
COPlanner: Plan to Roll Out Conservatively but to
Explore Optimistically for Model-Based RL

Anonymous Author(s)
Affiliation
Address
email

Abstract: Dyna-style model-based reinforcement learning contains two phases:1

model rollouts to generate sample for policy learning and real environment ex-2

ploration using current policy for dynamics model learning. However, due to the3

complex real-world environment, it is inevitable to learn an imperfect dynamics4

model with model prediction error, which can further mislead policy learning and5

result in sub-optimal solutions. In this paper, we propose COPlanner, a planning-6

driven framework for model-based methods to address the inaccurately learned7

dynamics model problem with conservative model rollouts and optimistic environ-8

ment exploration. COPlanner leverages an uncertainty-aware policy-guided model9

predictive control (UP-MPC) component to plan for multi-step uncertainty esti-10

mation. This estimated uncertainty then serves as a penalty during model rollouts11

and as a bonus during real environment exploration respectively, to choose actions.12

Consequently, COPlanner can avoid model uncertain regions through conservative13

model rollouts, thereby alleviating the influence of model error. Simultaneously,14

it explores high-reward model uncertain regions to reduce model error actively15

through optimistic real environment exploration. COPlanner is a plug-and-play16

framework that can be applied to any dyna-style model-based methods. Experi-17

mental results on a series of proprioceptive and visual continuous control tasks18

demonstrate that both sample efficiency and asymptotic performance of strong19

model-based methods are significantly improved combined with COPlanner.20

Keywords: Model-based RL, Model prediction error, Uncertainty-based Planning21

1 Introduction22

Figure 1: Mean performance of
COPlanner compared with base-
lines across 3 diverse benchmarks.

Model-Based Reinforcement Learning (MBRL) has emerged23

as a promising approach to improve the sample efficiency of24

model-free RL methods. Most MBRL methods contain two25

phases that are alternated during training: 1) the first phase26

where the agent interacts with the real environment using a27

policy to obtain samples for dynamics model learning; 2) the28

second phase where the learned dynamics model rolls out29

to generate massive samples for updating the policy. Conse-30

quently, learning an accurate dynamics model is critical as the31

model-generated samples with high bias can mislead the policy32

learning [3, 33].33

However, dynamics model errors are inevitable due to the complex real-world environment. Existing34

methods try to avoid model errors in two main ways. 1) Design different mechanisms such as filtering35

out error-prone samples to mitigate the influence of model errors after model rollouts [1, 35, 20, 34].36

2) Actively reduce model errors during real environment interaction through uncertainty-guided37

exploration [28, 24, 25, 18]. While both categories of methods have achieved advancements, each38

Figure 2: COPlanner Framework. The most essential part of COPlanner is the Uncertainty-aware Policy-
Guided MPC (UP-MPC) phase in which we plan trajectories of length H , according to the learned dynamics
model and learned policy network π, to select the action with highest trajectory reward. This UP-MPC phase is
implemented differently for the two different purposes: environment exploration v.s. dynamics model rollouts.
In environment exploration, trajectory reward has an uncertainty bonus term to encourage exploring uncertain
regions in the environment. In dynamics model rollouts, trajectory reward, on the contrary, has an uncertainty
penalty term to encourage policy learning on confident regions of the learned dynamics model.

comes with its own set of limitations. For the first category, although these approaches are shown to39

be empirically effective, they primarily concentrate on estimating uncertainty at the current step, often40

neglecting the long-term implications that present samples might have on model rollouts. Moreover,41

post-processing samples after model rollouts can compromise rollout efficiency as many model-42

generated samples are discarded or down-weighted. As for the second category, it is intrinsically43

challenging to achieve low model error and high long-term reward without sacrificing the sample44

efficiency by learning exploration policies.45

To tackle the aforementioned limitations, we introduce a novel framework, COPlanner, which46

mitigates the model errors from two aspects: 1) avoid being misled by the existing model errors47

via conservative model rollouts, and 2) keep reducing the model error via optimistic environment48

exploration. The two aspects are achieved simultaneously by a novel uncertainty-aware multi-step49

planning method, which requires no extra exploration policy training nor additional samples, resulting50

in stable policy updates and high sample efficiency. COPlanner is structured around three core51

components: the Planner, conservative model rollouts, and optimistic environment exploration. In52

the Planner, we employ an Uncertainty-aware Policy-guided Model Predictive Control (UP-MPC)53

to forecast future trajectories in terms of selecting actions and to estimate the long-term uncertainty54

associated with each action. As shown in Figure 2, this long-term uncertainty serves as dual roles. In55

the model rollouts phase, the uncertainty acts as a penalty on the total planning trajectory, guiding the56

selection of conservative actions. Conversely, during the model learning phase, it serves as a bonus57

on the total planning trajectory, steering towards optimistic actions for environment exploration.58

Compared to previous methods, COPlanner has the following advantages: (a) COPlanner has higher59

exploration efficiency, as it focuses on investigating high-reward uncertain regions to broaden the60

dynamics model, thereby preventing unnecessary excessive exploration of areas with low rewards. (b)61

COPlanner has higher model-generated sample utilization rate. Through planning for multi-step62

model uncertainty estimation, COPlanner can prevent model rolled out trajectories from falling into63

uncertain areas, thereby avoiding model errors before model rollouts and improving the utility of64

model generated samples. (c) COPlanner enjoys an unified policy framework. Unlike previous65

methods [25, 18] that require training two separate policies for different usage, COPlanner only66

requires training a single policy and we only change the way model-based planning is utilized,67

thus improving training efficiency and resolving potential policy distribution mismatches. (d)68

COPlanner ensures undistracted policy optimization. Notably, COPlanner diverges from existing69

approaches by not using long-term uncertainty as an intrinsic reward. Instead, the policy’s objective70

remains focused on maximizing environmental rewards, thereby avoiding the introduction of spurious71

behaviors due to model uncertainty.72

Summary of Contributions: (1) We introduce COPlanner framework which can mitigate the73

influence of model errors during model rollouts and explore the environment to actively reduce74

2

model errors simultaneously by leveraging our proposed uncertainty-aware policy-guided MPC. (2)75

COPlanner is a plug-and-play framework that can be applicable to any dyna-style MBRL method.76

(3) After being integrated with other MBRL baseline methods, COPlanner improves the sample77

efficiency of these baselines by nearly double. (4) Besides, COPlanner also significantly improves78

the performance on a suite of proprioceptive and visual control tasks compared with other MBRL79

baseline methods (16.9% on proprioceptive DMC, 59.7% on MuJoCo, and 23.9% on visual DMC).80

2 Preliminaries81

Model-based reinforcement learning. We consider a Markov Decision Process (MDP) defined82

by the tuple (S,A, T , ρ0, r, γ), where S and A are the state space and action space respectively,83

T (s′|s, a) is the transition dynamics, ρ0 is the initial state distribution, r(s, a) is the reward function84

and γ is the discount factor. In model-based RL, the transition dynamics T in the real world is85

unknown, and we aim to construct a model T̂ (s′|s, a) of transition dynamics and use it to find an86

optimal policy π which can maximize the expected sum of discounted rewards,87

π = argmax
π

E st∼T̂ (·|st−1,at−1)

at∼π(a|st)

[∞∑
t=0

γtr(st, at)

]
. (1)

Model predictive control. Model predictive control (MPC) has a long history in robotics and control88

systems [5, 22]. MPC find the optimal action through trajectory optimization. Specifically, given the89

transition dynamics T in the real world, the agent obtains a local solution at each step t by estimating90

optimal actions over a finite horizon H (i.e., from t to t+H) and executing the first action at from91

the computed optimal sequence at time step t:92

at = argmax
at:t+H

E

[
H∑
i=t

γir(si, ai)

]
, si ∼ T (·|si−1, ai−1), (2)

where γ is typically set to 1. In model-based control methods, the transition dynamics T is simulated93

by the learned dynamics model T̂ [2, 30, 11].94

3 The COPlanner Framework95

In this section, we will introduce COPlanner framework. COPlanner consists of three components:96

the Planner, conservative model rollouts, and optimistic environment exploration. Within the Planner,97

we propose using an Uncertainty-aware Policy-guided MPC to predict potential future trajectories98

when selecting different actions under the current state and estimate the long-term uncertainty99

associated with each action, which will be introduced in Sec 3.1. Depending on the phase, this100

long-term uncertainty is used to further guide the selection of conservative actions for policy learning101

or optimistic actions for environment exploration which will be introduced in Sec 3.2 and Sec 3.3.102

3.1 “The Planner”: Uncertainty-Aware Policy-Guided MPC103

Figure 3: The Planner.

In this section, we present the core part of our pro-104

posed framework which is called Uncertainty-aware105

Policy-guided MPC (UP-MPC). Inspired by MPC,106

we apply the random shooting method [23] to intro-107

duce a long-term vision. Specifically, given the cur-108

rent state st, before each interaction with the model109

or real environment, we first generate an action candidate set containing K actions using the policy:110

at = {a(1)t , a
(2)
t , ..., a

(k)
t }. Then, for each action candidate, we perform Hp-step planning and111

calculate the reward r, and model uncertainty u for each step. Finally, we select the action according112

to accumulated reward and model uncertainty, (to interact with the learned dynamics for the model113

rollouts or to interact with the environment for the model learning), as will be discussed in details in114

Sec 3.2 and Sec 3.3.115

3

Incorporating model uncertainty is crucial for action selection to compensate for model error. As116

illustrated in Algorithm 1, we calculate the model uncertainty u through the model disagreement [21]117

method. Model disagreement is closely related to model learning and is currently the most common118

way to estimate model uncertainty in MBRL [35, 14, 20, 25, 34, 18]. We train a dynamics model119

ensemble T̂θ = {T̂ (1)
θ , T̂

(2)
θ , ..., T̂

(n)
θ } to predict the next state given the current state-action pair120

(st, at) as input. Utilizing the ensemble, we approximate the model uncertainty by calculating the121

variance over predicted states of the different ensemble members. This estimation closely represents122

the expected information gain [21]:123

u(st, at) =
1

N − 1

∑
n

(T̂
(n)
θ (st, at)− µ′)2, µ′ =

1

N

∑
n

T̂
(n)
θ (st, at). (3)

124
See Figure 3 for the illustration of the process. The pseudocode for the Planner, i.e., the UP-MPC125

process, is summarized in Algorithm 1.126

Algorithm 1 The Planner: UP-MPC
(
πϕ, s, T̂θ, K, H , α

)
Require: Policy πϕ, State s, learned dynamics model T̂θ, number of candidates actions K, planning

horizon Hp, optimistic/conservative parameter α
1: Initialize R(k) = 0 for k = 1, ...,K, s(k)0 = s for k = 1, ...,K
2: for k = 1 to K do
3: for t = 0 to Hp − 1 do
4: Sample a

(k)
t ∼ πϕ(·|s(k)t)

5: Rollout dynamics model r(k)t = R̂(·|s(k)t , a
(k)
t), s

(k)
t+1 ∼ T̂θ(·|s(k)t , a

(k)
t)

6: Compute model uncertainty u
(k)
t according to Eq. 3

7: R(k) = R(k) + r
(k)
t + αu

(k)
t

8: Select k∗ = argmaxk=1,...,K R(k)

9: return a
(k∗)
0

Although in Algorithm 1 model uncertainty u is implemented through model disagreement, our127

proposed UP-MPC is a generic framework, any method for calculating intrinsic rewards to encourage128

exploration can be embedded into our framework for computing u. In Appendix D.6 we provide an129

ablation study of uncertainty estimation methods to further illustrate this point.130

3.2 Conservative model rollouts131

In model-based RL, due to the limited samples available for model learning, model prediction errors132

are inevitable. If a policy is trained using model-generated samples with a large error, these samples133

will not provide correct gradient and may mislead the policy update. Previous methods estimate the134

model uncertainty of each sample after generation and re-weight or discarded samples with high135

uncertainty. However, re-weighting samples based on uncertainty still leads to samples with high136

uncertainty participating in the policy learning process, while filtering requires manually setting137

an uncertainty threshold, and determining the optimal threshold is difficult. Discarding too many138

samples can result in inefficient rollouts.139

We apply our Planner to plan for maximizing the future reward while minimizing the model uncer-140

tainty during model rollouts before executing the action. After calculating the reward and model141

uncertainty for the Hp-step trajectories of K action candidates (line 5 and 6 in Algorithm 1), we142

replace α = −αc, for a positive αc > 0 at line 7 in Algorithm 1. Mathematically, we select the action143

according to Eq. 4 to interact with the model for model rollouts:144

a = argmaxat∈at

[
r(st, at) +

∑Hp

i=1 r(ŝt+i, π(ŝt+i))−αc
∑Hp

i=1 u(ŝt+i, π(ŝt+i))
]
, ŝt+i ∼ T̂ (·|ŝt+i−1, at+i−1).

(4)
The negative −αc is a coefficient that adds the model uncertainty as a penalty term to the trajectory145

total reward. By employing this approach, we can prevent model rollout trajectories from falling into146

model-uncertain regions while obtaining samples with higher rewards.147

4

3.3 Optimistic environment exploration148

In addition to model rollouts, another crucial part of MBRL is interacting with the real environment149

to obtain samples to improve the dynamics model. Since the main purpose of MBRL is to improve150

sample efficiency, we should acquire more meaningful samples for improving the dynamics model151

within a limited number of interactions. Therefore, unlike previous methods that merely aimed to152

thoroughly explore the environment to obtain a comprehensive model [28, 24, 25], we do not expect153

the dynamics model to learn all samples in the state space. This is because many low-reward samples154

do not contribute to policy improvement. Instead, we hope to obtain samples with both high rewards155

and high model uncertainty to sufficiently expand the model and reduce model uncertainty.156

Similar to model rollouts, we also employ our Planner in the process of selecting actions when157

interacting with the environment. However, the difference lies in that we replace α = αo, for a158

positive αo > 0 at line 7 in Algorithm 1. Mathematically, we choose the action with both high159

cumulative rewards and model uncertainty according to Eq. 5, which is a symmetric form of Eq. 4.160

αo is a hyperparameter to balance the reward and exploration. Such an action can guide the trajectory161

towards regions with high rewards and model uncertainty in the real environment, thereby effectively162

expanding the learned dynamics model.163

a = argmaxat∈at

[
r(st, at) +

∑Hp

i=1 r(ŝt+i, π(ŝt+i))+αo
∑Hp

i=1 u(ŝt+i, π(ŝt+i))
]
, ŝt+i ∼ T̂ (·|ŝt+i−1, at+i−1)

(5)

In summary, by simultaneously using conservative model rollouts and optimistic environment ex-164

ploration, COPlanner effectively alleviates the model error problem in MBRL. As we will show in165

Section 5, this is of great help in improving the sample efficiency and performance. The pseudocode166

of COPlanner is shown in Algorithm 2, and a more detailed figure is shown in Appendix A. Very167

importantly, COPlanner achieves both conservative model rollouts and optimistic environment ex-168

ploration using a single policy. Different from prior exploration methods, the policy that COPlanner169

learns does not have to be an “exploration” policy which is inevitably suboptimal.170

Algorithm 2 Main Algorithm: COPlanner

Require: Interaction epochs I , rollout horizon Hr, planning horizon Hp, number of candidates
actions K, conservative rate αc, optimistic rate αo

1: Initialize policy πϕ, dynamics model T̂ , real sample buffer De, model sample buffer Dm
2: for I epochs do
3: while not Done do
4: Select action at = UP-MPC

(
πϕ, st, T̂θ,K,Hp, αo

)
5: Execute in real environment, add (st, at, rt, st+1) to De

6: Train dynamics model T̂θ with De
7: for M model rollouts do
8: Sample initial states from real sample buffer De
9: for h = 0 to Hr do

10: Select action ât+h = UP-MPC
(
πϕ, ŝh, T̂θ,K,Hp,−αc

)
11: Rollout learned dynamics model and add to Dm
12: Update current policy πϕ with Dm

4 Related work171

Mitigating model error by improving rollout strategies. Prior methods primarily focus on using172

dynamics model ensembles [15, 2] to assess model uncertainty of samples after they were generated173

by the model, and then apply weighting techniques [1, 34], penalties [14, 35] or filtering [20, 32] to174

those high uncertainty samples to mitigate the influence of model error. These methods only quantify175

uncertainty after generating the samples and since their uncertainty metrics are based on the current176

step and are myopic, these metrics can not evaluate the potential influence of the current sample177

on future trajectories. Therefore, they fail to prevent the trajectories, which is generated through178

5

model rollout on the current policy, from entering high uncertainty regions, eventually leading to179

a failed policy update. Wu et al. [33] proposed Plan to Predict (P2P), which reverses the roles of180

the model and policy during model learning to learn an uncertainty-foreseeing model, aiming to181

avoid model uncertain regions during model rollouts. Combined with MPC, their method achieved182

promising results. However, their approach lacks effective exploration of the environment. Branched183

rollout [13] and bidirectional rollout [16] take advantage of small model errors in the early stages184

of rollouts and uses shorter rollout horizons to avoid model errors, but these approaches limit the185

planning capabilities of the learned dynamics model. Besides, different model learning objectives186

[27, 4, 31, 37] are designed to solve objective mismatch [17] in model-based RL and further mitigate187

model error during model rollouts.188

Reducing model error by improving environment exploration. Another approach to mitigate189

model error is to expand the dynamics model by obtaining more diverse samples through exploration190

during interactions with the environment. However, previous methods mostly focused on pure191

exploration, i.e., how to make the dynamics model learn more comprehensively [28, 24, 25, 18, 12].192

In complex environments, thoroughly exploring the entire environment is very sample-inefficient193

and not practical in real-world applications. Moreover, using pure exploration to expand the model194

may lead to the discovery of many low-reward samples (e.g., different ways an agent may fall in195

MuJoCo environment [29]), which are not very useful for policy learning. Mendonca et al. [18]196

proposed Latent Explorer Achiever (LEXA) which involves a explorer for exploring the environment197

and one achiever for solving diverse tasks based on collected samples, but the explorer and achiever198

may experience policy distribution shift under specific single-task settings, causing the achiever to199

potentially not converge to the optimal solution.200

Mitigating model error from both sides. One most relevant work is Model-Ensemble Exploration201

and Exploitation (MEEE) [34] which simultaneously expands the dynamics model and reduces the202

impact of model error during model rollouts. During the rollout process, it uses uncertainty to weight203

the loss calculated for each sample to update the policy and the critic. Before interacting with the204

environment, they first generate k action candidates and then select the action with the highest sum of205

Q-value and one-step model uncertainty to execute. However, as we mentioned earlier, weighting206

samples cannot fundamentally prevent the impact of model errors on policy learning, and it may207

still mislead policy updates. Moreover, since the one-step prediction error of dynamics models208

is often small [20], relying only on the sum of Q-values and one-step model uncertainty may not209

effectively differentiate action candidates. As a result, samples collected during interactions with the210

environment might not efficiently expand the model.211

5 Experiment212

In this section, we combine COPlanner with strong MBRL baseline methods and conduct experi-213

ments on both proprioceptive control environments and visual control environments to demonstrate214

the effectiveness of our method. Due to space constraints, further discussions about the method and215

ablation studies can be found in Appendix D.216

5.1 Experiment on proprioceptive control tasks217

Baselines: In this section, we conduct experiments to demonstrate the effectiveness of COPlanner218

on proprioceptive control MBRL methods. We combine COPlanner with MBPO [13], the most219

classic method in proprioceptive control dyna-style MBRL, and we name the combined method220

as COPlanner-MBPO. The implementation details can be found in Appendix B. Consequently,221

MBPO naturally becomes one of our baselines. The other two baselines are P2P-MPC [33] and222

MEEE [34]. These two methods also aim to mitigate the impact of model errors in model-based RL.223

More details of P2P-MPC and MEEE can be found in Section 4. We also provide comparison with224

more proprioceptive control MBRL methods in Appendix D.1.225

Environment and hyperparameter settings: We conduct experiments on 8 proprioceptive con-226

tinuous control tasks of DeepMind Control (DMC) and 4 proprioceptive control tasks of MuJoCo.227

6

MBPO trains an ensemble of 7 networks as the dynamics model while using the Soft Actor-Critic228

(SAC) as the policy network. In COPlanner-MBPO, we adopt the setting of MBPO and directly use229

the dynamics model ensemble to calculate model uncertainty for action selection in Policy-Guided230

MPC. For hyperparameter setting, we set optimistic rate αo to be 1, conservative rate αc to be 2 in231

most tasks. We set action candidate number K and planning horizon Hp equal to 5 in all tasks. The232

specific setting are shown in the Appendix C.1.233

Figure 4: Experiment results of COPlanner-MBPO and other three baselines on proprioceptive control
environments. The curves in the first eight figures originate from DM Control tasks, while those
in the last four are from MuJoCo tasks. The results are averaged over 8 random seeds, and shaded
regions correspond to the 95% confidence interval among seeds. During evaluation, for each seed
of each method, we test for up to 1000 steps in the test environment and perform 10 evaluations to
obtain an average value. The evaluation interval is every 1000 environment steps.

COPlanner significantly improves the sample efficiency and performance of MBPO: Through234

the results in Figure 4 we can find that both sample efficiency and performance of MBPO have235

a significant improvement after combining COPlanner. (a) Sample efficiency: In proprioceptive236

control DMC, the sample efficiency is improved by 40% on average compared to MBPO. For237

example, in the Walker-walk task, MBPO requires 100k steps for the performance to reach 700,238

while COPlanner-MBPO only needs approximately 60k steps. In more complex MuJoCo tasks, the239

improvement brought by COPlanner is even more significant. Compared to MBPO, the sample240

efficiency of COPlanner-MBPO has almost doubled. (b) Performance: From the performance241

perspective, as shown in Figure 1, the performance of MBPO has improved by 16.9% after combining242

COPlanner. Moreover, it is worth noting that our method successfully solves the Walker-run task,243

which MBPO fails to address, further demonstrating the effectiveness of our proposed framework. In244

MuJoCo tasks, the average performance at 150k environment steps has increased by 59.7%. Besides,245

COPlanner-MBPO also outperforms other two baselines.246

5.2 Experiment on visual control tasks247

Baselines: We conduct experiments to demonstrate the effectiveness of our proposed framework on248

visual control environments. We integrate our algorithm with DreamerV3 [10], the state-of-the-art249

Dyna-style model-based RL approach recently introduced for visual control. The implementation250

details can be found in Appendix B. We choose LEXA [18] as our another baseline. LEXA uses251

Plan2Explore [25] as intrinsic reward to explore the environment and learn a world model, then using252

this model to train a policy to solve diverse tasks such as goal achieving. Here we adopt LEXA253

on DreamerV3 to address continuous control tasks and name it as LEXA-DreamerV3. Since pure254

exploration base on Plan2Explore is sample inefficient for model learning when solving specific tasks,255

we use the real reward provided by environment as extrinsic reward and add it to intrinsic reward256

provided by Plan2Explore to train the explorer. We call this baseline LEXA-reward-DreamerV3.257

7

We also provide comparison with more visual control MBRL methods including TDMPC [11] and258

PlaNet [8] in Appendix D.2.259

Figure 5: Experiment results of COPlanner-Dreamerv3 and other three baselines on pixel-input DMC.
The results are averaged over 8 random seeds, and shaded regions correspond to the 95% confidence
interval among seeds. During evaluation, for each seed of each method, we test for up to 1000 steps
in the test environment and perform 10 evaluations to obtain an average value. The evaluation interval
is every 1000 environment steps.
Environment and hyperparameter settings: We use 8 visual control tasks of DMC as our en-260

vironment. In COPlanner-DreamerV3, we learn a latent one-step prediction dynamics model as261

Plan2Explore [25], the ensemble size is 8. We set action candidate number K and planning horizon262

Hp equal to 4 in all tasks. For optimistic rate αo and conservative rate αc, we set them to be 1 and263

0.5, respectively. All other hyperparameters remain consistent with the original DreamerV3 paper.264

COPlanner significantly improves the sample efficiency and performance of DreamerV3: From265

the experiment results in Figure 5, we observe that COPlanner-DreamerV3 improves the sample266

efficiency and performance significantly over DreamerV3. The sample efficiency of COPlanner-267

DreamerV3 is more than twice that of DreamerV3, and the performance is improved by 23.9%.268

Besides, LEXA-DreamerV3 has a low sample efficiency and do not perform well. This demonstrates269

the limitation of pure exploration when the goal is to solve specific tasks instead of learning a270

dynamics model applicable to a variety of tasks. After adding real reward as extrinsic reward for271

explorer learning, LEXA-reward-DreamerV3 delivers performance comparable to DreamerV3 in most272

environments. It outperforms DreamerV3 in Cartpole-swingup-sparse and Hopper-stand. However,273

its performance and sample efficiency are still worse than COPlanner-DreamerV3, further indicates274

the effectiveness of COPlanner.275

6 Conclusion and discussion276

We investigate how to effectively address the inaccurate learned dynamics model problem in MBRL.277

We propose COPlanner, a general framework that can be applied to any dyna-style MBRL method.278

COPlanner utilizes Uncertainty-aware Policy-Guided MPC phase to predict the cumulative uncer-279

tainty of future steps and symmetrically uses this uncertainty as a penalty or bonus to select actions280

for conservative model rollouts or optimistic environment exploration. In this way, COPlanner can281

avoid model uncertain areas before model rollouts to minimize the impact of model error, while also282

exploring high-reward model-uncertain areas in the environment to expand the model and reduce283

model error. Experiments on a range of continuous control tasks demonstrates the effectiveness of our284

method. One drawback of COPlanner is that MPC can lead to additional computational time and we285

provide a detailed computational time consumption in Appendix D.7. We can improve computational286

efficiency by parallelizing planning, which we leave for future work.287

References288

[1] Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-289

efficient reinforcement learning with stochastic ensemble value expansion. Advances in neural290

8

information processing systems, 31, 2018.291

[2] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement292

learning in a handful of trials using probabilistic dynamics models. Advances in Neural293

Information Processing Systems, 31, 2018.294

[3] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach295

to policy search. In Proceedings of the 28th International Conference on machine learning296

(ICML-11), pages 465–472, 2011.297

[4] Benjamin Eysenbach, Alexander Khazatsky, Sergey Levine, and Russ R Salakhutdinov. Mis-298

matched no more: Joint model-policy optimization for model-based rl. Advances in Neural299

Information Processing Systems, 35:23230–23243, 2022.300

[5] Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control: Theory and301

practice—a survey. Automatica, 25(3):335–348, 1989.302

[6] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-303

policy maximum entropy deep reinforcement learning with a stochastic actor. In International304

conference on machine learning, pages 1861–1870. PMLR, 2018.305

[7] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:306

Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.307

[8] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and308

James Davidson. Learning latent dynamics for planning from pixels. In International conference309

on machine learning, pages 2555–2565. PMLR, 2019.310

[9] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with311

discrete world models. arXiv preprint arXiv:2010.02193, 2020.312

[10] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains313

through world models. arXiv preprint arXiv:2301.04104, 2023.314

[11] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive315

control. arXiv preprint arXiv:2203.04955, 2022.316

[12] Edward S Hu, Richard Chang, Oleh Rybkin, and Dinesh Jayaraman. Planning goals for317

exploration. arXiv preprint arXiv:2303.13002, 2023.318

[13] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:319

Model-based policy optimization. Advances in neural information processing systems, 32,320

2019.321

[14] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel:322

Model-based offline reinforcement learning. Advances in neural information processing systems,323

33:21810–21823, 2020.324

[15] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble325

trust-region policy optimization. In International Conference on Learning Representations.326

[16] Hang Lai, Jian Shen, Weinan Zhang, and Yong Yu. Bidirectional model-based policy op-327

timization. In International Conference on Machine Learning, pages 5618–5627. PMLR,328

2020.329

[17] Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. Objective mismatch in330

model-based reinforcement learning. arXiv preprint arXiv:2002.04523, 2020.331

[18] Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Dis-332

covering and achieving goals via world models. Advances in Neural Information Processing333

Systems, 34:24379–24391, 2021.334

9

[19] Andrew S Morgan, Daljeet Nandha, Georgia Chalvatzaki, Carlo D’Eramo, Aaron M Dollar,335

and Jan Peters. Model predictive actor-critic: Accelerating robot skill acquisition with deep336

reinforcement learning. In 2021 IEEE International Conference on Robotics and Automation337

(ICRA), pages 6672–6678. IEEE, 2021.338

[20] Feiyang Pan, Jia He, Dandan Tu, and Qing He. Trust the model when it is confident: Masked339

model-based actor-critic. Advances in neural information processing systems, 33:10537–10546,340

2020.341

[21] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagree-342

ment. In International conference on machine learning, pages 5062–5071. PMLR, 2019.343

[22] S Joe Qin and Thomas A Badgwell. A survey of industrial model predictive control technology.344

Control engineering practice, 11(7):733–764, 2003.345

[23] Anil V Rao. A survey of numerical methods for optimal control. Advances in the Astronautical346

Sciences, 135(1):497–528, 2009.347

[24] Neale Ratzlaff, Qinxun Bai, Li Fuxin, and Wei Xu. Implicit generative modeling for efficient348

exploration. In International Conference on Machine Learning, pages 7985–7995. PMLR,349

2020.350

[25] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak351

Pathak. Planning to explore via self-supervised world models. In International Conference on352

Machine Learning, pages 8583–8592. PMLR, 2020.353

[26] Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State en-354

tropy maximization with random encoders for efficient exploration. In International Conference355

on Machine Learning, pages 9443–9454. PMLR, 2021.356

[27] Jian Shen, Han Zhao, Weinan Zhang, and Yong Yu. Model-based policy optimization with357

unsupervised model adaptation. Advances in Neural Information Processing Systems, 33:358

2823–2834, 2020.359

[28] Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In360

International conference on machine learning, pages 5779–5788. PMLR, 2019.361

[29] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012362

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033, 2012.363

[30] Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks. arXiv364

preprint arXiv:1906.08649, 2019.365

[31] Xiyao Wang, Wichayaporn Wongkamjan, Ruonan Jia, and Furong Huang. Live in the moment:366

Learning dynamics model adapted to evolving policy. In International Conference on Machine367

Learning. PMLR, 2023.368

[32] Zhihai Wang, Jie Wang, Qi Zhou, Bin Li, and Houqiang Li. Sample-efficient reinforcement369

learning via conservative model-based actor-critic. In Proceedings of the AAAI Conference on370

Artificial Intelligence, volume 36, pages 8612–8620, 2022.371

[33] Zifan Wu, Chao Yu, Chen Chen, Jianye Hao, and Hankz Hankui Zhuo. Plan to predict: Learning372

an uncertainty-foreseeing model for model-based reinforcement learning. Advances in Neural373

Information Processing Systems, 35:15849–15861, 2022.374

[34] Yao Yao, Li Xiao, Zhicheng An, Wanpeng Zhang, and Dijun Luo. Sample efficient reinforce-375

ment learning via model-ensemble exploration and exploitation. In 2021 IEEE International376

Conference on Robotics and Automation (ICRA), pages 4202–4208. IEEE, 2021.377

10

[35] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea378

Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural379

Information Processing Systems, 33:14129–14142, 2020.380

[36] Tianjun Zhang, Paria Rashidinejad, Jiantao Jiao, Yuandong Tian, Joseph E Gonzalez, and Stuart381

Russell. Made: Exploration via maximizing deviation from explored regions. Advances in382

Neural Information Processing Systems, 34:9663–9680, 2021.383

[37] Ruijie Zheng, Xiyao Wang, Huazhe Xu, and Furong Huang. Is model ensemble necessary?384

model-based rl via a single model with lipschitz regularized value function. In International385

Conference on Learning Representations, 2023.386

11

Appendix387

A Detailed figure of COPlanner388

We present a more detailed figure to illustrate our COPlanner framework. During environment389

exploration, we first choose an action using UP-MPC with multi-step uncertainty bonus, then interact390

with the real environment to obtain real samples for dynamics model learning. In dynamics model391

rollouts, at each rollout step, we select the actions using UP-MPC with multi-step uncertainty penalty392

to avoid model uncertain regions and interact with the learned dynamics model to get model-generated393

samples to update the policy.394

Figure 6: Figure illustration of COPlanner framework with more details.

B Implementation395

COPlanner framework is versatile and applicable to any dyna-style MBRL algorithm. In this section,396

we are going to introduce the implementation of two algorithms we used for experiment in Section 5:397

COPlanner-MBPO for proprioceptive control and COPlanner-DreamerV3 for visual control.398

B.1 COPlanner-MBPO399

MBPO [13] trains an ensemble of probabilistic neural networks [2] as dynamics model. It utilises400

negative log-likelihood loss to update each network in the ensemble:401

L(θ) =
∑N
n=1[µ

b
θ(sn, an)− sn+1]

⊤Σbθ
−1

(sn, an)[µ
b
θ(sn, an)− sn+1] + log detΣbθ(sn, an)

(6)
For the policy component, MBPO adopts soft actor-critic [6]. We combine COPlanner with MBPO,402

the pseudocode is shown in Algorithm 3.403

B.2 COPlanner-DreamerV3404

DreamerV3 [10] is a dyna-style MBRL method that solves long-horizon tasks from visual inputs405

purely by latent imagination. Its world model consists of an image encoder, a Recurrent State-Space406

12

Algorithm 3 COPlanner-MBPO

Require: interaction epochs I , rollout horizon Hr, planning horizon Hp, number of candidates
actions K, conservative rate αc, optimistic rate αo

1: Initialize policy πϕ, dynamics model ensemble T̂θ = {T̂ 1
θ , ..., T̂

i
θ}, real sample buffer De, model

sample buffer Dm
2: for I epochs do
3: for t = 1 to T do
4: // Optimistic environment exploration
5: Select action with optimistic rate at = UP-MPC

(
πϕ, st, T̂θ,K,Hp, αo

)
6: Interact with the real environment with at, add real sample (st, at, rt, st+1) to real sample

buffer De

7: Train dynamics model T̂θ via Equation 6
8: for M model rollouts do
9: Sample initial rollout states from real sample buffer De

10: for h = 0 to Hr − 1 do
11: // Conservative model rollouts
12: âh = UP-MPC

(
πϕ, ŝh, T̂θ,K,Hp,−αc

)
(Select action with conservative rate), roll-

out learned dynamics model and add to model sample buffer Dm
13: for G gradient updates do
14: Update current policy πϕ using model-generated samples from model sample buffer Dm

Model (RSSM) [8] to learn the dynamics, and predictors for the image, reward, and discount factor.407

The world model components are:408

Recurrent model: ht = fϕ(ht−1, zt−1, at−1)

Representation model: zt ∼ qϕ(zt|ht, xt)
Transition predictor: ẑt ∼ pϕ(ẑt|ht)
Image predictor: x̂t ∼ pϕ(x̂t|ht, zt)
Reward predictor: r̂t ∼ pϕ(r̂t|ht, zt)
Discount predictor: γ̂t ∼ pϕ(γ̂t|ht, zt)

where the recurrent model, the representation model, and the transition predictor are components of409

RSSM. The loss function for the world model learning is:410

L(ϕ) = Eqϕ(z1:T |a1:T ,x1:T)[

T∑
t=1

(−lnpϕ(xt|ht, zt)− lnpϕ(rt|ht, zt)− lnpϕ(γt|ht, zt)

+ β1max(1,KL[sg(qϕ(zt|ht, xt))||pϕ(zt|ht)])
+ β2max(1,KL[qϕ(zt|ht, xt)||sg(pϕ(zt|ht))]))],

(7)

where sg means stop gradient. Besides, DreamerV3 also use actor-critic framework as their policy.411

In particular, they leverage a stochastic actor that chooses actions and a deterministic critic. The412

actor and critic are trained cooperatively. The actor goal is to output actions leading to states that413

maximize the critic output, while the critic aims to accurately estimate the sum of future rewards that414

the actor can achieve from each imagined state (or model rollout state). For more training details415

about DreamerV3, please refer to their original paper [10].416

To estimate model uncertainty in COPlanner-DreamerV3, we train an ensemble of one-step predictive417

models T̂θ = {T̂ 1
θ , ..., T̂

i
θ}, each of these models takes a latent stochastic state zt and action at as418

input and predicts the next latent deterministic recurrent states ht. The ensemble is trained using419

MSE loss. During model rollouts, we use the world model to generate trajectories, and the one-step420

model ensemble to evaluate the uncertainty of sample at each rollout step. Here we provide the421

pseudocode of COPlanner-DreamerV3 in Algorithm 4.422

13

Algorithm 4 COPlanner-DreamerV3

Require: Rollout horizon Hr, planning horizon Hp, number of candidates actions K, conservative
rate αc, optimistic rate αo

1: Initialize real sample buffer De with S random seed episodes.
2: Initialize policy πψ , critic vξ , one-step model ensemble T̂θ = {T̂ 1

θ , ..., T̂
i
θ}, world model parame-

ter ϕ
3: while not converged do
4: for update step c = 1..C do
5: Draw B data sequences {(at, xt, rt)}k+Lt=k ∼ De
6: Compute a latent stochastic states zt ∼ qϕ(zt|ht, xt)
7: Update world model parameter ϕ via Equation 7
8: // Conservative model rollouts
9: Imagine trajectories {(zτ , aτ)}t+Hr

τ=t from each zt with aτ =

UP-MPC
(
πψ, zτ , T̂θ,K,Hp,−αc

)
.

10: Update vξ and πψ using imagined trajectories.
11: for time step t = 1..T do
12: Compute zt ∼ qϕ(zt|ht, xt)
13: // Optimistic environment exploration
14: Select action at = UP-MPC

(
πψ, zt, T̂θ,K,Hp, αo

)
.

15: Interact with the real environment and obatin (xt, at, rt, xt + 1)
16: Add experience to De ← De ∪ {(xt, at, rt, xt + 1)}Tt=1

C Hyperparameters423

In this section, we provide the specific parameters used in each task in our experiments.424

Table 1: Hyperparameters of COPlanner-MBPO on proprioceptive control DMC.

Parameter Value

Conservative rate αc 2
Optimistic rate αo 1
Action candidate number K 5
Planning horizon Hp 5
Real ratio 0.5 Reacher-xx

0.8 Finger-spin
0 Others

Rollout horizon Hr [20, 150, 1, 1] Finger-spin
[20, 150, 1, 4] Others

425

C.1 Proprioceptive control DMC and MuJoCo426

We use COPlanner-MBPO in all proprioceptive control tasks. For the dynamics model ensemble, we427

adopted the same setup as MBPO [13] original paper, with an ensemble size of 7 and an elite number428

of 5, which means each time we select the best five out of seven neural networks for model rollouts.429

Each network in the ensemble is MLP with 4 hidden layers of size 200, using ReLU as the activation430

function. We train the dynamics model every 250 interaction steps with the environment. The actor431

and critic structures are both MLP with 4 hidden layers. In proprioceptive control DMC, the hidden432

layer size of actor and critic is 512, and updated 10 times each environment step, while in MuJoCo433

the hidden layer size is 256, and they are updated 20 times each environment step. The batch size for434

model training and policy training is both 256. The learning rate for model training is 1e-3, while the435

learning rate for policy training is 3e-4.436

14

In MBPO, the authors use samples from both the real sample buffer and the model sample buffer to437

train the policy, and the ratio of the two is referred to as the real ratio. In addition, MBPO has a unique438

mechanism for the rollout horizon Hr, which linearly increases with the increase of environment439

epochs, with each environment epoch including 1000 environment steps. [a, b, x, y] denotes a440

thresholded linear function, i.e. at epoch e, rollout horizon is h = min(max(x+ e−a
b−a (y − x), x), y).441

The settings for conservative rate αc, optimistic rate αo, action candidate number K, planning horizon442

Hp and the above two parameters in different environments are provided in Table 1 and 2.443

Table 2: Hyperparameters of COPlanner-MBPO on MuJoCo.

Parameter Value

Conservative rate αc 0.1 Hopper
2 Walker
0.5 Ant
1 Humanoid

Optimistic rate αo 0.05 Hopper
1 Walker, Humanoid
0.1 Ant

Action candidate number K 5
Planning horizon Hp 5
Real ratio 0.05
Rollout horizon Hr [20, 100, 1, 4] Hopper

1 Walker
[20, 150, 1, 15] Ant
[20, 300, 1, 15] Humanoid

444

C.2 Visual control DMC445

In Visual control DMC, we use the COPlanner-DreamerV3 method. We keep all parameters consistent446

with the DreamerV3 original paper [10], except for our newly introduced conservative rate αc,447

optimistic rate αo, action candidate number K, and planning horizon Hp. In Table 3, we provide the448

specific settings of conservative rate αc, optimistic rate αo, action candidate number K, and planning449

horizon Hp for each task. It’s worth noting that, although using a conservative rate of 0.5 can perform450

well, we find that for the two tasks in Quadruped, using a conservative rate of 2 yields the best sample451

efficiency and performance. For other parameters, please refer to the original DreamerV3 paper. For452

the one-step predictive model ensemble, we use a model ensemble with ensemble size of 8. Each453

network in the ensemble is MLP with 5 hidden layers of size 1024.454

Table 3: Hyperparameters of COPlanner-DreamerV3 on visual control DMC. We keep all other
hyperparameters consistent with the DreamerV3 original paper.

Parameter Value

Conservative rate αc 0.5
Optimistic rate αo 1
Action candidate number K 4
Planning horizon Hp 4

455

15

D More experiments456

D.1 Comparison with more proprioceptive control MBRL methods457

In this section, we compared our approach with more proprioceptive control MBRL methods on458

MuJoCo tasks. In addition to the three baseline methods from Section 5.1, MBPO [13], P2P-MPC459

[33], and MEEE [34], we introduced two more baselines: PDML [31], a method that dynamically460

adjusts the weights of each sample in the real sample buffer to enhance the prediction accuracy of the461

learned dynamics model for the current policy, thereby significantly improving the performance of462

MBPO. And MoPAC [19], a method that also uses policy-guided MPC to reduce model bias. Unlike463

our approach, MoPAC’s policy-guided MPC is solely used for multi-step prediction during rollout464

based on total reward to select actions. It does not incorporate a measure of model uncertainty, and465

therefore, cannot achieve the optimistic exploration and conservative rollouts of COPlanner. The466

experiment results are shown in Table 4.467

As can be seen from Table 4, our method still holds a significant advantage, achieving the best468

performance in three tasks (Hopper, Walker2d, and Ant). In Humanoid task, it is only surpassed by469

PDML but is substantially better than the other methods. It’s worth mentioning that our approach is470

orthogonal to PDML, and they can be combined. We believe that by integrating COPlanner with471

PDML, the performance can be further enhanced.472

Table 4: Comparison of different MBRL methods on proprioceptive control MuJoCo tasks. Perfor-
mance is averaged over 8 random seeds.

Hopper (70k) Walker2d (150k) Ant (150k) Humanoid (150k)

Ours 3325.6 ± 153.7 4402.8 ± 376.5 5142.3 ± 138.3 4994.3 ± 449.4
PDML 3274.2 ± 224.1 4378.5 ± 248.9 4992.5 ± 365.1 5396.7 ± 391.3
MBPO 2844.6 ± 158.0 4221.1 ± 281.1 2311.1 ± 252.5 1706.0 ± 976.3

P2P-MPC 2316.8 ± 459.9 4151.7 ± 516.9 4681.7 ± 591.6 3706.1 ± 1360.4
MEEE 3076.4 ± 165.3 3873.8 ± 549.6 3932.8 ± 352.7 654.2 ± 94.7
MoPAC 3174.2 ± 233.8 2893.6 ± 472.6 4382.5 ± 301.7 1084.6 ± 573.2

D.2 Comparison with more visual control MBRL methods473

In this section, we conducted comparisons with more MBRL methods that use latent dynamics474

models for visual control on 8 tasks from visual DMC. In addition to DreamerV3 [10] and LEVA475

[18], we introduced two more baselines. The first is TDMPC [11]. TDMPC learns a task-oriented476

latent dynamics model and uses this model for planning. During the planning process, TDMPC also477

learns a policy to sample a small number of actions, thereby accelerating MPC. The second is PlaNet478

[8]. PlaNet uses the RSSM latent model, which is the same as the Dreamer series [7, 9, 10], and479

directly uses this model to perform MPC in the latent space to select actions. The experiment results480

are shown in Table 5. From the results, it is evident that our method has a significant advantage over481

all the baselines.482

D.3 Experiments combined with DreamerV2483

We also combine COPlanner with DreamerV2 [9] for experimentation, with the results shown in484

Figure 7. After integrating with DreamerV2, our method also achieves a significant improvement in485

both sample efficiency and performance.486

D.4 Model error and rollout uncertainty analysis487

In this section, we will investigate the impact of COPlanner on model learning and model rollouts. We488

provide the curves of how model prediction error and rollout uncertainty change as the environment489

step increases in Figure 8. We conduct experiments on two proprioceptive control DMC tasks490

16

Table 5: Performance comparison of different MBRL methods on visual DMC tasks at 1 million
environment steps.

Hopper-stand Hopper-hop Quadruped-walk Quadruped-run

Ours 916.2 ± 19.0 406.6 ± 105.6 541.8 ± 113.6 443.4 ± 39.3
DreamerV3 908.3 ± 21.7 277.9 ± 163.6 445.3 ± 129.8 354.9 ± 69.0

LEXA 569.6 ± 56.2 209.1 ± 126.3 235.3 ± 117.7 254.5 ± 61.0
TDMPC 821.6 ±70.8 189.2 ± 19.7 427.8 ± 50.2 393.8 ± 40.9

PlaNet (5m) 5.96 0.37 238.90 280.45

Acrobot-swingup Cartpole-swingup-sparse Finger-turn-easy Finger-turn-hard

Ours 332.8 ± 37.0 781.8 ± 24.5 724.9 ± 126.3 414.2 ± 166.6
DreamerV3 264.8 ± 44.8 647.0 ± 193.1 545.8 ± 108.8 243.9 ± 180.9

LEXA 126.5 ± 25.0 95.3 ± 35.5 666.6 ± 36.6 362.5 ± 79.5
TDMPC 227.5 ± 16.9 668.3 ± 49.1 703.8 ± 65.2 402.7 ± 112.6

PlaNet (5m) 3.21 0.64 451.22 312.55

Figure 7: Experiment results of COPlanner-DreamerV2 on 7 visual control DMC tasks. The results
are averaged over 4 random seeds, and shaded regions correspond to the 95% confidence interval
among seeds. During evaluation, for each seed of each method, we test for up to 1000 steps in the
test environment and perform 10 evaluations to obtain an average value. The evaluation interval is
every 1000 environment steps.

Figure 8: Model learning loss and rollout uncertainty curves for COPlanner and two other model-
based RL baselines. The left four are proprioceptive control DMC tasks, and the right four are visual
control DMC tasks.

(Cheetah-run and Walker-run) and two visual control DMC tasks (Hopper-hop and Cartpole-swingup-491

sparse).492

17

(1) In proprioceptive control DMC, we use the MSE loss between model prediction and ground truth493

next state to evaluate model prediction error during training, while in visual control DMC, we use494

the KL divergence between the latent dynamics prediction and the next stochastic representation to495

compute latent model prediction error. We observe that after integrating COPlanner in proprioceptive496

control tasks, the model prediction error is significantly reduced. In more complex visual control497

tasks, due to obtaining more diverse samples through exploration in the early stages of training, the498

model prediction error of COPlanner is higher than the baseline (DreamerV3). However, as training499

progresses, the model prediction error rapidly decreases, becoming significantly lower than the500

model prediction error of DreamerV3. This allows the model to fully learn from the diverse samples,501

leading to an improvement in policy performance. (2) For the evaluation of rollouts uncertainty, we502

calculate the model disagreement for each sample in the model-generated replay buffer used for policy503

training using dynamics model ensemble. We find that COPlanner significantly reduces rollout504

uncertainty due to conservative rollouts, suggesting that the impact of model errors on policy learning505

is minimized. This experiment further demonstrates that the success of COPlanner is attributed to506

both optimistic exploration and conservative rollouts.507

D.5 Hyperparameter study508

Figure 9: Ablation studies of COPlanner’s different hyperparameters. Experiments are conducted
using COPlanner-MBPO on Walker-run tasks of proprioceptive control DMC. The results are averaged
over 4 random seeds. From left to right, the results are for different parameters of optimistic rate αo,
conservative rate αc, action candidate number K, and planning horizon Hp.

Figure 10: Performance curves of COPlanner’s hyperparameter study. Experiments are conducted
using COPlanner-MBPO on Walker-run tasks of proprioceptive control DMC. The results are averaged
over 4 random seeds.

In this section, we conducted hyperparameter studies to investigate the impact of different hyper-509

parameters on COPlanner. We performed experiments on the Walker-run task of proprioceptive510

control DMC using COPlanner-MBPO. The original hyperparameter settings are: optimistic rate αo511

is 1, conservative rate αc is 2, action candidate number K is 5, and planning horizon Hp is 5. When512

conducting ablation experiments for each hyperparameter, other parameters remain unchanged. The513

results are shown together in Figure 9 and more detailed curves are given in Figure 10.514

Optimistic rate αo: we observe that the best αo lies between 0.5 to 1. When the αo is too large,515

COPlanner tends to excessively explore high uncertainty areas while neglecting rewards, leading516

to a decrease in sample efficiency and performance. On the other hand, when the αo is too small,517

COPlanner fails to achieve the desired exploration effect.518

Conservative rate αc: the optimal range for the αc is between 1 and 2. A too large αc may lead to519

overly conservative selection of low-reward actions, while a too small αc would be unable to make520

model rollouts avoid model uncertain areas.521

18

Action candidate number K: we find that K has a significant impact on sample efficiency and per-522

formance. When K is set to 2, the improvement of COPlanner over MBPO in terms of performance523

and sample efficiency is relatively limited. This is reasonable because if there are only a few action524

candidates, our selection space is very limited, and even with the use of uncertainty bonus and penalty525

to select actions, there may not be much difference. When K increases to more than 5, the effect526

of COPlanner becomes very stable, and more candidates do not bring noticeable improvements in527

performance and sample efficiency.528

Planning horizon Hp: when Hp is 1, we find that COPlanner’s improvement on performance and529

sample efficiency is relatively limited. This also confirms what we mentioned in Section 1: only530

considering the current step while ignoring the long-term uncertainty impact cannot completely531

avoid model errors, as samples with low current model uncertainty might still lead to future rollout532

trajectories falling into model uncertain regions. As the planning horizon gradually increases,533

performance and sample efficiency also rise. When the planning horizon is too long (Hp equals to 7534

or 9), it is possible that due to the bottleneck of the model planning capability, most action candidates’535

corresponding trajectories fall into model uncertain areas, leading to a slight decline in performance536

and sample efficiency.537

D.6 Ablation study of model uncertainty estimation methods538

We conduct an ablation study on the Hopper-hop task in visual control DMC to evaluate different539

uncertainty estimation methods. We adopt two methods, RE3 [26] and MADE [36], which are used540

to estimate intrinsic rewards in pixel input, to replace the disagreement in calculating u(s, a) in541

Equation 4 and 5. The results are shown in Figure 11. We find that the performance achieved using542

these two methods is similar to that of disagreement. This demonstrate that using disagreement to543

calculate uncertainty is not the primary reason for the observed performance improvement.544

Figure 11: Ablation study of different uncertainty estimation methods.

D.7 Computational time consumption of COPlanner545

We provide a comparison of the computational time consumption between the baseline methods and546

COPlanner across different domains in Table 6. All timings are reported using a single NVIDIA547

2080ti GPU.548

19

Table 6: Average time consumption (h).

MuJoCo Proprioceptive DMC Visual DMC

COPlanner-MBPO 41.2 11.3 N/A
MBPO 33.78 10.6 N/A

COPlanner-DreamerV3 N/A N/A 17.9
DreamerV3 N/A N/A 13.1

D.8 Ablation study549

In this section, we aim to investigate the impact of different components within COPlanner on550

the sample efficiency and performance. We conduct experiments on two proprioceptive control551

DMC tasks (Walker-stand and Walker-run) using MBPO as baseline and two visual control DMC552

tasks (Hopper-hop and Cartpole-swingup-sparse) with DreamerV3 as baseline. The results are553

demonstrated in Figure 12. Due to page limitations, we provide the ablation study on various554

hyperparameters of COPlanner in Appendix D.5 and the ablation study of uncertainty estimation555

methods in Appendix D.6.556

From this ablation study, we can see that effectively combining optimistic exploration and557

conservative rollouts is necessary to achieve the best results. We find that when only using558

optimistic exploration (COPlanner w. Explore only), the sample efficiency and performance in all559

tasks are significantly improved, which highlights the importance of expanding the model. When560

only using conservative rollouts (COPlanner w. Rollout only), there is some improvement in sample561

efficiency and performance but to a lesser extent. In more complex visual control tasks, only using562

conservative rollouts may lead to over-conservatism, resulting in an inability to learn an effective563

policy in sparse reward environments (as observed with a broken seed in Cartpole-swingup-sparse) or564

a decrease in sample efficiency during the early stages of learning (Hopper-hop). This is reasonable565

because conservative rollouts may avoid high uncertainty and high reward areas to ensure the stability566

of policy updates. Moreover, without efficiently expanding the model, it is challenging to find better567

solutions using only conservative rollouts in complex visual control tasks. Experimental results show568

that both optimistic exploration and conservative rollouts are crucial, and using either one individually569

can lead to an improvement in performance. When combining the two (as in COPlanner), we can570

achieve the best results, further demonstrating the effectiveness of our method.571

Figure 12: Ablation studies of optimistic exploration and conservative rollouts on different tasks
using different mbrl baselines. In the first two proprioceptive control tasks we use MBPO as baseline.
For the last two visual control tasks we employ DreamerV3. The results are averaged over 8 random
seeds. We can observe that the best results are achieved when combining optimistic exploration and
conservative rollouts. The benefit is more pronounced in more-challenging visual tasks.

20

	Introduction
	Preliminaries
	The COPlanner Framework
	``The Planner'': Uncertainty-Aware Policy-Guided MPC
	Conservative model rollouts
	Optimistic environment exploration

	Related work
	Experiment
	Experiment on proprioceptive control tasks
	Experiment on visual control tasks

	Conclusion and discussion
	Detailed figure of COPlanner
	Implementation
	COPlanner-MBPO
	COPlanner-DreamerV3

	Hyperparameters
	Proprioceptive control DMC and MuJoCo
	Visual control DMC

	More experiments
	Comparison with more proprioceptive control MBRL methods
	Comparison with more visual control MBRL methods
	Experiments combined with DreamerV2
	Model error and rollout uncertainty analysis
	Hyperparameter study
	Ablation study of model uncertainty estimation methods
	Computational time consumption of COPlanner
	Ablation study

