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Abstract

Analogy, a quintessential human cognitive ca-001
pability, has long been studied for its role in002
transferring knowledge across domains, from003
generating novel analogies to evaluating their004
quality. The field of artificial intelligence (AI)005
has long sought to model the analogical reason-006
ing process computationally, from using log-007
ical representations to adopting connectionist008
methods. However, the rapidly improving capa-009
bilities of large language models (LLMs) have010
led to the creation of new families of LLM-011
powered analogy generation systems, creating012
a need for a comprehensive review that situates013
these developments within the broader histor-014
ical context. Following the PRISMA frame-015
work, we systematically reviewed computa-016
tional analogy research across computer sci-017
ence (CS), AI, and natural language processing018
(NLP), focusing on methods for analogy gener-019
ation and evaluation. We categorized existing020
approaches across various dimensions, from021
symbolic, embedding-based, to LLM-driven022
methods, and identified core challenges, includ-023
ing difficulties in generating novel analogies,024
conflating relational and literal similarity, and025
limitations in current evaluation metrics and026
datasets. Based on this analysis, we propose027
future directions aimed at enhancing both the028
generation process and the quality of outputs029
in analogy generation and evaluation systems.030

1 Introduction031

Analogy plays a fundamental role in human learn-032

ing, enabling individuals to comprehend unfamiliar033

concepts by drawing parallels with familiar ones034

(Gentner and Smith, 2013; Bartha, 2024). As a035

core cognitive function, analogical reasoning has036

been the subject of extensive research over several037

decades, focusing on how analogies are formed038

and how their quality can be assessed (Hofstadter,039

1995).040

Computational approaches to analogical reason-041

ing, which involve identifying and mapping rela-042

tional correspondences between a known source 043

and a novel target to transfer insights, have at- 044

tracted sustained interest in artificial intelligence 045

(AI) and natural language processing (NLP). Ear- 046

lier methods, such as Winston’s frame-based sys- 047

tem (Winston, 1980a) and Structure-Mapping En- 048

gine (SME) (Falkenhainer et al., 1989), used sym- 049

bolic approaches by representing input analogies 050

as structured sets of logical statements. These ap- 051

proaches primarily relied on hand-crafted, human- 052

annotated analogies, which were evaluated based 053

on the alignment of relational structures. 054

The advances in machine learning (ML) have en- 055

abled neural models to learn and predict analogical 056

relationships, particularly in the form of word and 057

proportional analogies (e.g., France is to Paris 058

as Italy is to Rome) (Mikolov et al., 2013). 059

Neural architectures such as embedding models are 060

trained and evaluated through word-analogy and 061

sentence-analogy datasets (Turney, 2008; Mikolov 062

et al., 2013) filled with such questions to show their 063

ability to perform analogical reasoning in a con- 064

fined selection (Ushio et al., 2021). 065

Pretrained language models, such as GPT 066

(Ouyang et al., 2022), have introduced generative 067

capabilities, extending analogy generation beyond 068

the word-level to more complex forms. These ad- 069

vancements support a wide range of applications, 070

including automatic analogy mining applied to in- 071

formation retrieval (Bhavya et al., 2023) and per- 072

sonalized analogy generation tailored to individual 073

users (CAO et al., 2024). 074

The evaluation of analogies remains a central 075

and ongoing challenge in the field. Structure Map- 076

ping Theory (SMT) (Gentner, 1983) has been a ma- 077

jor theoretical framework for analogy evaluation. It 078

emphasizes mappings between the relations of two 079

entities. Since then, relational similarity and word 080

similarity have been a primary automatic evalua- 081

tion metric for analogy (Turney et al., 2006). Com- 082

plementary to these approaches, human evaluation, 083
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conducted via expert judgment or crowdsourcing,084

continues to play a significant role. More recently,085

large language models (LLMs) have enabled hy-086

brid evaluation strategies, in which analogies are087

rated using model-generated assessments across088

multiple criteria (Bhavya et al., 2024a).089

Although prior surveys have reviewed analogical090

reasoning methods, including symbolic and neural091

approaches (Mitchell, 2021; Gentner and Forbus,092

2011; French, 2002), there is a lack of compre-093

hensive reviews that capture advanced approaches094

since the rise of LLMs. A growing body of recent095

research explores analogy generation and evalua-096

tion with LLMs (Bhavya et al., 2022; Yuan et al.,097

2023b; CAO et al., 2024); however, these studies098

remain fragmented—focused on isolated tasks like099

prompt engineering, dataset creation, or specific100

application—without a cohesive narrative linking101

early symbolic and distributional approaches to102

modern LLM-based methods. This review will sit-103

uate new advanced techniques within the field’s104

historical arc, reveal how foundational challenges105

have been reframed, and guide researchers toward106

unified best practices.107

In this paper, we present a systematic literature108

review (SLR) of computational approaches to anal-109

ogy generation and evaluation in the domain of110

computer science (CS), AI, and NLP, conducted in111

accordance with the PRISMA guidelines (Moher112

et al., 2010). The literature review will address the113

following research questions:114

• RQ1: What computational methods have115

been developed for analogy generation?116

• RQ2: What existing methods are used to eval-117

uate the analogy quality?118

• RQ3: What are the key challenges, limita-119

tions, and future directions in analogy genera-120

tion and evaluation?121

We systematically searched and screened 4,641122

papers among six databases, resulting in reviewing123

45 papers to discern the directions and methods124

in the domain of computational analogy genera-125

tion and evaluation. We categorized existing ap-126

proaches across multiple dimensions and identified127

key challenges such as the difficulty of generating128

novel analogies, the conflation of relational and129

literal similarity, and the limitations of current eval-130

uation metrics and datasets.131

In summary, our paper makes the following con-132

tributions: (1) a systematic literature review on the133

existing research related to analogy generation and 134

evaluation; (2) a summary of four main categories 135

of computational analogy generation methods and 136

their corresponding evaluation metrics; (3) a high- 137

light on challenges faced by generation and evalua- 138

tion, and multiple future research directions. 139

2 Related Work 140

2.1 Analogy Generation and Evaluation 141

Computational models of analogy date back to the 142

1980s, beginning with Winston’s model (Winston, 143

1980a) and followed by the influential SMT (Gen- 144

tner, 1983). These early works focused on model- 145

ing human analogical reasoning and investigating 146

how computational systems could replicate this 147

process to retrieve and evaluate analogies. 148

Early analogy generation methods relied on 149

handcrafted rules to detect and evaluate analo- 150

gies (Falkenhainer et al., 1989). Over time, these 151

approaches evolved to symbolic structure, such 152

as LRME (Turney, 2008), uses explicit graph- 153

matching to align relational schemas between a 154

source and target domain, to statistical embedding 155

approaches (Mikolov et al., 2013). Most recently, 156

prompt-based LLM pipelines leverage large pre- 157

trained models to generate rich, context-sensitive 158

analogies with minimal human effort (Ding et al., 159

2023; Yuan et al., 2023b). Each generation 160

paradigm progressively reduces reliance on hand- 161

crafted representations while increasing flexibil- 162

ity and domain coverage, yet also introduces new 163

challenges in controlling output coherence, ensur- 164

ing relational fidelity, and mitigating model biases 165

(Wijesiriwardene et al., 2023a; Yuan et al., 2023a; 166

Bhavya et al., 2024a). 167

Early systems primarily focused on evaluat- 168

ing given analogies through rules and restraints 169

(Holyoak and Thagard, 1989; Falkenhainer et al., 170

1989), and they relied heavily on human validation 171

and relational similarity checks to ensure sound- 172

ness. While human evaluation remains an essen- 173

tial component, the growth of machine learning 174

has led to widespread use of automatic metrics, 175

such as precision, recall, and F1-score, as well as 176

similarity-based metrics like BLEU and ROUGE. 177

Recent evaluations often use a combination of au- 178

tomatic and human evaluation, where automatic 179

metrics are used to test the relational similarity of 180

analogies on a lexical level, and human judges are 181

used to evaluate the total soundness of the analo- 182

gies (Yuan et al., 2023a; Jiayang et al., 2023). 183
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2.2 SLRs in Computational Analogy Model184

Prior surveys have framed computational analogy185

models in complementary ways. French (2002)186

provides a historical overview, classifying computa-187

tional analogy models into symbolic, connectionist,188

and hybrid paradigms. By contrast, Gentner and189

Forbus (2011) analyzed analogies through the lens190

of computational models. The work decomposes191

the analogy into subprocesses: retrieval, mapping,192

abstraction, and re-representation. Gentner and For-193

bus (2011) emphasizes that analogical mappings194

favor systematic and higher-order relational corre-195

spondences. Both reviews (French, 2002; Gentner196

and Forbus, 2011), along with several other work197

(Gentner, 1983; Hofstadter, 1995) underscore that198

analogical inference relies on structured, relational199

representations and selective correspondence, but200

differ in focus: French (2002) surveys broad model201

families and open problems, whereas Gentner and202

Forbus (2011) drill into the computational models203

of mapping (for example, comparing symbolic sys-204

tems like MAC/FAC (Forbus et al., 1995) and SME205

versus cognitive-inspired models like LISA (Hum-206

mel and Holyoak, 2019a) and DORA (Doumas207

et al., 2008)).208

Mitchell (2021) brings a recent AI perspec-209

tive, noting that today’s systems “are almost en-210

tirely lacking the ability” to form humanlike ab-211

stractions or analogies. However, these reviews212

(French, 2002; Gentner and Forbus, 2011; Mitchell,213

2021) predate the recent explosion of neural gen-214

erative models for language and reasoning. In the215

LLM era, pretrained transformers can themselves216

generate analogies. For example, Bhavya et al.217

(2022) demonstrates that InstructGPT (Ouyang218

et al., 2022) can be prompted to produce mean-219

ingful conceptual analogies and explanations: with220

careful prompts, LLMs can achieve near-human221

quality on analogy-generation tasks. At the same222

time, such a method exposes new challenges: for223

instance, evaluating the creativity and validity of224

LLM-generated analogies (beyond lexical pattern225

matching) requires new benchmarks and human226

judgments, not addressed in classical frameworks.227

In summary, these reviews make valuable con-228

tributions by elucidating foundational theories, cat-229

egorizing early computational models, and high-230

lighting key cognitive mechanisms involved in ana-231

logical reasoning. However, there is a lack of re-232

search in systematically investigating the role of233

large language models or generative approaches in234

analogy generation or evaluation. This gap moti- 235

vates the need for a new, systematic review that 236

bridges classic symbolic and connectionist theo- 237

ries with recent LLM-based and deep generative 238

methods for analogy generation and evaluation. 239

3 Methodology 240

3.1 Identfictaion 241

Following the PRISMA guidelines (Moher et al., 242

2010), we first used abstract, title, and keyword 243

(ATK) search among the online NLP and other CS 244

databases including ACM Digital Library 1, IEEE 245

Xplore 2, SpringerLink 3, ScienceDirect 4, Wiley 246

Online Library 5, and ACL Anthology (Referred 247

to as ACL throughout this paper) 6. ACL is rec- 248

ognized as a primary repository for NLP research. 249

IEEE represents a leading community that contains 250

the pioneering research in Engineering and Tech- 251

nology. ACM represents the comprehensive work 252

in Human Computer Interaction (HCI) and other 253

CS related fields. ScienceDirect contains interdis- 254

ciplinary work across CS and cognitive science 255

domains. SpringerLink and Wiley offer access to 256

both theoretical and applied research across arti- 257

ficial intelligence, computational linguistics, and 258

psychology, which are essential for understanding 259

analogical reasoning from both computational and 260

cognitive perspectives. These sources collectively 261

ensure a comprehensive coverage of both founda- 262

tional and emerging research relevant to computa- 263

tional analogy generation and its evaluation. 264

For keyword search, we included the keywords 265

analogy, analogous, and analogical, as those are 266

common instances of analogy and its synonyms. 267

We did not include the related keyword metaphor 268

because our preliminary investigation revealed that 269

analogy and metaphor have evolved into distinct 270

research domains, each with its theoretical founda- 271

tions and frameworks (Rai and Chakraverty, 2020). 272

We then conducted a primary search including 273

the keywords generation, retrieval, and evaluation. 274

The term retrieval was selected because it captures 275

both cognitive and computational processes fun- 276

damental to analogical reasoning, particularly in 277

models that simulate memory or information ac- 278

cess (Kolodner, 2014; Falkenhainer et al., 1989). 279

1https://dl.acm.org/
2https://ieeexplore.ieee.org/
3https://link.springer.com/
4https://www.sciencedirect.com/
5https://onlinelibrary.wiley.com/
6https://aclanthology.org/

3



Generation has gained prominence in the era of280

LLMs, where producing analogies is often framed281

as a generative task (Bhavya et al., 2022; Sultan282

et al., 2024). Similarly, evaluation is essential for283

assessing the quality and effectiveness of generated284

or retrieved analogies, especially in empirical or285

automated settings.286

3.2 Screening, Eligibility, and Inclusion287

3.2.1 Inclusion and Exclusion Criteria288

• Include: IC1: Published between 1980 and289

2025 to ensure we cover established computa-290

tional models(Winston, 1980b; Falkenhainer291

et al., 1989); IC2: The research topic is pri-292

marily in NLP/AI/CS, and the contribution is293

relevant to computational analogy generation294

and its evaluation; this could be proposing295

novel systems or improvements upon previ-296

ous works.297

• Exclude: EC1: The paper is grey literature,298

such as a work-in-progress, workshop, poster,299

demo, an extended abstract, or a patent (Han-300

doyo and Sensuse, 2017). EC2: The paper is301

not written in English; EC3: The paper is not302

archival; EC4: The computational method303

lacks a concrete artifact (e.g., system, algo-304

rithm) or relies solely on human labor (e.g.,305

crowdsourcing), since we focus on computa-306

tional methods and systems. EC5: The paper307

constitutes solely of secondary studies, as our308

focus is on the existing methods in primary309

research (Handoyo and Sensuse, 2017). EC6:310

None of the paper’s claimed contributions con-311

cern analogy generation or the evaluation pro-312

cess.313

3.2.2 Process314

Figure 1: Pipeline of PRISMA framework used in this
review process.

The initial keyword search across six databases 315

yielded 4641 papers. After removing duplicates, 316

papers published before 1980, non-full papers, and 317

secondary studies, 4552 papers remained and were 318

subsequently included in the screening process. 319

In the ATK screening stage, four authors ran- 320

domly sampled 50 papers for a pilot screening 321

round. Each author independently labeled the pa- 322

pers as include, exclude, or uncertain. The authors 323

then met to resolve discrepancies and refine the 324

inclusion and exclusion criteria. During the main 325

screening process, each paper was reviewed by at 326

least two authors to ensure consistency. This stage 327

resulted in 125 papers. 328

Next, a full-text review was conducted to assess 329

the eligibility of the selected papers. Another pilot 330

round (N=20) was used to refine the inclusion and 331

exclusion criteria further. After this step, 31 papers 332

met the inclusion criteria and were included for 333

analysis. Refer to Fig. 1 for the entire filtering 334

pipeline. 335

Additionally, one round of backward snow- 336

balling was conducted to identify relevant studies 337

that may have been missed during the initial search 338

(Jalali and Wohlin, 2012). During the full paper 339

review, we examined the related works of the in- 340

cluded papers to identify relevant papers that align 341

with our research questions. This process yielded 342

16 additional papers, 14 of which were eligible 343

for full-text review. All 14 were included in the 344

final corpus. Eventually, a total of 45 papers were 345

included in the final analysis. 346

3.3 Data Extraction and Analysis 347

Data were extracted during the full-text eligibility 348

review process described above. This included 349

top-down coding for the following features in- 350

cluding methodology (RQ1), evaluation metrics 351

(RQ2), identified challenges (RQ3), and outcomes 352

(RQ3) to answer each of the research questions. To 353

comprehensively analyze current approaches, we 354

employed open coding and affinity diagramming 355

techniques (Dam and Siang, 2022; Hudson, 2013; 356

Spencer, 2009) to categorize the identified gener- 357

ation and evaluation methods. The extracted data 358

were grouped and cross-validated by three authors 359

using Miro7, an online collaborative whiteboarding 360

platform (Zhang et al., 2025). We held meetings to 361

resolve disagreements and refine the groupings. 362

7https://miro.com/
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4 Results363

Based on the 45 papers we examined during our364

SLR, we identified common themes and dimen-365

sions amongst the papers. Due to limited space,366

we mainly provide a high-level summary of our367

findings. Detailed results and paper selections are368

included in Appendix B.369

Figure 2: Publication years.

Publication Years. Fig.2 shows the distribu-370

tion of publication years of all selected papers in371

the SLR. The trend indicates a gradual increase372

in publications from the 1980s through the 2010s.373

The slight decline during the early 2010s may be374

attributed to the rise of embedding-based models375

(Mikolov et al., 2013) that achieved strong perfor-376

mance on analogy tasks; during this period, much377

of the research shifted toward improving embed-378

ding techniques, which we excluded if their pri-379

mary contribution was not directly related to anal-380

ogy generation or evaluation. In recent years, how-381

ever, there has been a noticeable resurgence in in-382

terest, driven by the emergence of LLMs (Ouyang383

et al., 2022), highlighting renewed attention and384

growing popularity in computational analogy re-385

search.386

4.1 Analogy Generation Framework387

We first examined papers from the 45 selected cor-388

pus, concerning analogy generation characterized389

by producing or generating one or multiple analogy390

pairs based on a target concept or domain (RQ1).391

During the bottom-up analysis process, we catego-392

rize the 22 related papers into two dimensions: the393

granularity (i.e., lexical-level and compositional-394

level) and the generation method (i.e., LLM-based).395

4.1.1 Generation by Granularity 396

Based on our review, we identified two common 397

targets of analogy generation, distinguished by 398

the granularity and structure of the generated out- 399

put: the first one is lexical-level analogy gener- 400

ation, which focuses on producing analogies in- 401

volving individual words or short phrases (e.g., 402

king:man::queen:woman) (Bourrelly et al., 1983). 403

We also include LLM-based work in this cate- 404

gory for the word-by-word prediction nature of 405

the method (Bhavya et al., 2024b). The second 406

category is compositional-level analogy generation, 407

which involves generating analogies at a higher 408

level of abstraction, such as detailed analogies of 409

scientific concepts, or coherent story structures that 410

preserve relational mappings across larger contexts 411

(Mittal, 1992; Zhu and Ontanón, 2010). 412

Of the 22 works concerning analogy generation, 413

15 proposed generation methods reside at the lex- 414

ical level. This includes 11 papers that utilized 415

LLMs for generation. Besides these works, we 416

found four papers working on compositional-level 417

analogy generation (Zhu and Ontanón, 2010; Li 418

et al., 2005; Bhavya et al., 2024b; Mittal, 1992), 419

including story generation and explanation genera- 420

tion (See Table.1). 421

We also noticed three visual analogy works apart 422

from textual analogy generation (Davies et al., 423

2008; Yaner and Goel, 2006; Sadeghi et al., 2015). 424

Visual problem solving is an essential aspect of 425

analogical reasoning (Lovett and Forbus, 2017), 426

and has been viewed as a way to measure Artificial 427

General Intelligence 8. These works demonstrate 428

generation approaches beyond textual modality and 429

highlight a promising direction towards a more in- 430

telligent multimodal analogy generation. 431

4.1.2 LLM-based Generation 432

We identify 11 papers using LLMs to generate 433

analogies through prompting techniques (Refer to 434

Table.2). In the identified collection, seven pa- 435

pers use multi-step prompt pipelines to enhance 436

the generation quality, while four earlier papers use 437

single-shot prompting to generate. This difference 438

represents a shift from single-shot prompting to 439

more structured prompt design processes as LLMs 440

become more powerful and researchers become 441

more familiar with AI-assistance tools. From the 442

perspective of analogical reasoning, this shift aligns 443

with the multi-stage cognitive process of analogi- 444

8https://arcprize.org/arc-agi
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cal reasoning—retrieval, mapping, and transfer—445

suggesting that decomposing prompts into discrete446

steps may better guide LLMs through these stages447

and produce more coherent and relationally accu-448

rate analogies (Gentner and Forbus, 2011).449

Throughout these LLM papers, we found eight450

papers that use human-in-the-loop approaches to451

enhance the generation quality through strategies452

such as manual annotation and filtering (Sultan453

et al., 2024; Bhavya et al., 2023), user-related in-454

formation injecting (CAO et al., 2024; Ju et al.,455

2025), and prompt tuning (Wang et al., 2024; Shao456

et al., 2025). The lack of quality in the initial gen-457

eration is mentioned multiple times (Bhavya et al.,458

2022; Ding et al., 2023; CAO et al., 2024; Shao459

et al., 2025), specifying a need for human-centered460

iterations.461

4.2 Analogy Evaluation Methods462

In our analogy evaluation report, we first identify463

papers relevant to RQ2. Evaluating analogy quality464

is a highly researched question, and we present our465

review result through the three lenses below.466

4.2.1 Evaluation by Granularity467

We identify the evaluation methods using the same468

granularity(lexical-level and compositional-level)469

used in generation analysis and differentiate the hu-470

man evaluation approach from the automatic one.471

Through 34 automatic evaluation approaches, 24472

are focused on the lexical level, and 10 are concen-473

trated on the compositional level evaluation (See474

Table.4). On the human evaluation side, two papers475

use humans to evaluate lexical-level metrics and476

data, while 19 papers use experts or crowdsourc-477

ing to evaluate compositional-level metrics such478

as overall quality of the analogy generated (Sultan479

et al., 2024; Jiayang et al., 2023). 11 papers include480

both automatic and human evaluation approaches.481

One paper does not include a formal evaluation482

using metrics as it proposes a theoretical model483

(Salu, 1994). This result shows that the automatic484

approach is commonly used at assessing analogies485

on the lexical-level, while human evaluation is con-486

ducted to test analogies on the compositional-level.487

4.2.2 Model Type488

We identify four different models to evaluate anal-489

ogy. First, relational graph-based models use ex-490

plicit structured representations (graphs such as491

knowledge graph and entity-relation representation492

of texts or trees such as ontology and lexicon) to493

align a familiar source domain with a novel target 494

domain. A primary example is SME (Falkenhainer 495

et al., 1989), which performs graph-matching under 496

a one-to-one structural consistency constraint. 497

Second, distributional semantics models find 498

analogies via statistical representations, such as 499

word embeddings, capturing co-occurrence infor- 500

mation or heuristic distance metrics (e.g., distance 501

in an ontology). Notably, word-embedding models 502

(Mikolov et al., 2013) demonstrated that vector off- 503

sets can capture simple A:B::C:D relations. These 504

methods (Turney et al., 2006; Mikolov et al., 2013) 505

compute relational similarity using corpus statis- 506

tics. 507

Third, cognitive/architectural models are in- 508

spired by human cognition. This includes Copycat- 509

style architecture and LISA which simulate emer- 510

gent binding or spreading activation to generate 511

analogies from sub-symbolic processes (Hofstadter 512

and Mitchell, 1994; Hummel and Holyoak, 2019b). 513

These systems often hybridize symbolic and con- 514

nectionist ideas and emphasize emergent, context- 515

sensitive mapping. 516

Fourth, transformation-based models build 517

analogies by vector-based or character-based op- 518

erations. In this framework, analogies are inter- 519

preted as geometric relationships, and they use vari- 520

ous distance metrics, normally in high-dimensional 521

space, and vector operations to evaluate the analo- 522

gies (Lepage and Ando, 1996; Plate, 2000). 523

We identified 17 papers that fit into such a 524

taxonomy (See Table.3). We report six papers 525

that use the relational graph-based method, seven 526

papers that take the distributional semantic ap- 527

proach; we also found two papers that use the cogni- 528

tive/architectural model and two papers that use the 529

transformation-based model. Our result shows that 530

early work relies on rule-based and graph-based 531

methods, such as the relational graph-based model 532

and cognitive/architectural model; as ML advances, 533

a learning-based method, which requires a corpus 534

and data to train, becomes relevant and adapted, 535

such as the distributional semantic model. 536

4.2.3 Quality Dimension 537

Lastly, we categorized the reported evaluation met- 538

rics into: accuracy, validity, similarity, novelty, 539

and human-preference/judgement metrics (See Ta- 540

ble.5). Many automatic evaluation methods target 541

one or more of these dimensions. Specifically, we 542

identified 11 papers that use accuracy-based met- 543

rics, such as precision, recall, and F1-score; 13 544
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papers that assess validity, including logical consis-545

tency checks and human validity judgments; and546

19 papers that apply similarity-based metrics, such547

as BLEU, to evaluate generated analogies.548

Novelty is an often mentioned metric in the work549

we identified (Bhavya et al., 2023; Jiayang et al.,550

2023), and while some work evaluates novelty551

through measuring word distance from existing552

analogy (Bhavya et al., 2023), some directly use553

crowdsourcers’ judgement (Jiayang et al., 2023).554

Human-preference/judgement is used in 13 papers555

as a primary evaluation method. These works typi-556

cally employ crowdsourcers (Jiayang et al., 2023;557

Sultan et al., 2024) or experts (CAO et al., 2024;558

Shao et al., 2025) to evaluate or validate the anal-559

ogy generated in their work.560

4.3 Analogy Generation Challenge561

To address RQ3, we identify relevant papers that562

discuss challenges and limitations encountered dur-563

ing analogy generation or evaluation. Our findings564

are summarized below.565

4.3.1 Novel Analogy Generation566

Across the literature, there is broad consensus that567

generating novel analogies remains a significant568

challenge. Many canonical analogies, such as the569

comparison between the solar system and Ruther-570

ford’s atom model (Gentner, 1983), have histori-571

cally been crafted by humans, then incorporated572

into computational models. In practice, both sym-573

bolic and neural systems frequently recycle well-574

established conceptual mappings, resulting in lim-575

ited novelty and diversity (Bhavya et al., 2022). For576

example, one study notes that LLMs tend to pro-577

duce “mostly known analogies that are explicitly578

mentioned on the Web”(Bhavya et al., 2023), and579

it remains unclear how to elicit truly creative new580

analogies from them. Furthermore, novel analo-581

gies often require structural or underlying similarity582

with little to no literal similarity, which makes them583

hard to generate and capture using corpus-based or584

embedding-only models (Yuan et al., 2023a).585

4.3.2 Generation with LLM586

A key challenge in LLM-based analogy generation587

is the model’s limited ability to capture deep re-588

lational similarity consistently. Multiple reports589

(Jiayang et al., 2023; Yuan et al., 2023a,b; Chen590

et al., 2022) report LLMs often conflate literal sim-591

ilarity with actual analogical structure, frequently592

generating analogies that are either repetitive or593

shallow. This misalignment undermines the goal 594

of analogy generation, which centers on abstract, 595

structural mapping. 596

Moreover, generation quality is susceptible to 597

the choice of LLM and the design of the prompt. 598

Even carefully crafted prompts can yield outputs 599

that are misleading, incorrect, or overly simplis- 600

tic (Bhavya et al., 2023). Even with detail-designed 601

prompts, LLM can still generate analogies per- 602

ceived as "oversimplified and lacking depth" (CAO 603

et al., 2024). This issue extends to analogy appli- 604

cations, where the analogies generated are often 605

complex to fit the users’ prior knowledge and are 606

sometimes considered superficial or incomplete 607

(CAO et al., 2024; Shao et al., 2025). 608

4.4 Analogy Evaluation Challenge 609

4.4.1 Metrics and Dataset Limitation 610

Limitations in evaluation metrics and available 611

datasets have been widely documented in the lit- 612

erature (Chen et al., 2022; Li et al., 2023; Turney 613

et al., 2006). These issues affect not only traditional 614

systems (e.g., symbolic, logic-based, and retrieval 615

methods), but also recent LLM-driven approaches. 616

A central concern is the narrow scope of exist- 617

ing benchmarks. Commonly used datasets, such as 618

the SAT word analogy dataset (Turney, 2008) and 619

the Google analogy corpus (Mikolov et al., 2013), 620

are relatively small and restricted to lexical-level 621

analogies. This narrow coverage limits the range 622

of analogical phenomena that models can be evalu- 623

ated on and hinders cross-domain, multilingual, or 624

multimodal marking. 625

In evaluation methodology, many studies rely on 626

binary classification accuracy or multiple-choice 627

formats to assess model performance, especially 628

in SAT-style tasks. While straightforward, these 629

metrics fail to capture graded similarity, analogi- 630

cal strength, and explanatory coherence (Bollegala 631

et al., 2009). Studies also use standard NLP met- 632

rics, such as BLEU, ROUGE, and BERTScore, to 633

evaluate analogical quality. However, these met- 634

rics primarily assess surface-level textual overlap 635

or vector-based semantic similarity, rather than re- 636

lational alignment or structural correctness (Chen 637

et al., 2022). As a result, there is a risk of overem- 638

phasizing surface similarity, encouraging models 639

to generate trivial or formulaic analogies at the ex- 640

pense of deeper, more creative mappings (Bhavya 641

et al., 2024a). 642
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4.4.2 Evaluation with LLM643

Throughout our report, we found that human eval-644

uation is mainly conducted on the compositional-645

level, while automatic evaluation is primarily per-646

formed on the lexical-level.647

This mismatch poses two challenges. First,648

LLMs sometimes generate outputs that are literally649

similar but relationally shallow, which can mislead650

both human and automatic evaluations (Jiayang651

et al., 2023). Second, existing automatic metrics,652

especially those designed for word analogy tasks,653

struggle to evaluate analogies beyond the lexical or654

syntactic level (Yuan et al., 2023a). Moreover, few655

existing automatic metrics account for creativity,656

novelty, or contextual coherence, all of which are657

central to human analogical reasoning (Hofstadter658

and Sander, 2013).659

5 Discussions660

5.1 Challenges and Opportunities in Analogy661

Generation662

As computational analogy generation finds broader663

applications across domains, a promising direction664

is the development of analogy-specific prompting665

strategies that mirror the cognitive stages of ana-666

logical reasoning: retrieval, mapping, and transfer667

(Gentner and Forbus, 2011). While techniques such668

as multi-step prompting and chain-of-thought rea-669

soning (Wei et al., 2023) have shown early success,670

they currently lack a standardized framework tai-671

lored to analogy tasks. Advancing in this direction672

could enable AI systems to perform more human-673

like, structured analogical reasoning.674

Another major challenge is the generation of675

novel analogies (Bhavya et al., 2022, 2024a). One676

open challenge lies in aligning computational defi-677

nitions of novelty (e.g., dissimilarity to known ex-678

amples or training corpora) with human judgments,679

which rely on prior knowledge, domain experi-680

ence, and perceived insight. Bridging this gap may681

require hybrid approaches that combine retrieval-682

augmented generation (RAG), knowledge-aware683

prompting, and structure-constrained decoding to684

guide the model beyond surface-level similarity.685

In addition, future work should explore cross-686

modal analogy generation, expanding current meth-687

ods beyond text to include visual, auditory, or sym-688

bolic modalities. This multimodal approach could689

unlock new forms of analogical reasoning, particu-690

larly in domains such as visual analogy tasks, edu-691

cational simulations, and conceptual design.692

5.2 Future Directions in Analogy Evaluation 693

To achieve a more robust and standardized evalua- 694

tion, future work should also focus on developing 695

large-scale, domain-diverse analogy datasets that 696

include metaphorical, visual, and scientific reason- 697

ing examples. Evaluation protocols should incor- 698

porate automatic metrics and human-centered as- 699

sessments (e.g., analogical relevance, novelty, and 700

coherence), as suggested in (Bhavya et al., 2024a). 701

Ultimately, analogy evaluation needs to move be- 702

yond lexical correctness to capture the full depth 703

and function of analogical reasoning. 704

6 Conclusion 705

In this paper, we present a systematic literature 706

review on analogy generation and evaluation, fol- 707

lowing the PRISMA framework. We began with 708

a keyword search across six academic databases, 709

yielding 4,641 papers. After applying the ATK 710

screening process and conducting a full-text eligi- 711

bility review, a total of 45 papers were included in 712

the final analysis. We conducted a detailed analy- 713

sis of these works, categorizing existing computa- 714

tional methods for analogy generation and evalua- 715

tion. Additionally, we highlighted key challenges 716

in the field and outlined future research directions 717

to advance analogy generation and evaluation sys- 718

tems. 719

Limitations 720

As a review process that involves subjective judg- 721

ments by individual authors, this study may be 722

subject to bias. To mitigate this, we conducted 723

pilot checks at each stage to iteratively refine the 724

selection criteria. Additionally, all results were 725

cross-checked by multiple authors, and meetings 726

were held to resolve conflicts and ensure consis- 727

tency. 728

Despite careful formulation of the search strings, 729

it is possible that some relevant papers were missed. 730

In particular, while this review focused primarily on 731

analogy, there is conceptual overlap with metaphor, 732

and relevant discussions of analogy may appear 733

in metaphor-focused papers. To address this, we 734

conducted one round of backward snowballing to 735

identify and include potentially overlooked studies. 736

Future work could undertake a more exhaustive 737

investigation into the distinctions and interrelations 738

between analogy and metaphor. 739
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Generation Granularity Papers

(Sultan et al., 2024), (Yuan et al., 2023b), (Bourrelly et al., 1983),
(Ding et al., 2023), (Bhavya et al., 2023), (Wang et al., 2024),

Lexical-level (Chen et al., 2022), (Jiayang et al., 2023), (Bhavya et al., 2022),
(Salu, 1994), (Yuan et al., 2023a), (Crouse et al., 2021),
(Shao et al., 2025), (Ju et al., 2025), (Boisson et al., 2024)

Compositional-level (Bhavya et al., 2024b), (Mittal, 1992), (Li et al., 2005), (Wang et al., 2024)

Table 1: Analogy Generation by Granularity

Type Dimension Papers

(Shao et al., 2025), (Ju et al., 2025), (Boisson et al., 2024),
Human-in-the-loop (Sultan et al., 2024), (Wang et al., 2024), (Yuan et al., 2023b),

(Jiayang et al., 2023), (Yuan et al., 2023a)

LLM (Shao et al., 2025), (Ju et al., 2025), (Boisson et al., 2024),
Multi-step Generation (Sultan et al., 2024), (Yuan et al., 2023b), (Jiayang et al., 2023),

(Bhavya et al., 2023)

Single Prompt Generation (Bhavya et al., 2022), (Ding et al., 2023), (Wang et al., 2024),
(Yuan et al., 2023a)

(Salu, 1994), (Crouse et al., 2021), (Chen et al., 2022),
Non-LLM (Bhavya et al., 2024b), (Bourrelly et al., 1983), (Mittal, 1992),

(Davies et al., 2008), (Yaner and Goel, 2006), (Li et al., 2005),
(Zhu and Ontanón, 2010), (Sadeghi et al., 2015)

Table 2: LLM vs. Non-LLM Generation

Model Type Papers

(Denaux and Gomez-Perez, 2019), (Falkenhainer et al., 1989),
Relational Graph-based (Winston, 1980a), (Tsatsaronis et al., 2010), (Bourrelly et al., 1983),

(Holyoak and Thagard, 1989)

(Turney et al., 2006), (Turney, 2008), (Li et al., 2023),
Distributional Semantic (Wang et al., 2009), (Hope et al., 2017), (Bollegala, 2010),

(Schluter, 2018)

Cognitive/architectural (Hofstadter and Mitchell, 1994), (Hummel and Holyoak, 2019a)

Transformation-based (Plate, 2000), (Lepage and Ando, 1996)

Table 3: Evaluation Model Types
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Type Level Papers

(Schluter, 2018), (Tsatsaronis et al., 2010), (Sadeghi et al., 2015),
(Denaux and Gomez-Perez, 2019), (Wang et al., 2024),
(Chen et al., 2022), (Plate, 2000), (Li et al., 2005),
(Jiayang et al., 2023), (Turney, 2008), (Winston, 1980a),

Lexical-level (Yuan et al., 2023a), (Bhavya et al., 2022), (Li et al., 2023),
Automatic (Yuan et al., 2023b), (Wijesiriwardene et al., 2023b), (Bollegala, 2010),

(Hope et al., 2017), (Sultan et al., 2024), (Bhavya et al., 2024b),
(Thagard et al., 1990), (Bollegala et al., 2009),
(Lepage and Ando, 1996), (Hofstadter and Mitchell, 1994)

(Wang et al., 2009), (Zhang et al., 2017), (Falkenhainer et al., 1989),
Compositional-level (Crouse et al., 2021), (Yuan et al., 2023a),

(Zhu and Ontanón, 2010), (Yaner and Goel, 2006), (Winston, 1980a),
(Plate, 2000), (Hummel and Holyoak, 2019a)

Lexical-level (Yuan et al., 2023a), (Turney, 2008)

(Falkenhainer et al., 1989), (Li et al., 2005), (Wang et al., 2024),
(Plate, 2000), (Bourrelly et al., 1983), (Boisson et al., 2024),

Human (CAO et al., 2024), (Mittal, 1992), (Shao et al., 2025),
Compositional-level (Ju et al., 2025), (Sultan et al., 2024), (Jiayang et al., 2023),

(Yuan et al., 2023b), (Davies et al., 2008), (Ding et al., 2023),
(Bhavya et al., 2024a), (Bhavya et al., 2023), (Hope et al., 2017),
(Bhavya et al., 2022)

Table 4: Analogy Evaluation by Granularity

13



Evaluation Granularity Papers

(Crouse et al., 2021), (Turney, 2008), (Chen et al., 2022),
Accuracy (Yuan et al., 2023b), (Bhavya et al., 2024b), (Hope et al., 2017),

(Yuan et al., 2023a), (Yaner and Goel, 2006), (Bollegala, 2010),
(Bhavya et al., 2024a), (Plate, 2000),

(Bollegala et al., 2009), (Sultan et al., 2024), (Thagard et al., 1990),
(Li et al., 2023), (Wang et al., 2024), (Lepage and Ando, 1996),
(Plate, 2000), (Wang et al., 2009), (Schluter, 2018),

Similarity (Jiayang et al., 2023), (Yuan et al., 2023a), (Sadeghi et al., 2015),
(Tsatsaronis et al., 2010), (Denaux and Gomez-Perez, 2019), (Winston, 1980a),
(Wijesiriwardene et al., 2023b), (Zhu and Ontanón, 2010), (Bhavya et al., 2022),
(Boisson et al., 2024),

(Crouse et al., 2021), (Jiayang et al., 2023), (Hope et al., 2017),
(Li et al., 2005), (Zhang et al., 2017), (Yuan et al., 2023b),

Validity (Winston, 1980a), (Bhavya et al., 2024a), (Hofstadter and Mitchell, 1994),
(Holyoak and Thagard, 1989), (Hummel and Holyoak, 2019a),
(Bourrelly et al., 1983), (Mittal, 1992),

Novelty (Bhavya et al., 2022), (Jiayang et al., 2023), (Hope et al., 2017),
(Bhavya et al., 2023),

(Sultan et al., 2024), (Yuan et al., 2023b), (Davies et al., 2008),
Human Preference (Ding et al., 2023), (Bhavya et al., 2022), (Turney, 2008),
/Judgement (Falkenhainer et al., 1989), (Li et al., 2005), (Wang et al., 2024),

(Shao et al., 2025), (CAO et al., 2024), (Ju et al., 2025), (Boisson et al., 2024),

Table 5: Analogy Evaluation Dimension
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