating
a need for a comprehensive review that situates
these developments within the broader histor-
ical context. Following the PRISMA frame-
work, we systematically reviewed computa-
tional analogy research across computer sci-
ence (CS), Al, and natural language processing
(NLP), focusing on methods for analogy gener-
ation and evaluation. We categorized existing
approaches across various dimensions, from
symbolic, embedding-based, to LLM-driven
methods, and identified core challenges, includ-
ing difficulties in generating novel analogies,
conflating relational and literal similarity, and
limitations in current evaluation metrics and
datasets. Based on this analysis, we propose
future directions aimed at enhancing both the
generation process and the quality of outputs
in analogy generation and evaluation systems.

1 Introduction

Analogy plays a fundamental role in human learn-
ing, enabling individuals to comprehend unfamiliar
concepts by drawing parallels with familiar ones
(Gentner and Smith, 2013; Bartha, 2024). As a
core cognitive function, analogical reasoning has
been the subject of extensive research over several
decades, focusing on how analogies are formed
and how their quality can be assessed (Hofstadter,
1995).

Computational approaches to analogical reason-
ing, which involve identifying and mapping rela-

tional correspondences between a known source
and a novel target to transfer insights, have at-
tracted sustained interest in artificial intelligence
(AI) and natural language processing (NLP). Ear-
lier methods, such as Winston’s frame-based sys-
tem (Winston, 1980a) and Structure-Mapping En-
gine (SME) (Falkenhainer et al., 1989), used sym-
bolic approaches by representing input analogies
as structured sets of logical statements. These ap-
proaches primarily relied on hand-crafted, human-
annotated analogies, which were evaluated based
on the alignment of relational structures.

The advances in machine learning (ML) have en-
abled neural models to learn and predict analogical
relationships, particularly in the form of word and
proportional analogies (e.g., France is to Paris
as Italy is to Rome) (Mikolov et al., 2013).
Neural architectures such as embedding models are
trained and evaluated through word-analogy and
sentence-analogy datasets (Turney, 2008; Mikolov
et al., 2013) filled with such questions to show their
ability to perform analogical reasoning in a con-
fined selection (Ushio et al., 2021).

Pretrained language models, such as GPT
(Ouyang et al., 2022), have introduced generative
capabilities, extending analogy generation beyond
the word-level to more complex forms. These ad-
vancements support a wide range of applications,
including automatic analogy mining applied to in-
formation retrieval (Bhavya et al., 2023) and per-
sonalized analogy generation tailored to individual
users (CAO et al., 2024).

The evaluation of analogies remains a central
and ongoing challenge in the field. Structure Map-
ping Theory (SMT) (Gentner, 1983) has been a ma-
jor theoretical framework for analogy evaluation. It
emphasizes mappings between the relations of two
entities. Since then, relational similarity and word
similarity have been a primary automatic evalua-
tion metric for analogy (Turney et al., 2006). Com-
plementary to these approaches, human evaluation,



conducted via expert judgment or crowdsourcing,
continues to play a significant role. More recently,
large language models (LLMs) have enabled hy-
brid evaluation strategies, in which analogies are
rated using model-generated assessments across
multiple criteria (Bhavya et al., 2024a).

Although prior surveys have reviewed analogical
reasoning methods, including symbolic and neural
approaches (Mitchell, 2021; Gentner and Forbus,
2011; French, 2002), there is a lack of compre-
hensive reviews that capture advanced approaches
since the rise of LLMs. A growing body of recent
research explores analogy generation and evalua-
tion with LLMs (Bhavya et al., 2022; Yuan et al.,
2023b; CAO et al., 2024); however, these studies
remain fragmented—focused on isolated tasks like
prompt engineering, dataset creation, or specific
application—without a cohesive narrative linking
early symbolic and distributional approaches to
modern LLM-based methods. This review will sit-
uate new advanced techniques within the field’s
historical arc, reveal how foundational challenges
have been reframed, and guide researchers toward
unified best practices.

In this paper, we present a systematic literature
review (SLR) of computational approaches to anal-
ogy generation and evaluation in the domain of
computer science (CS), Al, and NLP, conducted in
accordance with the PRISMA guidelines (Moher
et al., 2010). The literature review will address the
following research questions:

* RQ1: What computational methods have
been developed for analogy generation?

* RQ2: What existing methods are used to eval-
uate the analogy quality?

* RQ3: What are the key challenges, limita-
tions, and future directions in analogy genera-
tion and evaluation?

We systematically searched and screened 4,641
papers among six databases, resulting in reviewing
45 papers to discern the directions and methods
in the domain of computational analogy genera-
tion and evaluation. We categorized existing ap-
proaches across multiple dimensions and identified
key challenges such as the difficulty of generating
novel analogies, the conflation of relational and
literal similarity, and the limitations of current eval-
uation metrics and datasets.

In summary, our paper makes the following con-
tributions: (1) a systematic literature review on the

existing research related to analogy generation and
evaluation; (2) a summary of four main categories
of computational analogy generation methods and
their corresponding evaluation metrics; (3) a high-
light on challenges faced by generation and evalua-
tion, and multiple future research directions.

2 Related Work

2.1 Analogy Generation and Evaluation

Computational models of analogy date back to the
1980s, beginning with Winston’s model (Winston,
1980a) and followed by the influential SMT (Gen-
tner, 1983). These early works focused on model-
ing human analogical reasoning and investigating
how computational systems could replicate this
process to retrieve and evaluate analogies.

Early analogy generation methods relied on
handcrafted rules to detect and evaluate analo-
gies (Falkenhainer et al., 1989). Over time, these
approaches evolved to symbolic structure, such
as LRME (Turney, 2008), uses explicit graph-
matching to align relational schemas between a
source and target domain, to statistical embedding
approaches (Mikolov et al., 2013). Most recently,
prompt-based LLM pipelines leverage large pre-
trained models to generate rich, context-sensitive
analogies with minimal human effort (Ding et al.,
2023; Yuan et al., 2023b). Each generation
paradigm progressively reduces reliance on hand-
crafted representations while increasing flexibil-
ity and domain coverage, yet also introduces new
challenges in controlling output coherence, ensur-
ing relational fidelity, and mitigating model biases
(Wijesiriwardene et al., 2023a; Yuan et al., 2023a;
Bhavya et al., 2024a).

Early systems primarily focused on evaluat-
ing given analogies through rules and restraints
(Holyoak and Thagard, 1989; Falkenhainer et al.,
1989), and they relied heavily on human validation
and relational similarity checks to ensure sound-
ness. While human evaluation remains an essen-
tial component, the growth of machine learning
has led to widespread use of automatic metrics,
such as precision, recall, and F1-score, as well as
similarity-based metrics like BLEU and ROUGE.
Recent evaluations often use a combination of au-
tomatic and human evaluation, where automatic
metrics are used to test the relational similarity of
analogies on a lexical level, and human judges are
used to evaluate the total soundness of the analo-
gies (Yuan et al., 2023a; Jiayang et al., 2023).



2.2 SLRs in Computational Analogy Model

Prior surveys have framed computational analogy
models in complementary ways. French (2002)
provides a historical overview, classifying computa-
tional analogy models into symbolic, connectionist,
and hybrid paradigms. By contrast, Gentner and
Forbus (2011) analyzed analogies through the lens
of computational models. The work decomposes
the analogy into subprocesses: retrieval, mapping,
abstraction, and re-representation. Gentner and For-
bus (2011) emphasizes that analogical mappings
favor systematic and higher-order relational corre-
spondences. Both reviews (French, 2002; Gentner
and Forbus, 2011), along with several other work
(Gentner, 1983; Hofstadter, 1995) underscore that
analogical inference relies on structured, relational
representations and selective correspondence, but
differ in focus: French (2002) surveys broad model
families and open problems, whereas Gentner and
Forbus (2011) drill into the computational models
of mapping (for example, comparing symbolic sys-
tems like MAC/FAC (Forbus et al., 1995) and SME
versus cognitive-inspired models like LISA (Hum-
mel and Holyoak, 2019a) and DORA (Doumas
et al., 2008)).

Mitchell (2021) brings a recent Al perspec-
tive, noting that today’s systems “are almost en-
tirely lacking the ability” to form humanlike ab-
stractions or analogies. However, these reviews
(French, 2002; Gentner and Forbus, 2011; Mitchell,
2021) predate the recent explosion of neural gen-
erative models for language and reasoning. In the
LLM era, pretrained transformers can themselves
generate analogies. For example, Bhavya et al.
(2022) demonstrates that InstructGPT (Ouyang
et al., 2022) can be prompted to produce mean-
ingful conceptual analogies and explanations: with
careful prompts, LLMs can achieve near-human
quality on analogy-generation tasks. At the same
time, such a method exposes new challenges: for
instance, evaluating the creativity and validity of
LLM-generated analogies (beyond lexical pattern
matching) requires new benchmarks and human
judgments, not addressed in classical frameworks.

In summary, these reviews make valuable con-
tributions by elucidating foundational theories, cat-
egorizing early computational models, and high-
lighting key cognitive mechanisms involved in ana-
logical reasoning. However, there is a lack of re-
search in systematically investigating the role of
large language models or generative approaches in

analogy generation or evaluation. This gap moti-
vates the need for a new, systematic review that
bridges classic symbolic and connectionist theo-
ries with recent LLM-based and deep generative
methods for analogy generation and evaluation.

3 Methodology

3.1 Identfictaion

Following the PRISMA guidelines (Moher et al.,
2010), we first used abstract, title, and keyword
(ATK) search among the online NLP and other CS
databases including ACM Digital Library !, IEEE
Xplore 2, SpringerLink 3, ScienceDirect *, Wiley
Online Library 3, and ACL Anthology (Referred
to as ACL throughout this paper) ®. ACL is rec-
ognized as a primary repository for NLP research.
IEEE represents a leading community that contains
the pioneering research in Engineering and Tech-
nology. ACM represents the comprehensive work
in Human Computer Interaction (HCI) and other
CS related fields. ScienceDirect contains interdis-
ciplinary work across CS and cognitive science
domains. SpringerLink and Wiley offer access to
both theoretical and applied research across arti-
ficial intelligence, computational linguistics, and
psychology, which are essential for understanding
analogical reasoning from both computational and
cognitive perspectives. These sources collectively
ensure a comprehensive coverage of both founda-
tional and emerging research relevant to computa-
tional analogy generation and its evaluation.

For keyword search, we included the keywords
analogy, analogous, and analogical, as those are
common instances of analogy and its synonyms.
We did not include the related keyword metaphor
because our preliminary investigation revealed that
analogy and metaphor have evolved into distinct
research domains, each with its theoretical founda-
tions and frameworks (Rai and Chakraverty, 2020).
We then conducted a primary search including
the keywords generation, retrieval, and evaluation.
The term retrieval was selected because it captures
both cognitive and computational processes fun-
damental to analogical reasoning, particularly in
models that simulate memory or information ac-
cess (Kolodner, 2014; Falkenhainer et al., 1989).

"https://dl.acm.org/
Zhttps://iceexplore.ieee.org/
3https://link.springer.com/
*https://www.sciencedirect.com/
Shttps://onlinelibrary.wiley.com/
®https://aclanthology.org/



Generation has gained prominence in the era of
LLMs, where producing analogies is often framed
as a generative task (Bhavya et al., 2022; Sultan
et al., 2024). Similarly, evaluation is essential for
assessing the quality and effectiveness of generated
or retrieved analogies, especially in empirical or
automated settings.

3.2 Screening, Eligibility, and Inclusion

3.2.1 Inclusion and Exclusion Criteria

* Include: IC1: Published between 1980 and
2025 to ensure we cover established computa-
tional models(Winston, 1980b; Falkenhainer
et al., 1989); IC2: The research topic is pri-
marily in NLP/AI/CS, and the contribution is
relevant to computational analogy generation
and its evaluation; this could be proposing
novel systems or improvements upon previ-
ous works.

e Exclude: EC1: The paper is grey literature,
such as a work-in-progress, workshop, poster,
demo, an extended abstract, or a patent (Han-
doyo and Sensuse, 2017). EC2: The paper is
not written in English; EC3: The paper is not
archival; EC4: The computational method
lacks a concrete artifact (e.g., system, algo-
rithm) or relies solely on human labor (e.g.,
crowdsourcing), since we focus on computa-
tional methods and systems. ECS: The paper
constitutes solely of secondary studies, as our
focus is on the existing methods in primary
research (Handoyo and Sensuse, 2017). ECé6:
None of the paper’s claimed contributions con-
cern analogy generation or the evaluation pro-
cess.

3.2.2 Process

Identification of studies via databases Identification of studies via other methods

Records removed before
screening (n=89) Snowballing
Reason: Duplications, (n=16)

EC1, ECS

Publications excluded - _A
Title, abstract, and Publications excluded
(n=4427) .
keyword screening

Records identified
from databases [
(n=4641)

Identification

H

Title, abstract, and
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Full paper
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Figure 1: Pipeline of PRISMA framework used in this
review process.

The initial keyword search across six databases
yielded 4641 papers. After removing duplicates,
papers published before 1980, non-full papers, and
secondary studies, 4552 papers remained and were
subsequently included in the screening process.

In the ATK screening stage, four authors ran-
domly sampled 50 papers for a pilot screening
round. Each author independently labeled the pa-
pers as include, exclude, or uncertain. The authors
then met to resolve discrepancies and refine the
inclusion and exclusion criteria. During the main
screening process, each paper was reviewed by at
least two authors to ensure consistency. This stage
resulted in 125 papers.

Next, a full-text review was conducted to assess
the eligibility of the selected papers. Another pilot
round (N=20) was used to refine the inclusion and
exclusion criteria further. After this step, 31 papers
met the inclusion criteria and were included for
analysis. Refer to Fig. 1 for the entire filtering
pipeline.

Additionally, one round of backward snow-
balling was conducted to identify relevant studies
that may have been missed during the initial search
(Jalali and Wohlin, 2012). During the full paper
review, we examined the related works of the in-
cluded papers to identify relevant papers that align
with our research questions. This process yielded
16 additional papers, 14 of which were eligible
for full-text review. All 14 were included in the
final corpus. Eventually, a total of 45 papers were
included in the final analysis.

3.3 Data Extraction and Analysis

Data were extracted during the full-text eligibility
review process described above. This included
top-down coding for the following features in-
cluding methodology (RQ1), evaluation metrics
(RQ2), identified challenges (RQ3), and outcomes
(RQ3) to answer each of the research questions. To
comprehensively analyze current approaches, we
employed open coding and affinity diagramming
techniques (Dam and Siang, 2022; Hudson, 2013;
Spencer, 2009) to categorize the identified gener-
ation and evaluation methods. The extracted data
were grouped and cross-validated by three authors
using Miro’, an online collaborative whiteboarding
platform (Zhang et al., 2025). We held meetings to
resolve disagreements and refine the groupings.

7https: //miro.com/
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4 Results

Based on the 45 papers we examined during our
SLR, we identified common themes and dimen-
sions amongst the papers. Due to limited space,
we mainly provide a high-level summary of our
findings. Detailed results and paper selections are
included in Appendix B.
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Figure 2: Publication years.

Publication Years. Fig.2 shows the distribu-
tion of publication years of all selected papers in
the SLR. The trend indicates a gradual increase
in publications from the 1980s through the 2010s.
The slight decline during the early 2010s may be
attributed to the rise of embedding-based models
(Mikolov et al., 2013) that achieved strong perfor-
mance on analogy tasks; during this period, much
of the research shifted toward improving embed-
ding techniques, which we excluded if their pri-
mary contribution was not directly related to anal-
ogy generation or evaluation. In recent years, how-
ever, there has been a noticeable resurgence in in-
terest, driven by the emergence of LLMs (Ouyang
et al., 2022), highlighting renewed attention and
growing popularity in computational analogy re-
search.

4.1 Analogy Generation Framework

We first examined papers from the 45 selected cor-
pus, concerning analogy generation characterized
by producing or generating one or multiple analogy
pairs based on a target concept or domain (RQ1).
During the bottom-up analysis process, we catego-
rize the 22 related papers into two dimensions: the
granularity (i.e., lexical-level and compositional-
level) and the generation method (i.e., LLM-based).

4.1.1 Generation by Granularity

Based on our review, we identified two common
targets of analogy generation, distinguished by
the granularity and structure of the generated out-
put: the first one is lexical-level analogy gener-
ation, which focuses on producing analogies in-
volving individual words or short phrases (e.g.,
king:man::queen:woman) (Bourrelly et al., 1983).
We also include LLM-based work in this cate-
gory for the word-by-word prediction nature of
the method (Bhavya et al., 2024b). The second
category is compositional-level analogy generation,
which involves generating analogies at a higher
level of abstraction, such as detailed analogies of
scientific concepts, or coherent story structures that
preserve relational mappings across larger contexts
(Mittal, 1992; Zhu and Ontanén, 2010).

Of the 22 works concerning analogy generation,
15 proposed generation methods reside at the lex-
ical level. This includes 11 papers that utilized
LLMs for generation. Besides these works, we
found four papers working on compositional-level
analogy generation (Zhu and Ontanén, 2010; Li
et al., 2005; Bhavya et al., 2024b; Mittal, 1992),
including story generation and explanation genera-
tion (See Table.1).

We also noticed three visual analogy works apart
from textual analogy generation (Davies et al.,
2008; Yaner and Goel, 2006; Sadeghi et al., 2015).
Visual problem solving is an essential aspect of
analogical reasoning (Lovett and Forbus, 2017),
and has been viewed as a way to measure Artificial
General Intelligence 8. These works demonstrate
generation approaches beyond textual modality and
highlight a promising direction towards a more in-
telligent multimodal analogy generation.

4.1.2 LLM-based Generation

We identify 11 papers using LLMs to generate
analogies through prompting techniques (Refer to
Table.2). In the identified collection, seven pa-
pers use multi-step prompt pipelines to enhance
the generation quality, while four earlier papers use
single-shot prompting to generate. This difference
represents a shift from single-shot prompting to
more structured prompt design processes as LLMs
become more powerful and researchers become
more familiar with Al-assistance tools. From the
perspective of analogical reasoning, this shift aligns
with the multi-stage cognitive process of analogi-

8https://arcprize.org/arc-agi



cal reasoning—retrieval, mapping, and transfer—
suggesting that decomposing prompts into discrete
steps may better guide LLMs through these stages
and produce more coherent and relationally accu-
rate analogies (Gentner and Forbus, 2011).

Throughout these LLM papers, we found eight
papers that use human-in-the-loop approaches to
enhance the generation quality through strategies
such as manual annotation and filtering (Sultan
et al., 2024; Bhavya et al., 2023), user-related in-
formation injecting (CAO et al., 2024; Ju et al.,
2025), and prompt tuning (Wang et al., 2024; Shao
et al., 2025). The lack of quality in the initial gen-
eration is mentioned multiple times (Bhavya et al.,
2022; Ding et al., 2023; CAO et al., 2024; Shao
et al., 2025), specifying a need for human-centered
iterations.

4.2 Analogy Evaluation Methods

In our analogy evaluation report, we first identify
papers relevant to RQ2. Evaluating analogy quality
is a highly researched question, and we present our
review result through the three lenses below.

4.2.1 Evaluation by Granularity

We identify the evaluation methods using the same
granularity(lexical-level and compositional-level)
used in generation analysis and differentiate the hu-
man evaluation approach from the automatic one.
Through 34 automatic evaluation approaches, 24
are focused on the lexical level, and 10 are concen-
trated on the compositional level evaluation (See
Table.4). On the human evaluation side, two papers
use humans to evaluate lexical-level metrics and
data, while 19 papers use experts or crowdsourc-
ing to evaluate compositional-level metrics such
as overall quality of the analogy generated (Sultan
et al., 2024; Jiayang et al., 2023). 11 papers include
both automatic and human evaluation approaches.
One paper does not include a formal evaluation
using metrics as it proposes a theoretical model
(Salu, 1994). This result shows that the automatic
approach is commonly used at assessing analogies
on the lexical-level, while human evaluation is con-
ducted to test analogies on the compositional-level.

4.2.2 Model Type

We identify four different models to evaluate anal-
ogy. First, relational graph-based models use ex-
plicit structured representations (graphs such as
knowledge graph and entity-relation representation
of texts or trees such as ontology and lexicon) to

align a familiar source domain with a novel target
domain. A primary example is SME (Falkenhainer
etal., 1989), which performs graph-matching under
a one-to-one structural consistency constraint.

Second, distributional semantics models find
analogies via statistical representations, such as
word embeddings, capturing co-occurrence infor-
mation or heuristic distance metrics (e.g., distance
in an ontology). Notably, word-embedding models
(Mikolov et al., 2013) demonstrated that vector off-
sets can capture simple A:B: : C:D relations. These
methods (Turney et al., 2006; Mikolov et al., 2013)
compute relational similarity using corpus statis-
tics.

Third, cognitive/architectural models are in-
spired by human cognition. This includes Copycat-
style architecture and LISA which simulate emer-
gent binding or spreading activation to generate
analogies from sub-symbolic processes (Hofstadter
and Mitchell, 1994; Hummel and Holyoak, 2019b).
These systems often hybridize symbolic and con-
nectionist ideas and emphasize emergent, context-
sensitive mapping.

Fourth, transformation-based models build
analogies by vector-based or character-based op-
erations. In this framework, analogies are inter-
preted as geometric relationships, and they use vari-
ous distance metrics, normally in high-dimensional
space, and vector operations to evaluate the analo-
gies (Lepage and Ando, 1996; Plate, 2000).

We identified 17 papers that fit into such a
taxonomy (See Table.3). We report six papers
that use the relational graph-based method, seven
papers that take the distributional semantic ap-
proach; we also found two papers that use the cogni-
tive/architectural model and two papers that use the
transformation-based model. Our result shows that
early work relies on rule-based and graph-based
methods, such as the relational graph-based model
and cognitive/architectural model; as ML advances,
a learning-based method, which requires a corpus
and data to train, becomes relevant and adapted,
such as the distributional semantic model.

4.2.3 Quality Dimension

Lastly, we categorized the reported evaluation met-
rics into: accuracy, validity, similarity, novelty,
and human-preference/judgement metrics (See Ta-
ble.5). Many automatic evaluation methods target
one or more of these dimensions. Specifically, we
identified 11 papers that use accuracy-based met-
rics, such as precision, recall, and F1-score; 13



papers that assess validity, including logical consis-
tency checks and human validity judgments; and
19 papers that apply similarity-based metrics, such
as BLEU, to evaluate generated analogies.

Novelty is an often mentioned metric in the work
we identified (Bhavya et al., 2023; Jiayang et al.,
2023), and while some work evaluates novelty
through measuring word distance from existing
analogy (Bhavya et al., 2023), some directly use
crowdsourcers’ judgement (Jiayang et al., 2023).
Human-preference/judgement is used in 13 papers
as a primary evaluation method. These works typi-
cally employ crowdsourcers (Jiayang et al., 2023;
Sultan et al., 2024) or experts (CAO et al., 2024;
Shao et al., 2025) to evaluate or validate the anal-
ogy generated in their work.

4.3 Analogy Generation Challenge

To address RQ3, we identify relevant papers that
discuss challenges and limitations encountered dur-
ing analogy generation or evaluation. Our findings
are summarized below.

4.3.1 Novel Analogy Generation

Across the literature, there is broad consensus that
generating novel analogies remains a significant
challenge. Many canonical analogies, such as the
comparison between the solar system and Ruther-
ford’s atom model (Gentner, 1983), have histori-
cally been crafted by humans, then incorporated
into computational models. In practice, both sym-
bolic and neural systems frequently recycle well-
established conceptual mappings, resulting in lim-
ited novelty and diversity (Bhavya et al., 2022). For
example, one study notes that LLMs tend to pro-
duce “mostly known analogies that are explicitly
mentioned on the Web”’(Bhavya et al., 2023), and
it remains unclear how to elicit truly creative new
analogies from them. Furthermore, novel analo-
gies often require structural or underlying similarity
with little to no literal similarity, which makes them
hard to generate and capture using corpus-based or
embedding-only models (Yuan et al., 2023a).

4.3.2 Generation with LLM

A key challenge in LLM-based analogy generation
is the model’s limited ability to capture deep re-
lational similarity consistently. Multiple reports
(Jiayang et al., 2023; Yuan et al., 2023a,b; Chen
et al., 2022) report LLMs often conflate literal sim-
ilarity with actual analogical structure, frequently
generating analogies that are either repetitive or

shallow. This misalignment undermines the goal
of analogy generation, which centers on abstract,
structural mapping.

Moreover, generation quality is susceptible to
the choice of LLM and the design of the prompt.
Even carefully crafted prompts can yield outputs
that are misleading, incorrect, or overly simplis-
tic (Bhavya et al., 2023). Even with detail-designed
prompts, LLM can still generate analogies per-
ceived as "oversimplified and lacking depth" (CAO
et al., 2024). This issue extends to analogy appli-
cations, where the analogies generated are often
complex to fit the users’ prior knowledge and are
sometimes considered superficial or incomplete
(CAO et al., 2024; Shao et al., 2025).

4.4 Analogy Evaluation Challenge

4.4.1 Metrics and Dataset Limitation

Limitations in evaluation metrics and available
datasets have been widely documented in the lit-
erature (Chen et al., 2022; Li et al., 2023; Turney
etal., 2006). These issues affect not only traditional
systems (e.g., symbolic, logic-based, and retrieval
methods), but also recent LLM-driven approaches.

A central concern is the narrow scope of exist-
ing benchmarks. Commonly used datasets, such as
the SAT word analogy dataset (Turney, 2008) and
the Google analogy corpus (Mikolov et al., 2013),
are relatively small and restricted to lexical-level
analogies. This narrow coverage limits the range
of analogical phenomena that models can be evalu-
ated on and hinders cross-domain, multilingual, or
multimodal marking.

In evaluation methodology, many studies rely on
binary classification accuracy or multiple-choice
formats to assess model performance, especially
in SAT-style tasks. While straightforward, these
metrics fail to capture graded similarity, analogi-
cal strength, and explanatory coherence (Bollegala
et al., 2009). Studies also use standard NLP met-
rics, such as BLEU, ROUGE, and BERTScore, to
evaluate analogical quality. However, these met-
rics primarily assess surface-level textual overlap
or vector-based semantic similarity, rather than re-
lational alignment or structural correctness (Chen
et al., 2022). As a result, there is a risk of overem-
phasizing surface similarity, encouraging models
to generate trivial or formulaic analogies at the ex-
pense of deeper, more creative mappings (Bhavya
et al., 2024a).



4.4.2 Evaluation with LLM

Throughout our report, we found that human eval-
uation is mainly conducted on the compositional-
level, while automatic evaluation is primarily per-
formed on the lexical-level.

This mismatch poses two challenges. First,
LLMs sometimes generate outputs that are literally
similar but relationally shallow, which can mislead
both human and automatic evaluations (Jiayang
et al., 2023). Second, existing automatic metrics,
especially those designed for word analogy tasks,
struggle to evaluate analogies beyond the lexical or
syntactic level (Yuan et al., 2023a). Moreover, few
existing automatic metrics account for creativity,
novelty, or contextual coherence, all of which are
central to human analogical reasoning (Hofstadter
and Sander, 2013).

5 Discussions

5.1 Challenges and Opportunities in Analogy
Generation

As computational analogy generation finds broader
applications across domains, a promising direction
is the development of analogy-specific prompting
strategies that mirror the cognitive stages of ana-
logical reasoning: retrieval, mapping, and transfer
(Gentner and Forbus, 2011). While techniques such
as multi-step prompting and chain-of-thought rea-
soning (Wei et al., 2023) have shown early success,
they currently lack a standardized framework tai-
lored to analogy tasks. Advancing in this direction
could enable Al systems to perform more human-
like, structured analogical reasoning.

Another major challenge is the generation of
novel analogies (Bhavya et al., 2022, 2024a). One
open challenge lies in aligning computational defi-
nitions of novelty (e.g., dissimilarity to known ex-
amples or training corpora) with human judgments,
which rely on prior knowledge, domain experi-
ence, and perceived insight. Bridging this gap may
require hybrid approaches that combine retrieval-
augmented generation (RAG), knowledge-aware
prompting, and structure-constrained decoding to
guide the model beyond surface-level similarity.

In addition, future work should explore cross-
modal analogy generation, expanding current meth-
ods beyond text to include visual, auditory, or sym-
bolic modalities. This multimodal approach could
unlock new forms of analogical reasoning, particu-
larly in domains such as visual analogy tasks, edu-
cational simulations, and conceptual design.

5.2 Future Directions in Analogy Evaluation

To achieve a more robust and standardized evalua-
tion, future work should also focus on developing
large-scale, domain-diverse analogy datasets that
include metaphorical, visual, and scientific reason-
ing examples. Evaluation protocols should incor-
porate automatic metrics and human-centered as-
sessments (e.g., analogical relevance, novelty, and
coherence), as suggested in (Bhavya et al., 2024a).
Ultimately, analogy evaluation needs to move be-
yond lexical correctness to capture the full depth
and function of analogical reasoning.

6 Conclusion

In this paper, we present a systematic literature
review on analogy generation and evaluation, fol-
lowing the PRISMA framework. We began with
a keyword search across six academic databases,
yielding 4,641 papers. After applying the ATK
screening process and conducting a full-text eligi-
bility review, a total of 45 papers were included in
the final analysis. We conducted a detailed analy-
sis of these works, categorizing existing computa-
tional methods for analogy generation and evalua-
tion. Additionally, we highlighted key challenges
in the field and outlined future research directions
to advance analogy generation and evaluation sys-
tems.

Limitations

As areview process that involves subjective judg-
ments by individual authors, this study may be
subject to bias. To mitigate this, we conducted
pilot checks at each stage to iteratively refine the
selection criteria. Additionally, all results were
cross-checked by multiple authors, and meetings
were held to resolve conflicts and ensure consis-
tency.

Despite careful formulation of the search strings,
it is possible that some relevant papers were missed.
In particular, while this review focused primarily on
analogy, there is conceptual overlap with metaphor,
and relevant discussions of analogy may appear
in metaphor-focused papers. To address this, we
conducted one round of backward snowballing to
identify and include potentially overlooked studies.
Future work could undertake a more exhaustive
investigation into the distinctions and interrelations
between analogy and metaphor.
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Generation Granularity Papers

(Sultan et al., 2024), (Yuan et al., 2023b), (Bourrelly et al., 1983),

(Ding et al., 2023), (Bhavya et al., 2023), (Wang et al., 2024),
Lexical-level (Chen et al., 2022), (Jiayang et al., 2023), (Bhavya et al., 2022),

(Salu, 1994), (Yuan et al., 2023a), (Crouse et al., 2021),

(Shao et al., 2025), (Ju et al., 2025), (Boisson et al., 2024)

Compositional-level (Bhavya et al., 2024b), (Mittal, 1992), (Li et al., 2005), (Wang et al., 2024)

Table 1: Analogy Generation by Granularity

Type Dimension Papers
(Shao et al., 2025), (Ju et al., 2025), (Boisson et al., 2024),
Human-in-the-loop (Sultan et al., 2024), (Wang et al., 2024), (Yuan et al., 2023b),
(Jiayang et al., 2023), (Yuan et al., 2023a)
LILM (Shao et al., 2025), (Ju et al., 2025), (Boisson et al., 2024),
Multi-step Generation (Sultan et al., 2024), (Yuan et al., 2023b), (Jiayang et al., 2023),

(Bhavya et al., 2023)

Single Prompt Generation (Bhavya et al., 2022), (Ding et al., 2023), (Wang et al., 2024),
(Yuan et al., 2023a)

(Salu, 1994), (Crouse et al., 2021), (Chen et al., 2022),

Non-LLM (Bhavya et al., 2024b), (Bourrelly et al., 1983), (Mittal, 1992),
(Davies et al., 2008), (Yaner and Goel, 2006), (Li et al., 2005),
(Zhu and Ontanén, 2010), (Sadeghi et al., 2015)

Table 2: LLM vs. Non-LLM Generation

Model Type Papers

(Denaux and Gomez-Perez, 2019), (Falkenhainer et al., 1989),
Relational Graph-based (Winston, 1980a), (Tsatsaronis et al., 2010), (Bourrelly et al., 1983),
(Holyoak and Thagard, 1989)

(Turney et al., 2006), (Turney, 2008), (Li et al., 2023),
Distributional Semantic (Wang et al., 2009), (Hope et al., 2017), (Bollegala, 2010),
(Schluter, 2018)

Cognitive/architectural  (Hofstadter and Mitchell, 1994), (Hummel and Holyoak, 2019a)
Transformation-based (Plate, 2000), (Lepage and Ando, 1996)

Table 3: Evaluation Model Types
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Type

Level

Papers

Automatic

Lexical-level

(Schluter, 2018), (Tsatsaronis et al., 2010), (Sadeghi et al., 2015),
(Denaux and Gomez-Perez, 2019), (Wang et al., 2024),

(Chen et al., 2022), (Plate, 2000), (Li et al., 2005),

(Jiayang et al., 2023), (Turney, 2008), (Winston, 1980a),

(Yuan et al., 2023a), (Bhavya et al., 2022), (Li et al., 2023),

(Yuan et al., 2023b), (Wijesiriwardene et al., 2023b), (Bollegala, 2010),
(Hope et al., 2017), (Sultan et al., 2024), (Bhavya et al., 2024b),
(Thagard et al., 1990), (Bollegala et al., 2009),

(Lepage and Ando, 1996), (Hofstadter and Mitchell, 1994)

Compositional-level

(Wang et al., 2009), (Zhang et al., 2017), (Falkenhainer et al., 1989),
(Crouse et al., 2021), (Yuan et al., 2023a),

(Zhu and Ontanén, 2010), (Yaner and Goel, 2006), (Winston, 1980a),
(Plate, 2000), (Hummel and Holyoak, 2019a)

Human

Lexical-level

(Yuan et al., 2023a), (Turney, 2008)

Compositional-level

(Falkenhainer et al., 1989), (Li et al., 2005), (Wang et al., 2024),
(Plate, 2000), (Bourrelly et al., 1983), (Boisson et al., 2024),
(CAO et al., 2024), (Mittal, 1992), (Shao et al., 2025),

(Ju et al., 2025), (Sultan et al., 2024), (Jiayang et al., 2023),
(Yuan et al., 2023b), (Davies et al., 2008), (Ding et al., 2023),
(Bhavya et al., 2024a), (Bhavya et al., 2023), (Hope et al., 2017),
(Bhavya et al., 2022)

Table 4: Analogy Evaluation by Granularity
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Evaluation Granularity

Papers

Accuracy

(Crouse et al., 2021), (Turney, 2008), (Chen et al., 2022),
(Yuan et al., 2023b), (Bhavya et al., 2024b), (Hope et al., 2017),
(Yuan et al., 2023a), (Yaner and Goel, 2006), (Bollegala, 2010),
(Bhavya et al., 2024a), (Plate, 2000),

Similarity

(Bollegala et al., 2009), (Sultan et al., 2024), (Thagard et al., 1990),

(Li et al., 2023), (Wang et al., 2024), (Lepage and Ando, 1996),

(Plate, 2000), (Wang et al., 2009), (Schluter, 2018),

(Jiayang et al., 2023), (Yuan et al., 2023a), (Sadeghi et al., 2015),

(Tsatsaronis et al., 2010), (Denaux and Gomez-Perez, 2019), (Winston, 1980a),
(Wijesiriwardene et al., 2023b), (Zhu and Ontanén, 2010), (Bhavya et al., 2022),
(Boisson et al., 2024),

Validity

(Crouse et al., 2021), (Jiayang et al., 2023), (Hope et al., 2017),

(Li et al., 2005), (Zhang et al., 2017), (Yuan et al., 2023b),

(Winston, 1980a), (Bhavya et al., 2024a), (Hofstadter and Mitchell, 1994),
(Holyoak and Thagard, 1989), (Hummel and Holyoak, 2019a),

(Bourrelly et al., 1983), (Mittal, 1992),

Novelty

(Bhavya et al., 2022), (Jiayang et al., 2023), (Hope et al., 2017),
(Bhavya et al., 2023),

Human Preference
/Judgement

(Sultan et al., 2024), (Yuan et al., 2023b), (Davies et al., 2008),

(Ding et al., 2023), (Bhavya et al., 2022), (Turney, 2008),

(Falkenhainer et al., 1989), (Li et al., 2005), (Wang et al., 2024),

(Shao et al., 2025), (CAO et al., 2024), (Ju et al., 2025), (Boisson et al., 2024),

Table 5: Analogy Evaluation Dimension
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