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ABSTRACT

Accurate classification requires not only high predictive accuracy but also well-
calibrated confidence estimates. Yet, modern deep neural networks (DNNs) are
often overconfident, primarily due to overfitting on the negative log-likelihood
(NLL). While focal loss variants alleviate this issue, they typically reduce accu-
racy, revealing a persistent trade-off between calibration and predictive perfor-
mance. Motivated by the complementary strengths of generative and discrimina-
tive classifiers, we propose Generative Cross-Entropy (GCE), which maximizes
p(x|y) and is equivalent to cross-entropy augmented with a class-level confi-
dence regularizer. Under mild conditions, GCE is strictly proper. Across CIFAR-
10/100, Tiny-ImageNet, and a medical imaging benchmark, GCE improves both
accuracy and calibration over cross-entropy, especially in the long-tailed scenario.
Combined with adaptive piecewise temperature scaling (ATS), GCE attains cali-
bration competitive with focal-loss variants without sacrificing accuracy.

1 INTRODUCTION

Accurate and reliable predictive probabilities are essential for deploying machine learning mod-
els in high-stakes real-world applications, where confidence estimates directly affect downstream
decision-making (e.g., medical diagnosis, autonomous driving). A well-calibrated model produces
probability estimates that faithfully reflect the true likelihood of correctness: for instance, predic-
tions made with 80% confidence should be correct approximately 80% of the time. However, despite
their remarkable success in terms of accuracy, modern deep neural networks (DNNs) are notoriously
miscalibrated, often exhibiting severe overconfidence. This phenomenon has been attributed to their
tendency to overfit the negative log-likelihood (NLL) during training (Mukhoti et al., 2020), ulti-
mately undermining the trustworthiness of their probabilistic predictions.

Recent research has sought to mitigate miscalibration by either introducing differentiable calibration
regularizers or designing calibration-aware loss functions. For example, Maximum Mean Calibra-
tion Error (MMCE) minimizes a kernel-based discrepancy (Kumar et al., 2018), though it is sensitive
to kernel choice and faces optimization challenges. The Brier Score (BS) (Hui & Belkin, 2020), a
proper scoring rule, provides modest gains but generally underperforms specialized losses. Among
loss-based methods, focal loss (FL) (Mukhoti et al., 2020) improves calibration by down-weighting
easy examples to counteract overconfidence. More advanced variants, such as Dual Focal Loss
(DFL) (Tao et al., 2023) and Adaptive Focal Loss (AFL) (Ghosh et al., 2022), further refine this
balance through adjustments based on competing logits or adaptive focusing parameters. Neverthe-
less, a persistent drawback of these approaches is that calibration improvements often come at the
expense of predictive accuracy, reflecting a fundamental trade-off between the two objectives.

This tension motivates a natural question: can we improve calibration without sacrificing accuracy?
To address this, we revisit the longstanding contrast between discriminative and generative classi-
fiers. While discriminative models typically excel in accuracy, generative models are more robust
to overfitting (Li et al., 2019; Lee et al., 2019), which often leads to better-calibrated predictions.
Building on this insight, we bring a generative perspective into discriminative training: maximize
the log-likelihood of the posterior p(x|y). We show that this objective is equivalent to augmenting
cross-entropy with a class-level confidence constraint, thereby encouraging calibrated predictions
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while preserving the discriminative nature of the classifier. To the best of our knowledge, this is the
first work to explicitly leverage a generative perspective to design a strictly proper loss that improves
both accuracy and calibration.

Beyond the proposed Generative Cross-Entropy (GCE) loss, we introduce an adaptive piecewise
temperature scaling technique tailored to further improve post-hoc calibration. Through extensive
experiments on CIFAR-10/100, Tiny-ImageNet, and a medical imaging benchmark, we demon-
strate that our method consistently enhances both accuracy and calibration compared to standard
cross-entropy. Moreover, when combined with post-hoc calibration, GCE achieves calibration per-
formance competitive with state-of-the-art focal loss variants, while preserving—or even improv-
ing—accuracy. These results establish GCE as a principled and practical approach to achieving a
more favorable accuracy–calibration trade-off.

2 RELATED WORK

Recent advances in addressing miscalibration in deep neural networks can be broadly divided into
two paradigms: training-time loss modification and post-hoc calibration.

Training-Time Loss Modification. A first line of research introduces differentiable calibration-
aware objectives directly into the training process. For instance, Maximum Mean Calibration Er-
ror (Kumar et al., 2018) minimizes a kernel-based measure of miscalibration, though its performance
is highly sensitive to kernel choice and associated optimization challenges. The Brier Score (Hui
& Belkin, 2020), a proper scoring rule, computes the mean squared error between predicted proba-
bilities and one-hot targets, offering moderate calibration gains but typically underperforming more
specialized losses. Label Smoothing (Müller et al., 2019) softens the target distribution, thereby mit-
igating overconfidence. More recently, a series of specialized loss functions have emerged: Focal
Loss (Mukhoti et al., 2020) downweights easy examples to counteract overconfidence, Inverse Focal
Loss penalizes underconfidence, Dual Focal Loss (Tao et al., 2023) balances both by incorporating
the highest non-target logit, and Adaptive Focal Loss (Ghosh et al., 2022) dynamically tunes the
focusing parameter γ based on validation feedback. Collectively, these methods achieve strong cal-
ibration improvements but often at the cost of reduced accuracy, highlighting the inherent trade-off
between calibration and discriminative performance.

Post-Hoc Calibration. A second paradigm performs lightweight transformations on the outputs
of a pretrained model using held-out data. Classic methods include Platt Scaling (Platt et al., 1999),
Isotonic Regression (Zadrozny & Elkan, 2002), and Histogram Binning (Zadrozny & Elkan, 2001),
with extensions such as Bayesian Binning into Quantiles (BBQ). Among these, Temperature Scal-
ing (Guo et al., 2017) has become the de facto standard due to its simplicity and strong empirical
efficacy. More recent variants, such as Entropy-based Temperature Scaling and Parameterized Tem-
perature Scaling, provide finer-grained adaptive adjustments. Post-hoc methods have the advantage
of preserving predictive accuracy while substantially improving calibration, making them a widely
adopted complement or alternative to training-time strategies.

3 PRELIMINARY

3.1 PROBLEM FORMULATION

Let D = {(xi, yi)}Ni=1 denotes a dataset consist of N i.i.d. samples from the joint distribution
P(X × Y), where for each sample i, xi ∈ X is the input and yi ∈ Y = {1, 2, · · · ,K} is the
corresponding class label. In a classification task, we seek a function f : X → RK that maps each
input x ∈ X to a vector of class logits z = f(x) ∈ RK . These logits are then converted into a
probability distribution p̂ = softmax(z) ∈ ∆K over the K classes, where p̂i =

exp(zi)∑K
j=1 exp(zj)

. We

refer to ŷ = argmaxi∈Y p̂i as the classifier’s prediction and p̂ŷ as its associated confidence.

Loss Function The classifier f is usually learned by minimizing a certain loss function over a
pre-defined hypothesis class. In the scenario of modern deep learning, the hypothesis class is a
parametrized neural network fθ. Typically, a loss function ℓ : ∆K×∆K → R is defined point-wise,
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where ∆K denotes the (k − 1)-dimensional probability simplex. For example, the cross-entropy
and focal loss per sample is defined as ℓCE(p̂

(i), q(i)) =
∑K

k=1 q
(i)
k log p̂

(i)
k and ℓFL(p̂

(i), q(i)) =∑K
k=1 q

(i)
k (1 − p̂

(i)
k )γ log p̂

(i)
k respectively, where q(i) is the one-hot encoding of the ground truth

label yi. Denote P̂ = (p̂(1), · · · , p̂(N)) and Q = (q(1), · · · , q(N)). Then the total loss (empirical
risk) L : (∆K)N × (∆K)N → R is computed by averaging ℓ over all samples, i.e., L(P̂,Q) =
1
N

∑N
i=1 ℓ(p̂

(i), q(i)).

Classification Calibration A classifier is said to be perfectly calibrated if, for any predicted con-
fidence score p ∈ [0, 1], the conditional accuracy given p is exactly p, i.e., P(ŷ = y|p̂ = p) = p.
Intuitively, among all samples for which the classifier assigns a confidence of 80%, exactly 80%
should be correctly classified. The most commonly used metric to evaluate model calibration is the
expected calibration error (ECE) (Naeini et al., 2015), defined as Ep̂[|P(ŷ = y|p̂)− p̂|]. In practice,
the predictions are partitioned into M equally-spaced bins, and ECE is computed as the weighted
average of the difference between accuracy and confidence in each bin. Formally,

ECE =

M∑
m=1

|Bm|
N

∣∣∣conf(Bm)− acc(Bm)
∣∣∣, (1)

where conf(Bm) = 1
|Bm|

∑
i∈Bm

p̂
(i)
k is the average confidence of bin Bm and acc(Bm) =

1
|Bm|

∑
i∈Bm

I(ŷi = yi) is the accuracy in bin Bm. Besides ECE, some other variants are also
proposed to measure calibration error from different perspectives, such as AdaECE (Nguyen &
O’Connor, 2015), which evenly distributes samples into each Bm, and ClasswiseECE (Kull et al.,
2019), which approximates the ECE over K classes.

Temperature Scaling Given a model’s logits vector z = (z1, · · · , zK) for K classes, temperature
scaling applies a scalar T > 0 to adjust confidence: p̂i =

exp(zi/T )∑K
j=1 exp(zj/T )

. If T > 1, the distribution

is softened (higher entropy, less confident). If T < 1, it becomes sharper (lower entropy, more
confident). T = 1 yields the original probabilities.

4 METHODOLOGY

4.1 ACCURACY VS. CALIBRATION

While many variants of focal loss have demonstrated strong performance in improving model cali-
bration, they often come at the cost of reduced classification accuracy. It is important to emphasize
that among the multiple dimensions used to evaluate a classifier, accuracy should generally take
precedence over calibration. This is because achieving perfect calibration can be trivially accom-
plished by sacrificing predictive performance. For instance, consider a binary classification task
where the dataset can be partitioned into two subsets: subset A contains 40 positive and 10 negative
examples, and subset B contains 20 positive and 30 negative examples. A model that uniformly
outputs a probability of 0.6 across all samples would achieve an Expected Calibration Error (ECE)
of zero, yet only attain an overall accuracy of 60%. In contrast, a model that predicts 0.8 for samples
in subset A and 0.4 for those in subset B achieves both perfect calibration and a higher accuracy of
70%. This discrepancy stems from the fact that the former model, despite its optimal ECE, fails to
provide accurate estimates of the true class-posterior probabilities. This highlights the necessity of
employing strictly proper loss functions, which are formally defined as follows.
Definition 1 (Strictly Proper Loss). We say that a loss L : (∆K)N × (∆K)N → R is strictly proper
if L(P,Q) is minimized if and only if P = Q.

Charoenphakdee et al. (2021) proved that Focal loss is not a strictly proper loss in general, thus not
appropriate to estimate the true class posterior probability.

4.2 CROSS-ENTROPY AS MAXIMUM LIKELIHOOD ESTIMATION

A fundamental justification for the use of cross-entropy as a training objective lies in its equivalence
to maximum likelihood estimation (MLE). Given a dataset D = {(xi, yi)}Ni=1, and a model parame-
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terized by θ that defines conditional probabilities pθ(y|x), the MLE framework seeks parameters that
maximize the joint likelihood ΠN

i=1pθ(yi|xi). Taking the negative logarithm yields the negative log-
likelihood (NLL) −

∑N
i=1 log pθ(yi|xi), which coincides exactly with the cross-entropy loss when

labels are encoded as one-hot vectors1. Thus, minimizing cross-entropy is mathematically equiva-
lent to performing MLE under a categorical distribution, providing both a probabilistic interpretation
and a principled statistical foundation for its widespread use in classification tasks. Besides, it has
been widely known that cross-entropy is strictly proper (Charoenphakdee et al., 2021).

4.3 GENERATIVE CROSS-ENTROPY

While effective for training classification models, Cross-Entropy’s purely discriminative nature can
also pose limitations: the formulation neglects the generative structure of the data. Prior works
(Ng & Jordan, 2001; Zheng et al., 2023) suggest that generative classifiers often converge faster
and exhibit improved robustness against overfitting compared to their discriminative counterparts,
as they leverage additional information about the data distribution. Motivated by this insight, we
reformulate the training objective in terms of the posterior likelihood of x, i.e., maximizing p(x|y).
Concretely, we employ Bayes’ rule to express

pθ(x|y) =
pθ(y|x)p(x)

pθ(y)
=

pθ(y|x)p(x)∫
pθ(y|x)p(x)dx

, (2)

which allows us to retain the discriminative modeling of pθ(y|x) while implicitly incorporating
the generative perspective through the normalization over classes. In practice, since the true prior
distribution p(x) is unknown, we approximate it with the empirical distribution of the dataset D,
i.e., p̂(x) = 1

N

∑N
i=1 δ(x− xi). Thus, for a training sample (xi, yi),

pθ(xi|yi) =
pθ(yi|xi)p̂(xi)∑N
i=1 pθ(yi|xi)p̂(xi)

=
pθ(yi|xi)∑N
i=1 pθ(yi|xi)

. (3)

We then define the joint negative log-likelihood of pθ(x|y), termed Generative Cross-Entropy (GCE)
as

LGCE = − 1

N

N∑
i=1

log(
p
(i)
yi∑N

j=1 p̂
(j)
yi

). (4)

This design2 enables our method to preserve the computational advantages of discriminative training
while aligning the optimization process with the generative principle of modeling the posterior of x.
Intuitively, this hybrid perspective mitigates the overfitting tendency of standard cross-entropy and
encourages representations that are more faithful to the underlying data distribution.

Furthermore, if we denote Nk =
∑N

i=1 I(yi = k), then GCE can be further written as

LGCE = − 1

N

N∑
i=1

log p̂(i)yi
+

1

N

K∑
k=1

Nk · log(
N∑
j=1

p̂
(j)
k ) (5)

The first term in Eq. equation 5 corresponds exactly to the standard cross-entropy loss LCE. For each
class k, we define the aggregated confidence as Ck =

∑N
j=1 p̂

(j)
k , using this notation, the second

term in Eq. equation 5 can be interpreted as a weighted sum of the logarithm of the aggregated
confidence across all classes, where the weight for each class is proportional to its sample count
Nk. Intuitively, while the first term penalizes misclassification at the individual-sample level, the
second term regularizes the class-level confidence, thereby discouraging overconfident predictions.
One advantage of GCE is that, under a minor assumption on the dataset, it is strictly proper:

Theorem 1. Suppose Q = (q(1), · · · , q(N)) has full row rank. The generative cross-entropy loss is
strictly proper.

Proof. See Appendix A
1Here we ignore the normalizing factor 1

N
since it does not affect the optimization problem.

2Like other loss functions, LGCE is computed using mini-batch instead of the entire dataset.
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Mildness of the Assumption In practical implementation, where the target distribution q(i) is
taken as the one-hot encoding of the ground-truth label yi, the full-row-rank assumption is automat-
ically satisfied provided that each class appears at least once in the training set. Indeed, each row
of the label matrix contains a single 1 in a unique column; thus, for any non-trivial linear combi-
nation of the rows, selecting the row corresponding to a non-zero coefficient immediately yields a
contradiction, forcing all coefficients to vanish. Hence, the label matrix is of full row rank.

Notably, the conventional cross-entropy (CE) loss is known to be strictly proper only under this
full-row-rank condition when one-hot labels are used. In mini-batch training, it may happen that
not all classes are represented in a given batch, i.e., the set of classes appearing in the mini-batch
Kmini is a strict subset of the full class set K. However, both CE and GCE are formulated such
that the loss only depends on the probabilities assigned to the classes that actually appear in the
batch. As a consequence, the analysis can be restricted to the effective classification task defined
on Kmini, where the same row-full-rank assumption continues to hold. Therefore, GCE inherits the
same broad applicability as CE: the assumption underlying its strict propriety remains valid both in
full-dataset training and in stochastic mini-batch training.

4.4 ADAPTIVE TEMPERATURE SCALING

While temperature scaling is widely used for post-hoc calibration due to its simplicity and effec-
tiveness, it applies a single global temperature to all samples, which limits its capacity to correct
confidence miscalibration that varies across the confidence spectrum. In practice, modern neural
networks often exhibit non-uniform calibration error: low-confidence and high-confidence predic-
tions may be miscalibrated in different directions.

To address this limitation, we propose a piecewise temperature scaling method that adaptively cal-
ibrates classifier outputs based on equal mass confidence binning. Given a trained classifier and a
held-out validation set, we first compute the predicted confidence scores and partition the data into
bins using quantile-based thresholds. Each bin is associated with a separate temperature parameter
that modulates the logits for samples assigned to that bin. During calibration, we iteratively update
each bin’s temperature using a gradient-free rule inspired by the confidence–accuracy gap. Specif-
ically, if the average confidence within a bin exceeds the bin’s empirical accuracy, the temperature
is increased; otherwise, it is decreased. The update step is adaptively scaled by the magnitude of
the calibration gap and clamped to a small range to ensure stability. This procedure is repeated for
a fixed number of rounds. At each iteration, the calibration loss (e.g., ECE) is evaluated, and the
best-performing temperature vector is retained. After convergence, the learned per-bin temperatures
are used to rescale the model’s logits at test time, improving calibration without degrading accuracy.
The complete procedure is given in Algorithm 1.

Algorithm 1: ADAPTIVE TEMPERATURE SCALING

Input: Validation set Dval, number of bins M
Output: Updated per-bin temperatures T1, . . . , TM

Initialize: Collect validation logits z and labels y; compute confidences ci = maxj softmax(zi)j ;
compute per-bin thresholds 0 = τ0 < · · · < τM = 1 as quantiles of {ci}; assign bins index
bi ← bucketize(ci; {τm}); initialize temperature vector T = [1, . . . , 1] ∈ RM

Training: for r ← 1 to R do
for m←M − 1 to 0 do
Im = {i : bi = m}
if Im = ∅ then

continue
z̃i ← zi/Tm; ci = maxj softmax(z̃i)j
am = 1

|Im|
∑

i∈Im
I[argmaxj z̃ij = yi]; cm = 1

|Im|
∑

i∈Im
ci

∆← clip(α(cm − am),−0.1, 0.1); Tm ← clip(Tm +∆, Tmin, Tmax)

z̃i ← zi/Tbi ; compute calibration error LECE(z̃, y)
if metric is best so far then

Save T ∗ ← T

Return T ∗

5
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5 EXPERIMENTS

We evaluate the performance of our method on datasets including CIFAR-10/100 (Krizhevsky et al.,
2009), TinyImageNet (Deng et al., 2009), and Tau PET (AV1451), an imaging modality from the
ADNI dataset measuring tau protein accumulation (Jagust et al., 2015). Models are trained using
multiple deep neural network architectures, including ResNet-50, ResNet-110 (He et al., 2016),
Wide-ResNet-28-10 (Zagoruyko & Komodakis, 2016), DenseNet121 (Huang et al., 2017), and a
multi-layer perceptron. Further details on the dataset and implementation are given in Appendix B.

Baselines. We adapt multiple baseline methods, including cross entropy (CE), Brier loss (BS) (Hui
& Belkin, 2020), MMCE (Kumar et al., 2018), focal loss (FLSD) (Mukhoti et al., 2020), dual focal
loss (DFL) (Tao et al., 2023), and adaptive focal loss (AFL) (Ghosh et al., 2022).

Training Setup. We follow the same training settings as (Mukhoti et al., 2020), our method and
baseline models are implemented based on the public code provided by Mukhoti et al. (2020). For
CIFAR-10/100, models are trained for 350 epochs. From the training set, 5,000 images are reserved
for validation. The learning rate schedule is as follows: 0.1 for the first 150 epochs, 0.01 for the
subsequent 100 epochs, and 0.001 for the remaining epochs. For Tiny-ImageNet, training proceeds
for 100 epochs, with a learning rate of 0.1 for the first 40 epochs, 0.01 for the following 20 epochs,
and 0.001 thereafter. We conduct all experiments on a single NVIDIA A100 GPU and repeat each
experiment 10 times with fixed random seeds 1-10 for reproducibility. Stochastic Gradient Descent
(SGD) is employed with a momentum of 0.9 and a weight decay of 5 × 10−4. For all datasets,
both training and testing batch sizes are set to 128. For each baseline, we adapt the hyperparameter
settings reported in the original paper to achieve the best performance on the corresponding dataset.

Adaptive Temperature Scaling. We use the same settings for our proposed adaptive temperature
scaling across all experiments conducted in this work. Specifically, the confidence is partitioned into
nbin = 15 bins with initialized temperature Tinit = 1. The update step coefficient α is set to 0.05.
All temperatures are restricted in [0.1, 10]. The maximum number of rounds R is set to 200.

Evaluations. To compare model accuracy, we report classification error rates (%). For calibration
evaluation, we consider three complementary metrics: Expected Calibration Error (ECE), Adaptive
ECE (AdaECE), and Classwise ECE. Each experiment is repeated 10 times with different random
seeds for train/validation splits to ensure robustness and fairness of the results.

5.1 CLASSIFICATION ACCURACY

GCE CE
MMCE BS

FLS
D DFL AFL

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

Er
ro

r

Resnet50
Resnet110
WideResnet
DenseNet

Figure 1: Classification error with 95% confidence intervals across four architectures on CIFAR-100.
GCE consistently achieves lower error than CE and other baselines, confirming its effectiveness.

Table 1 reports the average test error across all datasets and architectures. Overall, GCE outper-
forms competing methods in the vast majority of settings, achieving state-of-the-art results in 8 out
of 11 experiments. This trend is particularly evident on CIFAR-100, where, as illustrated in Fig-
ure 1, GCE achieves lower errors than all baselines across every evaluated architecture. The paired
seed-wise one-sided tests (see Appendix C) further confirm that these improvements are statisti-
cally significant, highlighting the robustness of the method. Beyond standard vision benchmarks,
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GCE also delivers strong performance on the AV1451 dataset, where it achieves the lowest test error
among all compared methods. This demonstrates the broad applicability of our approach across
different domains and data characteristics, not limited to canonical image classification tasks. We
note, however, that on more challenging datasets such as Tiny-ImageNet, GCE does not surpass the
three focal loss variants. This outcome is consistent with the original motivation of focal loss, which
is explicitly designed to handle hard-to-classify examples. Importantly, despite a few exceptions,
GCE outperforms standard cross-entropy (CE) in 9 out of 11 settings, establishing clear advantages
in both moderate and complex tasks.

Table 1: Test error (%) over 10 runs. The lowest error is marked in bold.
Dataset Model CE Brier Loss MMCE FLSD DFL AFL GCE

CIFAR-10

ResNet-50 4.82±0.15 5.23±0.21 5.05±0.15 5.29±0.21 5.45±0.21 5.27±0.17 4.75±0.13
ResNet-110 5.12±0.26 5.10±0.15 5.20±0.18 5.11±0.19 5.40±0.15 5.24±0.15 4.98±0.17
Wide-ResNet 4.06±0.10 4.37±0.11 4.19±0.12 4.20±0.18 4.08±0.09 4.48±0.15 4.10±0.13
DenseNet-121 5.11±0.17 4.94±0.11 5.35±0.16 5.19±0.17 5.51±0.31 5.25±0.09 4.93±0.10

CIFAR-100

ResNet-50 22.44±0.37 24.72±0.66 22.70±0.40 22.42±0.35 22.80±0.39 22.93±0.35 21.48±0.28
ResNet-110 22.48±0.39 25.37±0.72 22.69±0.47 22.24±0.33 22.71±0.29 22.62±0.25 22.15±0.21
Wide-ResNet 20.58±0.18 20.45±0.38 20.63±0.28 19.82±0.37 19.76±0.27 19.85±0.19 19.63±0.30
DenseNet-121 23.54±0.22 23.35±0.17 23.76±0.50 22.78±0.34 23.01±0.25 22.56±0.38 21.96±0.33

Tiny-ImageNet ResNet-50 50.85±0.44 53.88±0.81 51.96±0.57 49.35±0.46 49.07±0.36 48.66±0.50 50.84±0.33
ResNet-110 48.14±0.46 50.40±0.93 49.93±0.80 46.72±0.32 47.03±0.38 46.59±0.33 49.44±0.41

AV1451 MLP 36.78±0.51 36.51±0.67 37.56±0.85 37.89±0.37 38.67±0.37 37.78±0.76 36.44±0.87

5.2 CALIBRATION PERFORMANCE

We report the average Expected Calibration Error (ECE), computed with 20 bins, before and after
applying adaptive temperature scaling in Table 2. Result for AdaECE and ClasswiseECE can be
found in Appendix C. Two main observations emerge. First, GCE achieves superior calibration to
standard cross-entropy (CE) both before and after temperature scaling, demonstrating its intrinsic
advantage in reducing miscalibration. Second, although the raw calibration of GCE is not on par
with state-of-the-art focal loss variants, applying appropriate post-hoc calibration allows GCE to
reach comparable performance. Therefore, with a strong post-hoc calibrator, GCE matches focal-
loss calibration while preserving accuracy, yielding a consistently better accuracy–calibration trade-
off. To verify the effectiveness of our proposed adaptive temperature scaling (ATS) in improving
calibration, we also compare it with other post hoc calibration methods (ensemble temperature scal-
ing and spline fitting). Figure 2 visualizes the results for ResNet-50 on CIFAR-10. It shows that our
proposed adaptive temperature scaling is a more effective post-hoc calibration method.

GCE CE
MMCE BS

FLS
D DFL AFL

0.00

0.01

0.02

0.03

0.04

EC
E

Pre-temperature scaling
Temperature Scaling
Ensemble Temperature Scaling
Spline Fitting
Adaptive Temperature Scaling

Figure 2: Expected Calibration Error (ECE) for ResNet-50 on CIFAR-10. Results are shown before
scaling, with naive temperature scaling, and with Adaptive Temperature Scaling (ATS). GCE sig-
nificantly reduces miscalibration relative to CE and reaches performance comparable to focal-loss
variants with ATS.

We also notice that, on the more challenging Tiny-ImageNet dataset, GCE underperforms focal-loss
variants in both classification accuracy and calibration. We attribute this to the specific design mo-
tivation of focal losses, which explicitly emphasize hard-to-classify examples by down-weighting
easy samples. Tiny-ImageNet, with its large number of classes and visually similar categories,
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Table 2: Average ECE (%) over 10 runs computed for different losses with adaptive temperature
scaling (crossvalidating on ECE). ECE before temperature scaling is indicated in brackets.

Dataset Model CE Brier Loss MMCE FLSD DFL AFL GCE

CIFAR-10

ResNet-50 0.66(4.25) 0.70(2.00) 0.78(4.61) 0.67(1.53) 0.68(1.06) 0.67(0.83) 0.66(3.25)
ResNet-110 0.83(4.71) 0.71(2.24) 0.73(4.89) 0.66(1.64) 0.75(1.57) 0.77(0.84) 0.66(3.69)
Wide-ResNet 0.55(3.44) 0.68(1.23) 0.68(3.60) 0.59(1.98) 0.67(1.01) 0.56(0.61) 0.68(2.66)
DenseNet-121 0.81(4.63) 0.83(1.72) 0.79(4.98) 0.75(1.42) 0.70(0.95) 0.73(0.10) 0.71(3.18)

CIFAR-100

ResNet-50 1.75(17.49) 1.52(4.73) 1.53(15.52) 1.69(5.40) 1.53(2.06) 1.39(1.71) 1.50(11.23)
ResNet-110 2.06(18.78) 1.65(6.04) 2.11(18.62) 1.60(6.94) 1.49(4.28) 1.29(1.46) 1.54(12.69)
Wide-ResNet 1.56(15.12) 1.32(3.97) 1.73(14.00) 1.33(2.47) 1.26(3.45) 1.26(2.29) 1.25(6.83)
DenseNet-121 2.09(19.27) 1.58(4.21) 1.94(17.08) 1.55(3.31) 1.56(4.79) 1.51(1.71) 1.48(10.75)

Tiny-ImageNet ResNet-50 1.59(16.52) 0.82(3.89) 1.66(14.88) 0.94(1.82) 1.02(2.66) 0.83(2.69) 1.19(4.29)
ResNet-110 1.62(16.07) 1.50(4.15) 1.61(16.25) 1.03(2.22) 1.04(2.55) 0.97(2.74) 1.15(4.20)

AV1451 MLP 15.59(13.57) 16.24(15.61) 15.60(15.27) 16.02(14.08) 15.31(14.00) 17.64(15.85) 15.62(13.01)

contains a high proportion of ambiguous or difficult instances, where focal-style reweighting is par-
ticularly effective. In contrast, GCE regularizes predictions at the class-aggregated level, which
mitigates overconfidence but does not specifically target the minority of tough examples. Neverthe-
less, it is important to note that GCE still substantially improves calibration compared to standard
cross-entropy on Tiny-ImageNet. This highlights that the proposed loss effectively addresses the
overconfidence issue even in highly challenging settings.

Long-tailed robustness Because GCE includes a class-level regularizer, its behavior under class
imbalance warrants explicit examination. We therefore evaluate on CIFAR-10-LT (Cui et al., 2019),
created by exponentially sub-sampling CIFAR-10 so that head classes contain many more samples
than tail classes (imbalance factor ρ). Following standard practice, we consider multiple ρ (e.g.,
10–100) and report overall and classwise metrics (including confusion matrices). Full setup are
provided in Appendix C. As reported in Table 3 and Table 4, as ρ increases, all methods exhibit the
expected accuracy drop due to reduced tail data; however, GCE shows less degradation beyond this
common effect and its performance advantage over other losses becomes even more significant for
larger ρ.

Table 3: Average test error (%) on CIFAR-10-LT computed for different losses.

ρ Model CE Brier Loss MMCE FLSD DFL AFL GCE

10

ResNet-50 10.55±0.32 10.90±0.44 10.55±0.37 11.44±0.31 11.04±0.33 11.71±0.29 10.28±0.18
ResNet-110 10.54±0.33 10.86±0.17 10.61±0.34 11.38±0.33 10.93±0.22 11.72±0.48 10.44±0.28
Wide-ResNet 9.08±0.25 9.65±0.31 9.06±0.29 9.47±0.19 9.15±0.20 10.70±0.50 9.03±0.21
DenseNet121 10.23±0.31 10.03±0.28 10.11±0.26 11.16±0.59 10.46±0.30 11.52±0.30 10.06±0.25

100

ResNet-50 26.62±1.02 31.05±1.29 26.69±0.95 28.43±1.14 26.89±1.29 29.92±1.07 25.35±1.09
ResNet-110 26.85±0.68 30.82±1.41 26.77±0.82 28.16±1.01 27.00±0.73 29.24±0.73 25.62±0.64
Wide-ResNet 25.20±0.68 27.58±1.27 25.01±1.06 26.88±0.67 25.63±0.98 28.79±0.55 23.75±0.71
DenseNet121 26.02±0.87 25.30±0.91 26.07±1.19 26.84±1.19 26.21±1.23 28.92±1.90 23.79±0.63

Table 4: Average ClasswiseECE (%) on CIFAR-10-LT computed for different losses with adaptive
temperature scaling (crossvalidating on ECE). ClasswiseECE before temperature scaling is indicated
in brackets.

ρ Model CE Brier Loss MMCE FLSD DFL AFL GCE

10

ResNet-50 1.24 (1.87) 1.24 (1.43) 1.28 (1.86) 1.34 (1.49) 1.31 (1.58) 1.36 (1.38) 1.20 (1.83)
ResNet-110 1.23 (1.92) 1.24 (1.48) 1.22 (1.91) 1.39 (1.53) 1.28 (1.61) 1.42 (1.44) 1.22 (1.89)
Wide-ResNet 1.08 (1.65) 1.12 (1.22) 1.08 (1.64) 1.16 (1.18) 1.14 (1.26) 1.39 (1.40) 1.07 (1.61)
DenseNet121 1.21 (1.84) 1.12 (1.25) 1.23 (1.79) 1.30 (1.37) 1.21 (1.43) 1.31 (1.34) 1.15 (1.80)

100

ResNet-50 3.76 (5.00) 3.95 (4.69) 3.74 (4.99) 4.15 (4.73) 3.88 (4.61) 4.54 (4.58) 3.46 (4.73)
ResNet-110 3.75 (5.10) 3.89 (4.73) 3.75 (5.06) 4.20 (4.74) 3.86 (4.68) 4.51 (4.54) 3.45 (4.83)
Wide-ResNet 3.71 (4.67) 3.75 (4.26) 3.64 (4.67) 4.18 (4.40) 3.90 (4.30) 4.52 (4.55) 3.37 (4.35)
DenseNet121 3.59 (4.83) 3.41 (3.93) 3.59 (4.85) 4.01 (4.32) 3.76 (4.38) 4.31 (4.37) 3.19 (4.36)

Out-of-Distribution (OOD) detection To test the robustness of GCE, following (Mukhoti et al.,
2020), we evaluate GCE and other baseline methods on out-of-distribution (OOD) detection. Mod-
els are trained on CIFAR-10 as the in-distribution data and tested on SVHN (Netzer et al., 2011)
and CIFAR-10-C (Hendrycks & Dietterich, 2019) with level-5 Gaussian noise corruption as OOD
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Table 5: AUROC (%) of models trained on CIFAR-10 as the in-distribution data and tested on SVHN
and CIFAR-10-C as out-of-distribution data.

Dataset Model CE Brier Loss MMCE FLSD DFL AFL GCE

SVHN

ResNet-50 84.74 90.53 86.15 92.67 92.97 95.97 90.34
ResNet-110 81.33 92.17 76.49 90.72 90.85 95.91 89.58
Wide-ResNet 92.61 94.83 91.09 91.44 88.70 96.93 93.05
DenseNet-121 88.43 89.64 80.58 92.04 90.79 95.44 92.44

CIFAR-10-C

ResNet-50 87.26 88.19 86.87 88.64 86.51 92.40 90.52
ResNet-110 76.66 85.58 72.96 86.54 82.76 90.10 85.93
Wide-ResNet 84.59 87.31 80.18 83.13 80.54 86.65 86.49
DenseNet-121 84.53 82.05 76.41 85.76 86.94 88.93 87.74

datasets. Using the entropy of the softmax output as the uncertainty score, we report the area under
the receiver operating characteristic curve (AUROC) for OOD detection in Table 5. Models trained
with GCE achieve substantial improvements over those trained with standard cross-entropy (CE),
although they still fall behind AFL. This gap can be attributed to the fact that, while GCE combined
with a post-hoc calibration method (e.g., temperature scaling on a held-out CIFAR-10 validation
set) can reach in-distribution calibration performance comparable to AFL, post-hoc calibration de-
grades under distributional shift: the mapping learned from in-distribution validation data does not
generalize reliably to shifted inputs, making entropy-based uncertainty estimates less effective.

Computational Complexity From a complexity perspective, GCE augments the standard cross-
entropy with a class-level normalization factor that is computed once per mini-batch and cached; this
extra step is O(K) in both time and memory and can be fused into the existing softmax-loss kernel.
Consequently, the forward–backward pass retains the same asymptotic cost as CE, and its runtime
overhead is statistically negligible as shown in Table 6. In contrast, AFL incurs extra training time
due to repeated validation-set binning and outer-loop updates of γ.

Table 6: Training-time for GCE and baselines across ResNet-50 & Wide-ResNet (CIFAR-10).
Model GCE CE Brier Loss MMCE FLSD DFL AFL

ResNet50 16.65±0.33 16.47±0.34 16.22±0.45 17.08±0.28 16.88±0.29 16.51±0.41 18.77±0.38
Wide-ResNet 26.35±0.41 26.39±0.41 26.81±0.33 26.28±0.35 26.63±0.19 26.08±0.40 28.12±0.27

6 FUTURE DIRECTION

To explore whether the complementary strengths of GCE and focal loss can be captured simultane-
ously, we experimented with a simple hybrid by applying focal modulation to the GCE objective:

LGCE = −(1− p(i)yi
)γ

1

N

N∑
i=1

log(
p
(i)
yi∑N

j=1 p̂
(j)
yi

). (6)

However, our experiments (see Appendix C) show that this straightforward combination performs
poorly. Designing a more principled integration that can simultaneously improve accuracy, calibra-
tion, and robustness remains an open direction for future work.

7 CONCLUSION

In conclusion, GCE offers a simple yet effective approach to improving both the classification ac-
curacy and calibration performance of deep neural networks. By introducing a class confidence
regularization term, our method alleviates the overconfidence issue inherent in cross-entropy while
preserving its strict properness. Moreover, we demonstrate that, when combined with appropriately
designed post-hoc calibration techniques such as adaptive temperature scaling, GCE can achieve
state-of-the-art calibration performance without compromising accuracy. Our contributions are sup-
ported by both rigorous theoretical analysis and extensive empirical validation, underscoring the
superiority and broad applicability of GCE.
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A PROOF OF THEOREM 1

Proof. We first define the conditional risk RGCE for GCE as

RGCE = −
N∑
i=1

K∑
k=1

q
(i)
k log(

p̂
(i)
k∑N

j=1 p̂
(j)
k

). (7)

Denote nk =
∑N

i=1 q
(i)
k and sk =

∑N
i=1 p̂

(i)
k , RGCE can be rewritten as

RGCE =−
K∑

k=1

N∑
i=1

q
(i)
k log(

p̂
(i)
k∑N

j=1 p̂
(j)
k

)

=−
K∑

k=1

nk

N∑
i=1

q
(i)
k

nk
log(

p̂
(i)
k

sk
)

=−
K∑

k=1

nkH(Qk, Pk),

(8)

where Qk = (
q
(1)
k

nk
, · · · , q

(N)
k

nk
), Pk = (

p̂
(1)
k

sk
, · · · , p̂

(N)
k

sk
) and H(Q,P ) is the cross-entropy between

two distribution Q and P . Recall that

H(Q,P ) = H(Q,Q) +DKL(Q||P ), (9)

by the non-negativity of the Kullback–Leibler divergence DKL(Q||P ), we know that H(Q,P ) ≥
H(Q,Q) with equality holds if and only if Q = P . Insert this equality into Eq. equation 8, we have

RGCE ≥ −
K∑

k=1

nkH(Qk, Qk), (10)

with equality holds if and only if Qk = Pk, ∀k, i.e.,

p̂
(i)
k = sk

q
(i)
k

nk
, ∀i, k. (11)

Substituting Eq. equation 11 into the constraint
∑k

k=1 p̂
(i)
k = 1 yields

∑K
k=1 sk

q
(i)
k

nk
= 1,∀i ∈ [N ].

This is a linear system in s = (s1, · · · , sk)⊤ and can be reformulated in matrix form

As = 1N , (12)

where A = Q⊤diag(n1, · · · , nK). Since Q has full row rank, so does A, so Eq. equation 12
has at most one solution. Clearly sk = nk, k = 1, · · · ,K solves Eq. equation 11, thus unique.
Substituting back gives p̂

(i)
k = q

(i)
k , ∀i, k, implying the generative cross-entropy is strictly proper.

B DATASET DESCRIPTION AND IMPLEMENTATION DETAILS

We use the following datasets in our experiments:

CIFAR-10/100 CIFAR-10 comprises 60,000 RGB images of size 32±32, evenly split across 10
categories (6,000 per class), with 50,000 training and 10,000 test images. CIFAR-100 follows the
same format but extends to 100 categories (600 images per class). Following common practice, we
hold out 5,000 images from the CIFAR-100 training set for validation.

Tiny-ImageNet This dataset is a downscaled subset of ImageNet used in the ILSVRC challenge.
It contains 100,000 color images from 200 classes (500 images per class), all resized to 64±64
pixels.
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SVHN The Street View House Numbers (SVHN) dataset captures real-world digit recognition
from Google Street View. It provides over 600,000 images labeled into 10-digit classes. We report
results on the official test split to assess performance under dataset shift.

CIFAR-10-C CIFAR-10-C augments CIFAR-10 with diverse common corruptions applied at five
severity levels. In our setup, the first 10,000 images correspond to the test set corrupted at severity
level 1, and the last 10,000 to severity level 5. Unless otherwise noted, we evaluate robustness using
the Gaussian Noise corruption at severity 5.

AV1451 The AV-1451 (18F-Flortaucipir) dataset comprises 1,080 pre-processed tau-PET scans,
each paired with a T1 MRI and annotated with a three-class diagnosis label—cognitively nor-
mal, mild cognitive impairment, or Alzheimer’s disease. After standard motion correction, co-
registration, and SUVR normalisation, every scan is distilled into a fixed 68-dimensional feature
vector capturing regional tau uptake across FreeSurfer-defined cortical and subcortical ROIs. For
modelling we adopt an 0.8/0.1/0.1 split: 864 samples for training, 108 for validation, and 108 held
out for final testing, ensuring subject-level independence across splits.

C EXTRA EXPERIMENT RESULTS

Extra Calibration Metrics Here we provide the average AdaECE (Table 7) and average Class-
wiseECE (Table 8) over 10 runs. All metrics are computed using 20 bins.

Table 7: Average AdaECE (%) over 10 runs computed for different losses with adaptive temperature
scaling (crossvalidating on ECE). AdaECE before temperature scaling is indicated in brackets.

Dataset Model CE Brier Loss MMCE FLSD DFL AFL GCE

CIFAR-10

ResNet-50 0.83(4.23) 0.65(2.04) 1.14(4.60) 0.64(1.75) 0.71(1.22) 0.58(0.69) 0.65(3.21)
ResNet-110 1.15(4.69) 0.69(2.21) 1.26(4.88) 0.65(1.78) 0.74(1.64) 0.62(0.71) 0.82(3.68)
Wide-ResNet 0.72(3.41) 0.66(1.77) 0.78(3.57) 0.70(1.89) 0.71(1.49) 0.51(0.51) 0.70(2.62)
DenseNet-121 1.04(4.62) 0.86(1.99) 1.17(4.97) 0.82(1.38) 0.77(0.99) 0.59(0.86) 0.73(3.17)

CIFAR-100

ResNet-50 1.85(17.48) 1.17(4.59) 1.51(15.49) 1.37(5.31) 1.26(1.81) 1.05(1.53) 1.30(11.18)
ResNet-110 1.86(18.77) 1.34(5.88) 2.02(18.61) 1.31(6.90) 1.17(4.46) 1.09(1.26) 1.29(12.68)
Wide-ResNet 1.91(15.09) 1.43(3.89) 1.99(13.95) 1.25(2.41) 1.35(3.37) 1.32(2.35) 1.21(6.71)
DenseNet-121 2.45(19.26) 1.53(4.07) 2.15(17.07) 1.58(3.18) 1.56(4.85) 1.50(1.73) 1.68(10.72)

Tiny-ImageNet ResNet-50 1.57(16.50) 1.04(3.09) 1.68(14.86) 0.92(1.79) 1.13(2.59) 1.00(2.67) 1.19(4.32)
ResNet-110 1.69(16.05) 1.69(2.27) 1.62(16.24) 0.94(2.14) 1.06(2.49) 1.04(2.70) 1.28(4.22)

AV1451 MLP 22.63(20.97) 22.11(20.70) 21.38(20.84) 22.27(22.59) 20.38(19.36) 22.03(21.16) 22.30(20.30)

Table 8: Average ClasswiseECE (%) over 10 runs computed for different losses with adaptive tem-
perature scaling (crossvalidating on ECE). ECE before temperature scaling is indicated in brackets.

Dataset Model CE Brier Loss MMCE FLSD DFL AFL GCE

CIFAR-10

ResNet-50 0.50(0.89) 0.44(0.49) 0.56(0.96) 0.43(0.46) 0.44(0.45) 0.35(0.35) 0.42(0.71)
ResNet-110 0.56(0.98) 0.46(0.54) 0.59(1.01) 0.43(0.46) 0.46(0.47) 0.36(0.35) 0.47(0.79)
Wide-ResNet 0.43(0.73) 0.43(0.43) 0.45(0.76) 0.36(0.49) 0.38(0.39) 0.33(0.32) 0.39(0.59)
DenseNet-121 0.50(0.96) 0.46(0.49) 0.57(1.03) 0.41(0.47) 0.44(0.46) 0.36(0.37) 0.44(0.69)

CIFAR-100

ResNet-50 0.23(0.39) 0.23(0.22) 0.23(0.26) 0.22(0.22) 0.22(0.23) 0.21(0.22) 0.22(0.28)
ResNet-110 0.23(0.41) 0.23(0.24) 0.23(0.41) 0.22(0.24) 0.23(0.23) 0.20(0.21) 0.22(0.31)
Wide-ResNet 0.22(0.34) 0.21(0.21) 0.22(0.32) 0.20(0.20) 0.20(0.20) 0.20(0.22) 0.20(0.21)
DenseNet-121 0.24(0.42) 0.22(0.22) 0.24(0.39) 0.22(0.22) 0.22(0.26) 0.21(0.22) 0.22(0.28)

Tiny-ImageNet ResNet-50 0.19(0.25) 0.18(0.19) 0.19(0.24) 0.18(0.18) 0.18(0.18) 0.18(0.18) 0.18(0.19)
ResNet-110 0.18(0.24) 0.19(0.19) 0.18(0.24) 0.18(0.18) 0.18(0.18) 0.18(0.18) 0.19(0.19)

AV1451 MLP 14.57(14.73) 13.44(12.79) 14.05(14.62) 15.96(12.86) 14.59(14.02) 13.90(12.98) 14.01(14.20)

Bar Plots Extra bar plots of test error and ECE are presented in Figure 3.

One-sided Wilcoxon Signed Rank Test Here we report p-values of one-sided Wilcoxon signed
rank test, which show that GCE significantly improves classification accuracy on CIFAR-10/100
compared to other baselines.

Long-Tailed Robustness To evaluate GCE under class imbalance, we constructed CIFAR-10-LT,
a long-tailed version of the original 50,000-image CIFAR-10 training split. Given an imbalance
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Figure 3: Classification error and ECE with 95% confidence intervals across four architectures on
CIFAR-10/100.
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(b) ResNet-110
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(d) DenseNet

Figure 4: One-sided Wilcoxon p-value heatmap on CIFAR-10 for test error. H1: row < column;
each cell uses n = 10 paired runs. Asterisks denote significance (∗ : p < 0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ :
p < 0.001).
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(b) ResNet-110
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(d) DenseNet

Figure 5: One-sided Wilcoxon p-value heatmap on CIFAR-100 for test error. H1: row < column;
each cell uses n = 10 paired runs. Asterisks denote significance (∗ : p < 0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ :
p < 0.001).
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factor ρ—the ratio of the largest to the smallest class—we (i) designate one class as the head and
retain all of its 5 000 images; (ii) rank the remaining nine classes from less to more scarce (k =
1, . . . , 9) and allocate to class k with nk = 5000ρ−k/9, rounding to the nearest integer; (iii) sample
those nk images uniformly without replacement under a fixed random seed for reproducibility. The
10,000-image test set is left unchanged, preserving a balanced evaluation protocol. By setting ρ ∈
{10, 100} we create gaps of one and two orders of magnitude, respectively, between the head and tail
classes, thereby turning CIFAR-10 into a controllable long-tailed benchmark. Under both imbalance
settings (ρ = 10 and 100), GCE consistently outperforms all baseline losses, demonstrating superior
robustness in the presence of severe head-tail disparity.

Combination of GCE and Focal Loss We attempt to combine GCE with adaptive focal loss to
capture the complementary strengths of both methods. We experimented with a simple hybrid by
applying focal modulation to the GCE objective:

LGCE = −(1− p(i)yi
)γ

1

N

N∑
i=1

log(
p
(i)
yi∑N

j=1 p̂
(j)
yi

). (13)

where γ is updated according to the same rule of AFL, the result (Table 9) shows that this combina-
tion does not improve the performance compared to the original AFL.

Table 9: Performance of the combination of GCE and focal loss over five runs with adaptive tem-
perature scaling (cross-validating on ECE).

Model Method Test error ECE AdaECE ClasswiseECE

ResNet-50
AFL 48.61±0.28 0.83±0.17 1.04±0.32 0.18±0.00
GCE 50.86±0.33 1.34±0.14 1.71±0.21 0.19±0.00
AFL+GCE 50.79±0.57 0.84±0.22 1.17±0.18 0.18±0.00

ResNet-110
AFL 46.68±0.26 1.25±0.30 1.14±0.15 0.18±0.00
GCE 49.47±0.32 1.53±0.27 1.57±0.22 0.19±0.00
AFL+GCE 49.60±0.70 0.72±0.11 1.01±0.27 0.18±0.00

Number of bins used for Adaptive Temperature Scaling We compare the performance of adap-
tive temperature scaling trained with 5, 10, 15, 20, and 25 equal mass bins; the result is reported in
Table 10. We observe50 that the best results are for the number of bins > 10. We choose bin = 15
to balance the efficiency and the performance.

Table 10: ECE (%) performance for ResNet-50 trained on CIFAR-10 when Adaptive Temperature
scaling training uses a different number of equal-mass bins.

Metric Bins CE Brier Loss MMCE FLSD DFL AFL GCE

ECE

5 1.28 0.74 1.45 0.73 0.62 0.67 0.74
10 0.72 0.76 0.82 0.67 0.64 0.67 0.67
15 0.66 0.70 0.78 0.67 0.68 0.67 0.66
20 0.64 0.73 0.83 0.69 0.68 0.64 0.65
25 0.60 0.74 0.73 0.65 0.61 0.67 0.66

AdaECE

5 1.17 0.66 1.61 0.75 0.68 0.54 0.69
10 0.79 0.66 1.03 0.66 0.72 0.58 0.63
15 0.83 0.65 1.14 0.64 0.71 0.58 0.65
20 0.81 0.65 1.04 0.68 0.67 0.56 0.70
25 0.76 0.68 1.03 0.68 0.69 0.57 0.70

ClasswiseECE

5 0.50 0.44 0.56 0.44 0.45 0.35 0.42
10 0.49 0.44 0.56 0.43 0.44 0.35 0.42
15 0.50 0.44 0.56 0.43 0.44 0.35 0.42
20 0.50 0.44 0.56 0.44 0.44 0.35 0.41
25 0.50 0.44 0.56 0.43 0.44 0.35 0.41
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D USAGE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models as a general-purpose writing assistant. Its role was limited to gram-
mar checking, minor stylistic polishing, and improving the clarity of phrasing in some parts of the
manuscript. The authors made all substantive contributions to the research and writing.
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