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Abstract— Navigation Foundation Models (NFMs) trained
on large, cross-embodied datasets have demonstrated powerful
generalizability on various scenarios. Adopting in-domain fine-
tuning upon an NFM efficiently calibrates the visuomotor
policy, promising further improvement even in a novel scenario.
However, the fine-tuned models still suffer from poor obstacle
avoidance or fail to properly reach the provided goals. Further-
more, such model updates in a small subset of data typically
erode the pretrained prior, compromising the pretraining gen-
eralization. Consequently, fine-tuning rather deteriorates the
model’s capability of robust and accurate navigation. In this
work, we present a novel fine-tuning method that leverages the
large-scale pretraining while efficiently learning novel setups,
such as the environment or camera configuration. In particular,
inspired by ControlNet, we fine-tune an NFM by attaching a
trainable copy of the pretrained backbone using zero-initialized
residual pathways, thereby learning geometric cues. This design
enables the model to efficiently acquire the in-domain geom-
etry while preserving the pretrained knowledge for various
behaviors. Despite the simplicity, our comprehensive evaluation
of real-world navigation suggests that our proposal effectively
enables robust long-horizon navigation with minimum collisions
or human intervention.

I. INTRODUCTION

Visual navigation based on a sequence of images has
emerged as a fundamental paradigm in mobile robotics
research, encompassing diverse task formulations such as
Image-Goal navigation and Vision-and-Language Naviga-
tion 4]]. Recently, imitation learning approaches that
learn optimal navigation policies from expert-demonstrated
trajectories have gained significant attention in robotics nav-
igation [5] [6]]. In particular, Navigation Foundation Models
(NFMs), such as VINT and NoMaD [8]], which learn
goal-conditioned policies from large-scale data and transfer
the pretrained knowledge across environments and robot
embodiments, have achieved reliable goal-reaching and ob-
stacle avoidance. Importantly, the scale of the pretraining
dataset is critical to acquiring the diversity of navigation be-
haviors, including obstacle avoidance and alternative routes
at junctions. Therefore, NFMs typically employ image-to-
policy learning without additional sensory modalities (RGB-
only learning) to enable massive, low-cost, and standardized
pretraining.

However, NFMs still struggle with adaptation to a novel
scene and robotic configuration, even in a seemingly close to
those seen during pretraining. We attribute this primarily to
domain-shift in geometric perception, stemming from camera
configuration, such as the field of view, distortion, and so
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Fig. 1. Failure scenes of zero-shot NoMaD in real-robot navigation,
such as an unsafe clearance (left) and distance misestimation (right).
In particular, the pretraining images exhibit out-of-distribution distortion
relative to our experimental condition, impairing geometric perception.

Fine-tuned

Fig. 2.
on a shared start-goal and an observation point, we visualize N = 20
trajectories sampled from each model: Left: the zero-shot NoMaD (before
being fine-tuned); Right: the fine-tuned model. Fine-tuning yields markedly
lower diversity, with narrower spatial spread and reduced heading variance,
indicating a collapse of pretrained priors.

Less divergent trajectory generation after fine-tuning. Based

on. Indeed, we observed that input images that are more
undistorted than those used for pretraining the backbone,
led to hitting obstacles or failing to reach the proper goal
point (Fig. [T). Generally, a well-known approach to address
such failures is full fine-tuning, i.e., calibrating the entire
policy backbone to new domains [[7, [9].

Yet, we also observed that the problem persists even after
fine-tuning. Especially, the fine-tuned model is prone to gen-
erating less diverse trajectories, suggesting catastrophically-
forgetting of the pretrained knowledge (Fig. [2).

In short, techniques for efficiently using large-scale pre-
training suffer from two key difficulties: (i) a lack of accurate
geometry awareness given a novel scene/embodiment, and
(i1) insufficient behavioral diversity that is crucial to dealing
with the various navigational scenarios.

In this work, we present a novel fine-tuning for NFMs,
D-CLIqukDepth—conditioned, ControlNet-driven Learnlng
for General NaviGation Models), that leverages large-scale
pretraining while efficiently adapting to novel environments

'We named D-CLING, hoping the model cling the pretrained knowledge
of NFMs without catastrophically forgetting it in the depth-guided tuning.



and geometric perception (Fig. [3). The core idea is fine-
tuning a policy backbone with dense depth conditioning
to capture accurate scene geometry, using ControlNet-style
residual pathway learning [10]]. The pathway injects dense
depth signals into the model’s intermediate layers, progres-
sively updating the parameters with geometry-awareness.
Hence, the fine-tuned model is expected to preserve the orig-
inal navigation capability while smoothly increasing its in-
domain geometry-awareness, resulting in robust and accurate
navigation at the end of the fine-tuning.

We evaluate D-CLING by building upon NoMaD [_], a
standard NFM pretrained on diverse domains. Our real-world
evaluation demonstrates that D-CLING offers a substantial
improvement in goal-reachability and collision avoidance
skills relative to the baselines: zero-shot NoMaD, the RGB
fine-tuned model following the typical protocol, and the
RGB-D fine-tuned model via an early-fusion strategy [/11].

In summary, the main contributions of this work are as
follows:

o Prior-preserving fine-tuning framework: We intro-
duce a depth-conditioned adaptation that retains pre-
trained policy priors while explicitly injecting geometry-
awareness.

« Comprehensive validation: We present comprehensive
experiments, showing that D-CLING achieves superior
goal reachability and obstacle avoidance in real-robot
deployments compared with typical baselines.

II. METHODOLOGY
A. Overview of Proposed Method Behavior

Figure |3| presents our proposed framework adopted to a
representative NFM, NoMaD [8]]. As in the original No-
MaD, the pretrained weight-frozen NoMaD backbone (RGB
Branch) maps a short RGB history and a goal image to ac-
tions. In parallel, a depth-conditioned branch (Depth Branch)
encodes the same RGB inputs together with a depth map
to produce conditioning features. Then, the model outputs
short-horizon waypoints.

B. Model Architecture

We freeze all layers of the pretrained NoMaD (RGB
Branch) and create a copy of them to form the Depth Branch.
Depth Branch receives an RGB-D frame 6, € R">xwx4
and begins with a 4 — 3 embedding layer that projects
the four-channel input to three channels. All subsequent
modules follow NoMaD. Conditioned on the context vector
¢;, a U-Net based diffusion model of Depth Branch produces
intermediate features. At every corresponding U-Net layer,
depth intermediate features are added to the RGB Branch.

Following ControlNet, we insert zero-initialized 1x1 con-
volutions immediately before the U-Net and immediately
after each U-Net layer on the Depth Branch. Let Fy(-;0y)
denote the intermediate block at stage ¢ € {1,..., L} of the
U-Net—based diffusion model of the RGB Branch, with input
feature hy and output y, = Fy(hy; ©y). Here, O, denotes the
model parameters of Fy. In the RGB Branch, the parameters
©, of Fy are frozen.

For the Depth Branch, we introduce a counterpart
Fl(-;©%) and a single zero-initialized 1x1 convolution
Zy(-;0%). With the depth-derived feature h¢, let uf =
F&(h¢; ©%) be the intermediate feature of the U-Net based
diffusion model at stage ¢. We form the block output as
the element-wise sum of y, and the zero-initialized 1x1
convolution applied to ug:

ve = ye+ Zg (uf ; 7). )
Importantly, the 1x1 fusion gate is zero-initialized as:
0; =0 = Va: Zi(2;07)=0 2)

Hence, at the initialization phase, all the layer-wise outputs
ye behave as their original form, s.t., y; = y¢ = Fy(h¢; Oy).
Thus, gradients update Depth Branch parameters gradually
via the zero-initialized fusion, while the RGB trunk remains
frozen.

Note that our approach is a relatively simple adoption
of the ControlNet philosophy to validate the proposal’s
impact. Although further extensions, e.g., a repulsive safety
head from monocular depth [12], externally providing a
3D map [13]], can be integrated for future extensions, we
intentionally exclude them from this paper.

III. EXPERIMENTS
A. Fine-tuning Setups

Dataset construction. We collected synchronized RGB-
odometry sequences using a Toyota Human Support Robot
(HSR) [[14] equipped with a ZED 2. For dense depth esti-
mation, we used a learning-based stereo-to-depth estimator
pretrained on in-house datasets [15]. The sequences are
collected in a large-scale office room. The space combines
standard office furniture with specialized robotics equipment
and experimental setups, resulting in a heterogeneous en-
vironment that challenges navigation with both typical and
atypical obstacles. This dedicated fine-tuning dataset, RealH-
SRNav, is collected in roughly three hours for demonstration
data. Note that RealHSRNav is used as the sole dataset for
all fine-tuning experiments reported in this paper.
Importantly, our collected dataset can pose the model a
domain-shift due to differences in the camera field of view —
though the model was originally pretrained on fisheye-like
images mostly, the equipped camera provides a pinhole-like
projection (approximately 110° horizontal). Thus, adequately
calibrating scene perception is needed to leverage the pre-
trained knowledge.
Implementation details. To implement D-CLING, we fine-
tuned an off-the-shelf checkpoint of the NoMalf] for
30 epochs on a single NVIDIA RTX 4090 GPU with a batch
size of 256 and a learning rate of 2.5 x 1075. Following
the original study [8]], we train with AdamW [16] using a
cosine learning-rate schedule with warm-up, optimizing the
unmodified NoMaD loss.

2https://github.com/robodhruv/
visualnav-transformer| (retrieved 10 July 2025)
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intermediate features. In parallel, a trainable Depth Branch ingests RGB-D (with a 4 — 3 embedding) and injects zero-initialized residual features into a
U-Net based diffusion model; the two streams are fused by element-wise addition at each U-Net stage during training and inference. The diffusion head
outputs a short-horizon action distribution, enabling prior-preserving depth conditioning.

B. Baselines

We used the following ablative models to compare with
the proposed D-CLING:
NoMaD (Zero-Shot). We evaluate the same NoMaD check-
point for the fine-tuning variants, including our proposal.
We show that this zero-shot adoption frequently achieves
a runner-up position in various tasks, supported by the
knowledge obtained in large-scale pretraining.
NoMaD-FT (Full Fine-Tuning). All NoMaD parameters
are fine-tuned on our dataset under identical conditions to
D-CLING. This baseline shows the difficulty of in-domain
learning, i.e., that naive fine-tuning of the zero-shot model is
insufficient or rather degrades its original ability in various
cases.
NoMaD-EF (Early Fusion). Based on the NoMaD check-
point, we added a depth encoder with the same architec-
ture as the RGB encoder, which is trainable and randomly
initialized. This is a common practice to multimodalize
model input [I1]: it adds a trainable depth-only backbone
parallel to the RGB backbone and fuses tokens via channel-
wise concatenation followed by a 1x1 projection without
additional residual paths.

C. Real-world Experiments

Scenarios. We evaluate all the methods in the following
three scenarios, which align with real-world scenarios of
navigation tasks (Fig. ):

(i) Basic obstacle avoidance (Basic Obstacle). The robot
traverses a corridor while avoiding a stationary box; no
additional obstacles are introduced during the evalua-
tion.

Dynamic corridor (Dynamic Corridor) with a map-
absent chair. After traversing approximately 10m in a
dynamical environment, the robot encounters a chair
placed at the corridor center that is not represented in
the pre-collected goal images, and thus must be avoided

(ii)

only by visual observation. This scenario reflects every-
day human-space disturbances such as moved furniture,
crossing pedestrians, and people stepping away.
Long-range navigation (Long-range). The robot fol-
lows an approximately 50m semicircular trajectory
through the office, crosses two junctions, and deals
with various scene dynamics. The environment contains
changes not present in the pre-collected goal images,
which evaluates robustness to appearance shifts and
long-horizon navigation.

Experimental details. We conducted the experiments in our
office environment on the Toyota HSR, the same platform
used for the dataset collection. Linear and angular speeds are
limited to 0.45m/s and 1.0rad/s. The policy consumes two
sources of context: (1) a short visual history of 7'+ 1 frames
(the current RGB frame and its 7" immediate predecessors),
each paired with a per-frame depth estimate; and (2) a
topological map encoded as an ordered sequence of goal
images captured at uniform spatial intervals during the initial
setup of the environment. The model outputs H+1 waypoints
including the current step. We set 7'=3 and H = 7.
Metrics. For scenarios (i) and (ii), we run 10 trials each and
report the success rate (SR). A trial is considered successful
if the robot reaches the goal within the allotted time without
collisions or human intervention. For scenario (iii), we run
5 trials, and record the number of detected safety triggers
for operator interventions. Note that the trigger is used in
an off-the-shelf manner, implemented on Toyota HSR [14].
We report the mean interventions per trial (lower is better),
together with the 95% confidence intervals.

Results. Table [[| reports real-robot performance across three
scenarios. Our proposal, D-CLING, consistently outperforms
the baselines. It achieves the highest success rates in (i) and
(ii), and requires far fewer interventions in (iii). We attribute
these gains to the geometry-awareness provided by dense
depth adoption while preserving the diverse action patterns

(iii)



TABLE I
REAL-WORLD NAVIGATION PERFORMANCE ACROSS THREE SCENARIOS. THE AVERAGE SUCCESS RATE (SR) IN 10 TRIALS EACH FOR (I) AND (II),
AND THE AVERAGE HUMAN INTERVENTIONS (INTERVENTIONS) OF 5 TRIALS FOR (III) ARE LISTED.

(i) Basic Obstacle

(ii) Dynamic Corridor (iii) Long-range

Method Training Modality

SR (%) 1 SR (%) 1 Interventions |
NoMaD Frozen RGB 50 0 2.6
NoMaD-FT Full fine-tune RGB 30 10 3.2
NoMaD-EF Early fusion RGB-D 40 0 4.4
D-CLING (Ours) Zero-init RGB-D 70 60 1.2

(i) Basic Obstacle

(ii) Dynamic Corridor

(iii) Long-range

Fig. 4. Representative frames of our proposed method from real-world experiments with a robot overlaid in an office environment: (i) Basic Obstacle
—corridor traversal with visual avoidance of a single stationary box; (ii) Dynamic Corridor—after 10 m the robot must avoid an unmapped chair; and (iii)

Long-range—a 50 m semicircular route across two junctions.

of the model, which in turn improves obstacle avoidance and
long-horizon goal reachability (Fig. [).

In contrast, zero-shot NoMaD remains problematic, par-
ticularly on (ii), even though the model was originally
pretrained on similar indoor datasets [18]]. We conjecture
that this is owing to domain shift stemming from the camera
geometry and/or scene appearance. Furthermore, NoMaD-
FT and NoMaD-EF underperform zero-shot NoMaD in (i)
and (iii), though in-domain training is applied. We anticipate
that input sequences from novel scenes or a novel modality,
i.e., dense depth, have eroded pretrained knowledge. In fact,
in NoMaD-EF, where the learning for a novel domain is
forcibly applied to the RGB-prelearned policy (i.e., off-the-
shelf NoMaD), intervention is needed the most frequently
to execute the long-horizon task (iii). In other words, inter-
ventions are more frequent than in the policy that leverages
only the RGB modality as originally trained, i.e., NoMaD-
FT. Thus, it can be interpreted that the policy that is the most
severely affected by catastrophic-forgetting —depth learning
that catastrophically overrides the RGB learned backbone—
provides the worst score on the task.

IV. CONCLUSION

Zero-shot adoption of NFMs still suffers from novel scene
complexity, camera parameters, etc. Nevertheless, fine-tuning

on limited in-domain dataset is still insufficient to adapt
them. Furthermore, typical fine-tuning hinders diverse action
generation of pretrained behavior, which is crucial for various
real-world navigation tasks. We presented D-CLING, a prior-
preserving and depth-conditioned NFM fine-tuning strategy
that leverages a frozen RGB branch and enables learning
of dense depth guidance upon it through the zero-initialized
layer. Real-world experiments compared with ablative strate-
gies exhibited the efficacy of our proposal to achieve robust
navigation, as well as awareness of metrically accurate action
prediction.

In future work, we will systematically compare condi-
tioning modalities of ControlNet-based fine-tuning to clarify
each contribution. Specifically, RGB-only vs. RGB plus
depth will quantify the gains attributable to depth versus on-
domain photometric adaptation, while dense vs. sparse and
metric vs. up-to-scale relative depth will assess the benefits
and trade-offs of the modality. A promising direction to
further improve the navigation capability is to maintain off-
screen awareness through multi-frame temporal modeling
and auxiliary sensing to reduce collisions. This targets our
most frequent failure case, where once an obstacle leaves the
camera s view, the robot forgets the obstacle and returns to
the original path, which at last collides with the previously
avoided obstacle.
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