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Abstract

General physical scene understanding requires more than simply localizing and
recognizing objects – it requires knowledge that objects can have different latent
properties (e.g., mass or elasticity), and that those properties affect the outcome
of physical events. While there has been great progress in physical and video
prediction models in recent years, benchmarks to test their performance typically do
not require an understanding that objects have individual physical properties, or at
best test only those properties that are directly observable (e.g., size or color). This
work proposes a novel dataset and benchmark, termed Physion++, that rigorously
evaluates visual physical prediction in artificial systems under circumstances where
those predictions rely on accurate estimates of the latent physical properties of
objects in the scene. Specifically, we test scenarios where accurate prediction relies
on estimates of properties such as mass, friction, elasticity, and deformability, and
where the values of those properties can only be inferred by observing how objects
move and interact with other objects or fluids. We evaluate the performance of a
number of state-of-the-art prediction models that span a variety of levels of learning
vs. built-in knowledge, and compare that performance to a set of human predictions.
We find that models that have been trained using standard regimes and datasets do
not spontaneously learn to make inferences about latent properties, but also that
models that encode objectness and physical states tend to make better predictions.
However, there is still a huge gap between all models and human performance, and
all models’ predictions correlate poorly with those made by humans, suggesting
that no state-of-the-art model is learning to make physical predictions in a human-
like way. These results show that current deep learning models that succeed in
some settings nevertheless fail to achieve human-level physical prediction in other
cases, especially those where latent property inference is required. Project page:
https://dingmyu.github.io/physion_v2/

1 Introduction

The human visual system allows us to perceive rich contents in the dynamically changing physical
world – from a static scene, we see objects, their shapes, sizes, colors, and textures. From objects’
motions, we further see their mechanical properties, e.g., mass, friction, and elasticity, much more
beyond simple object appearance. Knowing these mechanical properties enables us to adjust our
prediction of the likely future – for instance, if we see a box sink into a couch cushion we might infer
it is filled and so will be heavy when we pick it up. Any artificial system that is designed for general
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Figure 1: Different mechanical properties can lead to different physical outcomes. In this work,
we design Physion++ consisting of 9 scenarios (Mass-Dominoes/Waterpush/Collision, Elasticity-
Wall/Platform, Friction-Slide/Collision/Clothslide, and Deform-Roll) that try to probe visual physical
prediction relevant to inferring four commonly seen mechanical properties – mass, friction, elasticity,
and deformability. See Section 3.1 for more details.

physical prediction should also be able to infer the mechanical properties of objects and leverage that
information for future predictions.

Prior benchmarks of physics [1, 2, 3, 4] have pushed the field to show that some models that
purport to be good at physics are not actually capturing physically relevant outcomes, and that
often model architectures that explicitly represent objects and their geometries outperform those that
don’t. However, such benchmarks do not require any understanding that objects have individuated
properties, e.g., all objects had the same density and elasticity. Agents (e.g., dynamics models and
human participants) in these benchmarks often make predictions based on visual appearance rather
than physical properties, which can be ambiguous in real scenarios.

Take the mass-dominos task in Figure 1 (row1, left) as an example. The domino on the left (light
brown) is falling down and might possibly hit the domino in the middle (dark blue), and the goal of
the agent is to predict whether the dark blue domino would hit the light region on the right. However,
the outcome of this scenario highly depends on the relative masses of the two dominos: (1) If the dark
blue domino in the middle is much lighter, then as long as there is contact, then most likely it would
fall down and hit the target region. (2) If the mass of the dark blue domino is much heavier, then it is
possible that even if there is contact between the dominos, the dark blue domino would fail to fall
down and therefore not hit the target region. The two scenarios have exactly the same shape and
arrangement and thus would present the same observation without any information to disambiguate
the masses. Therefore, how to evaluate agents’ capability to predict latent mechanical properties of
objects becomes a key issue.

To further evaluate visual physical prediction under circumstances where accurate physical prediction
involves efficient inference of the latent mechanical properties of the objects, we introduce Physion++.
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Table 1: Qualitative comparison between our Physion++ and other physics/dynamics-related video
reasoning benchmarks. ’Diverse Phenomena’ refers to whether the dataset covers diverse scenarios
and types of properties, e.g., our dataset has 9 scenarios, including rigid bodies, fluids, soft bodies,
objects of various shapes, and various physical properties. ’Few-shot Reasoning’ means that our
dataset allows physical properties to be judged from a few reference video frames, i.e., property
inference.

Dataset Realistic Object Dynamics Physical Properties Diverse Phenomena Few-shot Reasoning

KITTI [5]
√

× × × ×
Human3.6M [6]

√
× × × ×

ShapeStacks [7]
√ √ √

× ×
Cater [3] × × ×

√
×

RoboNet [8]
√

× ×
√ √

CLEVRER [4] ×
√

× × ×
CoPhy[9] ×

√ √ √
×

PHYRE [10] ×
√

×
√

×
ESPRIT [10] ×

√
×

√
×

CRAFT [11] ×
√

×
√

×
Physion [1]

√ √
×

√
×

IntPhys [2]
√ √ √

× ×
Comphy [12] ×

√ √
×

√

Physion++ (ours)
√ √ √ √ √

This dataset is built using the same engine and testing procedure as Physion [1], but is designed so
that individual mechanical properties affect the physical outcomes. It consists of test suites on four
commonly seen mechanical properties – mass, friction, elasticity, and deformability (see Figure 1),
providing a more comprehensive challenge than previous benchmarks. For example, our dataset
rigorously includes physical interactions between objects with different mechanical properties, i.e.,
objects with varying masses, frictions, softness, and bounciness. The key difference compared to
Physion [1] is thus that we further include extra frames (stimuli) depicting object interactions to
enable agents to infer the mechanical properties before the actual prediction task. An example of our
full observation is in Figure 2. We design the tasks such that, to accurately forecast the outcome in
the prediction phase, the agents need to infer the mechanical properties in the inference phase. These
additional mechanical properties also give us a chance to introduce more scenarios with soft objects
and fluids (Figure 1) that are less explored in previous works like Physion.

Using Physion++, we test whether a set of state-of-the-art models that have been trained to make
physical predictions also learn to make and leverage these property inferences. We further compare
these models’ outputs to human responses on each physical property to test if they perform physical
predictions in a human-like way. Our main contributions are thus three-fold: (1) introducing
Physion++, a novel benchmark to test mechanical property inference, (2) analyzing the performance
of a set of state-of-the-art physical prediction models on this benchmark, and (3) comparing the
performance of these models against human predictions on the same stimuli.

Summary of key findings. We found that all video models fail to capture human-level prediction
across all four mechanical properties. Similar to the finding in [1], we found neural networks that
encode objectness perform better than models that are not explicitly trained on these object-relevant
tasks. We also find particle-based models which operate on 3D representations and have direct access
to the latent mechanical properties perform better than models that operate on 2D representations.
Yet, we found that no model was reliably using mechanical property inference, and therefore all
models failed to correlate to human predictions. These results suggest that existing visual learning
models, despite their success in a variety of video tasks, still fall short of human performance in
general physics understanding tasks.

2 Related Work

Physics and dynamics prediction benchmarks. Humans can easily infer the rough dynamics
and physical properties of objects from videos. For example, recent work [13, 14] has shown that
people might approximate detailed 3D shapes with simple convex hulls or geometry for physics
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understanding tasks. With the tremendous success of deep learning, many benchmarks [5, 6, 7,
3, 8, 4, 9, 10, 11, 1, 2, 12] are designed to evaluate the similar dynamics prediction capability of
deep models. However, these benchmarks are either unrealistic, do not contain dynamics/physical
properties, or only focus on a single scenario. The qualitative comparison between our Physion++
and other physics-related video reasoning benchmarks is shown in Table 1.

The next question is: How do we evaluate the physics knowledge learned by existing learning-based
visual dynamics models and compare it to human behaviors on general physics understanding?
Physion [1] provides a benchmark suite consisting of stimuli generated from realistic simulations on
a wide range of dynamic scenes. The benchmark has helped evaluate progress towards human-like
visual physical scene understanding algorithms and has provided insightful suggestions for model
design. Yet, Physion includes physical prediction tasks that focus mainly on object shapes and
arrangement, and not mechanical properties, while these properties can make a huge difference
in the dynamics outcomes. Using Physion++, we specifically look at scenes that require making
inferences about object properties from physics in order to get to the correct prediction – taking
the best parts of Physion [1] and extending it to interrogate models of physics in deeper ways.
Physion++ is purposefully designed to introduce the additional complexity that was ignored in Physion
by incorporating different mechanical properties that influence the resulting physical interactions.
This dataset includes a series of test suites focused on four fundamental mechanical properties:
mass, friction, elasticity, and deformability. This broader scope presents a more comprehensive
challenge compared to previous benchmarks, which is also different from what the Physion benchmark
investigated.

Mechanical property inference. Recent work in material perception has demonstrated that people
can quickly infer and use mechanical properties to make predictions about physical events [15, 16, 17].
While some work suggests that these properties are extracted using Bayesian inference [15], other
work suggests that our visual system uses a set of task-specific heuristics to perform this estimation
that could easily be learned by standard vision models. For example, the shape and motion fields
of fluids could be used to estimate their viscosity [18, 19, 20]; deformation speed and contour of
objects, as well as optical cues, could be used to estimate the elasticity of nonrigid objects when
bending or pushing in [21, 22, 23]; and the trajectory length could be used to estimate the elasticity
of an object bouncing around a room [14]. However, these visual heuristics leave the open question
of how to choose which heuristics to use, and how to integrate them into a cohesive model that can
account for human judgments in various physical reasoning tasks. There are also some works that
integrate differentiable physics engines or learning-based physics simulators to perform property
inference [24, 25, 26, 27, 28, 29] for video/physics property prediction and video question-answering
tasks, but these models typically are based on a known dynamics model and do not learn physics
from scratch.

Video and dynamics prediction. One popular hypothesis is that general intuitive physics knowledge
can be learned through pixel prediction on large video datasets of natural physical scenes [30, 31,
32, 33, 34, 35, 36]. This provides a unified theory for intuitive physics knowledge learning and
mechanical property inference without depending on task-specific heuristics [22, 23, 14], which is
hard to obtain in general scenarios. This also provides a data-driven way to obtain the abstraction
and approximation needed for a human-like intuitive physics engine [15], which is not limited by the
availability of a realistic physics engine. These video models [37, 38, 39] are directly applicable to any
video inputs, making it possible to handle natural dynamical scenes and even long-term video frame
prediction on realistic scenes. Also, recent video diffusion models [39, 40] and transformer-based
prediction models [37, 41, 42] show tremendous success.

Here we want to evaluate whether these models already encode general physics knowledge that
includes mechanical property inference. We are also curious about how these models can explain
human visual physical scene understanding, i.e., if they perform physical predictions in a human-like
way.

3 Benchmark Design

In this work, we introduce Physion++, which tests models’ capabilities to infer four commonly seen
mechanical properties from dynamics, including mass, friction, bounciness, and deformability. We
first explain our stimuli design for each task, and then detail how we construct our benchmark.
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Figure 2: Stimuli are in the format of single videos. The videos consist of an inference period where
artificial systems can identify objects’ mechanical properties and a prediction period where the model
needs to predict whether two specified objects will hit each other after the video ends.

3.1 Stimulus Design

We generate both the stimuli and the training data for visual dynamics learning algorithms with the
ThreeDWorld simulator (TDW), a Unity3D-based environment [43]. We create 9 physical scenarios
across 4 mechanical properties (see Figure 1), which are used to evaluate the model and human
physics prediction ability that requires efficient inference of objects’ mechanical properties from
motion cues.

Stimuli are in the format of single videos, so they match better with circumstances that a real human
might encounter in the real world. Following [1], we probe physics understanding with the object
contact prediction (OCP) task, where the goal of the artificial systems is to predict whether two
specified objects, cued in red and yellow in the middle of the video, will hit each other if physics
continues to unfold after the video ends. In Table 1, we show Physion++ is more comprehensive than
previous physical scene understanding benchmarks.

To provide sufficient information for artificial systems to infer objects’ mechanical properties, we
design the videos to consist of an inference period where the artificial systems can identify objects’
mechanical properties and a prediction period where the model needs to predict whether two specified
objects will hit each other after the video ends (see Figure 2). Before the prediction phase, we indicate
the target two objects with blinking lights in red and yellow. And we task the model with the question
“Will the red object hit the yellow object?”

The nine scenarios in the Physion++ dataset are (see Figure 1 for an example):

1.1 Mass-Dominoes – a sequence of collisions that depend on the arrangement and masses of
objects may or may not cause the red block to fall on the yellow mat

1.2 Mass-Waterpush – a collision between liquid and a rigid body red object may or may not
cause that object to collide with a yellow object

1.3 Mass-Collision – a collision between an object and the red object may or may not cause
the red object to move out of the path of a falling yellow object

2.1 Elasticity-Wall – the red object is thrown towards a wall and may collide with the yellow
mat, depending on their placement, trajectories, and objects’ elasticities

2.2 Elasticity-Platform – the red object is thrown towards a surface and may bounce onto or
miss the yellow mat
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3.1 Friction-Slide – the red object slides down a ramp and may make contact with the yellow
object, or may stop beforehand due to friction

3.2 Friction-Collision – the red object starts with velocity and slides across the floor and may
make contact with the yellow object, or may stop beforehand due to friction

3.3 Friction-Clothslide – a piece of red cloth slides down a ramp and may land on the yellow
mat, or may under- or over-shoot it

4.1 Deform-Roll – the red object is dropped onto a piece of cloth and may either sink in or
roll off in order to possibly hit the yellow object

We aim to avoid strong associations between superficial visual cues with the final YES/NO outcome
by designing “paired” trials, where the paired video scenes are visually identical in the first frame
during the prediction phase yet they unfold into different event outcomes due to different latent
physical properties assigned to the objects in the videos.

In some scenarios, the inference and prediction phases can be included in the same video (e.g.,
Elasticity-Platform, Friction-Slide, and Friction-Clothslide). However, in many cases, the physical
event that provides information in the inference phase irrevocably changes the configuration of objects
so that there is no way to use the inferred information for future predictions (e.g., judging mass from
seeing one domino topple into another leaves them both on the floor; Figure 2, top row). In these
cases, we include a “transition phase”: a curtain slides in to block the scene, then while the scene is
occluded the objects are rearranged for the prediction phase, and finally the curtain moves out of the
way. The cueing of the two target objects is done immediately after the transition phase, followed by
a short observation of the rearranged objects in motion.

Further details of stimulus creation are provided in the Supplemental Materials.

3.2 Dataset Design

Each scenario of Physion++ consists of three stimulus sets: dynamics training, readout fitting, and
testing. We describe them below, and provide further details in the Supplemental Materials.

Dynamics training set. The training dataset is provided so the agents can learn the dynamics of
the environment, and thus learn representations that can be discriminative enough to distinguish
whether the red object will hit the yellow object in the testing dataset. We generate 2,000 trials
for each mechanical property without YES/NO contact labels for dynamics pretraining. For each
physical scenario, in half of the trials the red object contacts the yellow object, and in half there is no
contact, so as to ensure the balance of learning. Scenarios with an object rearrangement phase were
included in the dynamics training so that models could learn that it was unsurprising for objects to be
rearranged behind the curtain, but that objects retained their properties.

Readout fitting set. The readout fitting set is a small dataset containing 192 trials (96 pairs) for each
mechanical property, used to map the dynamic representation learned in the training set to YES/NO
of the OCP task. Trials were balanced for equal contact / no contact events to avoid bias.

Testing set. The final testing benchmark also consists of 192 trials (96 pairs) for each mechanical
property. It has the same visual and physical statistics as the readout fitting set so that the learned
mapping from the readout set can be directly evaluated on the test set.

4 Experiments

4.1 Model Performance

Prediction Models. We evaluate state-of-the-art video models that fall into four main categories
representing different levels of learning versus built-in knowledge. 1) Video models that learn a
visual encoder and physics prediction model through pixel-wise prediction: MCVD [39]. 2) Visual
encoders learned from supervised pretraining on ImageNet [44] that are designed to output responses
using extended MLPs, which are trained in an unsupervised way on the benchmark readout data:
pRESNET-mlp [45], pVGG-mlp [46], and pDEIT-mlp [38]. 3) Video models that learn physics
prediction models on top of object-centric representations, obtained from self-supervised image
pretraining on its encoder: SlotFormer [41] and ALOE [37] 4) 3D particle-based graph neural
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Figure 3: Demonstration of the human task. Trial structure for the familiarization trials (left) and test
trials (right) indicating the Cue, Stimulus, and Inter-trial periods.

network that takes ground truth 3D state and latent properties of objects as inputs (without a visual
encoder, i.e. assume perfect observability of physical dynamics) and learns object transformation and
dynamics as explicit 3D flow: DPI-Net [47]. More details are provided in the Appendix.

Training and readout protocols. We use 2 different training protocols and 3 readout protocols. For
training, we test both models that learn dynamics separately for each mechanical property (‘separate’),
and models that learn unified dynamics models for all scenarios at once (‘unified’).

We test the models on three variants of each video. The ‘w/ property’ video is the standard video
described in the stimulus design section. The ‘w/o property’ video does not include the initial frames
of the video where the critical object first interacts in the scene, and therefore there is no property
inference possible. This setting was used to test whether the model performance was in fact driven
by using mechanical properties, or based on predictions without that information. Finally, the ‘fully
observed’ video extends the standard video to include the red object contacting or missing the yellow
object. Similar to [1], we use these videos as a test of the quality of the representations learned by
each model – can we read out the OCP answer even if it is directly observed? We trained a separate
readout model for each video type.

Training and Evaluation Pipelines. For all models, we first pretrain the learning of dynamics using
the dynamics training set by predicting future frames under a future prediction loss. Then on the
readout fitting set, we perform rollout using the pretrained dynamics model and extract representations
from both observed and predicted frames. Based on these representations we train a readout model as
logistic regression. Finally, we evaluate the model by extracting representations and reading out the
OCP task from the testing set.

Results. The results of baseline models on Physion++ are shown in Table 2. We can observe that: (1)
Training on all mechanical properties (unified) typically leads to inferior performance to individual
training (separate), suggesting that learning joint models of dynamics produces worse predictions than
learning individual scene dynamics. (2) Most models perform only slightly above chance, suggesting
that this task is challenging for all current models. (3) Most models with property inference perform
similarly to those without property inference, indicating that these models are not utilizing physical
property inference. (4) With full video observations, the prediction performance generally improves,
suggesting the learned representations do contain additional object information that could be predicted
by their dynamics models. (5) DPI-Net achieves the best overall performance as it leverages ground
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Table 2: Results of model performance on the Physion++ dataset. For testing videos, ‘w/’ and
‘w/o property’ denote if the model makes predictions based on the property inference stage. ‘fully
observed’ – model using the ground truth prediction frames.

Subset Training Testing MCVD DeiT-mlp ResNet-mlp VGG-mlp ALOE SlotFormer DPI-Net

Mass

unified
w/ property

52.6 50.5 48.0 53.6 52.1 53.6 52.1

separate
54.2 56.3 54.7 55.2 53.1 58.9 75.9

w/o property 53.1 55.0 54.2 56.3 52.6 57.3 60.1
fully observed 67.1 69.8 67.7 60.4 56.3 66.7 96.9

Friction

unified
w/ property

52.6 54.2 50.5 50.0 52.1 50.5 53.8

separate
52.6 52.6 52.1 52.6 56.8 54.2 52.5

w/o property 54.2 52.6 52.1 51.6 53.1 54.2 54.7
fully observed 56.3 53.6 53.6 54.2 54.2 58.3 84.6

Elasticity

unified
w/ property

53.1 52.1 55.2 51.6 51.6 52.6 51.0

separate
52.6 55.2 54.2 52.6 52.6 58.3 52.1

w/o property 51.6 55.2 54.7 52.6 53.1 56.8 52.4
fully observed 55.7 59.4 54.7 54.2 53.1 64.6 95.8

Deformability

unified
w/ property

58.9 56.3 55.2 52.1 51.6 52.1 55.1

separate
57.8 57.3 59.4 61.5 51.0 55.2 60.2

w/o property 58.3 53.6 58.3 59.9 51.0 56.3 62.6
fully observed 60.4 72.9 68.8 69.8 58.3 70.8 91.3

Overall

unified
w/ property

54.3 53.3 52.2 51.8 51.9 52.2 53.0

separate
54.3 55.4 55.1 55.5 53.4 56.7 60.2

w/o property 54.3 54.1 54.8 55.1 52.5 56.2 57.5
fully observed 59.9 63.9 61.2 56.0 55.5 65.1 92.2

truth 3D information. VGG-mlp achieves good performance on the deformability set and SlotFormer
achieves good performance on mass and elasticity sets.

In summary, most models fail to perform physical property inference, except DPI-Net in the mass
scenario (60.1% for w/o property and 75.9% for w/ property), potentially indicating this model has
learned to infer just the property of mass. This suggests that future work focusing on better physical
property inference for deep models would be worth exploring in order to build systems that more
generally reason about physical scenarios.

4.2 Human experiments

We additionally gathered predictions from human participants in order to test whether the models
(a) reached human levels of performance, and (b) performed the task in a way similar to people, as
measured by the same pattern of errors. 200 participants (50 for each of the mechanical properties)
were recruited from Prolific and paid $15.50 per hour for their participation. We selected 192 trials
from each scenario, then shuffle and split the 192 trials into 8 disjoint sets, where all sets have half of
the trials containing contact between the red and yellow objects, and half do not. Each participant
was shown 32 stimuli drawn from one of these disjoint sets of trials drawn from a single mechanical
property, and we ensure participants do not observe both parts of any matched pair of trials. Data is
balanced, so each participant will see 16 stimuli with the ground truth label ‘YES’ and 16 with ‘NO’.
These studies were conducted in accordance with the MIT and UC San Diego IRBs.

Task procedure. The structure of our task is shown in Figure 3. Each trial began with a fixation
cross, which was shown for a randomly sampled time between 500ms and 1500ms. The stimuli
will start playing right after the fixation. To indicate which of the objects shown was the agent and
patient object, participants were shown the agent and patient objects were overlaid in red and yellow
respectively, at the first frame during the prediction phase of the video for 2000ms. During this time,
the overlay flashed on and off with a frequency of 2Hz. After this, the stimulus will keep playing
until it ends and gets removed, and the response buttons were enabled. Participants proceeded to the
next trial after they made a prediction by selecting either ‘YES’ (the red and yellow objects would
touch) or ‘NO’ (they would not). The order of the buttons was randomized between participants.
Before the main task, participants were familiarized with 4 trials that were presented similarly to the
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Figure 4: Comparisons between humans and models. First row: task accuracy (I, II, III), Second row:
Pearson correlation between model output and average human response (IV, V, VI). We evaluate the
metric in three settings: with the whole testing dataset (all trials), with trials (in pairs) that humans
perform particularly well (above 67% accuracy; easy trials) and poorly (below 33% accuracy; hard
trials). We use the letters ‘D, F, M, E’ to denote the task deformability, friction, mass, and elasticity,
respectively.

test trials, except the full stimulus movie and accuracy feedback were presented after participants
indicated their prediction. Familiarization trials were always presented in the same order. After the
test trials were completed, basic demographics were collected from participants. Finally, participants
were informed of their overall accuracy.

Results and human-model comparisons. Following [1], we compare a model’s outputs under the
‘separate’ training and ’with property’ testing protocols to human responses on each physics property’s
testing stimuli with two standard metrics: overall accuracy and Pearson correlation between model
and average human responses across stimuli. See Figure 4 I and IV, respectively. From the results,
we found that humans are performing reliably above chance but not particularly well at the task
(acc: 60%), yet all video models are performing slightly worse than humans. Only DPI-Net, which
operates on ground truth states from the physics engine performs comparably to humans. While
this is a challenging task, using trials with a range of human performance (including many below
chance) allows us to test whether model and human predictions are based on the same competencies,
or whether they excel on different trials.

We found that no model correlated well with humans. SlotFormer holds the highest correlation with
human predictions (r=0.12 vs. split half human correlation r=0.37), suggesting that object-centric
approaches may be better suited for physics inference than alternatives, but they are not sufficient for
producing human-like predictions.

Performance on easy/hard trials. We further examine the model and human performance on trials
where humans perform particularly well and particularly poorly. This allows us to understand whether
the models are differentiating trials that humans find trivial from those they find difficult, or whether
model performance is driven by features not used by people. We evaluate on the “easy” trials by
selecting stimuli from some of the same-initial-configuration pairs (see Stimulus Design for more
details) if one of the stimuli in the pair has mean human performance higher than 66.7%, and we also
evaluate the “hard” trials where one of the paired stimuli has mean human performance lower than
33.3%. These results are shown in Figure 4 II and V for the easy trials, and III, VI for the hard trials.
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Table 3: Ablation study on the number of training trials per property.

# Trials DeiT-mlp ResNet-mlp ALOE SlotFormer

200 49.0 50.0 50.5 51.6
500 53.6 51.6 52.1 54.2
1000 54.7 54.7 54.2 56.3
2000 55.4 55.1 53.4 56.7

From these results, we see that all models appear to be making predictions in a way different from
people: they all underperform humans on the easy trials, but outperform humans on the difficult trials.
These results suggest that existing visual learning models still fail to capture human behaviors in
general physics understanding tasks, especially in cases where efficient inference of the underlying
physics properties is required.

Performance on each of the four physical properties. According to Figure 4, most models perform
better than humans in the deformability category, while their performances for all the other three
categories are worse than human judgment. This might result from the fact that humans are better at
learning intuitive physics hence the deformability property is harder to predict than the other three
(see hard trials in Figure 4 III). However, these models do not utilize physical property inference and
learn from data distributions, therefore the preferences for the four categories are less pronounced.

Performance on different number of training trials per property. We conducted additional ablative
experiments with different numbers of trials by selecting four representative models (DeiT-mlp,
ResNet-mlp, ALOE, and SlotFormer). The models learn dynamics separately for each mechanical
property with property inference, and we report the average performance of the four mechanical
properties. The results are shown in Table 3. We can see that when the data size is small (200), the
performance of all models is close to random guessing. As the number of training data increases, the
accuracy of the all models improve and gradually saturate, with only minor performance increases
from 1000 to 2000 trials. Therefore, we believe that 2000 training trials for each property are
reasonable, and that any performance differences we observe are related to architectural differences.
In the future, we will continue to enrich our data to further investigate asymptotic performance across
these and other models.

5 Discussion

Physical scene understanding itself is a challenging task, requiring knowledge of visual perception,
spatial relation, physical property understanding and inference, distance and dynamics estimation, etc.
Despite recent successes from neural-network-based video frame prediction models, none of these
models correlate with human predictions on Physion++. This indicates that current computational
models do not make online inferences about physical properties. This could be for a number of
reasons. It could be that property inference is a difficult task; these models were not designed with
this inference in mind, and 2,000 scenarios might not be enough for this capability to emerge. In
addition, these models might struggle with video prediction that involves multi-stage long-term
dependencies. Our current findings suggest that while the accuracy levels may be both close to 0.6,
the correlation between human and model performances is low, indicating their proficiency in distinct
domains. Humans and models excel at different scenarios and trials. It shows that although the
models outperform humans in some scenarios, they still have huge room for improvement, e.g., they
still fail in many scenarios that humans can easily handle.

The videos in our tasks often involve several phases: inference events, the transition phase, and
the test phase, which causes the videos to last for 13-20 seconds. On the other hand, these models
are often trained and tested on shorter videos. We believe with future video and dynamics model
development that enables accurate predictions on multi-phase videos, our proposed Physion++ dataset
can again serve as the benchmark to evaluate how well these models can be used to infer mechanical
properties and how well their performance correlate with humans. The proposed dataset has no
ethical or societal issues on its own, except those inherited from physical scene understanding.

Acknowledgement. This work was supported by ONR MURI grant N00014-22-1-2740.
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A Project Page and Dataset Release

We have released the Physion++ dataset at our project page. All three subsets (training set 2, readout
fitting set 3, and testing set 4) and the human data 5 are publicly available. We also post a list of all
test filenames in the test set (192 entries per physical property). The dataset is organized as follows.

��
# Download and unzip the three data files
-- Training_data

...
-- Readout_data

...
-- Testing_data

-- Folder organized by physical properties # folders named with copy0 and copy1
indicate two matched trials (e.g., the same video location from copy0 will have a
different property/outcome in copy1 but the same initial conditions)

-- Subfolder organized by scenarios and objects # e.g. bouncy_platform -
use_blocker_with_hole =0-target=cube

-- [id].json # object id and instance information over time
-- [id].pkl # meta information of the physical event and the video
-- [id]_image.mp4 # raw input , RGB video
-- [id]_seg.mp4 # segmentation masks of the video
-- [id]_map.png # indicating the yellow and red objects

# Below are lists of test filenames and ids (192 entries per physical property)
-- Mass.csv
-- Friction.csv
-- Elasticity.csv
-- Deformability.csv
�

Listing 1: Organization of the dataset.

The .json file contains the object id and segmentation mask of each instance over time. The .pkl file
contains the meta information of the scene, including 1) the dynamic friction, static friction, initial
position, initial rotation, mass, elasticity, color, and mesh of each object; 2) the camera matrix and
projection matrix for each frame; 3) angular velocities, positions, rotations, and velocities of all
objects over time; 4) the collision events, including the object ids, relative velocities, time and states;
5) the trial seed used to generate the video, the label for the video, and ‘start_frame_for_prediction’,
which is a timestamp indicating the part of the video before the timestamp is visible, and the part
after the timestamp is required to be predicted.

Author statement. We confirm that we bear all responsibility in case of any violation of rights during
the collection of the data or other work, and will take appropriate action when needed, e.g. to remove
data with such issues.

Hosting, licensing, and maintenance plan. We host the dataset on Amazon AWS. We ensure access
to the data and will provide the necessary maintenance. All products created as part of this project is
shared under the MIT license. We used a number of third-party software packages, each of which
typically has its own licensing provisions. Only TDW [43] was used in the creation of the dataset;
all others were models used for assessment. Table 4 contains a list of these licenses for many of the
packages used.

B Scenario Details

Mass-Dominoes. This scenario starts with an inference phase, where a set of “dominoes” (equally
sized cuboids standing long end up) are placed approximately in a row with semi-random spacing and
orientations. One of the dominoes is visually marked with a different texture, indicating a different
material. At the start of the video, a domino at one end starts to fall as if it had been pushed over,
starting a sequence of the dominoes being pushed over. The video continues past the point where
the textured domino is hit by or hits one of the other dominoes, providing information about the
textured dominoes’ mass. A transition phase is then required (as all relevant objects have toppled)

2Training data: https://physion-v2.s3.amazonaws.com/train_data.zip
3Readout data: https://physion-v2.s3.amazonaws.com/readout_data.zip
4Testing data: https://physion-v2.s3.amazonaws.com/test_data.zip
5Human data: https://physion-v2.s3.amazonaws.com/human_data.zip
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Table 4: Table of open-source code used.

Name URL License

MCVD [39] https://github.com/voletiv/mcvd-pytorch MIT License
ALOE [37] deepmind/object_attention_for_reasoning Apache License 2.0
ResNet [45] https://github.com/pytorch/vision BSD 3-Clause License
DeiT [38] https://github.com/facebookresearch/deit Apache License 2.0
VGGNet [46] https://github.com/pytorch/vision BSD 3-Clause License
DPI-Net [47] https://github.com/YunzhuLi/DPI-Net N/A
TDW [43] https://github.com/threedworld-mit/tdw BSD 2-Clause License
SlotFormer [41] https://github.com/pairlab/SlotFormer MIT License

and the dominoes are reset. In the reset scene, there is a mat on the floor, and one of the dominoes is
indicated as the ‘red’ object while the mat is the ‘yellow’ object. The textured domino is placed in
the chain so that its mass will influence the chain of dominoes: e.g., if it is too heavy it would not
topple when another domino strikes it, but if not it will continue the sequence of collisions and cause
the red domino to land on the yellow mat.

Mass-Waterpush. The inference phase begins with an object at rest and a stream of water shooting
towards the object as if out of a hose. This stream may move the object, and thus give information
about its mass. The transition phase then occurs where the object is moved to another location (and
placed upright if it has tipped over) and marked as ‘red’. In addition, a new object is added falling
from midair, marked as ‘yellow’. The yellow object might be positioned above the red object, in
which case, depending on the masses, the water might knock the red object out of the way or fail to
move it. Or the yellow object might be positioned further along the path defined by the water stream,
so that the stream might cause the red object to slide into the yellow object, or fail to move.

Mass-Collision. The scenario is identical to the Mass-Waterpush scenario, except that instead of
a stream of water that pushes the object, a ball rolls into and collides with the object in both the
inference and testing phases.

Elasticity-Wall. In the inference phase, an object is in ballistic motion towards a wall, bounces off,
and lands on the floor. This provides information about the elasticity of the collision. The transition
phase then occurs, and the object is again placed in ballistic motion towards the wall (which does not
move) and marked as the ‘red’ object, with a ‘yellow’ mat being placed on the floor. Depending on
the elasticity, after bouncing off of the wall, the red object may land on, or over- or under-shoot the
yellow mat.

Elasticity-Platform. This scenario contains a raised platform that ends and drops onto a surface,
with a wall at the end of that surface, followed by a mat (marked as ‘yellow’) on the floor. It starts
with an object (marked as ‘red’) bouncing onto the platform and continuing to bounce/slide to its
edge. This provides information about the objects’ elasticity, and thus how it will bounce when it
falls onto the surface. The key question is whether the red object will touch the mat. In some cases,
the wall is short, so the object must have high elasticity to bounce over and hit the mat. In other cases,
the wall is tall but has a slot at the bottom; in these cases if the object bounces too much it will hit the
wall and stop, but if it is less elastic it will slide through the slot and contact the mat. In this way we
decorrelate the elasticity from the outcome.

Friction-Slide. There were two subtypes of scenarios for Friction-Slide. In both cases, an object
(marked as ‘red’) is positioned near the top of a ramp and begins to slide down. In the ‘gap’ situation,
there is a divot in the slope, and the ‘yellow’ mat is positioned in that gap; thus depending on the
friction of the red object it might slide into the gap and contact the mat or fly over the gap and miss it.
In the ‘no-gap’ situation, there is no divot, and the ‘yellow’ object is placed in the runout area of the
slope; thus the red object might stop before hitting the yellow object or might continue to slide into it.
We use both subtypes so that there is not a correlation between low- or high-friction objects and the
outcome. No transition phase is needed in this case; the inference can be performed from the first
part of the video when the object is sliding down the slope.

Friction-Collision. This scenario starts with the key ‘red’ object sliding along the floor, providing
information about the friction of that object. The transition phase occurs and then the red object is
reset to a different position with a new velocity, and a ‘yellow’ object is dropped from above (similar
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to the Mass-Collision and Mass-Waterpush scenarios). The crucial judgment is whether the friction
of the red object will slow it down just enough so the yellow object will land on it, or whether the red
object will under- or over-shoot the mark.

Friction-Clothslide. This scenario is identical to the Friction-Slide scenario, except instead of a rigid
object sliding down the ramp, the ‘red’ object is a piece of cloth.

Deform-Roll. This scenario starts with a cloth hanging from posts either vertically or horizontally,
and a key object is launched or dropped on the cloth respectively. This provides information about
the deformability of the cloth. The transition phase occurs and the cloth is now hung from posts at an
angle. The critical ‘red’ object is dropped from above the cloth, and the ‘yellow’ object is set in one
of two places. It is either positioned on the ground towards the base of the cloth, so that it is important
to determine whether the red object will sink into the cloth, or roll off of it and hit the yellow object.
Or the yellow object is dropped from above the red object, so that if the cloth is deformable enough
both will sink in and touch, but if it is not, the red object will roll off before the yellow and they will
never contact.

The examples of all 9 scenarios are shown in our project page.

C Details of the Dataset

In some scenarios, the inference and prediction phases can be included in the same video (e.g.,
Elasticity-Platform, Friction-Slide, and Friction-ClothSlide). However, in many cases, the physical
event that provides information in the inference phase irrevocably changes the configuration of objects
so that there is no way to use the inferred information for future predictions (e.g., judging mass from
seeing one domino topple into another leaves them both on the floor at the top row of Figure 2 in the
main paper). In these cases, we include a “transition phase”: a curtain slides in to block the scene,
then while the scene is occluded the objects are rearranged for the prediction phase, and finally the
curtain moves out of the way. And the cueing of the two target objects is done immediately after the
transition phase, followed by a short observation of the rearranged objects in motion. Examples of all
9 scenarios are shown in our project page.

Training set. The training dataset is used for the agents to learn dynamics prediction, and the learned
representations can be discriminative enough to distinguish whether the red object hit the yellow
object, and can generalize to the testing dataset. We generate 2000 trials for each mechanical property
without YES/NO labels for dynamics pretraining. For each physical scenario, we make half of the
trials where the output answers are YES and half of them are NO, so as to ensure the balance of
learning.

Readout fitting set. The readout fitting set is a small dataset containing 192 trials used to map the
dynamic representation learned in the training set to YES/NO of the video question-answering (i.e.,
OCP) task.

Testing set. The final testing benchmark consists of 192 trials (96 pairs) for each mechanical property.
We aim to avoid strong associations between superficial visual cues with the final YES/NO outcome
by designing the readout and test dataset to be "paired" trials, where the paired video scenes are
visually identical in the first frame during the prediction phase yet they unfold into different event
outcomes due to different latent physical properties assigned to the objects in the videos. We achieve
this by fixing object configuration during the prediction phase and regenerating the stimuli with
uniformly sampled mechanical values on a target object until we get one stimulus with a positive
outcome, and the other with a negative outcome. For each scene configuration, we sample a maximum
of 5 different property values, and we drop scenes where we sample all true or all false outcomes. It
has the same overall visual and physical statistics as the readout fitting set so that the learned mapping
from the readout set can be directly evaluated on the test set.

D Pipelines and settings

For each video, we truncate (or pad) both the inference phase and the prediction phase to 160
frames, and sub-sample the videos by a factor of 5 for training the representation or dynamics
models. All frames are resized to 128× 128 to reduce the computational cost. For SlotFormer [41]
and ALOE [37], we first pre-train the object-centric models STEVE [48] and MONet [49] on all
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Table 5: Ablation study on implicit physical property inference.

Method DeiT-mlp ResNet-mlp ALOE SlotFormer

implicit (OCP only) 55.4 55.1 53.4 56.7
explicit as auxiliary 54.2 55.7 54.7 56.7

sub-sampled frames for scene decomposition, and extract all slot representations for subsequent
training. The dynamics models are then trained on the slot representations from the training set under
future prediction loss. For MCVD, the frames are directly fed into the model for dynamics prediction
under image reconstruction loss. For pRESNET-mlp, pVGG-mlp, and pDEIT-mlp, we leverage
pretrained ResNet50 [45], VGG16 [46], and DeiT-small [38] on ImageNet as our feature extractors.
For DPI-Net, we represent the scene with particle representation provided by the annotation. For
the oracle model with property inference, we add the ground-truth property values into the attribute
embedding input of DPI-Net in both training and testing. For the model without property inference,
we simply mask all property values with padding zero vectors. For the full video observed, we feed
the ground-truth particle-based representation to the model. We calculate the distance dmin between
the closet particles in the two target objects. We consider the two objects will contact if dmin is
smaller than a threshold η that is learned from the training set. η is set to 0.075. For other parameters,
we follow the same setting as Physion [1].

For models to generate YES/NO responses from their learned representations, we use the readout
fitting set for the models to learn to map from their latent representation to the target response. We
perform rollout to generate future scene representations (e.g. feature maps for image-based methods,
or object slots for object-centric methods) based on the inference phase in the readout set. We
implement a multilayer perceptron (MLP) with intermediate dimensions of 256 and 64 as our readout
model, which is trained on rollout scene representations from the readout set to classify whether the
two cued objects contact. All experiments were run on 8 NVIDIA TITAN X GPUs using the Adam
optimizer and a learning rate of 1e-4. The models learned on the training and readout sets are then
evaluated on our final benchmark (testing set) by applying the learned visual representations and the
readout model. The best testing results among all readout training epochs are reported.

E Explicit and implicit physical property inference

We selected four representative models (DeiT-mlp, ResNet-mlp, ALOE, and SlotFormer) for the
experiment. A parallel layer of MLP is added at the end of the model (two-branch multitask: OCP
and explicit property estimation) during the readout fitting process. With explicit property estimation
as an auxiliary task, we report the performance comparison with our original setting as in Table 5.
With explicit inference, performance barely improves, suggesting that the networks do not have
access to the properties even when prompted, not that they understand properties but fail to use them
for prediction.

F Datasheets for dataset

Here are our responses in reference to the Datasheets for Datasets [50] standards.

Motivation.

• For what purpose was the dataset created? To measure deep models’ physical future pre-
diction abilities and latent property inference capabilities, and compare these to predictions
made by humans.

• Who created the dataset and on behalf of which entity? The authors listed on this paper,
including researchers from MIT, Stanford, UC Berkeley, MIT-IBM Watson AI Lab, and
UMass Amherst.

• Who funded the creation of the dataset? The various granting agencies supporting the
above-named researchers, including both grants to the PIs as well as individual fellowships
for graduate students and postdoctoral fellows involved with the project.
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Composition.

• What do the instances that comprise the dataset represent? Each instance is a video of a
simulated physical scene (e.g. a tower of blocks as it either collapses or remains steady),
together with some metadata about that video, including map-structured metadata with
segmentation maps and information about object-object collisions at each timepoint.

• How many instances are there in total? The dynamics prediction model training dataset
consists of 2000 examples for each of the 4 physical properties. The OCP readout fitting
dataset consists of 192 examples per each of the 4 physical properties. The test dataset (on
which human responses were obtained) consists of 192 examples per physical property.

• Does the dataset contain all possible instances or is it a sample of instances from a
larger set? Data is generated by a simulator; in a sense, the set of datapoints we created is
an infinitesimally small subset of data that could have been generated. However, we are all
here releasing all the examples we did actually generate.

• What data does each instance consist of? It consists of a video depicting a physical
situation (e.g a tower of blocks falling over), together with simulator-generated metadata
about the situation.

• Is there a label or target associated with each instance? For the training dataset, there
are no labels. For both the OCP readout fitting dataset and the human testing dataset, there
are binary labels describing whether the red object collided with the yellow zone during the
duration of the trajectory.

• Is any information missing from individual instances? No.

• Are relationships between individual instances made explicit? Yes. All data is provided
in a simple data structure that indicates which instances of data are connected with which
instances of metadata.

• Are there recommended data splits? Yes, for each of the scenarios in the datasets, there
are three splits: (a) a large training split for training physical prediction models from scratch;
(b) a smaller readout-training set that is to be used for training the yes/no binary readout
training as described in the paper, and (c) the test dataset on which human responses were
obtained.

• Are there any errors, sources of noise, or redundancies in the dataset? We have not
found any as of this publication. As these are discovered, they will be fixed and versioned.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources?
It is self-contained.

• Does the dataset contain data that might be considered confidential? No.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No.

• Does the dataset relate to people? No.

Collection Process.

• How was the data associated with each instance acquired? What mechanisms or
procedures were used to collect the data? How was it verified? Videos (for training,
readout fitting, and human testing) were generated using the TDW simulation environment.
Online crowdsourcing was used to obtain human judgements for each testing video. During
the creation of the simulated videos, the researchers looked at the generated videos by eye
to verify if the scenarios were correct (e.g. actually depicted the situations desired by our
experimental design). Prior to running the actual data collection procedure for humans, we
verified that the experimental websites were correct by having several of the researchers
complete the experiment themselves.

• Who was involved in the data collection process and how were they compensated? PIs,
students, and postdocs generated simulator-generated videos. For human responses, 200
participants (50 for each of the mechanical properties) were recruited from Prolific and paid
$15.50 per hour for their participation.
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• Over what timeframe was the data collected? All simulator-generated scenarios were
created and human data was collected during the second half of 2022.

• Were any ethical review processes conducted? All human data collection was approved
by UC San Diego IRB.

Preprocessing, clearning and labelling.

• Was any preprocessing/cleaning/labeling of the data done? We reviewed the test scenar-
ios to make sure we videos with non-informative situations were not included (e.g., one of
the key objects is fully occluded during the entirety of the video). No other preprocessing
was done, and labeling was produced automatically by the system.

Uses.

• Has the dataset been used for any tasks already? Yes, the participants in the human
experiments used the data for the single purpose for which it was designed: obtaining
detailed characterization of human judgments about physical prediction and latent property
inference in simple scenes.

• Is there a repository that links to any or all papers or systems that use the dataset?. No
other papers use the dataset yet.

• What (other) tasks could the dataset be used for? None.
• Is there anything about the composition of the dataset or the way it was collected and

preprocessed/cleaned/labeled that might impact future uses? No.
• Are there tasks for which the dataset should not be used? The dataset can only be used to

measure abilities of humans or models to make physical prediction based on latent property
inference.

Distribution.

• Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? Yes it will be
completely publicly available via our project page and the links listed thereupon.

• How will the dataset will be distributed? It will be available via links to the project page,
and which will refer to permanent Amazon S3 resources.

• When will the dataset be distributed? Immediately.
• Will the dataset be distributed under a copyright or other intellectual property (IP)

license, and/or under applicable terms of use (ToU)? The dataset and associated code
will be licensed under the MIT license.

• Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? No.

• Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? No.

Maintenance.

• Who is supporting/hosting/maintaining the dataset? The dataset is hosted on Amazon S3
resource. The associated Amazon S3 account is the institutional account for the CogTools
lab (at Stanford).

• How can the owner/curator/manager of the dataset be contacted? The corresponding
author of the paper can be contacted via email as described in the front page of the paper.

• Is there an erratum? No. If needed, any future errata will be posted on the project page.
• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete

instances)? As this dataset becomes used by a larger audience, we will review the instances
for errors that users uncover. These errors will be corrected as they are discovered on an
ongoing basis.
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• Will older versions of the dataset continue to be supported/hosted/maintained? If newer
versions of the dataset are created, these will only be in additional to the existing data. Old
versions will be maintained indefinitely.

• If others want to extend/augment/build on/contribute to the dataset, is there a mecha-
nism for them to do so? No. Making contributions to this dataset requires a very detailed
understanding of a variety of components and how they interconnect – physics simula-
tors, scenario generation modules, online psychophysical experimentation platforms, etc. –
and we do not contemplate allowing third parties to (e.g.) add new examples of physical
scenarios.

Structured metadata. We have not created structured metadata for our project in a format like that
in schema.org or DCAT as yet, because we expect that through the review feedback process, the exact
structure of what metadata we should provide may change. We will be happy to do this once review
is complete. In the meantime, all of our data is available through our project page, which provides a
certain level of metadata about the project that we think is appropriate for the review process.

Dataset identifier. At the moment, we provide access to the dataset via Amazon S3 links that are
visible via our project page. We have not yet pushed out data into a standard data repository or created
a DOI for it. This is because we expect the specifics of how the data is made available to develop
during the paper review process. Once this is complete, we will push the data into a standardized data
repository and generate a DOI for it.

G Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [Yes]
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(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [Yes]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes]
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