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Abstract

Neural networks have achieved remarkable empirical performance, while the
current theoretical analysis is not adequate for understanding their success, e.g.,
the Neural Tangent Kernel approach fails to capture their key feature learning
ability, while recent analyses on feature learning are typically problem-specific.
This work proposes a unified analysis framework for two-layer networks trained
by gradient descent. The framework is centered around the principle of feature
learning from gradients, and its effectiveness is demonstrated by applications in
several prototypical problems such as mixtures of Gaussians and parity functions.
The framework also sheds light on interesting network learning phenomena such
as feature learning beyond kernels and the lottery ticket hypothesis.

1 Introduction

Neural network (NN) learning has achieved remarkable empirical success and has been a main
driving force for the recent progress in machine learning and artificial intelligence. On the other
hand, theoretical understandings significantly lag behind. Traditional analysis approaches are not
adequate due to the overparameterization of practical networks and the non-convex optimization in the
training via gradient descent. One line of work (e.g. [9, 31, 38, 60, 71, 123] and many others) shows
under proper conditions, heavily overparameterized networks are approximately linear models over
data-independent features, i.e., a linear function on the Neural Tangent Kernel (NTK). While making
weak assumptions about the data and thus applicable to various settings, this approach requires the
network learning to be approximately using fixed data-independent features (i.e., the kernel regime,
or fixed feature methods). It thus fails to capture the feature learning ability of networks (i.e., to learn
a feature mapping for the inputs which allow accurate prediction), which is widely believed to be the
key factor to their empirical success in many applications (e.g., [54, 77, 117, 119]). To study feature
learning in networks, a recent line of work (e.g. [5, 6, 14, 33, 52, 72, 76, 116] and others) shows
examples where networks provably enjoy advantages over fixed feature methods (including NTK),
under different settings and assumptions. While providing more insights, these studies typically focus
on specific problems, and their analyses exploit the specific properties of the problems and appear to
be unrelated to each other. Is there a common principle for feature learning in networks via gradient
descent? Is there a unified analysis framework that can clarify the principle and also lead to provable
error guarantees for prototypical problem settings?

In this work, we take a step toward this goal by proposing a gradient feature learning framework
for analyzing two-layer network learning by gradient descent. (1) The framework makes essentially
no assumption about the data distribution and can be applied to various problems. Furthermore,
it is centered around features from gradients, clearly illustrating how gradient descent leads to
feature learning in networks and subsequently accurate predictions. (2) It leads to error guarantees
competitive with the optimal in a family of networks that use the features induced by gradients on the
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data distribution. Then for a specific problem with structured data distributions, if the optimal in the
induced family is small, the framework gives a small error guarantee.

We then apply the framework to several prototypical problems: mixtures of Gaussians, parity
functions, linear data, and multiple-index models. These have been used for studying network
learning (in particular, for the feature learning ability), but with different and seemingly unrelated
analyses. In contrast, straightforward applications of our framework give small error guarantees,
where the main effort is to compute the optimal in the induced family. Furthermore, in some cases,
such as parities, we can handle more general data distributions than in the existing work.

Finally, we also demonstrate that the framework sheds light on several interesting network learning
phenomena or implications such as feature learning beyond the kernel regime, lottery ticket hypothesis
(LTH), simplicity bias, learning over different data distributions, and new perspectives about roadmaps
forward. Due to space limitations, we present implications about features beyond the kernel regime
and LTH in the main body but defer the other implications in Appendix C with a brief here. (1)
For simplicity bias, it is generally believed that the optimization has some implicit regularization
effect that restricts learning dynamics to a low capacity subset of the whole hypothesis class, so
can lead to good generalization [53, 90]. Our framework provides an explanation that the learning
first learns simpler functions and then more sophisticated ones. (2) For learning over different data
distributions, we provide data-dependent non-vacuous guarantees, as our framework can be viewed
as using the optimal gradient-induced NN to measure or quantify the “complexity” of the problem.
For easier problems, this quantity is smaller, and our framework can give a better error bound to
derive guarantees. (3) For new perspectives about roadmaps forward, our framework suggests the
strong representation power of NN is actually the key to successful learning, while traditional ones
suggest strong representation power leads to vacuous generalization bounds [19, 33]. Thus, we
suggest a different analysis road. Traditional analysis typically first reasons about the optimal based
on the whole function class then analyzes how NN learns proper features and reaches the optimal. In
contrast, our framework defines feature family first, and then reasons about the optimal based on it.

2 Related Work

Neural Networks Learning Analysis. Recently there has been an increasing interest in the analysis
of network learning. One line of work connects the sufficiently over-parameterized neural network to
linear methods around its initialization like NTK (e.g. [9, 11, 20, 21, 31, 38, 49, 60, 62, 69, 71, 78, 82,
91, 93, 95, 114, 121, 122] and more), so that the neural network training is a convex problem. The
key idea is that it suffices to consider the first-order Tyler expansion of the neural network around the
origin when the initialization is large enough. However, NTK lies in the lazy training (kernel) regime
that excludes feature learning [29, 50, 68, 113]. Many studies (e.g. [2, 5, 6, 8, 12, 14, 22, 26, 33, 37,
51, 52, 57, 58, 70, 72, 73, 76, 99, 112, 115, 116] and more) show that neural networks take advantage
over NTK empirically and theoretically. Another line of work is the mean-field (MF) analysis of neural
networks (e.g. [27, 28, 36, 79, 80, 100, 106] and more). The insight is to see the training dynamics of
a sufficiently large-width neural network as a PDE. It uses a smaller initialization than the NTK so
that the parameters may move away from the initialization. However, the MF does not provide explicit
convergence rates and requires an unrealistically large width of the neural network. One more line of
work is neural networks max-margin analysis (e.g. [30, 47, 48, 56, 61, 63, 74, 75, 83, 85, 86, 107, 109]
and more). They need a strong assumption that the convergence starts from weights having perfect
training accuracy, while feature learning happens in the early stage of training. To explain the success
of neural networks beyond the limitation mentioned above, some work introduces the low intrinsic
dimension of data distributions [17, 18, 23, 24, 25, 44, 67, 104, 108, 124]. Another recent line of
work is that a trained network can exactly recover the ground truth or optimal solution or teacher
network [3, 4, 10, 39, 84, 87, 94, 96, 120], but they have strong assumptions on data distribution or
model structure, e.g., Gaussian marginals. [1, 40, 55, 110, 111] show that training dynamics of neural
networks have multiple phases, e.g., feature learning at the beginning, and then dynamics in convex
optimization which requires proxy convexity [43] or PL condition [65] or special data structure.

Feature Learning Based on Gradient Analysis. A recent line of work is studying how features
emerge from the gradient. [7, 46] consider linear separable data and show that the first few gradient
steps can learn good features, and the later steps learn a good network on neurons with these
features. [33, 45, 105] have similar conclusions on non-linear data (e.g., parity functions), while
in their problems one feature is sufficient for accurate prediction (i.e., single-index data model).
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[32] considers multiple-index with low-degree polynomials as labeling functions and shows that a
one-step gradient update can learn multiple features that lead to accurate prediction. [13, 81] studies
one gradient step feature improvements at different learning rates. [97] proposes Recursive Feature
Machines to show the mechanism of recursively feature learning but without giving a final loss
guarantee. These studies consider specific problems and exploit properties of the data to analyze the
gradient delicately, while our work provides a general framework applicable to different problems.

3 Gradient Feature Learning Framework

Problem Setup. We denote [n] := {1, 2, . . . , n} and Õ(·), Θ̃(·), Ω̃(·) to omit the log term inside.
Let X ⊆ Rd denote the input space, Y ⊆ R the label space. Let D be an arbitrary data distribution
over X × Y . Denote the class of two-layer networks with m neurons as:

Fd,m :=
{
f(a,W,b)

∣∣ f(a,W,b)(x) := a⊤
[
σ(W⊤x− b)

]
=
∑
i∈[m]

ai [σ(⟨wi,x⟩ − bi)]
}
, (1)

where σ(z) = max(z, 0) is the ReLU activation function, a ∈ Rm is the second layer weight,
W ∈ Rd×m is the first layer weight, wi is the i-th column of W (i.e., the weight for the i-th neuron),
and b ∈ Rm is the bias for the neurons. For technical simplicity, we only train a,W but not b. Let
superscript (t) denote the time step, e.g., f(a(t),W(t),b) denote the network at time step t. Denote
Ξ := (a,W,b), Ξ(t) := (a(t),W(t),b). The goal of neural network learning is to minimize the
expected risk, i.e., LD(f) := E(x,y)∼DL(x,y)(f), where L(x,y)(f) = ℓ(yf(x)) is the loss on an
example (x, y) for some loss function ℓ(·), e.g., the hinge loss ℓ(z) = max{0, 1 − z}, and the
logistic loss ℓ(z) = log[1 + exp(−z)]. We also consider ℓ2 regularization. The regularized loss with
regularization coefficient λ is Lλ

D(f) := LD(f) +
λ
2 (∥W∥2F + ∥a∥22). Given a training set with n

i.i.d. samples Z = {(x(l), y(l))}l∈[n] from D, the empirical risk and its regularized version are:

L̃Z(f) : =
1

n

∑
l∈[n]

L(x(l),y(l))(f), L̃λ
Z(f) := L̃Z(f) +

λ

2
(∥W∥2F + ∥a∥22). (2)

Then the training process is summarized in Algorithm 1.

Algorithm 1 Network Training via Gradient Descent

Initialize (a(0),W(0),b)
for t = 1 to T do

Sample Z(t−1) ∼ Dn

a(t) = a(t−1) − η(t)∇aL̃λ(t)

Z(t−1)(fΞ(t−1)), W(t) = W(t−1) − η(t)∇WL̃λ(t)

Z(t−1)(fΞ(t−1))
end for

In the whole paper, we need some natural assumptions about the data and the loss.
Assumption 3.1. We assume E[∥x∥2] ≤ Bx1, E[∥x∥22] ≤ Bx2, ∥x∥2 ≤ Bx and for any label y,
we have |y| ≤ 1. We assume the loss function ℓ(·) is a 1-Lipschitz convex decreasing function,
normalized ℓ(0) = 1, |ℓ′(0)| = Θ(1), and ℓ(∞) = 0.

Remark 3.2. The above are natural assumptions. Most input distributions have the bounded norms
required, and the typical binary classification Y = {±1} satisfies the requirement. Also, the most
popular loss functions satisfy the assumption, e.g., the hinge loss and logistic loss.

3.1 Warm Up: A Simple Setting with Frozen First Layer

To illustrate some high-level intuition, we first consider a simple setting where the first layer is frozen
after one gradient update, i.e., no updates to W for t ≥ 2 in Algorithm 1.

The first idea of our framework is to provide guarantees compared to the optimal in a family of
networks. Here let us consider networks with specific weights for the first layer:
Definition 3.3. For some fixed W ∈ Rd×m,b ∈ Rd, and a parameter Ba2, consider the following
family of networks FW,b,Ba2

, and the optimal approximation network loss in this family:

FW,b,Ba2
:=
{
f(a,W,b) ∈ Fd,m

∣∣ ∥a∥2 ≤ Ba2

}
, OPTW,b,Ba2

:= min
f∈FW,b,Ba2

LD(f). (3)
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The second idea is to compare to networks using features from gradient descent. As an illustrative
example, we now provide guarantees compared to networks with first layer weights W(1) (i.e., the
weights after the first gradient step):

Theorem 3.4 (Simple Setting). Assume L̃Z
(
f(a,W(1),b)

)
is L-smooth to a. Let

η(t) = 1
L , λ

(t) = 0, for all t ∈ {2, 3, . . . , T}. Training by Algorithm 1 with no updates for the
first layer after the first gradient step, w.h.p., there exists t ∈ [T ] such that

LD(f(a(t),W(1),b)) ≤ OPTW(1),b,Ba2
+O

(
L(∥a(1)∥2

2+B2
a2)

T +

√
B2

a2(∥W(1)∥2
FB2

x+∥b∥2
2)

n

)
.

Intuitively, the theorem shows that if the weight W(1) after a one-step gradient gives a good set
of neurons in the sense that there exists a classifier on top of these neurons with low loss, then the
network will learn to approximate this good classifier and achieve low loss. The proof is based on
standard convex optimization and the Rademacher complexity (details in Appendix D.1).

Such an approach, while simple, has been used to obtain interesting results on network learning
in existing work, which shows that W(1) can indeed give good neurons due to the structure of the
special problems considered (e.g., parities on uniform inputs [15], or polynomials on a subspace [32]).
However, it is unclear whether such intuition can still yield useful guarantees for other problems. So,
for our purpose of building a general framework covering more prototypical problems, the challenge
is what features from gradient descent should be considered so that the family of networks for
comparison can achieve a low loss on other problems. The other challenge is that we would like
to consider the typical case where the first layer weights are not frozen. In the following, we will
introduce the core concept of Gradient Features to address the first challenge, and stipulate proper
geometric properties of Gradient Features for the second challenge.

3.2 Core Concepts in the Gradient Feature Learning Framework
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Gradient Feature being cones under Mixture of Gaussians data

Figure 1: An illustration of Gradient Fea-
ture, i.e., Definition 3.7 with random initial-
ization (Gaussian), under Mixture of three
Gaussian clusters in 3-dimension data space
with blue/green/orange color. The Gradient
Feature stays in three cones, where each cen-
ter of the cone aligns with the corresponding
Gaussian cluster center.

Now, we will introduce the core concept in our framework,
Gradient Features, and use it to build the family of net-
works to derive guarantees. As mentioned, we consider
the setting where the first layer is not frozen. After the
network learns good features, to ensure the updates in later
gradient steps of the first layer are still benign for feature
learning, we need some geometric conditions about the
gradient features, which are measured by parameters in the
definition of Gradient Features. The conditions are general
enough, so that, as shown in Section 4, many prototypical
problems satisfy them and the induced family of networks
enjoys low loss, leading to useful guarantees. We begin
by considering what features can be learned via gradients.
Note that the gradient w.r.t. wi is
∂LD(f)

∂wi
= aiE(x,y) [ℓ

′(yf(x))y [σ′ (⟨wi,x⟩ − bi)]x]

= aiE(x,y) [ℓ
′(yf(x))yxI[⟨wi,x⟩ > bi]] .

Inspired by this, we define the following notion:
Definition 3.5 (Simplified Gradient Vector). For any w ∈
Rd, b ∈ R, a Simplified Gradient Vector is

G(w, b) := E(x,y)∼D[yxI[w⊤x > b]]. (4)

Remark 3.6. Note that the definition of G(w, b) ignores
the term ℓ′(yf(x)) in the gradient, where f is the model
function. In the early stage of training (or the first gradient step), ℓ′(·) is approximately a constant,
i.e., ℓ′(yf(x)) ≈ ℓ′(0) due to the symmetric initialization (see Equation (8)).
Definition 3.7 (Gradient Feature). For a unit vector D ∈ Rd with ∥D∥2 = 1, and a γ ∈ (0, 1), a
direction neighborhood (cone) CD,γ is defined as:

CD,γ := {w | | ⟨w, D⟩ |/∥w∥2 > (1− γ)} . (5)
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Let w ∈ Rd, b ∈ R be random variables drawn from some distribution W,B. A Gradient Feature set
with parameters p, γ,BG is defined as:

Sp,γ,BG
(W,B) :=

{
(D, s)

∣∣ Pr
w,b

[
G(w, b) ∈ CD,γ , ∥G(w, b)∥2 ≥ BG , s = b/|b|

]
≥ p
}
. (6)

Remark 3.8. When clear from context, write it as Sp,γ,BG
. Gradient features (see Figure 1 for

illustration) are simply normalized vectors D that are given (approximately) by the simplified gradient
vectors. (Similarly, the normalized scalar s is given by the bias b.) To be a useful gradient feature,
we require the direction to be “hit” by sufficiently large simplified gradient vectors with sufficient
large probability, so as to be distinguished from noise and remain useful throughout the gradient
steps. Later we will use the gradient features when W,B are the initialization distributions.

To make use of the gradient features, we consider the following family of networks using these
features and with bounded norms, and will provide guarantees compared to the best in this family:
Definition 3.9 (Gradient Feature Induced Networks). The Gradient Feature Induced Networks are:
Fd,m,BF ,S :=

{
f(a,W,b) ∈ Fd,m

∣∣ ∀i ∈ [m], |ai| ≤ Ba1, ∥a∥2 ≤ Ba2, (wi,bi/|bi|) ∈ S, |bi| ≤ Bb

}
,

where S is some Gradient Feature set and BF := (Ba1, Ba2, Bb) are some parameters.
Remark 3.10. In above definition, the weight and bias of a neuron are simply the scalings of some
item in the feature set S (for simplicity the scaling of wi is absorbed into the scaling of ai and bi).
Definition 3.11 (Optimal Approximation via Gradient Features). The optimal approximation network
and loss using Gradient Feature Induced Networks Fd,r,BF ,S are defined as:

f∗ := argmin
f∈Fd,r,BF ,S

LD(f), OPTd,r,BF ,S := min
f∈Fd,r,BF ,S

LD(f). (7)

3.3 Provable Guarantee via Gradient Feature Learning

To obtain the guarantees, we first specify the symmetric initialization. It is convenient for the analysis
and is typical in existing analysis (e.g., [7, 32, 33, 105]), though some other initialization can also
work. Formally, we train a two-layer network with 4m neurons, f(a,W,b) ∈ Fd,4m. We initialize
a
(0)
i ,w

(0)
i from Gaussians and bi from a constant for i ∈ {1, . . . ,m}, and initialize the parameters

for i ∈ {m+ 1, . . . , 4m} accordingly to get a zero output initial network. Specifically:

for i ∈ {1, . . . ,m} : a
(0)
i ∼ N (0, σ2

a),w
(0)
i ∼ N (0, σ2

wI),bi = b̃,

for i ∈ {m+ 1, . . . , 2m} : a
(0)
i = −a

(0)
i−m,w

(0)
i = −w

(0)
i−m,bi = −bi−m, (8)

for i ∈ {2m+ 1, . . . , 4m} : a
(0)
i = −a

(0)
i−2m,w

(0)
i = w

(0)
i−2m,bi = bi−2m,

where σ2
a, σ

2
w, b̃ > 0 are hyper-parameters. After initialization, a,W are updated as in Algorithm 1.

We are now ready to present our main result in the framework.

Theorem 3.12 (Main Result). Assume Assumption 3.1. For any ϵ, δ ∈ (0, 1), if m ≤ ed and

m =Ω

 1

pϵ4

(
rBa1Bx1

√
Bb

BG

)4

+
1√
δ
+

1

p

(
log
(r
δ

))2 ,

T =Ω

(
1

ϵ

(√
rBa2BbBx1

(mp)
1
4

+mb̃

)(√
logm√
BbBG

+
1

Bx1(mp)
1
4

))
,

n

log n
=Ω̃

(
m3pB2

xB
4
a2Bb

ϵ2r2B2
a1BG

+
(mp)

1
2Bx2

BbBG
+

B2
x

Bx2
+

1

p
+

(
1

B2
G

+
1

B2
x1

)
Bx2

|ℓ′(0)|2
+

Tm

δ

)
,

then with initialization (8) and proper hyper-parameter values, we have with probability
≥ 1− δ over the initialization and training samples, there exists t ∈ [T ] in Algorithm 1 with:

Pr[sign(fΞ(t)(x)) ̸= y] ≤ LD (fΞ(t))

≤ OPTd,r,BF ,Sp,γ,BG
+ rBa1Bx1

√
2γ +O

( √
Bx2 log n

BG|ℓ′(0)|n
1
2

)
+ ϵ.
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Intuitively, the theorem shows when a data distribution admits a small approximation error by some
“ground-truth” network with r neurons using gradient features from Sp,γ,BG

(i.e., a small optimal
approximate loss OPTd,r,BF ,Sp,γ,BG

), the gradient descent training can successfully learn good
neural networks with sufficiently many m neurons.

Now we discuss the requirements and the error guarantee. Viewing boundedness parameters Ba1, Bx1

etc. as constants, then the number m of neurons learned is roughly Θ̃
(

r4

pϵ4

)
, a polynomial overpa-

rameterization compared to the “ground-truth” network. The proof shows that such an overparam-
eterization is needed such that some neurons can capture the gradient features given by gradient
descent. This is consistent with existing analysis about overparameterization network learning, and
also consistent with existing empirical observations.

The error bound consists of three terms. The last term ϵ can be made arbitrarily small, while the
other two depend on the concrete data distribution. Specifically, with larger r and γ, the second term
increases. While the first term (the optimal approximation loss) decreases, since a larger r means a
larger “ground-truth” network family, and a larger γ means a larger Gradient Feature set Sp,γ,BG

.
So, there is a trade-off between these two terms. When we later apply the framework to concrete
problems (e.g., mixtures of Gaussians, parity functions), we will show that depending on the specific
data distribution, we can choose the proper values for r, γ to make the error small. This then leads to
error guarantees for the concrete problems and demonstrates the unifying power of the framework.
Please refer to Appendix D.3 for more discussion about our problem setup and our core concept, e.g.,
parameter choice, early stopping, the role of s, activation functions, and so on.

Proof Sketch. The intuition in the proof of Theorem 3.12 is closely related to the notion of Gradient
Features. First, the gradient descent will produce gradients that approximate the features in Sp,γ,BG

.
Then, the gradient descent update gives a good set of neurons, such that there exists an accurate
classifier using these neurons with loss comparable to the optimal approximation loss. Finally, the
training will learn to approximate the accurate classifier, resulting in the desired error guarantee. The
complete proof is in Appendix D (the population version in Appendix D.2 and the empirical version
in Appendix D.4), including the proper values for hyper-parameters such as η(t) in Theorem D.17.
Below, we briefly sketch the key ideas and omit the technical details.

We first show that a large subset of neurons has gradients at the first step as good features. (The claim
can be extended to multiple steps; for simplicity, we follow existing work (e.g., [33, 105]) and present
only the first step.) Let ∇i denote the gradient of the i-th neuron ∇wiLD(fΞ(0)). Denote the subset
of neurons with nice gradients approximating feature (D, s) as:

G(D,s),Nice :=
{
i ∈ [2m] : s = bi/|bi|, ⟨∇i, D⟩ > (1− γ) ∥∇i∥2 , ∥∇i∥2 ≥

∣∣∣a(0)i

∣∣∣BG

}
. (9)

Lemma 3.13 (Feature Emergence). For any r size subset {(D1, s1), . . . , (Dr, sr)} ⊆ Sp,γ,BG
, with

probability at least 1− re−Θ(mp), for all j ∈ [r], we have |G(Dj ,sj),Nice| ≥ mp
4 .

This is because ∇i = ℓ′(0)a
(0)
i E(x,y)

[
yσ′
[〈

w
(0)
i ,x

〉
− bi

]
x
]

= ℓ′(0)a
(0)
i G(w

(0)
i ,bi). Now

consider sj = +1 (the case −1 is similar). Since wi is initialized by Gaussians, by ∇i’s connection
to Gradient Features, we can see that for all i ∈ [m], Pr

[
i ∈ G(Dj ,+1),Nice

]
≥ p

2 . The lemma
follows from concentration via a large enough m, i.e., sufficient overparameterization. The gradients
allow obtaining a set of neurons approximating the “ground-truth” network with comparable loss:
Lemma 3.14 (Existence of Good Networks). For any δ ∈ (0, 1), with proper hyper-parameter
values, with probability at least 1− δ, there is ã such that ∥ã∥0 = O

(
r
√
mp
)

and f(ã,W(1),b)(x) =∑4m
i=1 ãiσ

(〈
w

(1)
i ,x

〉
− bi

)
satisfies

LD(f(ã,W(1),b)) ≤ OPTd,r,BF ,Sp,γ,BG
+

√
2rBa1Bx1

(
√
γ +

√
2Bb√
mpBG

)
.

Given the good set of neurons, we finally show that the remaining gradient steps can learn an accurate
classifier. Intuitively, with small step sizes η(t), the weights of the first layer wi do not change too
much (stay in a neighborhood) while the second layer weights grow, and thus the learning is similar to
convex learning using the good set of neurons. Technically, we adopt the online convex optimization
analysis (Theorem D.5) in [33] to get the final loss guarantee in Theorem 3.12.
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4 Applications in Special Cases

In this section we will apply the gradient feature learning framework to some specific problems,
corresponding to concrete data distributions D. We primarily focus on prototypical problems for
analyzing feature learning in networks. We will present here the results for mixtures of Gaussians
and parity functions, and include the complete proofs and some other results in Appendix E.

4.1 Mixtures of Gaussians

Mixtures of Gaussians are among the most fundamental and widely used statistical models. Recently,
it has been used to study neural network learning, in particular, the effect of gradient descent for
feature learning of two-layer neural networks and the advantage over fixed feature methods [46, 99].

Data Distributions. We follow notations from [99]. The data are from a mixture of r high-
dimensional Gaussians, and each Gaussian is assigned to one of two possible labels in Y = {±1}.
Let S(y) ⊆ [r] denote the set of indices of Gaussians associated with the label y. The data distribution
is then: q(x, y) = q(y)q(x|y), q(x|y) =

∑
j∈S(y) pjNj(x), where Nj(x) is a multivariate normal

distribution with mean µj , covariance Σj , and pj are chosen such that q(x, y) is correctly normalized.
We will make some assumptions about the Gaussians, for which we first introduce some notations.

Dj :=
µj

∥µj∥2
, µ̃j := µj/

√
d, Bµ1 := min

j∈[r]
∥µ̃j∥2, Bµ2 := max

j∈[r]
∥µ̃j∥2, pB := min

j∈[r]
pj .

Assumption 4.1. Let 8 ≤ τ ≤ d be a parameter that will control our final error guarantee. Assume

• Equiprobable labels: q(−1) = q(+1) = 1/2.
• For all j ∈ [r], Σj = σjId×d. Let σB := maxj∈[r] σj and σB+ := max{σB , Bµ2}.

• r ≤ 2d, pB ≥ 1
2d , Ω

(
1/d+

√
τσB+

2 log d/d
)
≤ Bµ1 ≤ Bµ2 ≤ d.

• The Gaussians are well-separated: for all i ̸= j ∈ [r], we have −1 ≤ ⟨Di, Dj⟩ ≤ θ, where

0 ≤ θ ≤ min

{
1
2r ,

σB+

Bµ2

√
τ log d

d

}
.

Remark 4.2. The first two assumptions are for simplicity; they can be relaxed. We can generalize
our analysis to the mixture of Gaussians with unbalanced label probabilities and general covariances.
The third assumption is to make sure that each Gaussian has a good amount of probability mass to be
learned. The remaining assumptions are to make sure that the Gaussians are well-separated and can
be distinguished by the learning algorithm.

We are now ready to apply the framework to these data distributions, for which we only need to
compute the Gradient Feature set and the corresponding optimal approximation loss.
Lemma 4.3 (Mixtures of Gaussians: Gradient Features). (Dj ,+1) ∈ Sp,γ,BG

for all j ∈ [r], where

p =
Bµ1

√
τ log dσB+ · dΘ(τσB+

2/B2
µ1)

, γ =
1

d0.9τ−1.5
, BG = pBBµ1

√
d−O

( σB+

d0.9τ

)
.

Let f∗(x) =
∑r

j=1
y(j)√

τ log dσB+

[
σ
(
⟨Dj ,x⟩ − 2

√
τ log dσB+

)]
whose hinge loss is at most 3

dτ +
4

d0.9τ−1
√
τ log d

.

Given the values on gradient feature parameters p, γ,BG and the optimal approximation loss
OPTd,r,BF ,Sp,γ,BG

, the framework immediately leads to the following guarantee:

Theorem 4.4 (Mixtures of Gaussians: Main Result). Assume Assumption 4.1. For any
ϵ, δ ∈ (0, 1), when Algorithm 1 uses hinge loss with

m = poly
(
1

δ
,
1

ϵ
, dΘ(τσB+

2/B2
µ1), r,

1

pB

)
≤ ed, T = poly (m) , n = poly (m)

and proper hyper-parameters, then with probability at least 1− δ, there exists t ∈ [T ] such that

Pr[sign(fΞ(t)(x)) ̸= y] ≤
√
2r

d0.4τ−0.8
+ ϵ.

7



The theorem shows that gradient descent can learn to a small error via learning the gradient features,
given proper hyper-parameters. In particular, we need sufficient overparameterization (a sufficiently
large number m of neurons). When σB+

2/B2
µ1 is a constant which is the prototypical interesting

case, and we choose a constant τ , then m is polynomial in the key parameters 1
δ ,

1
ϵ , d, r,

1
pB

, and the
error bound is inverse polynomial in d. The complete proof is given in Appendix E.2.

[46] studies (almost) linear separable cases while our setting includes non-linear separable cases, e.g.,
XOR. [99] mainly studies neural network classification on 4 Gaussian clusters with XOR structured
labels, while our setting is much more general, e.g., our cluster number can extend up to 2d.

4.1.1 Mixtures of Gaussians: Beyond the Kernel Regime

As discussed in the introduction, it is important for the analysis to go beyond fixed feature methods
such as NTK (i.e., the kernel regime), so as to capture the feature learning ability which is believed to
be the key factor for the empirical success. We first review the fixed feature methods. Following [33],
suppose Ψ is a data-independent feature mapping of dimension N with bounded features, i.e.,
Ψ : X → [−1, 1]N . For B > 0, the family of linear models on Ψ with bounded norm B is
HB = {h(x̃) : h(x̃) = ⟨Ψ(x̃), w⟩, ∥w∥2 ≤ B}. This can capture linear models on fixed finite-
dimensional feature maps, e.g., NTK, and also infinite dimensional feature maps, e.g., kernels like
RBF, that can be approximated by feature maps of polynomial dimensions [64, 98, 105].

Our framework indeed goes beyond fixed features and shows features from gradients are more
powerful than features from random initialization, e.g., NTK. Our framework can show the advantage
of network learning over kernel methods under the setting of [99] (4 Gaussian clusters with XOR
structured labels). For large enough d, our framework only needs roughly Ω (log d) neurons and
Ω
(
(log d)2

)
samples to achieve arbitrary small constant error (see Theorem E.18 when σB = 1),

while fixed feature methods need Ω(d2) features and Ω(d2) samples to achieve nontrivial errors
(as proved in [99]). Moreover, [99] uses ODE to simulate the optimization process for the 2-layer
networks learning XOR-shaped Gaussian mixture with Ω(1) neurons and gives convincing evidence
that Ω(d) samples is enough to learn it, yet they do not give a rigorous convergence guarantee for this
problem. We successfully derive a convergence guarantee and we require a much smaller sample size
Ω
(
(log d)2

)
. For the proof (detailed in Appendix E.3), we only need to calculate the p, γ,BG of the

data distribution carefully and then inject these numbers into Theorem 3.12.

4.2 Parity Functions

Parity functions are a canonical family of learning problems in computational learning theory, usually
for showing theoretical computational barriers [103]. The typical sparse parties over d-dim binary
inputs ϕ ∈ {±1}d are

∏
i∈A ϕi where A ⊆ [d] is a subset of dimensions. Recent studies have shown

that when the distribution of inputs ϕ has structures rather than uniform, neural networks can perform
feature learning and finally learn parity functions with a small error, while methods without feature
learning, e.g. NTK, cannot achieve as good results [33, 76, 105]. Thus, this has been a prototypical
setting for studying feature learning phenomena in networks. Here we consider a generalization of
this problem and show that our framework can show successful learning via gradient descent.

Data Distributions. Suppose M ∈ Rd×D is an unknown dictionary with D columns that can be
regarded as patterns. For simplicity, assume d = D and M is orthonormal. Let ϕ ∈ Rd be a hidden
representation vector. Let A ⊆ [D] be a subset of size rk corresponding to the class relevant patterns
and r is an odd number. Then the input is generated by Mϕ, and some function on ϕA generates
the label. WLOG, let A = {1, . . . , rk}, A⊥ = {rk + 1, . . . , d}. Also, we split A such that for all
j ∈ [r], Aj = {(j − 1)k + 1, . . . , jk}. Then the input x and the class label y are given by:

x = Mϕ, y = g∗(ϕA) = sign
( ∑

j∈[r]

XOR(ϕAj )
)
, (10)

where g∗ is the ground-truth labeling function mapping from Rrk to Y = {±1}, ϕA is the sub-vector
of ϕ with indices in A, and XOR(ϕAj ) =

∏
l∈Aj

ϕl is the parity function. We still need to specify
the distribution X of ϕ, which determines the structure of the input distribution:

X := (1− 2rpA)XU +
∑
j∈[r]

pA(Xj,+ + Xj,−). (11)
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For all corresponding ϕA⊥ in X , we have ∀l ∈ A⊥, independently: ϕl =


+1, w.p. po
−1, w.p. po
0, w.p. 1− 2po

,

where po controls the signal noise ratio: if po is large, then there are many nonzero entries in
A⊥ which are noise interfering with the learning of the ground-truth labeling function on A. For
corresponding ϕA, any j ∈ [r], we have

• In Xj,+, ϕAj
= [+1,+1, . . . ,+1]⊤ and ϕA\Aj

only have zero elements.
• In Xj,−, ϕAj = [−1,−1, . . . ,−1]⊤ and ϕA\Aj

only have zero elements.
• In XU , we have ϕA draw from {+1,−1}rk uniformly.

In short, we have r parity functions each corresponding to a block of k dimensions; Xj,+ and Xj,−
stands for the component providing a strong signal for the j-th parity; XU corresponds to uniform
distribution unrelated to any parity and providing weak learning signal; A⊥ is the noise part. The
label depends on the sum of the r parity functions.
Assumption 4.5. Let 8 ≤ τ ≤ d be a parameter that will control our final error guarantee. Assume
k is an odd number and: k ≥ Ω(τ log d), d ≥ rk +Ω(τr log d), po = O

(
rk

d−rk

)
, pA ≥ 1

d .

Remark 4.6. We set up the problem to be more general than the parity function learning in existing
work. If r = 1, the labeling function reduces to the traditional k-sparse parties of d bits. The
assumptions require k, d, and pA to be sufficiently large so as to provide enough large signals for
learning. Note that when k = d

16 , r = 1, po = 1
2 , our analysis also holds, which shows our framework

is beyond the kernel regime (discuss in detail in Section 4.2.1).

To apply our framework, again we only need to compute the Gradient Feature set and the correspond-

ing optimal loss. We first define the Gradient Features: For all j ∈ [r], let Dj =

∑
l∈Aj

Ml

∥
∑

l∈Aj
Ml∥2

.

Lemma 4.7 (Parity Functions: Gradient Features). We have (Dj ,+1), (Dj ,−1) ∈ Sp,γ,BG
for all

j ∈ [r], where

p = Θ

(
1√

τr log d · dΘ(τr)

)
, γ =

1

dτ−2
, BG =

√
kpA −O

(√
k

dτ

)
. (12)

With gradient features from Sp,γ,BG
, let f∗(x) =

∑r
j=1

∑k
i=0(−1)i+1

√
k
[
σ
(
⟨Dj ,x⟩ − 2i−k−1√

k

)
−

2σ
(
⟨Dj ,x⟩ − 2i−k√

k

)
+ σ

(
⟨Dj ,x⟩ − 2i−k+1√

k

) ]
whose hinge loss is 0.

Above, we show that Dj is the “indicator function” for the subset Aj so that we can build the optimal
neural network based on such directions. Given the values on gradient feature parameters and the
optimal approximation loss, the framework immediately leads to the following guarantee:

Theorem 4.8 (Parity Functions: Main Result). Assume Assumption 4.5. For any ϵ, δ ∈ (0, 1),
when Algorithm 1 uses hinge loss with

m = poly
(
1

δ
,
1

ϵ
, dΘ(τr), k,

1

pA

)
≤ ed, T = poly (m) , n = poly (m)

and proper hyper-parameters, then with probability at least 1− δ, there exists t ∈ [T ] such that

Pr[sign(fΞ(t)(x)) ̸= y] ≤ 3r
√
k

d(τ−3)/2
+ ϵ.

The theorem shows that gradient descent can learn to a small error in this problem. We also need
sufficient overparameterization: When r is a constant (e.g., r = 1 in existing work), and we choose a
constant τ , m is polynomial in 1

δ ,
1
ϵ , d, k,

1
pA

, and the error bound is inverse polynomial in d. The
proof is in Appendix E.4. Our setting is more general than that in [33, 76] which corresponds to
M = I, r = 1, pA = 1

4 , po = 1
2 . [105] study single index learning, where one feature direction

is enough for a two-layer network to recover the label, while our setting considers r directions
D1, . . . , Dr, so the network needs to learn multiple directions to get a small error.
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4.2.1 Parity Functions: Beyond the Kernel Regime

Again, we show that our framework indeed goes beyond fixed features under parity functions. Our
problem setting in Section 4.2 is general enough to include the problem setting in [33]. Their lower
bound for fixed feature methods directly applies to our case and leads to the following:
Proposition 4.9. There exists a data distribution in the parity learning setting in Section 4.2 with
M = I, r = 1, pA = 1

4 , k = d
16 , po = 1

2 , such that all h ∈ HB have hinge-loss at least 1
2 −

√
NB

2k
√
2

.

This means to get an inverse-polynomially small loss, fixed feature models need to have an exponen-
tially large size, i.e., either the number of features N or the norm B needs to be exponential in k. In
contrast, Theorem 4.8 shows our framework guarantees a small loss with a polynomially large model,
runtime, and sample complexity. Clearly, our framework is beyond the fixed feature methods.

Parities on Uniform Inputs. When r = 1, pA = 0, our problem setting will degenerate to the classic
sparse parity function on a uniform input distribution. This has also been used for analyzing network
learning [16]. For this case, our framework can get a k2O(k) log(k) network width bound and a
O(dk) sample complexity bound, matching those in [16]. This then again confirms the advantage of
network learning over kernel methods that requires dΩ(k) dimensions as shown in [16]. See the full
statement in Theorem E.31, details in Appendix E.5, and alternative analysis in Appendix E.6.

5 Further Implications and Conclusion

Our general framework sheds light on several interesting phenomena in NN learning observed
in practice. Feature learning beyond the kernel regime has been discussed in Section 4.1.1 and
Section 4.2.1. Here we discuss the LTH and defer more implications such as simplicity bias, learning
over different data distributions, and new perspectives about roadmaps forward in Appendix C.

Lottery Ticket Hypothesis (LTH). Another interesting phenomenon is the LTH [41]: randomly-
initialized networks contain subnetworks that when trained in isolation reach test accuracy comparable
to the original network in a similar number of iterations. Later studies (e.g., [42]) show that LTH is
more stable when subnetworks are found in the network after a few gradient steps.

Our framework provides an explanation for two-layer networks: the lottery ticket subnetwork contains
exactly those neurons whose gradient feature approximates the weights of the “ground-truth” network
f∗; they may not exist at initialization but can be found after the first gradient step. More precisely,
Lemma 3.14 shows that after the first gradient step, there is a sparse second-layer weight ã with
∥ã∥0 = O

(
r
√
mp
)
, such that using this weight on the hidden neurons gives a network with a small

loss. Let U be the support of ã. Equivalently, there is a small-loss subnetwork fU
Ξ with only neurons

in U and with second-layer weight ãU on these neurons. Following the same proof of Theorem 3.12:
Proposition 5.1. In the same setting of Theorem 3.12 but only considering the subnetwork supported
on U after the first gradient step, with the same requirements on m and T , with proper hyper-
parameter values, we have the same guarantee: with probability ≥ 1 − δ, there is t ∈ [T ] with

Pr[sign(fU
Ξ(t))(x) ̸= y] ≤ OPTd,r,BF ,Sp,γ,BG

+ rBa1Bx1

√
2γ +O

(√
Bx2 logn
BG

√
n

)
+ ϵ.

This essentially formally proves LTH for two-layer networks, showing (a) the existence of the winning
lottery subnetwork and (b) that gradient descent on the subnetwork can learn to similar loss in similar
runtime as on the whole network. In particular, (b) is novel and not analyzed in existing work.

We provide our work’s broader impacts and limitations (e.g., statement of recovering existing results
and some failure cases beyond our framework) in Appendix A and Appendix B respectively.

Conclusion. We propose a general framework for analyzing two-layer neural network learning by
gradient descent and show that it can lead to provable guarantees for several prototypical problem
settings for analyzing network learning. In particular, our framework goes beyond fixed feature
methods, e.g., NTK. It sheds light on several interesting phenomena in NN learning, e.g., the lottery
ticket hypothesis and simplicity bias. Future directions include: (1) How to extend the framework
to deeper networks? (2) While the current framework focuses on the gradient features in the early
gradient steps, whether feature learning also happens in later steps and if so how to formalize that?
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Appendix A discusses the potential societal impact of our work. Appendix B describes the limitations
of our work. In Appendix C, we present our framework implications about simplicity bias. The
complete proof of our main results is given in Appendix D. We present the case study of linear data
in Appendix E.1, mixtures of Gaussians in Appendix E.2 and Appendix E.3, parity functions in
Appendix E.4, Appendix E.5 and Appendix E.6, and multiple-index models in Appendix E.7. We put
the auxiliary lemmas in Appendix F.

A Broader Impacts

Our paper is purely theoretical in nature, and thus we do not anticipate an immediate negative ethical
impact. We provide a unified theoretical framework that can be applied to different theoretical
problems. We propose the two key ideas of gradient feature and gradient feature-induced neural
networks not only to show their ability to unify several current works but also to open a new direction
of thinking with respect to the learning process. These notations have the potential to be extended to
multi-layer gradient features and multi-step learning, and this work is only our first step.

On the other hand, this work may lead to a better understanding and inspire the development of
improved network learning methods, which may have a positive impact on the theoretical machine-
learning community. It may also be beneficial to engineering-inclined machine-learning researchers.

B Limitations

Recover Existing Results. The framework may or may not recover the width or sample complexity
bounds in existing work.

1. The framework can give matching bounds as the existing work in some cases, like parities
over uniform inputs (Appendix E.5).

2. In some other cases, it gives polynomial error bounds not the same as those in the existing
work (e.g., for parities over structured inputs). This is because our work is analyzing general
cases, and thus may not give better than or the same bounds as those in special cases, since
special cases have more properties that can be exploited to get potentially better bounds.
On the other hand, our bounds can already show the advantage over kernel methods (e.g.,
Proposition 4.9).

We would like to emphasize that our contribution is providing an analysis framework that can (1)
formalize the unifying principles of learning features from gradients in network training, and (2) give
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polynomial error bounds for prototypical problems. Our focus is not to recover the guarantees in
existing work.

Failure Cases. There are some failure cases that gradient feature learning framework cannot cover:

1. In [101], they constructed a function that is easy to approximate using a 3-layer network but
not approximable by any 2-layer network. Since the function is not approximable by any
2-layer network, it cannot be approximated by the gradient-induced networks as well, so
OPT will be large. As a result, the final error will be large.

2. In uniform parity data distribution, considering an odd number of features rather than even,
i.e., k is an odd number in Assumption E.28, we can show that our gradient feature set
is empty even when p in Equation (6) is exponentially small, thus the OPT is a positive
constant since the gradient induced network can only be constants. Meanwhile, the neural
network won’t be able to learn this data distribution because its gradient is always 0 through
the training, and the final error equals OPT.

The first case corresponds to the approximation hardness of 2-layer networks, while the second case
gives a learning hardness example. The above two cases show that if there is an approximation or
learning hardness, our gradient feature learning framework may be vacuous because the optimal
model in the gradient feature class has a large risk, then the ground-truth mapping from inputs to labels
is not learnable by gradient descent. These analyses are consistent with previous works [15, 101].

C More Further Implications

Our general framework also sheds some light on several interesting phenomena in neural network
(NN) learning observed in practice. Feature learning beyond the kernel regime has been discussed in
Section 4.1.1 and Section 4.2.1. The lottery ticket hypothesis (LTH) has been discussed in Section 5.
Below we discuss other implications.

Implicit Regularization/Simplicity Bias. It is now well known that practical NN are overparame-
terized and traditional uniform convergence bounds cannot adequately explain their generalization
performance [59, 88, 118]. It is generally believed that the optimization has some implicit regulariza-
tion effect that restricts learning dynamics to a subset of the whole hypothesis class, which is not of
high capacity so can lead to good generalization [53, 90]. Furthermore, learning dynamics tend to
first learn simple functions and then learn more and more sophisticated ones (referred to as simplicity
bias) [89, 102]. However, it remains elusive to formalize such simplicity bias.

Our framework provides a candidate explanation: the learning dynamics first learn to approximate
the best network in a smaller family of gradient feature induced networks Fd,r,BF ,S and then learn to
approximate the best in a larger family. Consider the number of neurons r for illustration. Let r1 ≪ r2,
and let T1 and T2 be their corresponding runtime bounds for T in the main Theorem 3.12. Clearly,
T1 ≪ T2. Then, at time T1, the theorem guarantees the learning dynamics learn to approximate the
best in the family Fd,r1,BF ,S with r1 neurons, but not for the larger family Fd,r2,BF ,S . Later, at time
T2, the learning dynamics learn to approximate the best in the larger family Fd,r2,BF ,S . That is, the
learning first learns simpler functions and then more sophisticated ones where the simplicity bias is
measured by the size of the family of gradient feature-induced networks. The implicit regularization
is then restricting to networks approximating smaller families of gradient feature-induced networks.
Furthermore, we can also conclude that for an SGD-optimized NN, its actual representation power is
from the subset of NN based on gradient features, instead of the whole set of NN. This view helps
explain the simplicity bias/implicit regularization phenomenon of NN learning in practice.

Learning over Different Data Distributions. Our framework articulates the following key princi-
ples (pointed out for specific problems in existing work but not articulated more generally):

• Role of gradient: the gradient leads to the emergence of good features, which is useful for
the learning of upper layers in later stages.

• From features to solutions: learned features in early steps will not be distorted, if not
improved, in later stages. The training dynamic for upper layers will eventually learn a good
combination of hidden neurons based on gradient features, giving a good solution.
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Then, more interesting insights are obtained from the generality of the framework. To build a general
framework, the meaningful error guarantees should be data-dependent, since NN learning on general
data distributions is hard and data-independent guarantees will be vacuous [34, 35]. Comparing the
optimal in a family of “ground-truth” functions (inspired by agnostic learning in learning theory) is a
useful method to obtain the data-dependent bound. We further construct the “ground-truth” functions
using properties of the training dynamics, i.e., gradient features. This greatly facilitates the analysis
of the training dynamics and is the key to obtaining the final guarantees. On the other hand, the
framework can also be viewed as using the optimal by gradient-induced NN to measure or quantify
the “complexity” of the problem. For easier problems, this quantity is smaller, and our framework can
give a better error bound. So this provides a united way to derive guarantees for specific problems.

New Perspectives about Roadmaps Forward. We argue a new perspective about the connection
between the strong representation power and the successful learning of NN. Traditionally, the strong
representation power of NN is the key reason for hardness results of NN learning: NN has strong
representation power and can encode hard learning questions, so they are hard to learn. See the
proof in SQ bound from [33] or NP-hardness from [19]. The strong representation power also causes
trouble for the statistical aspect: it leads to vacuous generalization bounds when traditional uniform
convergence tools are used.

Our framework suggests a perspective in sharp contrast: the strong representation power of NN
with gradient features is actually the key to successful learning. More concretely, the optimal error
of the gradient feature-induced NN being small (i.e., strong representation power for a given data
distribution) can lead to a small guarantee, which is the key to successful learning. The above new
perspective suggests a different analysis road than traditional ones. Traditional analysis typically first
reasons about the optimal based on the whole function class, i.e. the ground truth, then analyze how
NN learns proper features and reaches the optimal. In contrast, our framework defines feature family
first, and then reasons about the optimal based on it.

Our framework provides the foundation for future work on analyzing gradient-based NN learning,
which may inspire future directions including but not limited to (1) defining a new feature family
for 2-layer NN rather than gradient feature, (2) considering deep NN and introducing new gradient
features (e.g., gradient feature notion for upper layers), (3) defining different gradient feature family at
different training stages (e.g., gradient feature notion for later stages). In particular, the challenges in
the later-stage analysis are: (a) the weights in the later stage will not be as normal as the initialization,
and we need new tools to analyze their properties; (b) to show that the later-stage features eventually
lead to a good solution, we may need new analysis tools for the non-convex optimization due to the
changes in the first layer weights.

D Gradient Feature Learning Framework

We first prove a Simplified Gradient Feature Learning Framework in Appendix D.1, which only con-
siders one-step gradient feature learning. Then, we prove our Gradient Feature Learning Framework,
e.g., no freezing of the first layer. In Appendix D.2, we consider population loss to simplify the proof.
Then, we provide more discussion about our problem setup and our core concept in Appendix D.3.
Finally, we prove our Gradient Feature Learning Framework under empirical loss considering sample
complexity in Appendix D.4.

D.1 Simplified Gradient Feature Learning Framework

Algorithm 2 Training by Algorithm 1 with no updates for the first layer after the first gradient step
Initialize f(a(0),W(0),b) ∈ Fd,m; Sample Z ∼ Dn

Get (a(1),W(1),b) by one gradient step update and fix W(1),b
for t = 2 to T do
a(t) = a(t−1) − η(t)∇aL̃Z(fΞ(t−1))

end for

Theorem 3.4 (Simple Setting). Assume L̃Z
(
f(a,W(1),b)

)
is L-smooth to a. Let η(t) = 1

L , λ
(t) = 0,

for all t ∈ {2, 3, . . . , T}. Training by Algorithm 1 with no updates for the first layer after the

21



first gradient step, w.h.p., there exists t ∈ [T ] such that LD(f(a(t),W(1),b)) ≤ OPTW(1),b,Ba2
+

O
(

L(∥a(1)∥2
2+B2

a2)
T +

√
B2

a2(∥W(1)∥2
FB2

x+∥b∥2
2)

n

)
.

Proof of Theorem 3.4. Recall that

FW,b,Ba2 :=
{
f(a,W,b) ∈ Fd,m

∣∣ ∥a∥2 ≤ Ba2

}
, OPTW,b,Ba2 := min

f∈FW,b,Ba2

LD(f). (13)

We denote f∗ = argminf∈FW,b,Ba2
LD(f) and f̃∗ = argminf∈FW,b,Ba2

L̃Z(f). We use a∗ and ã∗

to denote their second layer weights respectively. Then, we have

LD(f(a(t),W(1),b)) =LD(f(a(t),W(1),b))− L̃Z(f(a(t),W(1),b)) (14)

+ L̃Z(f(a(t),W(1),b))− L̃Z(f(ã∗,W(1),b)) (15)

+ L̃Z(f(ã∗,W(1),b))− L̃Z(f(a∗,W(1),b)) (16)

+ L̃Z(f(a∗,W(1),b))− LD(f(a∗,W(1),b)) (17)

+ LD(f(a∗,W(1),b)) (18)

≤
∣∣∣LD(f(a(t),W(1),b))− L̃Z(f(a(t),W(1),b))

∣∣∣ (19)

+
∣∣∣L̃Z(f(a(t),W(1),b))− L̃Z(f(ã∗,W(1),b))

∣∣∣ (20)

+ 0 (21)

+
∣∣∣L̃Z(f(a∗,W(1),b))− LD(f(a∗,W(1),b))

∣∣∣ (22)

+OPTW(1),b,Ba2
. (23)

Fixing W(1), b and optimizing a only is a convex optimization problem. Note that η ≤ 1
L , where

L̃Z is L-smooth to a. Thus with gradient descent, we have

1

T

T∑
t=1

L̃Z
(
f(a(t),W(1),b)

)
− L̃Z

(
f(a∗,W(1),b)

)
≤ ∥a(1) − a∗∥22

2Tη
. (24)

Then our theorem gets proved by Lemma F.9 and generalization bounds based on Rademacher
complexity.

D.2 Gradient Feature Learning Framework under Expected Risk

We consider the following training process under population loss to simplify the proof. We prove
our Gradient Feature Learning Framework under empirical loss considering sample complexity in
Appendix D.4.

Algorithm 3 Network Training via Gradient Descent

Initialize (a(0),W(0),b) as in Equation (8)
for t = 1 to T do
a(t) = a(t−1) − η(t)∇aLλ(t)

D (fΞ(t−1))

W(t) = W(t−1) − η(t)∇WLλ(t)

D (fΞ(t−1))
end for

Given an input distribution, we can get a Gradient Feature set Sp,γ,BG
and f∗(x) =∑r

j=1 a
∗
jσ(
〈
w∗

j ,x
〉
− b∗

j ), where f∗ ∈ Fd,r,BF ,Sp,γ,BG
is a Gradient Feature Induced networks

defined in Definition 3.11. Considering training by Algorithm 3, we have the following results.
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Theorem D.1 (Gradient Feature Learning Framework under Expected Risk). Assume Assumption 3.1.
For any ϵ, δ ∈ (0, 1), if m ≤ ed and

m =Ω

1

p

(
rBa1Bx1

ϵ

√
Bb

BG

)4

+
1√
δ
+

1

p

(
log
(r
δ

))2 , (25)

T =Ω

(
1

ϵ

(√
rBa2BbBx1

(mp)
1
4

+mb̃

)(√
logm√
BbBG

+
1

Bx1(mp)
1
4

))
, (26)

then with proper hyper-parameter values, we have with probability ≥ 1− δ, there exists t ∈ [T ] in
Algorithm 3 with

Pr[sign(fΞ(t)(x)) ̸= y] ≤ LD (fΞ(t)) ≤ OPTd,r,BF ,Sp,γ,BG
+ rBa1Bx1

√
2γ + ϵ. (27)

See the full statement and proof in Theorem D.9. Below, we show some lemmas used in the analysis
of population loss.

D.2.1 Feature Learning

We first show that a large subset of neurons has gradients at the first step as good features.
Definition D.2 (Nice Gradients Set. Equivalent to Equation (9)). We define

G(D,+1),Nice :=
{
i ∈ [m] :

〈
w

(1)
i , D

〉
> (1− γ)

∥∥∥w(1)
i

∥∥∥
2
,
∥∥∥w(1)

i

∥∥∥
2
≥
∣∣∣η(1)ℓ′(0)a(0)i

∣∣∣BG

}
G(D,−1),Nice :=

{
i ∈ [2m] \ [m] :

〈
w

(1)
i , D

〉
> (1− γ)

∥∥∥w(1)
i

∥∥∥
2
,
∥∥∥w(1)

i

∥∥∥
2
≥
∣∣∣η(1)ℓ′(0)a(0)i

∣∣∣BG

}
where γ,BG is the same in the Definition 3.7.
Lemma D.3 (Feature Emergence. Full Statement of Lemma 3.13). Let λ(1) = 1

η(1) . For any r size
subset {(D1, s1), . . . , (Dr, sr)} ⊆ Sp,γ,BG

, with probability at least 1− 2re−cmp where c > 0 is a
universal constant, we have that for all j ∈ [r], |G(Dj ,sj),Nice| ≥ mp

4 .

Proof of Lemma D.3. By symmetric initialization and Lemma F.1, we have for all i ∈ [2m]

w
(1)
i =− η(1)ℓ′(0)a

(0)
i E(x,y)

[
yσ′
[〈

w
(0)
i ,x

〉
− bi

]
x
]

(28)

=− η(1)ℓ′(0)a
(0)
i G(w

(0)
i ,bi). (29)

For all j ∈ [r], as (Dj , sj) ∈ Sp,γ,BG
, by Lemma F.3,

(1) if sj = +1, for all i ∈ [m], we have

Pr
[
i ∈ G(Dj ,sj),Nice

]
(30)

=Pr


〈
w

(1)
i , Dj

〉
∥∥∥w(1)

i

∥∥∥
2

> (1− γ),
∥∥∥w(1)

i

∥∥∥
2
≥
∣∣∣η(1)ℓ′(0)a(0)i

∣∣∣BG

 (31)

=Pr


〈
w

(1)
i , Dj

〉
∥∥∥w(1)

i

∥∥∥
2

> (1− γ),
∥∥∥w(1)

i

∥∥∥
2
≥
∣∣∣η(1)ℓ′(0)a(0)i

∣∣∣BG,
bi

|bi|
= sj

 (32)

≥Pr

[
G(w

(0)
i ,bi) ∈ CDj ,γ , ∥G(w

(0)
i ,bi)∥2 ≥ BG,

bi

|bi|
= sj , a

(0)
i

〈
G(w

(0)
i ,bi), Dj

〉
> 0

]
≥p

2
, (33)

(2) if sj = −1, for all i ∈ [2m] \ [m], similarly we have

Pr
[
i ∈ G(Dj ,sj),Nice

]
≥ p

2
. (34)

By concentration inequality, (Chernoff’s inequality under small deviations), we have

Pr
[
|G(Dj ,sj),Nice| <

mp

4

]
≤ 2e−cmp. (35)

We complete the proof by union bound.
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D.2.2 Good Network Exists

Then, the gradients allow for obtaining a set of neurons approximating the “ground-truth” network
with comparable loss.
Lemma D.4 (Existence of Good Networks. Full Statement of Lemma 3.14). Let λ(1) = 1

η(1) . For any

Bϵ ∈ (0, Bb), let σa = Θ
(

b̃
−ℓ′(0)η(1)BGBϵ

)
and δ = 2re−

√
mp. Then, with probability at least 1− δ

over the initialization, there exists ãi’s such that f(ã,W(1),b)(x) =
∑4m

i=1 ãiσ
(〈

w
(1)
i ,x

〉
− bi

)
satisfies

LD(f(ã,W(1),b)) ≤ rBa1

(
B2

x1Bb√
mpBGBϵ

+Bx1

√
2γ +Bϵ

)
+OPTd,r,BF ,Sp,γ,BG

, (36)

and ∥ã∥0 = O
(
r(mp)

1
2

)
, ∥ã∥2 = O

(
Ba2Bb

b̃(mp)
1
4

)
, ∥ã∥∞ = O

(
Ba1Bb

b̃(mp)
1
2

)
.

Proof of Lemma D.4. Recall f∗(x) =
∑r

j=1 a
∗
jσ(
〈
w∗

j ,x
〉
− b∗

j ), where f∗ ∈ Fd,r,BF ,Sp,γ,BG
is

defined in Definition 3.11 and let s∗j =
b∗

j

|b∗
j |

. By Lemma D.3, with probability at least 1− δ1, δ1 =

2re−cmp, for all j ∈ [r], we have |G(w∗
j ,s

∗
j ),Nice| ≥ mp

4 . Then for all i ∈ G(w∗
j ,s

∗
j ),Nice ⊆ [2m], we

have −ℓ′(0)η(1)G(w
(0)
i ,bi)

b∗
j

b̃
only depend on w

(0)
i and bi, which is independent of a(0)i . Given

Definition 3.7, we have

−ℓ′(0)η(1)∥G(w
(0)
i ,bi)∥2

b∗
j

b̃
∈
[
ℓ′(0)η(1)Bx1

Bb

b̃
,−ℓ′(0)η(1)Bx1

Bb

b̃

]
. (37)

We split [r] into Γ = {j ∈ [r] : |b∗
j | < Bϵ}, Γ− = {j ∈ [r] : b∗

j ≤ −Bϵ} and Γ+ = {j ∈ [r] :

b∗
j ≥ Bϵ}. Let ϵa = Bx1Bb√

mpBGBϵ
. Then we know that for all j ∈ Γ+ ∪ Γ−, for all i ∈ G(w∗

j ,s
∗
j ),Nice,

we have

Pr
a
(0)
i ∼N (0,σ2

a)

[∣∣∣∣−a
(0)
i ℓ′(0)η(1)∥G(w

(0)
i ,bi)∥2

|b∗
j |
b̃

− 1

∣∣∣∣ ≤ ϵa

]
(38)

= Pr
a
(0)
i ∼N (0,σ2

a)

[
1− ϵa ≤ −a

(0)
i ℓ′(0)η(1)∥G(w

(0)
i ,bi)∥2

|b∗
j |
b̃

≤ 1 + ϵa

]
(39)

= Pr
g∼N (0,1)

[
1− ϵa ≤ gΘ

(
∥G(w

(0)
i ,bi)∥2|b∗

j |
BGBϵ

)
≤ 1 + ϵa

]
(40)

= Pr
g∼N (0,1)

[
(1− ϵa)Θ

(
BGBϵ

∥G(w
(0)
i ,bi)∥2|b∗

j |

)
≤ g ≤ (1 + ϵa)Θ

(
BGBϵ

∥G(w
(0)
i ,bi)∥2|b∗

j |

)]

=Θ

(
ϵaBGBϵ

∥G(w
(0)
i ,bi)∥2|b∗

j |

)
(41)

≥Ω

(
ϵaBGBϵ

Bx1Bb

)
(42)

=Ω

(
1

√
mp

)
. (43)

Thus, with probability Ω
(

1√
mp

)
over a(0)i , we have∣∣∣∣−a

(0)
i ℓ′(0)η(1)∥G(w

(0)
i ,bi)∥2

|b∗
j |
b̃

− 1

∣∣∣∣ ≤ ϵa,
∣∣∣a(0)i

∣∣∣ = O

(
b̃

−ℓ′(0)η(1)BGBϵ

)
. (44)

Similarly, for j ∈ Γ, for all i ∈ G(w∗
j ,s

∗
j ),Nice, with probability Ω

(
1√
mp

)
over a(0)i , we have∣∣∣∣−a

(0)
i ℓ′(0)η(1)∥G(w

(0)
i ,bi)∥2

Bϵ

b̃
− 1

∣∣∣∣ ≤ ϵa,
∣∣∣a(0)i

∣∣∣ = O

(
b̃

−ℓ′(0)η(1)BGBϵ

)
. (45)
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For all j ∈ [r], let Λj ⊆ G(w∗
j ,s

∗
j ),Nice be the set of i’s such that condition Equation (44) or

Equation (45) are satisfied. By Chernoff bound and union bound, with probability at least 1−δ2, δ2 =
re−

√
mp, for all j ∈ [r] we have |Λj | ≥ Ω(

√
mp).

We have for ∀j ∈ Γ+ ∪ Γ−,∀i ∈ Λj ,∣∣∣∣ |b∗
j |
b̃

〈
w

(1)
i ,x

〉
−
〈
w∗

j ,x
〉∣∣∣∣ (46)

≤

∥∥∥∥∥−a
(0)
i ℓ′(0)η(1)∥G(w

(0)
i ,bi)∥2

|b∗
j |
b̃

w
(1)
i

∥w(1)
i ∥2

− w
(1)
i

∥w(1)
i ∥2

+
w

(1)
i

∥w(1)
i ∥2

−w∗
j

∥∥∥∥∥ ∥x∥2 (47)

≤(ϵa +
√

2γ)∥x∥2. (48)

Similarly, for ∀j ∈ Γ,∀i ∈ Λj ,∣∣∣∣Bϵ

b̃

〈
w

(1)
i ,x

〉
−
〈
w∗

j ,x
〉∣∣∣∣ ≤ (ϵa +

√
2γ)∥x∥2. (49)

If i ∈ Λj , j ∈ Γ+ ∪ Γ−, set ãi = a∗j
|b∗

j |
|Λj |b̃

, if i ∈ Λj , j ∈ Γ, set ãi = a∗j
Bϵ

|Λj |b̃
, otherwise set ãi = 0,

we have ∥ã∥0 = O
(
r(mp)

1
2

)
, ∥ã∥2 = O

(
Ba2Bb

b̃(mp)
1
4

)
, ∥ã∥∞ = O

(
Ba1Bb

b̃(mp)
1
2

)
.

Finally, we have

LD(f(ã,W(1),b)) (50)

=LD(f(ã,W(1),b))− LD(f
∗) + LD(f

∗) (51)

≤E(x,y)

[∣∣f(ã,W(1),b)(x)− f∗(x)
∣∣]+ LD(f

∗) (52)

≤E(x,y)

∣∣∣∣∣∣
m∑
i=1

ãiσ
(〈

w
(1)
i ,x

〉
− b̃
)
+

2m∑
i=m+1

ãiσ
(〈

w
(1)
i ,x

〉
+ b̃
)
−

r∑
j=1

a∗jσ(
〈
w∗

j ,x
〉
− b∗

j )

∣∣∣∣∣∣


+ LD(f
∗) (53)

≤E(x,y)

∣∣∣∣∣∣
∑
j∈Γ+

∑
i∈Λj

a∗j
1

|Λj |

∣∣∣∣ |b∗
j |
b̃

σ
(〈

w
(1)
i ,x

〉
− b̃
)
− σ(

〈
w∗

j ,x
〉
− b∗

j )

∣∣∣∣
∣∣∣∣∣∣
 (54)

+ E(x,y)

∣∣∣∣∣∣
∑
j∈Γ−

∑
i∈Λj

a∗j
1

|Λj |

∣∣∣∣ |b∗
j |
b̃

σ
(〈

w
(1)
i ,x

〉
+ b̃
)
− σ(

〈
w∗

j ,x
〉
− b∗

j )

∣∣∣∣
∣∣∣∣∣∣
 (55)

+ E(x,y)

∣∣∣∣∣∣
∑
j∈Γ

∑
i∈Λj

a∗j
1

|Λj |

∣∣∣∣Bϵ

b̃
σ
(〈

w
(1)
i ,x

〉
− b̃
)
− σ(

〈
w∗

j ,x
〉
− b∗

j )

∣∣∣∣
∣∣∣∣∣∣
+ LD(f

∗) (56)

≤E(x,y)

∣∣∣∣∣∣
∑
j∈Γ+

∑
i∈Λj

a∗j
1

|Λj |

∣∣∣∣ |b∗
j |
b̃

〈
w

(1)
i ,x

〉
−
〈
w∗

j ,x
〉∣∣∣∣
∣∣∣∣∣∣
 (57)

+ E(x,y)

∣∣∣∣∣∣
∑
j∈Γ−

∑
i∈Λj

a∗j
1

|Λj |

∣∣∣∣ |b∗
j |
b̃

〈
w

(1)
i ,x

〉
−
〈
w∗

j ,x
〉∣∣∣∣
∣∣∣∣∣∣
 (58)

+ E(x,y)

∣∣∣∣∣∣
∑
j∈Γ

∑
i∈Λj

a∗j
1

|Λj |

∣∣∣∣Bϵ

b̃

〈
w

(1)
i ,x

〉
+Bϵ −

〈
w∗

j ,x
〉∣∣∣∣
∣∣∣∣∣∣
+ LD(f

∗) (59)

≤r∥a∗∥∞(ϵa +
√
2γ)E(x,y)∥x∥2 + |Γ|∥a∗∥∞Bϵ + LD(f

∗) (60)

≤rBx1Ba1(ϵa +
√
2γ) + |Γ|Ba1Bϵ +OPTd,r,BF ,Sp,γ,BG

. (61)

We finish the proof by union bound and δ ≥ δ1 + δ2.
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D.2.3 Learning an Accurate Classifier

We will use the following theorem from existing work to prove that gradient descent learns a good
classifier (Theorem D.9). Theorem D.1 is simply a direct corollary of Theorem D.9.

Theorem D.5 (Theorem 13 in [33]). Fix some η, and let f1, . . . , fT be some sequence of convex
functions. Fix some θ1, and assume we update θt+1 = θt−η∇ft(θt). Then for every θ∗ the following
holds:

1

T

T∑
t=1

ft(θt) ≤
1

T

T∑
t=1

ft(θ
∗) +

1

2ηT
∥θ∗∥22 + ∥θ1∥2

1

T

T∑
t=1

∥∇ft(θt)∥2 + η
1

T

T∑
t=1

∥∇ft(θt)∥22.

To apply the theorem we first present a few lemmas bounding the change in the network during steps.

Lemma D.6 (Bound of Ξ(0),Ξ(1)). Assume the same conditions as in Lemma D.4, and d ≥ logm,
with probability at least 1− δ − 1

m2 over the initialization, ∥a(0)∥∞ = O
(

b̃
√
logm

−ℓ′(0)η(1)BGBϵ

)
, and for

all i ∈ [4m], we have ∥w(0)
i ∥2 = O

(
σw

√
d
)

. Finally, ∥a(1)∥∞ = O
(
−η(1)ℓ′(0)(Bx1σw

√
d+ b̃)

)
,

and for all i ∈ [4m], ∥w(1)
i ∥2 = O

(
b̃
√
logmBx1

BGBϵ

)
.

Proof of Lemma D.6. By Lemma F.4, we have ∥a(0)∥∞ = O
(

b̃
√
logm

−ℓ′(0)η(1)BGBϵ

)
with probability

at least 1 − 1
2m2 by property of maximum i.i.d Gaussians. For any i ∈ [4m], by Lemma F.5 and

d ≥ logm, we have

Pr

(
1

σ2
w

∥∥∥w(0)
i

∥∥∥2
2
≥ d+ 2

√
4d log(m) + 8 log(m)

)
≤ O

(
1

m4

)
. (62)

Thus, by union bound, with probability at least 1 − 1
2m2 , for all i ∈ [4m], we have ∥w(0)

i ∥2 =

O
(
σw

√
d
)

.

For all i ∈ [4m], we have

|a(1)i | =− η(1)ℓ′(0)
∣∣∣E(x,y)

[
y
[
σ
(〈

w
(0)
i ,x

〉
− bi

)]]∣∣∣ (63)

≤− η(1)ℓ′(0)(∥w(0)
i ∥2E(x,y)[∥x∥2] + b̃) (64)

≤O
(
−η(1)ℓ′(0)(Bx1σw

√
d+ b̃)

)
. (65)

∥w(1)
i ∥2 =− η(1)ℓ′(0)

∥∥∥a(0)i E(x,y)

[
yσ′
[〈

w
(0)
i ,x

〉
− bi

]
x
]∥∥∥

2
(66)

≤O

(
b̃
√
logmBx1

BGBϵ

)
. (67)

Lemma D.7 (Bound of Ξ(t)). Assume the same conditions as in Lemma D.6, and let η = η(t) for all
t ∈ {2, 3, . . . , T}, 0 < TηBx1 ≤ o(1), and 0 = λ = λ(t) for all t ∈ {2, 3, . . . , T}, for all i ∈ [4m],
we have

|a(t)i | ≤O

(
|a(1)i |+ ∥w(1)

i ∥2 +
b̃

Bx1
+ ηb̃

)
(68)

∥w(t)
i −w

(1)
i ∥2 ≤O

(
tηBx1|a(1)i |+ tη2B2

x1∥w
(1)
i ∥2 + tη2Bx1b̃

)
. (69)
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Proof of Lemma D.7. For all i ∈ [4m], by Lemma D.6,

|a(t)i | =
∣∣∣(1− ηλ)a

(t−1)
i − ηE(x,y)

[
ℓ′(yfΞ(t−1)(x))y

[
σ
(〈

w
(t−1)
i ,x

〉
− bi

)]]∣∣∣ (70)

≤
∣∣∣(1− ηλ)a

(t−1)
i

∣∣∣+ η
∣∣∣E(x,y)

[[
σ
(〈

w
(t−1)
i ,x

〉
− bi

)]]∣∣∣ (71)

≤
∣∣∣a(t−1)

i

∣∣∣+ η(Bx1∥w(t−1)
i ∥2 + b̃) (72)

≤
∣∣∣a(t−1)

i

∣∣∣+ ηBx1∥w(t−1)
i −w

(1)
i ∥2 + ηBx1∥w(1)

i ∥2 + ηb̃ (73)

=
∣∣∣a(t−1)

i

∣∣∣+ ηBx1∥w(t−1)
i −w

(1)
i ∥2 + ηZi, (74)

where we denote Zi = Bx1∥w(1)
i ∥2 + b̃. Then we give a bound of the first layer’s weights change,

∥w(t)
i −w

(1)
i ∥2 (75)

=
∥∥∥(1− ηλ)w

(t−1)
i − ηa

(t−1)
i E(x,y)

[
ℓ′(yfΞ(t−1)(x))yσ

′
[〈

w
(t−1)
i ,x

〉
− bi

]
x
]
−w

(1)
i

∥∥∥
2

(76)

≤∥w(t−1)
i −w

(1)
i ∥2 + ηBx1|a(t−1)

i |. (77)
Combine two bounds, we can get

|a(t)i | ≤|a(t−1)
i |+ ηZi + (ηBx1)

2
t−2∑
l=1

|a(l)i | (78)

⇔
t∑

l=1

|a(l)i | ≤2

(
t−1∑
l=1

|a(l)i |

)
− (1− (ηBx1)

2)

(
t−2∑
l=1

|a(l)i |

)
+ ηZi. (79)

Let h(1) = |a(1)i |, h(2) = 2|a(1)i |+ ηZi and h(t+ 2) = 2h(t+ 1)− (1− (ηBx1)
2)h(t) + ηZi for

n ∈ N+, by Lemma F.8, we have

h(t) =− Zi

ηB2
x1

+ c1(1− ηBx1)
(t−1) + c2(1 + ηBx1)

(t−1) (80)

c1 =
1

2

(
|a(1)i |+ Zi

ηB2
x1

− |a(1)i |+ ηZi

ηBx1

)
(81)

c2 =
1

2

(
|a(1)i |+ Zi

ηB2
x1

+
|a(1)i |+ ηZi

ηBx1

)
. (82)

Thus, by |c1| ≤ c2, and 0 < TηBx1 ≤ o(1), we have

|a(t)i | ≤h(t)− h(t− 1) (83)

=− ηBx1c1(1− ηBx1)
(t−2) + ηBx1c2(1 + ηBx1)

(t−2) (84)

≤2ηBx1c2(1 + ηBx1)
t (85)

≤O(2ηBx1c2). (86)
Similarly, by binomial approximation, we also have

∥w(t)
i −w

(1)
i ∥2 ≤ηBx1h(t− 1) (87)

=ηBx1

(
− Zi

ηB2
x1

+ c1(1− ηBx1)
(t−2) + c2(1 + ηBx1)

(t−2)

)
(88)

≤ηBx1O

(
− Zi

ηB2
x1

+ c1(1− (t− 2)ηBx1) + c2(1 + (t− 2)ηBx1)

)
(89)

≤ηBx1O

(
− Zi

ηB2
x1

+ c1 + c2 + (c2 − c1)tηBx1

)
(90)

≤ηBx1O

(
|a(1)i |+ |a(1)i |+ ηZi

ηBx1
tηBx1

)
(91)

≤O
(
(η|a(1)i |+ η2Zi)tBx1

)
. (92)
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We finish the proof by plugging Zi, c2 into the bound.

Lemma D.8 (Bound of Loss Gap and Gradient). Assume the same conditions as in Lemma D.7, for
all t ∈ [T ], we have

|LD(f(ã,W(t),b))− LD(f(ã,W(1),b))| ≤Bx1∥ã∥2
√

∥ã∥0 max
i∈[4m]

∥w(t)
i −w

(1)
i ∥2 (93)

and for all t ∈ [T ], for all i ∈ [4m], we have∣∣∣∣∣∂LD(fΞ(t))

∂a
(t)
i

∣∣∣∣∣ ≤Bx1(∥w(t)
i −w

(1)
i ∥2 + ∥w(1)

i ∥2) + b̃. (94)

Proof of Lemma D.8. It follows from that
|LD(f(ã,W(t),b))− LD(f(ã,W(1),b))| (95)

≤ E(x,y)|f(ã,W(t),b)(x)− f(ã,W(1),b)(x)| (96)

≤ E(x,y)

[
∥ã∥2

√
∥ã∥0 max

i∈[4m]

∣∣∣σ [〈w(t)
i ,x

〉
− bi

]
− σ

[〈
w

(1)
i ,x

〉
− bi

]∣∣∣] (97)

≤ Bx1∥ã∥2
√
∥ã∥0 max

i∈[4m]
∥w(t)

i −w
(1)
i ∥2. (98)

Also, we have ∣∣∣∣∣∂LD(fΞ(t))

∂a
(t)
i

∣∣∣∣∣ = ∣∣∣E(x,y)

[
ℓ′(yfΞ(t)(x))y

[
σ
(〈

w
(t)
i ,x

〉
− bi

)]]∣∣∣ (99)

≤Bx1∥w(t)
i ∥2 + b̃ (100)

≤Bx1(∥w(t)
i −w

(1)
i ∥2 + ∥w(1)

i ∥2) + b̃. (101)

We are now ready to prove the main theorem.
Theorem D.9 (Online Convex Optimization. Full Statement of Theorem D.1). Consider training by
Algorithm 3, and any δ ∈ (0, 1). Assume d ≥ logm. Set

σw > 0, b̃ > 0, η(t) = η, λ(t) = 0 for all t ∈ {2, 3, . . . , T},

η(1) = Θ

(
min{O(η), O(ηb̃)}

−ℓ′(0)(Bx1σw

√
d+ b̃)

)
, λ(1) =

1

η(1)
, σa = Θ

(
b̃(mp)

1
4

−ℓ′(0)η(1)Bx1

√
BGBb

)
.

Let 0 < TηBx1 ≤ o(1), m = Ω
(

1√
δ
+ 1

p

(
log
(
r
δ

))2)
. With probability at least 1 − δ over the

initialization, there exists t ∈ [T ] such that

LD (fΞ(t)) ≤OPTd,r,BF ,Sp,γ,BG
+ rBa1

(
2Bx1

(mp)
1
4

√
Bb

BG
+Bx1

√
2γ

)
(102)

+ η
(√

rBa2BbTηB
2
x1 +mb̃

)
O

(√
logmBx1(mp)

1
4

√
BbBG

+ 1

)
+O

(
B2

a2B
2
b

ηT b̃2(mp)
1
2

)
.

Furthermore, for any ϵ ∈ (0, 1), set

b̃ =Θ

(
B

1
4

GBa2B
3
4

b√
rBa1

)
, m = Ω

 1

pϵ4

(
rBa1Bx1

√
Bb

BG

)4

+
1√
δ
+

1

p

(
log
(r
δ

))2 , (103)

η =Θ

 ϵ(√
rBa2BbBx1

(mp)
1
4

+mb̃

)(√
logmBx1(mp)

1
4√

BbBG
+ 1

)
 , T = Θ

(
1

ηBx1(mp)
1
4

)
, (104)

we have there exists t ∈ [T ] with

Pr[sign(fΞ(t))(x) ̸= y] ≤ LD (fΞ(t)) ≤OPTd,r,BF ,Sp,γ,BG
+ rBa1Bx1

√
2γ + ϵ. (105)

28



Proof of Theorem D.9. By m = Ω
(

1√
δ
+ 1

p

(
log
(
r
δ

))2)
we have 2re−

√
mp + 1

m2 ≤ δ. For any

Bϵ ∈ (0, Bb), when σa = Θ
(

b̃
−ℓ′(0)η(1)BGBϵ

)
, by Theorem D.5, Lemma D.4, Lemma D.8, with

probability at least 1− δ over the initialization, we have

1

T

T∑
t=1

LD (fΞ(t)) (106)

≤ 1

T

T∑
t=1

|(LD(f(ã,W(t),b))− LD(f(ã,W(1),b))|+ LD(f(ã,W(1),b))) (107)

+
∥ã∥22
2ηT

+ (2∥a(1)∥2
√
m+ 4ηm) max

i∈[4m]

∣∣∣∣∣∂LD(fΞ(T ))

∂a
(T )
i

∣∣∣∣∣ (108)

≤OPTd,r,BF ,Sp,γ,BG
+ rBa1

(
B2

x1Bb√
mpBGBϵ

+Bx1

√
2γ +Bϵ

)
(109)

+Bx1∥ã∥2
√
∥ã∥0 max

i∈[4m]
∥w(T )

i −w
(1)
i ∥2 (110)

+
∥ã∥22
2ηT

+ 4mBx1(∥a(1)∥∞ + η)

(
max
i∈[4m]

∥w(T )
i −w

(1)
i ∥2 + max

i∈[4m]
∥w(1)

i ∥2 +
b̃

Bx1

)
. (111)

By Lemma D.4, Lemma D.6, Lemma D.7, when η(1) = Θ
(

min{O(η),O(ηb̃)}
−ℓ′(0)(Bx1σw

√
d+b̃)

)
, we have

∥ã∥0 =O
(
r(mp)

1
2

)
, ∥ã∥2 = O

(
Ba2Bb

b̃(mp)
1
4

)
(112)

∥a(1)∥∞ =O
(
−η(1)ℓ′(0)(Bx1σw

√
d+ b̃)

)
(113)

=min{O(η), O(ηb̃)} (114)

max
i∈[4m]

∥w(1)
i ∥2 =O

(
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√
logmBx1

BGBϵ

)
(115)
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i∈[4m]

∥w(T )
i −w

(1)
i ∥2 =O
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x1 max
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(116)

=O

(
Tη2B2

x1

(
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i∈[4m]

∥w(1)
i ∥2 +

b̃

Bx1
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. (117)

Set Bϵ = Bx1

(mp)
1
4

√
Bb

BG
, we have σa = Θ

(
b̃(mp)

1
4

−ℓ′(0)η(1)Bx1

√
BGBb

)
which satisfy the requirements.

Then,

1

T

T∑
t=1

LD (fΞ(t)) (118)

≤OPTd,r,BF ,Sp,γ,BG
+ rBa1
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(mp)
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4

√
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√
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(119)

+

(√
rBa2BbTη

2B2
x1

Bx1

b̃
+mηBx1
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O

(
b̃
√
logmBx1

BGBϵ
+
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Bx1

)
+O

(
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a2B
2
b

ηT b̃2(mp)
1
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)

≤OPTd,r,BF ,Sp,γ,BG
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(
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1
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√
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+Bx1

√
2γ

)
(120)

+ η
(√

rBa2BbTηB
2
x1 +mb̃

)
O

(√
logmBx1(mp)

1
4

√
BbBG

+ 1

)
+O

(
B2

a2B
2
b

ηT b̃2(mp)
1
2

)
. (121)
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Furthermore, for any ϵ ∈ (0, 1), set

b̃ =Θ

(
B

1
4

GBa2B
3
4

b√
rBa1

)
, m = Ω

 1

pϵ4

(
rBa1Bx1

√
Bb

BG

)4

+
1√
δ
+

1

p

(
log
(r
δ

))2 , (122)

η =Θ

 ϵ(√
rBa2BbBx1

(mp)
1
4

+mb̃

)(√
logmBx1(mp)

1
4√

BbBG
+ 1

)
 , T = Θ

(
1

ηBx1(mp)
1
4

)
, (123)

we have

1

T

T∑
t=1

LD (fΞ(t)) ≤OPTd,r,BF ,Sp,γ,BG
+ rBa1

(
2Bx1

(mp)
1
4

√
Bb

BG
+Bx1

√
2γ

)
+

ϵ

2
(124)

+O

(
Bx1B

2
a2B

2
b

b̃2(mp)
1
4

)
(125)

≤OPTd,r,BF ,Sp,γ,BG
+ rBa1Bx1

√
2γ + ϵ. (126)

We finish the proof as the 0-1 classification error is bounded by the loss function, e.g.,
I[sign(f(x)) ̸= y] ≤ ℓ(yf(x))

ℓ(0) , where ℓ(0) = 1.

D.3 More Discussion abut Setting

Range of σw. In practice, the value of σw cannot be arbitrary, because its choice will have an effect
on the Gradient Feature set Sp,γ,BG

. On the other hand, d ≥ logm is a natural assumption, otherwise,
the two-layer neural networks may fall in the NTK regime.

Parameter Choice. We use λ = 1/η in the first step so that the neural network will totally forget
its initialization, leading to the feature emergence here. This is a common setting for analysis
convenience in previous work, e.g., [32, 33, 105]. We can extend this to other choices (e.g., small
initialization and large step size for the first few steps), as long as after the gradient update, the
gradient dominates the neuron weights. We use λ = 0 afterward as the regularization effect is weak
in our analysis. We can extend our analysis to λ being a small value.

Early Stopping. Our analysis divides network learning into two stages: the feature learning stage,
and then classifier learning over the good features. The feature learning stage is simplified to one
gradient step for the convenience of analysis, while in practice feature learning can happen in multiple
steps. The current framework focuses on the gradient features in the early gradient steps, while
feature learning can also happen in later steps, in particular for more complicated data. It is an
interesting direction to extend the analysis to a longer training horizon.

Role of s. The s encodes the sign of the bias term, which is important. Recall that we do not
update the bias term for simplicity. Let’s consider a simple toy example. Assume we have f1(x) =
a1σ(w

⊤
1 x+ 1), f2(x) = a2σ(w

⊤
2 x− 1) and f3(x) = a3σ(w

⊤
3 x+ 2), where σ is ReLU activation

function which is a homogeneous function.

1. The sign of the bias term is important. We can see that we always have a1σ(w
⊤
1 x+ 1) ̸=

a2σ(w
⊤
2 x − 1) for any a1, w1, a2, w2. This means that f1(x) and f2(x) are intrinsically

different and have different active patterns. Thus, we need to handle the sign of the bias
term carefully.

2. The scaling of the bias is absorbed. On the other hand, we can see that a1σ(w⊤
1 x+ 1) =

a3σ(w
⊤
3 x+ 2) when a1 = 2a3, 2w1 = w3. It means that the scale of the bias term is less

important, which can be absorbed into other terms.

Thus, we only need to handle bias with different signs carefully.

Gradient Feature Distribution. We may define a gradient feature distribution rather than a gradient
feature set. However, we find that the technical tools used in this continuous setting are pretty different
from the discrete version.
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Activation Functions. We can change the ReLU activation function to a sublinear activation
function, e.g. leaky ReLU, sigmoid, to get a similar conclusion. First, we need to introduce a
corresponding gradient feature set, and then we can make it by following the same analysis pipeline.
For simplicity, we present ReLU only.

D.4 Gradient Feature Learning Framework under Empirical Risk with Sample Complexity

In this section, we consider training with empirical risk. Intuitively, the proof is straightforward from
the proof for population loss. We can simply replace the population loss with the empirical loss,
which will introduce an error term in the gradient analysis. We use concentration inequality to control
the error term and show that the error term depends inverse-polynomially on the sample size n.
Definition D.10 (Empirical Simplified Gradient Vector). Recall Z = {(x(l), y(l))}l∈[n], for any
w ∈ Rd, b ∈ R, an Empirical Simplified Gradient Vector is defined as

G̃(w, b) :=
1

n

∑
l∈[n]

[y(l)x(l)I[w⊤x(l) > b]]. (127)

Definition D.11 (Empirical Gradient Feature). Recall Z = {(x(l), y(l))}l∈[n], let w ∈ Rd, b ∈ R
be random variables drawn from some distribution W,B. An Empirical Gradient Feature set with
parameters p, γ,BG is defined as:

S̃p,γ,BG
(W,B) :=

{
(D, s)

∣∣∣∣ Pr
w,b

[
G̃(w, b) ∈ CD,γ and ∥G̃(w, b)∥2 ≥ BG and s =

b

|b|

]
≥ p

}
.

When clear from context, write it as S̃p,γ,BG
.

Considering training by Algorithm 1, we have the following results.
Theorem 3.12 (Main Result). Assume Assumption 3.1. For any ϵ, δ ∈ (0, 1), if m ≤ ed and

m =Ω

 1

pϵ4

(
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)4

+
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n
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4
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ϵ2r2B2
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1
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+

1

p
+

(
1

B2
G

+
1

B2
x1

)
Bx2

|ℓ′(0)|2
+

Tm

δ

)
,

then with initialization (8) and proper hyper-parameter values, we have with probability ≥ 1 − δ
over the initialization and training samples, there exists t ∈ [T ] in Algorithm 1 with:

Pr[sign(fΞ(t)(x)) ̸= y] ≤ LD (fΞ(t))

≤ OPTd,r,BF ,Sp,γ,BG
+ rBa1Bx1

√
2γ +O

( √
Bx2 log n

BG|ℓ′(0)|n
1
2

)
+ ϵ.

See the full statement and proof in Theorem D.17. Below, we show some lemmas used in the analysis
under empirical loss.

Lemma D.12 (Empirical Gradient Concentration Bound). When n
logn >

B2
x

Bx2
, with probability at

least 1−O
(
1
n

)
over training samples, for all i ∈ [4m], we have∥∥∥∥∥∂L̃Z(fΞ)

∂wi
− ∂LD(fΞ)

∂wi
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2
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)
, (128)∣∣∣∣∣∂L̃Z(fΞ)

∂ai
− ∂LD(fΞ)

∂ai

∣∣∣∣∣ ≤ O
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, (129)

∣∣∣L̃Z (fΞ)− LD (fΞ)
∣∣∣ ≤ O


(
∥a∥0∥a∥∞(maxi∈[4m] ∥wi∥2Bx + b̃) + 1

)√
log n

n
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2
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Proof of Lemma D.12. First, we define,

z(l) =ℓ′(y(l)fΞ(x
(l)))y(l)

[
σ′
(〈

wi,x
(l)
〉
− bi

)
x(l)
]

(131)

− E(x,y) [ℓ
′(yfΞ(x))y [σ

′ (⟨wi,x⟩ − bi)]x] . (132)

As |ℓ′(z)| ≤ 1, |y| ≤ 1, |σ′(z)| ≤ 1, we have z(l) is zero-mean random vector with
∥∥z(l)∥∥

2
≤ 2Bx as

well as E
[∥∥z(l)∥∥2

2

]
≤ Bx2. Then by Vector Bernstein Inequality, Lemma 18 in [66], for 0 < z < Bx2

Bx

we have
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)
. (134)

Thus, let z = n− 1
2

√
Bx2 log n, with probability at least 1−O

(
1
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)
, we have∥∥∥∥∥∂L̃Z(fΞ)
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On the other hand, by Bernstein Inequality, for z > 0 we have
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Thus, when n
logn >
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, let z = n− 1
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√
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Finally, we have∣∣∣L̃Z (fΞ)− LD (fΞ)
∣∣∣ (141)

=
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By Assumption 3.1, we have ℓ
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a zero-mean random variable, with bound 2∥a∥0∥a∥∞(maxi∈[4m] ∥wi∥2Bx+ b̃)+2. By Hoeffding’s
inequality, for all z > 0, we have
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The gradients allow for obtaining a set of neurons approximating the “ground-truth” network with
comparable loss.

Lemma D.13 (Existence of Good Networks under Empirical Risk). Suppose n
logn >

Ω
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and ∥ã∥0 = O
(
r(mp)

1
2

)
, ∥ã∥2 = O

(
Ba2Bb

b̃(mp)
1
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)
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Proof of Lemma D.13. Denote ρ = O
(
1
n

)
and β = O

(√
Bx2 logn

n
1
2

)
. Note that by symmet-

ric initialization, we have ℓ′(yfΞ(0)(x)) = |ℓ′(0)| for any x ∈ X , so that, by Lemma D.12,
we have

∥∥∥G̃(w
(0)
i ,bi)−G(w

(0)
i ,bi)

∥∥∥
2

≤ β
|ℓ′(0)| with probability at least 1 − ρ. Thus, by

union bound, we can see that Sp,γ,BG
⊆ S̃p−ρ,γ+ β

BG|ℓ′(0)| ,BG− β
|ℓ′(0)|

. Consequently, we

have OPTd,r,BF ,S̃
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β
BG|ℓ′(0)| ,BG− β
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≤ OPTd,r,BF ,Sp,γ,BG
. Exactly follow the proof in

Lemma D.4 by replacing Sp,γ,BG
to S̃p−ρ,γ+ β

BG|ℓ′(0)| ,BG− β
|ℓ′(0)|

. Then, we finish the proof by

ρ ≤ p
2 ,

β
|ℓ′(0)| ≤ (1− 1/

√
2)BG.

We will use Theorem D.5 to prove that gradient descent learns a good classifier (Theorem D.17).
Theorem 3.12 is simply a direct corollary of Theorem D.17. To apply the theorem we first present a
few lemmas bounding the change in the network during steps.

Lemma D.14 (Bound of Ξ(0),Ξ(1) under Empirical Risk). Assume the same conditions as in
Lemma D.13, and d ≥ logm, with probability at least 1− δ − 1

m2 −O
(
m
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)
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and training samples, ∥a(0)∥∞ = O
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√
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Proof of Lemma D.14. The proof exactly follows the proof of Lemma D.6 with Lemma D.12.

Lemma D.15 (Bound of Ξ(t) under Empirical Risk). Assume the same conditions as in Lemma D.14,
and let η = η(t) for all t ∈ {2, 3, . . . , T}, 0 < TηBx1 ≤ o(1), and 0 = λ = λ(t) for all
t ∈ {2, 3, . . . , T}. With probability at least 1−O

(
Tm
n

)
over training samples, for all i ∈ [4m], for

all t ∈ {2, 3, . . . , T}, we have
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Proof of Lemma D.15. The proof exactly follows the proof of Lemma D.7 with Lemma D.12. Note
that, we have

|a(t)i | ≤
∣∣∣a(t−1)

i
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where we denote Zi =
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We finish the proof by following the same arguments in the proof of Lemma D.7 and union bound.

Lemma D.16 (Bound of Loss Gap and Gradient under Empirical Risk). Assume the same conditions
as in Lemma D.15. With probability at least 1−O
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T
n

)
, for all t ∈ [T ], we have∣∣∣L̃Z(t)

(
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With probability at least 1−O
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T
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)
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Proof of Lemma D.16. By Lemma D.8 and Lemma D.12, with probability at least 1−O
(
T
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)
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By Lemma D.8 and Lemma D.12, with probability at least 1−O
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)
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We are now ready to prove the main theorem.
Theorem D.17 (Online Convex Optimization under Empirical Risk. Full Statement of Theorem 3.12).
Consider training by Algorithm 1, and any δ ∈ (0, 1). Assume d ≥ logm. Set

σw > 0, b̃ > 0, η(t) = η, λ(t) = 0 for all t ∈ {2, 3, . . . , T},
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Let 0 < TηBx1 ≤ o(1), m = Ω
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Furthermore, for any ϵ ∈ (0, 1), set
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we have there exists t ∈ [T ] with
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Proof of Theorem D.17. We follow the proof in Theorem D.9. By m = Ω
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Lemma D.16, with probability at least 1− δ over the initialization and training samples, we have
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Then, following the proof in Theorem D.9, we have
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Furthermore, for any ϵ ∈ (0, 1), set
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We finish the proof as the 0-1 classification error is bounded by the loss function, e.g.,
I[sign(f(x)) ̸= y] ≤ ℓ(yf(x))

ℓ(0) , where ℓ(0) = 1.

E Applications in Special Cases

We present the case study of linear data in Appendix E.1, mixtures of Gaussians in Appendix E.2 and
Appendix E.3, parity functions in Appendix E.4, Appendix E.5 and Appendix E.6, and multiple-index
models in Appendix E.7.

In special case applications, we consider binary classification with hinge loss, e.g., ℓ(z) = max{1−
z, 0}. Let X = Rd be the input space, and Y = {±1} be the label space.
Remark E.1 (Hinge Loss and Logistic Loss). Both hinge loss and logistic loss can be used in special
cases and general cases. For convenience, we use hinge loss in special cases, where we can directly
get the ground-truth NN close form of the optimal solution which has zero loss. For logistic loss,
there is no zero-loss solution. We can still show that the OPT value has an exponentially small upper
bound at the cost of more computation.

E.1 Linear Data

Data Distributions. Suppose two labels are equiprobable, i.e., E[y = −1] = E[y = +1] = 1
2 .

The input data are linearly separable and there is a ground truth direction w∗, where ∥w∗∥2 = 1,
such that y ⟨w∗,x⟩ > 0. We also assume E[yPw∗⊥x] = 0, where Pw∗⊥ is the projection operator on
the complementary space of the ground truth, i.e., the components of input data being orthogonal
with the ground truth are independent of the label y. We define the input data signal level as
ρ := E[y ⟨w∗,x⟩] > 0 and the margin as β := min(x,y) y ⟨w∗,x⟩ > 0.

We call this data distribution Dlinear.
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Lemma E.2 (Linear Data: Gradient Feature Set). Let b̃ = dτBx1σw, where τ is any number large
enough to satisfy dτ/2−

1
4 > Ω

(√
Bx2

ρ

)
. For Dlinear setting, we have (w∗,−1) ∈ Sp,γ,BG

where

p =
1

2
, γ = Θ

( √
Bx2

ρdτ/2−
1
4

)
, BG = ρ−Θ

( √
Bx2

dτ/2−
1
4

)
. (203)

Proof of Lemma E.2. By data distribution, we have

E(x,y)[yx] = ρw∗. (204)

Define SSure : {i ∈ [m] : ∥w(0)
i ∥2 ≤ 2

√
dσw}. For all i ∈ [m], we have

Pr[i ∈ SSure] = Pr[∥w(0)
i ∥2 ≤ 2

√
dσw] ≥

1

2
. (205)

For all i ∈ SSure, by Markov’s inequality and considering neuron i+m, we have

Pr
x

[〈
w

(0)
i+m,x

〉
− bi+m < 0

]
=Pr

x

[〈
w

(0)
i ,x

〉
+ bi < 0

]
(206)

≤Pr
x

[
∥w(0)

i ∥2∥x∥2 ≥ bi

]
(207)

≤Pr
x

[
∥x∥2 ≥ dτ−

1
2Bx1

2

]
(208)

≤Θ

(
1

dτ−
1
2

)
. (209)

For all i ∈ SSure, by Hölder’s inequality, we have∥∥∥E(x,y)

[
y
(
1− σ′

[〈
w

(0)
i+m,x

〉
− bi+m

])
x
]∥∥∥

2
(210)

=
∥∥∥E(x,y)

[
y
(
1− σ′

[〈
w

(0)
i ,x

〉
+ bi

])
x
]∥∥∥

2
(211)

≤

√
E[∥x∥22]E

[(
1− σ′

[〈
w

(0)
i ,x

〉
+ bi

])2]
(212)

≤Θ

( √
Bx2

dτ/2−
1
4

)
. (213)

We have

1−

∣∣∣〈G(w
(0)
i+m,bi+m),w∗

〉∣∣∣
∥G(w

(0)
i+m,bi+m)∥2

=1−

∣∣∣〈G(w
(0)
i ,−bi),w

∗
〉∣∣∣

∥G(w
(0)
i ,−bi)∥2

(214)

≤1−
ρ−Θ

( √
Bx2

dτ/2− 1
4

)
ρ+Θ

( √
Bx2

dτ/2− 1
4

) (215)

=Θ

( √
Bx2

ρdτ/2−
1
4

)
= γ. (216)

We finish the proof by bi+m

|bi+m| = −1.

Lemma E.3 (Linear Data: Existence of Good Networks). Assume the same conditions as in
Lemma E.2. Define

f∗(x) =
1

β
σ(⟨w∗,x⟩)− 1

β
σ(⟨−w∗,x⟩). (217)

For Dlinear setting, we have f∗ ∈ Fd,r,BF ,Sp,γ,BG
, where r = 2, BF = (Ba1, Ba2, Bb) =(

1
β ,

√
2

β , 1
B2

x1

)
, p = 1

2 , γ = Θ

( √
Bx2

ρdτ/2− 1
4

)
, BG = ρ − Θ

( √
Bx2

dτ/2− 1
4

)
. We also have

OPTd,r,BF ,Sp,γ,BG
= 0.
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Proof of Lemma E.3. By Lemma E.2 and Lemma F.3, we have f∗ ∈ Fd,r,BF ,Sp,γ,BG
. We also have

OPTd,r,BF ,Sp,γ,BG
≤LDlinear

(f∗) (218)

=E(x,y)∼Dlinear
L(x,y)(f

∗) (219)

=0. (220)

Theorem E.4 (Linear Data: Main Result). For Dlinear setting, for any δ ∈ (0, 1) and for any
ϵ ∈ (0, 1) when

m = poly
(
1

δ
,
1

ϵ
,
1

β
,
1

ρ

)
≤ ed, T = poly (m,Bx1) , n = poly

(
m,Bx,

1

δ
,
1

ϵ
,
1

β
,
1

ρ

)
, (221)

trained by Algorithm 1 with hinge loss, with probability at least 1− δ over the initialization, with
proper hyper-parameters, there exists t ∈ [T ] such that

Pr[sign(fΞ(t)(x)) ̸= y] ≤ϵ. (222)

Proof of Theorem E.4. Let b̃ = dτBx1σw, where τ is a number large enough to satisfy dτ/2−
1
4 >

Ω
(√

Bx2

ρ

)
and O

(
Bx1B

1
4
x2

β
√
ρdτ/4− 1

8

)
≤ ϵ

2 . By Lemma E.3, we have f∗ ∈ Fd,r,BF ,Sp,γ,BG
, where

r = 2, BF = (Ba1, Ba2, Bb) =
(

1
β ,

√
2

β , 1
B2

x1

)
, p = 1

2 , γ = Θ

( √
Bx2

ρdτ/2− 1
4

)
, BG = ρ−Θ

( √
Bx2

dτ/2− 1
4

)
.

We also have OPTd,r,BF ,Sp,γ,BG
= 0.

Adjust σw such that b̃ = dτBx1σw = Θ

(
B

1
4
GBa2B

3
4
b√

rBa1

)
. Injecting above parameters into Theo-

rem 3.12, we have with probability at least 1− δ over the initialization, with proper hyper-parameters,
there exists t ∈ [T ] such that

Pr[sign(fΞ(t)(x)) ̸= y] ≤O

(
Bx1B

1
4
x2

β
√
ρdτ/4−

1
8

)
+O

(
Bx1Bx2

1
4 (log n)

1
4

β
√
ρn

1
4

)
+ ϵ/2 ≤ ϵ. (223)

E.2 Mixture of Gaussians

We recap the problem setup in Section 4.1 for readers’ convenience.

E.2.1 Problem Setup

Data Distributions. We follow the notations from [99]. The data are from a mixture of r high-
dimensional Gaussians, and each Gaussian is assigned to one of two possible labels in Y = {±1}.
Let S(y) ⊆ [r] denote the set of indices of the Gaussians associated with the label y. The data
distribution is then:

q(x, y) = q(y)q(x|y), q(x|y) =
∑

j∈S(y)

pjNj(x), (224)

where Nj(x) is a multivariate normal distribution with mean µj and covariance Σj , and pj are chosen
such that q(x, y) is correctly normalized.

We call this data distribution Dmixture.

We will make some assumptions about the Gaussians, for which we first introduce some notations.
For all j ∈ [r], let y(j) ∈ {+1,−1} be the label for Nj(x).

Dj :=
µj

∥µj∥2
, µ̃j := µj/

√
d, Bµ1 := min

j∈[r]
∥µ̃j∥2, Bµ2 := max

j∈[r]
∥µ̃j∥2, pB := min

j∈[r]
pj .

Assumption E.5 (Mixture of Gaussians. Recap of Assumption 4.1). Let 8 ≤ τ ≤ d be a parameter
that will control our final error guarantee. Assume
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• Equiprobable labels: q(−1) = q(+1) = 1/2.
• For all j ∈ [r], Σj = σjId×d. Let σB := maxj∈[r] σj and σB+ := max{σB , Bµ2}.

• r ≤ 2d, pB ≥ 1
2d , Ω

(
1
d +

√
τσB+

2 log d
d

)
≤ Bµ1 ≤ Bµ2 ≤ d.

• The Gaussians are well-separated: for all i ̸= j ∈ [r], we have −1 ≤ ⟨Di, Dj⟩ ≤ θ, where

0 ≤ θ ≤ min

{
1
2r ,

σB+

Bµ2

√
τ log d

d

}
.

Below, we define a sufficient condition that randomly initialized weights will fall in nice gradients set
after the first gradient step update.

Definition E.6 (Mixture of Gaussians: Subset of Nice Gradients Set). Recall w(0)
i is the weight for

the i-th neuron at initialization. For all j ∈ [r], let SDj ,Sure ⊆ [m] be those neurons that satisfy

•
〈
w

(0)
i , µj

〉
≥ CSure,1bi,

•
〈
w

(0)
i , µj′

〉
≤ CSure,2bi, for all j′ ̸= j, j′ ∈ [r].

•
∥∥∥w(0)

i

∥∥∥
2
≤ Θ(

√
dσw).

E.2.2 Mixture of Gaussians: Feature Learning

We show the important Lemma E.7 first and defer other Lemmas after it.

Lemma E.7 (Mixture of Gaussians: Gradient Feature Set. Part statement of Lemma 4.3). Let
CSure,1 = 3

2 , CSure,2 = 1
2 , b̃ = Cb

√
τd log dσwσB+, where Cb is a large enough universal

constant. For Dmixture setting, we have (Dj ,+1) ∈ Sp,γ,BG
for all j ∈ [r], where

p = Θ

(
Bµ1

√
τ log dσB+ · d(9C2

b τσB+
2/(2B2

µ1))

)
, γ =

1

d0.9τ−1.5
, (225)

BG = pBBµ1

√
d−O

( σB+

d0.9τ

)
. (226)

Proof of Lemma E.7. For all j ∈ [r], by Lemma E.10, for all i ∈ SDj ,Sure,

1−

∣∣∣〈G(w
(0)
i ,bi), Dj

〉∣∣∣
∥G(w

(0)
i ,bi)∥2

(227)

≤1−

∣∣∣〈G(w
(0)
i ,bi), Dj

〉∣∣∣√∣∣∣〈G(w
(0)
i ,bi), Dj

〉∣∣∣2 +maxD⊤
j D⊥

j =0,∥D⊥
j ∥2=1

∣∣∣〈G(w
(0)
i ,bi), D⊥

j

〉∣∣∣2 (228)

≤1−

∣∣∣〈G(w
(0)
i ,bi), Dj

〉∣∣∣∣∣∣〈G(w
(0)
i ,bi), Dj

〉∣∣∣+maxD⊤
j D⊥

j =0,∥D⊥
j ∥2=1

∣∣∣〈G(w
(0)
i ,bi), D⊥

j

〉∣∣∣ (229)

≤1− 1

1 +
Bµ2O

(
1

d
τ− 1

2

)
+σB+O( 1

d0.9τ
)

pjBµ1

√
d(1−O( 1

dτ ))−Bµ2O

(
1

d
τ− 1

2

)
−σB+O( 1

d0.9τ
)

(230)

≤
σB+O

(
1

d0.9τ

)
pjBµ1

√
d− σB+O

(
1

d0.9τ

) (231)

<
1

d0.9τ−1.5
= γ, (232)

where the last inequality follows Bµ1 ≥ Ω

(
σB+

√
τ log d

d

)
.
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Thus, we have G(w
(0)
i ,bi) ∈ CDj ,γ and

∣∣∣〈G(w
(0)
i ,bi), Dj

〉∣∣∣ ≤ ∥G(w
(0)
i ,bi)∥2 ≤ Bx1, bi

|bi| =

+1. Thus, by Lemma E.8, we have

Pr
w,b

[
G(w, b) ∈ CDj ,γ and ∥G(w, b)∥2 ≥ BG and

b

|b|
= +1

]
(233)

≥Pr
[
i ∈ SDj ,Sure

]
(234)

≥p. (235)

Thus, (Dj ,+1) ∈ Sp,γ,BG
. We finish the proof.

Below are Lemmas used in the proof of Lemma E.7. In Lemma E.8, we calculate p used in Sp,γ,BG
.

Lemma E.8 (Mixture of Gaussians: Geometry at Initialization. Lemma B.2 in [7]). Assume the
same conditions as in Lemma E.7, recall for all i ∈ [m], w(0)

i ∼ N (0, σ2
wId×d), over the random

initialization, we have for all i ∈ [m], j ∈ [r],

Pr
[
i ∈ SDj ,Sure

]
≥ Θ

(
Bµ1

√
τ log dσB+ · d(9C2

b τσB+
2/(2B2

µ1))

)
. (236)

Proof of Lemma E.8. Recall for all l ∈ [r], µ̃l = µl/
√
d.

WLOG, let j = r. For all l ∈ [r − 1]. We define Z1 = {l ∈ [r − 1] : ⟨Dl, Dr⟩ ≥ −θ} and
Z2 = {l ∈ [r − 1] : −1 < ⟨Dl, Dr⟩ < −θ}. WLOG, let Z1 = [r1], Z2 = {r1 + 1, . . . , r2}, where
0 ≤ r1 ≤ r2 ≤ r − 1. We define the following events

ζl =
{〈

w
(0)
i , µl

〉
≤ CSure,2bi

}
, ζ̂l =

{∣∣∣〈w(0)
i , µl

〉∣∣∣ ≤ CSure,2bi

}
. (237)

We define space A = span(µ1, . . . , µr1) and µ̂r = PA⊥µr, where PA⊥ is the projection operator on
the complementary space of A. For l ∈ Z2, we also define µ̇l = µl − ⟨µl,µr⟩µr

∥µr∥2
2

, and the event

ζ̇l =
{〈

w
(0)
i , µ̇l

〉
≤ CSure,2bi

}
,
ˆ̇
ζl =

{∣∣∣〈w(0)
i , µ̇l

〉∣∣∣ ≤ CSure,2bi

}
. (238)

For l ∈ Z2, we have µl = µ̇l − ρµr, where ρ ≥ 0. So ⟨w, µl⟩ = ⟨w, µ̇l⟩ − ρ⟨w, µr⟩ ≤ ⟨w, µ̇l⟩
when ⟨w, µr⟩ ≥ 0. As a result, we have

ζ̇l ∩
{〈

w
(0)
i , µr

〉
≥ CSure,1bi

}
⊆ ζl ∩

{〈
w

(0)
i , µr

〉
≥ CSure,1bi

}
. (239)

By Assumption 4.1, we have

1

2
≤ 1− rθ ≤ 1− r1θ ≤ ∥µ̂r∥2

∥µr∥2
≤ 1. (240)

We also have,

Pr
[〈

w
(0)
i , µr

〉
≥ CSure,1bi, ζ1, . . . , ζr−1

]
(241)

=Pr
[〈

w
(0)
i , µr

〉
≥ CSure,1bi, ζ1, . . . , ζr2

]
(242)

≥Pr
[〈

w
(0)
i , µr

〉
≥ CSure,1bi, ζ1, . . . , ζr1 , ζ̇r1+1, . . . , ζ̇r2

]
(243)

≥Pr
[〈

w
(0)
i , µr

〉
≥ CSure,1bi, ζ̂1, . . . , ζ̂r1 ,

ˆ̇
ζr1+1, . . . ,

ˆ̇
ζr2

]
(244)

=Pr
[〈

w
(0)
i , µr

〉
≥ CSure,1bi

∣∣∣ζ̂1, . . . , ζ̂r1 , ˆ̇ζr1+1, . . . ,
ˆ̇
ζr2

]
︸ ︷︷ ︸

pr

Pr
[
ζ̂1, . . . , ζ̂r1 ,

ˆ̇
ζr1+1, . . . ,

ˆ̇
ζr2

]
︸ ︷︷ ︸

Πl∈[r2]pl

.
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For the first condition in Definition E.6, we have,

pr =Pr
[〈

w
(0)
i , µr

〉
≥ CSure,1bi

∣∣∣ζ̂1, . . . , ζ̂r1 , ˆ̇ζr1+1, . . . ,
ˆ̇
ζr2

]
(245)

=Pr
[〈

w
(0)
i , µ̂r + µr − µ̂r

〉
≥ CSure,1bi

∣∣∣ζ̂1, . . . , ζ̂r1] (246)

≥Pr
[〈

w
(0)
i , µ̂r + µr − µ̂r

〉
≥ CSure,1bi,

〈
w

(0)
i , µr − µ̂r

〉
≥ 0
∣∣∣ζ̂1, . . . , ζ̂r1] (247)

=Pr
[〈

w
(0)
i , µ̂r + µr − µ̂r

〉
≥ CSure,1bi

∣∣∣ 〈w(0)
i , µr − µ̂r

〉
≥ 0, ζ̂1, . . . , ζ̂r1

]
(248)

· Pr
[〈

w
(0)
i , µr − µ̂r

〉
≥ 0
∣∣∣ζ̂1, . . . , ζ̂r1] (249)

=
1

2
Pr
[〈

w
(0)
i , µ̂r + µr − µ̂r

〉
≥ CSure,1bi

∣∣∣〈w(0)
i , µr − µ̂r

〉
≥ 0, ζ̂1, . . . , ζ̂r1

]
(250)

≥1

2
Pr
[〈

w
(0)
i , µ̂r

〉
≥ CSure,1bi

∣∣∣〈w(0)
i , µr − µ̂r

〉
≥ 0, ζ̂1, . . . , ζ̂r1

]
(251)

=
1

2
Pr
[〈

w
(0)
i , µ̂r

〉
≥ CSure,1bi

]
(252)

≥Θ

(
∥µ̃r∥2

√
τ log dσB+ · d(9C2

b τσB+
2/(2∥µ̃r∥2

2))

)
, (253)

where the last equality following that µ̂r is orthogonal with µ1, . . . , µr1 and the property of the
standard Gaussian vector, and the last inequality follows Lemma F.6.

For the second condition in Definition E.6, by Lemma F.6, we have,

p1 =Pr
[
ζ̂1

]
= 1−Θ

(
∥µ̃1∥2

√
τ log dσB+ · d(C2

b τσB+
2/(8∥µ̃1∥2

2))

)
(254)

p2 =Pr
[
ζ̂2

∣∣∣ζ̂1] ≥ Pr
[
ζ̂2

]
≥ 1−Θ

(
∥µ̃2∥2

√
τ log dσB+ · d(C2

b τσB+
2/(8∥µ̃2∥2

2))

)
(255)

... (256)

pr−1 =Pr
[
ˆ̇
ζr2

∣∣∣ζ̂1, . . . , ζ̂r1 , ˆ̇ζr1+1, . . . ,
ˆ̇
ζr2

]
≥ Pr

[
ˆ̇
ζr2

]
≥ Pr

[
ζ̂r2

]
(257)

≥ 1−Θ

(
∥µ̃r−1∥2

√
τ log dσB+ · d(C2

b τσB+
2/(8∥µ̃r2

∥2
2))

)
. (258)

On the other hand, if X is a χ2(k) random variable. Then we have

Pr(X ≥ k + 2
√
kx+ 2x) ≤ e−x. (259)

Therefore, by assumption Bµ1 ≥ Ω

(
σB+

√
τ log d

d

)
, we have

Pr

(
1

σ2
w

∥∥∥w(0)
i

∥∥∥2
2
≥ d+ 2

√(
9C2

b τσB+
2/(2B2

µ1) + 2
)
dlog d (260)

+ 2
(
9C2

b τσB+
2/(2B2

µ1) + 2
)
log d

)
(261)

≤O

(
1

d2 · d(9C2
b τσB+

2/(2B2
µ1))

)
. (262)
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Recall Bµ1 = minj∈[r] ∥µ̃j∥2, Bµ2 = maxj∈[r] ∥µ̃j∥2. Thus, by union bound, we have

Pr
[
i ∈ SDj ,Sure

]
(263)

≥Πl∈[r]pl −O

(
1

d2 · d(9C2
b τσB+

2/(2B2
µ1))

)
(264)

≥Θ

(
Bµ1

√
τ log dσB+ · d(9C2

b τσB+
2/(2B2

µ1))
·

(
1− rBµ2

√
τ log dσB+ · d(C2

b τσB+
2/(8B2

µ2))

))
(265)

−O

(
1

d2 · d(9C2
b τσB+

2/(2B2
µ1))

)
(266)

≥Θ

(
Bµ1

√
τ log dσB+ · d(9C2

b τσB+
2/(2B2

µ1))

)
. (267)

In Lemma E.9, we compute the activation pattern for the neurons in SDj ,Sure.
Lemma E.9 (Mixture of Gaussians: Activation Pattern). Assume the same conditions as in Lemma E.7,
for all j ∈ [r], i ∈ SDj ,Sure, we have

(1) When x ∼ Nj(µj , σjId×d), the activation probability satisfies,

Pr
x∼Nj(µj ,σjId×d)

[〈
w

(0)
i ,x

〉
− bi ≥ 0

]
≥ 1−O

(
1

dτ

)
. (268)

(2) For all j′ ̸= j, j′ ∈ [r], when x ∼ Nj′(µj′ ,Σj′), the activation probability satisfies,

Pr
x∼Nj′ (µj′ ,σj′Id×d)

[〈
w

(0)
i ,x

〉
− bi ≥ 0

]
≤ O

(
1

dτ

)
. (269)

Proof of Lemma E.9. In the proof, we need b̃ = Cb

√
τd log dσwσB+, where Cb is a large enough

universal constant. For the first statement, when x ∼ Nj(µj , σjId×d), by CSure,1 ≥ 3
2 , we have

Pr
x∼Nj(µj ,σjId×d)

[〈
w

(0)
i ,x

〉
− bi ≥ 0

]
≥ Pr

x∼N (0,σjId×d)

[〈
w

(0)
i ,x

〉
≥ (1− CSure,1)bi

]
(270)

≥ Pr
x∼N (0,σjId×d)

[〈
w

(0)
i ,x

〉
≥ −bi

2

]
(271)

=1− Pr
x∼N (0,σjId×d)

[〈
w

(0)
i ,x

〉
≤ −bi

2

]
(272)

≥1− exp

(
− bi

2

Θ(dσ2
wσ

2
j )

)
(273)

≥1−O

(
1

dτ

)
, (274)

where the third inequality follows the Chernoff bound and symmetricity of the Gaussian vector.

For the second statement, we prove similarly by 0 < CSure,2 ≤ 1
2 .

Then, Lemma E.10 gives gradients of neurons in SDj ,Sure. It shows that these gradients are highly
aligned with Dj .
Lemma E.10 (Mixture of Gaussians: Feature Emergence). Assume the same conditions as in
Lemma E.7, for all j ∈ [r], i ∈ SDj ,Sure, we have〈

E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
x
]
, y(j)Dj

〉
(275)

≥pjBµ1

√
d

(
1−O

(
1

dτ

))
−Bµ2O

(
1

dτ−
1
2

)
− σB+O

(
1

d0.9τ

)
. (276)
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For any unit vector D⊥
j which is orthogonal with Dj , we have

∣∣∣〈E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
x
]
, D⊥

j

〉∣∣∣ ≤Bµ2O

(
1

dτ−
1
2

)
+ σB+O

(
1

d0.9τ

)
. (277)

Proof of Lemma E.10. For all j ∈ [r], i ∈ SDj ,Sure, we have

E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
x
]

(278)

=
∑
l∈[r]

plEx∼Nl(x)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
x
]

(279)

=
∑
l∈[r]

ply(l)Ex∼N (0,σlId×d)

[
σ′
(〈

w
(0)
i ,x+ µl

〉
− bi

)
(x+ µl)

]
. (280)

Thus, by Lemma F.7 and Lemma E.9,

〈
E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
x
]
, y(j)Dj

〉
(281)

=pjEx∼N (0,σjId×d)

[
σ′
(〈

w
(0)
i ,x+ µj

〉
− bi

)
(x+ µj)

⊤Dj

]
(282)

+
∑

l∈[r],l ̸=j

ply(l)y(j)Ex∼N (0,σlId×d)

[
σ′
(〈

w
(0)
i ,x+ µl

〉
− bi

)
(x+ µl)

⊤Dj

]
(283)

≥pjµ
⊤
j Dj

(
1−O

(
1

dτ

))
−

∑
l∈[r],l ̸=j

pl|µ⊤
l Dj |O

(
1

dτ

)
(284)

− pj

∣∣∣Ex∼N (0,σjI)

[
σ′
(〈

w
(0)
i ,x+ µj

〉
− bi

)
x⊤Dj

]∣∣∣ (285)

−
∑

l∈[r],l ̸=j

pl

∣∣∣Ex∼N (0,σlI)

[
σ′
(〈

w
(0)
i ,x+ µl

〉
− bi

)
x⊤Dj

]∣∣∣ (286)

≥pjBµ1

√
d

(
1−O

(
1

dτ

))
−Bµ2O

(
1

dτ−
1
2

)
(287)

− pj

∣∣∣Ex∼N (0,σjI)

[(
1− σ′

(〈
w

(0)
i ,x+ µj

〉
− bi

)
− 1
)
x⊤Dj

]∣∣∣ (288)

−
∑

l∈[r],l ̸=j

pl

∣∣∣Ex∼N (0,σlI)

[
σ′
(〈

w
(0)
i ,x+ µl

〉
− bi

)
x⊤Dj

]∣∣∣ (289)

=pjBµ1

√
d

(
1−O

(
1

dτ

))
−Bµ2O

(
1

dτ−
1
2

)
(290)

− pj

∣∣∣Ex∼N (0,σjI)

[(
1− σ′

(〈
w

(0)
i ,x+ µj

〉
− bi

))
x⊤Dj

]∣∣∣ (291)

−
∑

l∈[r],l ̸=j

pl

∣∣∣Ex∼N (0,σlI)

[
σ′
(〈

w
(0)
i ,x+ µl

〉
− bi

)
x⊤Dj

]∣∣∣ (292)

≥pjBµ1

√
d

(
1−O

(
1

dτ

))
−Bµ2O

(
1

dτ−
1
2

)
− σB+O

(
1

d0.9τ

)
. (293)
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For any unit vector D⊥
j which is orthogonal with Dj , similarly, we have∣∣∣〈E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
x
]
, D⊥

j

〉∣∣∣ (294)

≤pj

∣∣∣Ex∼N (0,σjI)

[
σ′
(〈

w
(0)
i ,x+ µj

〉
− bi

)
x⊤D⊥

j

]∣∣∣ (295)

+
∑

l∈[r],l ̸=j

pl

∣∣∣Ex∼N (0,σlI)

[
σ′
(〈

w
(0)
i ,x+ µl

〉
− bi

)
(x+ µl)

⊤D⊥
j

]∣∣∣ (296)

≤Bµ2O

(
1

dτ−
1
2

)
+ pj

∣∣∣Ex∼N (0,σjI)

[
σ′
(〈

w
(0)
i ,x+ µj

〉
− bi

)
x⊤D⊥

j

]∣∣∣ (297)

+
∑

l∈[r],l ̸=j

pl

∣∣∣Ex∼N (0,σlI)

[
σ′
(〈

w
(0)
i ,x+ µl

〉
− bi

)
x⊤D⊥

j

]∣∣∣ (298)

≤Bµ2O

(
1

dτ−
1
2

)
+ σB+O

(
1

d0.9τ

)
. (299)

E.2.3 Mixture of Gaussians: Final Guarantee

Lemma E.11 (Mixture of Gaussians: Existence of Good Networks. Part statement of Lemma 4.3).
Assume the same conditions as in Lemma E.7. Define

f∗(x) =

r∑
j=1

y(j)√
τ log dσB+

[
σ
(
⟨Dj ,x⟩ − 2

√
τ log dσB+

)]
. (300)

For Dmixture setting, we have f∗ ∈ Fd,r,BF ,Sp,γ,BG
, where BF = (Ba1, Ba2, Bb) =(

1√
τ log dσB+

,
√
r√

τ log dσB+
, 2
√
τ log dσB+

)
, p = Θ

(
Bµ1

√
τ log dσB+·d(9C

2
b
τσB+

2/(2B2
µ1))

)
, γ =

1
d0.9τ−1.5 , BG = pBBµ1

√
d − O

( σB+

d0.9τ

)
and Bx1 = (Bµ2 + σB+)

√
d,Bx2 = (Bµ2 + σB+)

2d.
We also have OPTd,r,BF ,Sp,γ,BG

≤ 3
dτ + 4

d0.9τ−1
√
τ log d

.

Proof of Lemma E.11. We can check Bx1 = (Bµ2 + σB+)
√
d,Bx2 = (Bµ2 + σB+)

2d by direct
calculation. By Lemma E.7, we have f∗ ∈ Fd,r,BF ,Sp,γ,BG

.

For any j ∈ [r], by Bµ1 ≥ Ω

(
σB+

√
τ log d

d

)
≥ 4σB+

√
τ log d

d , we have

Pr
x∼Nj(µj ,σjId×d)

[
⟨Dj ,x⟩ − 2

√
τ log dσB+ ≥

√
τ log dσB+

]
(301)

= Pr
x∼Nj(0,σjId×d)

[
⟨Dj ,x⟩+ ∥µj∥2 − 2

√
τ log dσB+ ≥

√
τ log dσB+

]
(302)

≥ Pr
x∼Nj(0,σjId×d)

[
⟨Dj ,x⟩+

√
dBµ1 − 2

√
τ log dσB+ ≥

√
τ log dσB+

]
(303)

≥ Pr
x∼Nj(0,σjId×d)

[
⟨Dj ,x⟩ ≥ −

√
τ log dσB+

]
(304)

≥1− 1

dτ
, (305)

where the last inequality follows Chernoff bound.
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For any l ̸= j, l ∈ [r], by θ ≤ σB+

Bµ2

√
τ log d

d , we have

Pr
x∼Nj(µj ,σjId×d)

[
⟨Dl,x⟩ − 2

√
τ log dσB+ ≥ 0

]
(306)

≤ Pr
x∼Nj(0,σjId×d)

[
⟨Dl,x⟩+ θBµ2

√
d− 2

√
τ log dσB+ ≥ 0

]
(307)

≤ Pr
x∼Nj(0,σjId×d)

[
⟨Dl,x⟩ ≥

√
τ log dσB+

]
(308)

≤ 1

dτ
. (309)

Thus, we have

Pr
(x,y)∼Dmixture

[yf∗(x) > 1] (310)

≥
∑
j∈[r]

pj

(
Pr

x∼Nj(µj ,σjId×d)

[
⟨Dj ,x⟩ − 2

√
τ log dσB+ ≥

√
τ log dσB+

])
(311)

−
∑
j∈[r]

pj

 ∑
l ̸=j,l∈[r]

Pr
x∼Nj(µj ,σjId×d)

[
⟨Dl,x⟩ − 2

√
τ log dσB+ < 0

] (312)

≥1− 2

dτ
. (313)

We also have

E(x,y)∼Dmixture
[I[yf∗(x) ≤ 1]|yf∗(x)|] (314)

≤
∑
j∈[r]

pj

(
Pr

x∼Nj(µj ,σjId×d)

[
⟨Dj ,x⟩ − 2

√
τ log dσB+ <

√
τ log dσB+

] y2(j)√τ log dσB+
√
τ log dσB+

)

+
∑
j∈[r]

pj

 ∑
l ̸=j,l∈[r]

Ex∼Nj(µj ,σjId×d)

[
σ′
[
⟨Dl,x⟩ − 2

√
τ log dσB+ > 0

] ⟨Dl,x⟩ − 2
√
τ log dσB+√

τ log dσB+

]
≤ 1

dτ
+
∑
j∈[r]

pj

 ∑
l ̸=j,l∈[r]

Ex∼Nj(0,σjId×d)

[
σ′
[
⟨Dl,x⟩ >

√
τ log dσB+

] ⟨Dl,x⟩ −
√
τ log dσB+√

τ log dσB+

]
≤ 1

dτ
+

1√
τ log d

∑
j∈[r]

pj

 ∑
l ̸=j,l∈[r]

Ex∼Nj(0,Id×d)

[
σ′
[
⟨Dl,x⟩ >

√
τ log d

]
⟨Dl,x⟩

] (315)

≤ 1

dτ
+

4

d0.9τ−1
√
τ log d

, (316)

where the second last inequality follows Lemma F.7 and r ≤ 2d. Thus, we have

OPTd,r,BF ,Sp,γ,BG
≤E(x,y)∼Dmixture

[ℓ(yf∗(x))] (317)

=E(x,y)∼Dmixture
[I[yf∗(x) ≤ 1](1− yf∗(x))] (318)

≤E(x,y)∼Dmixture
[I[yf∗(x) ≤ 1]|yf∗(x)|] + E(x,y)∼Dmixture

[I[yf∗(x) ≤ 1]]

≤ 3

dτ
+

4

d0.9τ−1
√
τ log d

. (319)

Theorem 4.4 (Mixtures of Gaussians: Main Result). Assume Assumption 4.1. For any ϵ, δ ∈ (0, 1),
when Algorithm 1 uses hinge loss with

m = poly
(
1

δ
,
1

ϵ
, dΘ(τσB+

2/B2
µ1), r,

1

pB

)
≤ ed, T = poly (m) , n = poly (m)
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and proper hyper-parameters, then with probability at least 1− δ, there exists t ∈ [T ] such that

Pr[sign(fΞ(t)(x)) ̸= y] ≤
√
2r

d0.4τ−0.8
+ ϵ.

Proof of Theorem 4.4. Let b̃ = Cb

√
τd log dσwσB+, where Cb is a large enough universal constant.

By Lemma E.11, we have f∗ ∈ Fd,r,BF ,Sp,γ,BG
, where BF = (Ba1, Ba2, Bb) =(

1√
τ log dσB+

,
√
r√

τ log dσB+
, 2
√
τ log dσB+

)
, p = Θ

(
Bµ1

√
τ log dσB+·d(9C

2
b
τσB+

2/(2B2
µ1))

)
, γ =

1
d0.9τ−1.5 , BG = pBBµ1

√
d − O

( σB+

d0.9τ

)
and Bx1 = (Bµ2 + σB+)

√
d,Bx2 = (Bµ2 + σB+)

2d.
We also have OPTd,r,BF ,Sp,γ,BG

≤ 3
dτ + 4

d0.9τ−1
√
τ log d

.

Adjust σw such that b̃ = Cb

√
τd log dσwσB+ = Θ

(
B

1
4
GBa2B

3
4
b√

rBa1

)
. Injecting above parameters

into Theorem 3.12, we have with probability at least 1 − δ over the initialization, with proper
hyper-parameters, there exists t ∈ [T ] such that

Pr[sign(fΞ(t)(x)) ̸= y] (320)

≤ 3

dτ
+

4

d0.9τ−1
√
τ log d

+

√
2rBµ2

d(0.9τ−1.5)/2
√
τ log dσB+

+O

(
rBa1Bx1Bx2

1
4 (log n)

1
4

√
BGn

1
4

)
+ ϵ/2

≤
√
2r

d0.4τ−0.8
+ ϵ. (321)

E.3 Mixture of Gaussians - XOR

We consider a special Mixture of Gaussians distribution studied in [99]. Consider the same data
distribution in Appendix E.2.1 and Definition E.6 with the following assumptions.

Assumption E.12 (Mixture of Gaussians in [99]). Assume four Gaussians cluster with XOR-like
pattern, for any τ > 0,

• r = 4 and p1 = p2 = p3 = p4 = 1
4 .

• µ1 = −µ2, µ3 = −µ4 and ∥µ1∥2 = ∥µ2∥2 = ∥µ3∥2 = ∥µ4∥2 =
√
d and ⟨µ1, µ3⟩ = 0.

• For all j ∈ [4], Σj = σBId×d and 1 ≤ σB ≤
√

d
τ log log d .

• y(1) = y(2) = 1 and y(3) = y(4) = −1.

We denote this data distribution as Dmixture−xor setting.

E.3.1 Mixture of Gaussians - XOR: Feature Learning

Lemma E.13 (Mixture of Gaussians in [99]: Gradient Feature Set). Let CSure,1 = 6
5 , CSure,2 =

√
2√

τ log log d
, b̃ =

√
τd log log dσwσB and d is large enough. For Dmixture−xor setting, we have

(Dj ,+1) ∈ Sp,γ,BG
for all j ∈ [4], where

p = Θ

 1
√
τ log log dσB · (log d)

18τσ2
B

25

 , γ =
σB√
d
, (322)

BG =

√
d

4

(
1−O

(
1

(log d)
τ
50

))
− σBO

(
1

(log d)0.018τ

)
. (323)

48



Proof of Lemma E.13. For all j ∈ [r], by Lemma E.16, for all i ∈ SDj ,Sure,

1−

∣∣∣〈G(w
(0)
i ,bi), Dj

〉∣∣∣
∥G(w

(0)
i ,bi)∥2

(324)

≤1−

∣∣∣〈G(w
(0)
i ,bi), Dj

〉∣∣∣√∣∣∣〈G(w
(0)
i ,bi), Dj

〉∣∣∣2 +maxD⊤
j D⊥

j =0,∥D⊥
j ∥2=1

∣∣∣〈G(w
(0)
i ,bi), D⊥

j

〉∣∣∣2 (325)

≤1−

∣∣∣〈G(w
(0)
i ,bi), Dj

〉∣∣∣∣∣∣〈G(w
(0)
i ,bi), Dj

〉∣∣∣+maxD⊤
j D⊥

j =0,∥D⊥
j ∥2=1

∣∣∣〈G(w
(0)
i ,bi), D⊥

j

〉∣∣∣ (326)

≤1− 1

1 +
σBO

(
1

(log d)0.018τ

)
1
4

√
d

(
1−O

(
1

(log d)
τ
50

))
−σBO

(
1

(log d)0.018τ

)
(327)

≤
σBO

(
1

(log d)0.018τ

)
1
4

√
d
(
1−O

(
1

(log d)
τ
50

))
− σBO

(
1

(log d)0.018τ

) (328)

<
σB√
d
= γ. (329)

Thus, we have G(w
(0)
i ,bi) ∈ CDj ,γ and

∣∣∣〈G(w
(0)
i ,bi), Dj

〉∣∣∣ ≤ ∥G(w
(0)
i ,bi)∥2 ≤ Bx1, bi

|bi| =

+1. Thus, by Lemma E.14, we have

Pr
w,b

[
G(w, b) ∈ CDj ,γ and ∥G(w, b)∥2 ≥ BG and

b

|b|
= +1

]
(330)

≥Pr
[
i ∈ SDj ,Sure

]
(331)

≥p. (332)

Thus, (Dj ,+1) ∈ Sp,γ,BG
. We finish the proof.

Lemma E.14 (Mixture of Gaussians in [99]: Geometry at Initialization). Assume the same conditions
as in Lemma E.13. Recall for all i ∈ [m], w(0)

i ∼ N (0, σ2
wId×d), over the random initialization, we

have for all i ∈ [m], j ∈ [4],

Pr
[
i ∈ SDj ,Sure

]
≥Θ

 1
√
τ log log dσB · (log d)

18τσ2
B

25

 . (333)

Proof of Lemma E.14. WLOG, let j = 1. By Assumption E.12, for the first condition in Defini-
tion E.6, we have,

Pr
[〈

w
(0)
i , µ1

〉
≥ CSure,1bi

]
≥Θ

 1
√
τ log log dσB · (log d)

18τσ2
B

25

 , (334)

where the the last inequality follows Lemma F.6.

For the second condition in Definition E.6, by Lemma F.6, we have,

Pr
[∣∣∣〈w(0)

i , µ2

〉∣∣∣ ≤ CSure,2bi

]
≥1− 1

2
√
π

1

σB · eσ2
B

, (335)

On the other hand, if X is a χ2(k) random variable. Then we have

Pr(X ≥ k + 2
√
kx+ 2x) ≤ e−x. (336)
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Therefore, we have

Pr

(
1

σ2
w

∥∥∥w(0)
i

∥∥∥2
2
≥ d+ 2

√(
18τσ2

B

25
+ 2

)
dlog log d+ 2

(
18τσ2

B

25
+ 2

)
log log d

)
(337)

≤O

 1

(log d)2 · (log d)
18τσ2

B
25

 . (338)

Thus, by union bound, we have

Pr
[
i ∈ SDj ,Sure

]
≥Θ

 1
√
τ log log dσB · (log d)

18τσ2
B

25

 . (339)

Lemma E.15 (Mixture of Gaussians in [99]: Activation Pattern). Assume the same conditions as in
Lemma E.13, for all j ∈ [4], i ∈ SDj ,Sure, we have

(1) When x ∼ Nj(µj , σBId×d), the activation probability satisfies,

Pr
x∼Nj(µj ,σBId×d)

[〈
w

(0)
i ,x

〉
− bi ≥ 0

]
≥ 1− 1

(log d)
τ
50
. (340)

(2) For all j′ ̸= j, j′ ∈ [4], when x ∼ Nj′(µj′ , σBId×d), the activation probability satisfies,

Pr
x∼Nj′ (µj′ ,σBId×d)

[〈
w

(0)
i ,x

〉
− bi ≥ 0

]
≤ O

(
1

(log d)
τ
2

)
. (341)

Proof of Lemma E.15. In the proof, we need b̃ =
√
τd log log dσwσB . For the first statement, when

x ∼ Nj(µj , σBId×d), by CSure,1 ≥ 6
5 , we have

Pr
x∼Nj(µj ,σBId×d)

[〈
w

(0)
i ,x

〉
− bi ≥ 0

]
≥ Pr

x∼N (0,σBId×d)

[〈
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(0)
i ,x

〉
≥ (1− CSure,1)bi

]
(342)

≥ Pr
x∼N (0,σBId×d)

[〈
w

(0)
i ,x

〉
≥ −bi

5

]
(343)

=1− Pr
x∼N (0,σBId×d)

[〈
w

(0)
i ,x

〉
≤ −bi

5

]
(344)

≥1− exp

(
− bi

2

50dσ2
wσ

2
B

)
(345)

≥1− 1

(log d)
τ
50
, (346)

where the third inequality follows the Chernoff bound and symmetricity of the Gaussian vector.

For the second statement, we prove similarly by 0 < CSure,2 ≤
√
2√

τ log log d
.

Then, Lemma E.16 gives gradients of neurons in SDj ,Sure. It shows that these gradients are highly
aligned with Dj .
Lemma E.16 (Mixture of Gaussians in [99]: Feature Emergence). Assume the same conditions as in
Lemma E.13, for all j ∈ [4], i ∈ SDj ,Sure, we have〈

E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
x
]
, y(j)Dj

〉
(347)

≥1

4

√
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(
1−O

(
1

(log d)
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− σBO

(
1

(log d)0.018τ

)
. (348)

For any unit vector D⊥
j which is orthogonal with Dj , we have∣∣∣〈E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
x
]
, D⊥

j

〉∣∣∣ ≤σBO

(
1

(log d)0.018τ

)
. (349)
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Proof of Lemma E.16. For all j ∈ [4], i ∈ SDj ,Sure, we have

E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
x
]

(350)

=
∑
l∈[4]

1

4
Ex∼Nl(x)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
x
]

(351)

=
∑
l∈[4]

1

4
y(l)Ex∼N (0,σlId×d)

[
σ′
(〈

w
(0)
i ,x+ µl

〉
− bi

)
(x+ µl)

]
. (352)

Thus, by Lemma F.7 and Lemma E.15,〈
E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
x
]
, y(j)Dj

〉
(353)

=
1

4
Ex∼N (0,σBId×d)

[
σ′
(〈

w
(0)
i ,x+ µj

〉
− bi

)
(x+ µj)

⊤Dj

]
(354)

+
∑

l∈[4],l ̸=j

1

4
y(l)y(j)Ex∼N (0,σlId×d)

[
σ′
(〈

w
(0)
i ,x+ µl

〉
− bi

)
(x+ µl)

⊤Dj

]
(355)

≥1

4
µ⊤
j Dj

(
1−O

(
1

(log d)
τ
50

))
−

∑
l∈[4],l ̸=j

1

4
|µ⊤

l Dj |O
(

1

d
τ
2

)
(356)

− 1

4

∣∣∣Ex∼N (0,σBI)

[
σ′
(〈

w
(0)
i ,x+ µj

〉
− bi

)
x⊤Dj

]∣∣∣ (357)

−
∑

l∈[4],l ̸=j

1

4

∣∣∣Ex∼N (0,σlI)

[
σ′
(〈

w
(0)
i ,x+ µl

〉
− bi

)
x⊤Dj

]∣∣∣ (358)

≥1

4

√
d

(
1−O

(
1

(log d)
τ
50

))
− 1

4

∣∣∣Ex∼N (0,σBI)

[(
1− σ′

(〈
w

(0)
i ,x+ µj

〉
− bi

)
− 1
)
x⊤Dj

]∣∣∣
−

∑
l∈[4],l ̸=j

1

4

∣∣∣Ex∼N (0,σlI)

[
σ′
(〈

w
(0)
i ,x+ µl

〉
− bi

)
x⊤Dj

]∣∣∣ (359)

=
1

4

√
d

(
1−O

(
1

(log d)
τ
50

))
− 1

4

∣∣∣Ex∼N (0,σBI)

[(
1− σ′

(〈
w

(0)
i ,x+ µj

〉
− bi

))
x⊤Dj

]∣∣∣
−

∑
l∈[4],l ̸=j

1

4

∣∣∣Ex∼N (0,σlI)

[
σ′
(〈

w
(0)
i ,x+ µl

〉
− bi

)
x⊤Dj

]∣∣∣ (360)

≥1

4

√
d

(
1−O

(
1

(log d)
τ
50

))
− σBO

(
1

(log d)0.018τ

)
. (361)

For any unit vector D⊥
j which is orthogonal with Dj , similarly, we have∣∣∣〈E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
x
]
, D⊥

j

〉∣∣∣ (362)

≤1

4

∣∣∣Ex∼N (0,σBI)

[
σ′
(〈

w
(0)
i ,x+ µj

〉
− bi

)
x⊤D⊥

j

]∣∣∣ (363)

+
∑

l∈[4],l ̸=j

1

4

∣∣∣Ex∼N (0,σlI)

[
σ′
(〈

w
(0)
i ,x+ µl

〉
− bi

)
(x+ µl)

⊤D⊥
j

]∣∣∣ (364)

≤1

4

∣∣∣Ex∼N (0,σBI)

[
σ′
(〈

w
(0)
i ,x+ µj

〉
− bi

)
x⊤D⊥

j

]∣∣∣ (365)

+
∑

l∈[4],l ̸=j

1

4

∣∣∣Ex∼N (0,σlI)

[
σ′
(〈

w
(0)
i ,x+ µl

〉
− bi

)
x⊤D⊥

j

]∣∣∣ (366)

≤σBO

(
1

(log d)0.018τ

)
. (367)
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E.3.2 Mixture of Gaussians - XOR: Final Guarantee

Lemma E.17 (Mixture of Gaussians in [99]: Existence of Good Networks). Assume the same
conditions as in Lemma E.13 and let τ = 1 and when 0 < τ̃ ≤ O

(
d

σ2
B log d

)
. Define

f∗(x) =

4∑
j=1

y(j)√
τ̃ log dσB

[
σ
(
⟨Dj ,x⟩ − 2

√
τ̃ log dσB

)]
. (368)

For Dmixture−xor setting, we have f∗ ∈ Fd,r,BF ,Sp,γ,BG
, where BF = (Ba1, Ba2, Bb) =(

1√
τ̃ log dσB

, 2√
τ̃ log dσB

, 2
√
τ̃ log dσB

)
, p = Ω

(
1

σB ·(log d)σ
2
B

)
, γ = σB√

d
, r = 4, BG = 1

5

√
d and

Bx1 = (1 + σB)
√
d,Bx2 = (1 + σB)

2d. We also have OPTd,r,BF ,Sp,γ,BG
≤ 3

dτ̃ + 4
d0.9τ̃−1

√
τ̃ log d

.

Proof of Lemma E.17. We finish the proof by following the proof of Lemma E.11

Theorem E.18 (Mixture of Gaussians in [99]: Main Result). For Dmixture−xor setting with Assump-
tion E.12, when d is large enough, for any δ ∈ (0, 1) and for any ϵ ∈ (0, 1) when

m =Ω

(
σB(log d)

σ2
B

((
log

(
1

δ

))2

+
1 + σB

ϵ4

)
+

1√
δ

)
≤ ed, (369)

T =poly(σB , 1/ϵ, 1/δ, log d), (370)

n =Ω̃

(
m3(1 + σ2

B)

ϵ2 max
{
σB · (log d)σ2

B , 1
} + σB · (log d)σ

2
B +

Tm

δ

)
, (371)

trained by Algorithm 1 with hinge loss, with probability at least 1 − δ over the initialization and
training samples, with proper hyper-parameters, there exists t ∈ [T ] such that

Pr[sign(fΞ(t)(x)) ̸= y] ≤O

((
1 + σ

3
2

B

)( 1

d
1
4

+
(log n)

1
4

n
1
4

))
+ ϵ. (372)

Proof of Theorem E.18. Let b̃ =
√
d log log dσwσB . By Lemma E.17, let τ = 1 and

when τ̃ = O
(

d
σ2
B log d

)
, we have f∗ ∈ Fd,r,BF ,Sp,γ,BG

, where BF = (Ba1, Ba2, Bb) =(
1√

τ̃ log dσB
, 2√

τ̃ log dσB
, 2
√
τ̃ log dσB

)
, p = Ω

(
1

σB ·(log d)σ
2
B

)
, γ = σB√

d
, r = 4, BG = 1

5

√
d and

Bx1 = (1 + σB)
√
d,Bx2 = (1 + σB)

2d. We also have OPTd,r,BF ,Sp,γ,BG
≤ 3

dτ̃ + 4
d0.9τ̃−1

√
τ̃ log d

.

Adjust σw such that b̃ =
√
d log log dσwσB = Θ

(
B

1
4
GBa2B

3
4
b√

rBa1

)
. Injecting above parameters into

Theorem 3.12, we have with probability at least 1 − δ over the initialization, with proper hyper-
parameters, there exists t ∈ [T ] such that

Pr[sign(fΞ(t)(x)) ̸= y] ≤O

((
1 + σ

3
2

B

)( 1

d
1
4

+
(log n)

1
4

n
1
4

))
+ ϵ. (373)

E.4 Parity Functions

We recap the problem setup in Section 4.2 for readers’ convenience.

E.4.1 Problem Setup

Data Distributions. Suppose M ∈ Rd×D is an unknown dictionary with D columns that can be
regarded as patterns. For simplicity, assume d = D and M is orthonormal. Let ϕ ∈ Rd be a hidden
representation vector. Let A ⊆ [D] be a subset of size rk corresponding to the class relevant patterns
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and r is an odd number. Then the input is generated by Mϕ, and some function on ϕA generates
the label. WLOG, let A = {1, . . . , rk}, A⊥ = {rk + 1, . . . , d}. Also, we split A such that for all
j ∈ [r], Aj = {(j − 1)k + 1, . . . , jk}. Then the input x and the class label y are given by:

x = Mϕ, y = g∗(ϕA) = sign

 r∑
j=1

XOR(ϕAj
)

 , (374)

where g∗ is the ground-truth labeling function mapping from Rrk to Y = {±1}, ϕA is the sub-vector
of ϕ with indices in A, and XOR(ϕAj

) =
∏

l∈Aj
ϕl is the parity function.

We still need to specify the distribution of ϕ, which determines the structure of the input distribution:

X := (1− 2rpA)XU +
∑
j∈[r]

pA(Xj,+ + Xj,−). (375)

For all corresponding ϕA⊥ in X , we have ∀l ∈ A⊥, independently:

ϕl =


+1, w.p. po
−1, w.p. po
0, w.p. 1− 2po

where po controls the signal noise ratio: if po is large, then there are many nonzero entries in A⊥

which are noise interfering with the learning of the ground-truth labeling function on A.

For corresponding ϕA, any j ∈ [r], we have

• In Xj,+, ϕAj
= [+1,+1, . . . ,+1]⊤ and ϕA\Aj

only have zero elements.
• In Xj,−, ϕAj

= [−1,−1, . . . ,−1]⊤ and ϕA\Aj
only have zero elements.

• In XU , we have ϕA draw from {+1,−1}rk uniformly.

We call this data distribution Dparity.
Assumption E.19 (Parity Functions. Recap of Assumption 4.5). Let 8 ≤ τ ≤ d be a parameter that
will control our final error guarantee. Assume k is an odd number and:

k ≥ Ω(τ log d), d ≥ rk +Ω(τr log d), po = O

(
rk

d− rk

)
, pA ≥ 1

d
. (376)

Remark E.20. The assumptions require k, d, and pA to be sufficiently large so as to provide enough
large signals for learning. When po = Θ( rk

d−rk ) means that the signal noise ratio is constant: the
expected norm of ϕA and that of ϕA⊥ are comparable.

To apply our framework, again we only need to compute the parameters in the Gradient Feature set
and the corresponding optimal approximation loss. To this end, we first define the gradient features:
For all j ∈ [r], let

Dj =

∑
l∈Aj

Ml

∥
∑

l∈Aj
Ml∥2

. (377)

Remark E.21. Our data distribution is symmetric, which means for any ϕ ∈ Rd:

• −y = g∗(−ϕA) and −x = M(−ϕ),
• P(ϕ) = P(−ϕ),
• E(x,y)[yx] = 0.

Below, we define a sufficient condition that randomly initialized weights will fall in nice gradients set
after the first gradient step update.

Definition E.22 (Parity Functions: Subset of Nice Gradients Set). Recall w(0)
i is the weight for the

i-th neuron at initialization. For all j ∈ [r], let SDj ,Sure ⊆ [m] be those neurons that satisfy

•
〈
w

(0)
i , Dj

〉
≥ CSure,1√

k
bi,
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•
∣∣∣〈w(0)

i , Dj′

〉∣∣∣ ≤ CSure,2√
k

bi, for all j′ ̸= j, j′ ∈ [r],

•
∥∥∥PAw

(0)
i

∥∥∥
2
≤ Θ(

√
rkσw),

•
∥∥∥PA⊥w

(0)
i

∥∥∥
2
≤ Θ(

√
d− rkσw),

where PA, PA⊥ are the projection operator on the space MA and MA⊥ .

E.4.2 Parity Functions: Feature Learning

We show the important Lemma E.23 first and defer other Lemmas after it.
Lemma E.23 (Parity Functions: Gradient Feature Set. Part statement of Lemma 4.7). Let CSure,1 =
3
2 , CSure,2 = 1

2 , b̃ = Cb

√
τrk log dσw, where Cb is a large enough universal constant. For Dparity

setting, we have (Dj ,+1), (Dj ,−1) ∈ Sp,γ,BG
for all j ∈ [r], where

p = Θ

(
1

√
τr log d · d(9C2

b τr/8)

)
, γ =

1

dτ−2
, BG =

√
kpA −O

(√
k

dτ

)
. (378)

Proof of Lemma E.23. Note that for all l ∈ [d], we have M⊤
l x = ϕl. For all j ∈ [r], by Lemma E.26,

for all i ∈ SDj ,Sure, when γ = 1
dτ−2 ,∣∣∣〈G(w

(0)
i ,bi), Dj

〉∣∣∣− (1− γ)∥G(w
(0)
i ,bi)∥2 (379)

=

∣∣∣∣∣
〈
G(w

(0)
i ,bi),

∑
l∈Aj

Ml
√
k

〉∣∣∣∣∣− (1− γ)∥G(w
(0)
i ,bi)∥2 (380)

≥
√
kpA −O

(√
k

dτ

)
−
(
1− 1

dτ−2

)√√√√kp2A +
∑
l∈[d]

O

(
1

dτ

)2

(381)

≥
√
kpA −O

(√
k

dτ

)
−
(
1− 1

dτ−2

)(√
kpA +O

(
1

dτ−
1
2

))
(382)

≥
√
kpA

dτ−2
−O

(√
k

dτ

)
−O

(
1

dτ−
1
2

)
(383)

>0. (384)

Thus, we have G(w
(0)
i ,bi) ∈ CDj ,γ and

√
kpA−O

(√
k

dτ

)
≤ ∥G(w

(0)
i ,bi)∥2 ≤

√
kpA+O

(
1

dτ− 1
2

)
,

bi

|bi| = +1. Thus, by Lemma E.24, we have

Pr
w,b

[
G(w, b) ∈ CDj ,γ and ∥G(w, b)∥2 ≥ BG and

b

|b|
= +1

]
(385)

≥Pr
[
i ∈ SDj ,Sure

]
(386)

≥p. (387)

Thus, (Dj ,+1) ∈ Sp,γ,BG
. Since E(x,y)[yx] = 0, by Lemma F.2 and considering i ∈ [2m] \ [m],

we have (Dj ,−1) ∈ Sp,γ,BG
. We finish the proof.

Below are Lemmas used in the proof of Lemma E.23. In Lemma E.24, we calculate p used in
Sp,γ,BG

.
Lemma E.24 (Parity Functions: Geometry at Initialization. Lemma B.2 in [7]). Assume the same
conditions as in Lemma E.23, recall for all i ∈ [m], w(0)

i ∼ N (0, σ2
wId×d), over the random

initialization, we have for all i ∈ [m], j ∈ [r],

Pr
[
i ∈ SDj ,Sure

]
≥ Θ

(
1

√
τr log d · d(9C2

b τr/8)

)
. (388)
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Proof of Lemma E.24. For every i ∈ [m], j, j′ ∈ [r], j ̸= j′, by Lemma F.6,

p1 = Pr

[〈
w

(0)
i , Dj

〉
≥ CSure,1√

k
bi

]
= Θ

(
1

√
τr log d · d(9C2

b τr/8)

)
(389)

p2 = Pr

[∣∣∣〈w(0)
i , Dj′

〉∣∣∣ ≥ CSure,2√
k

bi

]
= Θ

(
1

√
τr log d · d(C2

b τr/8)

)
. (390)

On the other hand, if X is a χ2(k) random variable, by Lemma F.5, we have

Pr(X ≥ k + 2
√
kx+ 2x) ≤ e−x. (391)

Therefore, by assumption rk ≥ Ω(τr log d), d− rk ≥ Ω(τr log d) , we have

Pr

(
1

σ2
w

∥∥∥PAw
(0)
i

∥∥∥2
2
≥ rk + 2

√
(9C2

b τr/8 + 2)rklog d+ 2
(
9C2

b τr/8 + 2
)
log d

)
(392)

≤O

(
1

d2 · d(9C2
b τr/8)

)
, (393)

Pr

(
1

σ2
w

∥∥∥PAw
(0)
i

∥∥∥2
2
≥ (d− rk) + 2

√
(9C2

b τr/8 + 2)(d− rk)log d+ 2
(
9C2

b τr/8 + 2
)
log d

)
≤O

(
1

d2 · d(9C2
b τr/8)

)
. (394)

Thus, by union bound, and D1, . . . , Dr being orthogonal with each other, we have

Pr
[
i ∈ SDj ,Sure

]
≥p1(1− p2)

r−1 −O

(
1

d2 · d(9C2
b τr/8)

)
(395)

=Θ

(
1

√
τr log d · d(9C2

b τr/8)
·

(
1− r

√
τr log d · d(C2

b τr/8)

))
(396)

−O

(
1

d2 · d(9C2
b τr/8)

)
(397)

=Θ

(
1

√
τr log d · d(9C2

b τr/8)

)
. (398)

In Lemma E.25, we compute the activation pattern for the neurons in SDj ,Sure.
Lemma E.25 (Parity Functions: Activation Pattern). Assume the same conditions as in Lemma E.23,
for all j ∈ [r], i ∈ SDj ,Sure, we have

(1) When x ∼ X , we have

Pr
x∼X

∣∣∣∣∣∣
∑
l∈A⊥

〈
w

(0)
i ,Mlϕl

〉∣∣∣∣∣∣ ≥ t

 ≤ exp

(
− t2

Θ(rkσ2
w)

)
. (399)

(2) When x ∼ XU , we have

Pr
x∼XU

[∣∣∣∣∣∑
l∈A

〈
w

(0)
i ,Mlϕl

〉∣∣∣∣∣ ≥ t

]
≤ exp

(
− t2

Θ(rkσ2
w)

)
. (400)

(3) When x ∼ XU , the activation probability satisfies,

Pr
x∼XU

∑
l∈[d]

〈
w

(0)
i ,Mlϕl

〉
− bi ≥ 0

 ≤ O

(
1

dτ

)
. (401)
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(4) When x ∼ Xj,+, the activation probability satisfies,

Pr
x∼Xj,+

∑
l∈[d]

〈
w

(0)
i ,Mlϕl

〉
− bi ≥ 0

 ≥ 1−O

(
1

dτ

)
. (402)

(5) For all j′ ̸= j, j′ ∈ [r], s ∈ {+,−}, when x ∼ Xj′,s, or x ∼ Xj,−, the activation probability
satisfies,

Pr

∑
l∈[d]

〈
w

(0)
i ,Mlϕl

〉
− bi ≥ 0

 ≤ O

(
1

dτ

)
. (403)

Proof of Lemma E.25. For the first statement, when x ∼ X , note that
〈
w

(0)
i ,Ml

〉
ϕl is a mean-zero

sub-Gaussian random variable with sub-Gaussion norm Θ
(∣∣∣〈w(0)

i ,Ml

〉∣∣∣√po

)
.

Pr
x∼X

∣∣∣∣∣∣
∑
l∈A⊥

〈
w

(0)
i ,Mlϕl

〉∣∣∣∣∣∣ ≥ t

 = Pr
x∼X

∣∣∣∣∣∣
∑
l∈A⊥

〈
w

(0)
i ,Ml

〉
ϕl

∣∣∣∣∣∣ ≥ t

 (404)

≤ exp

− t2∑
l∈A⊥ Θ

(〈
w

(0)
i ,Ml

〉2
po

)
 (405)

≤ exp

(
− t2

Θ((d− rk)σ2
wpo)

)
(406)

≤ exp

(
− t2

Θ(rkσ2
w)

)
, (407)

where the inequality follows general Hoeffding’s inequality.

For the second statement, when x ∼ XU , by Hoeffding’s inequality,

Pr
x∼XU

[∣∣∣∣∣∑
l∈A

〈
w

(0)
i ,Mlϕl

〉∣∣∣∣∣ ≥ t

]
= Pr

x∼XU

[∣∣∣∣∣∑
l∈A

〈
w

(0)
i ,Ml

〉
ϕl

∣∣∣∣∣ ≥ t

]
(408)

≤2 exp

− t2

2
∑

l∈A

〈
w

(0)
i ,Ml

〉2
 (409)

≤ exp

(
− t2

Θ(rkσ2
w)

)
. (410)

In the proof of the third to the last statement, we need b̃ = Cb

√
τrk log dσw, where Cb is a large

enough universal constant.

For the third statement, when x ∼ XU , by union bound and previous statements,

Pr
x∼XU

∑
l∈[d]

〈
w

(0)
i ,Mlϕl

〉
− bi ≥ 0

 (411)

≤ Pr
x∼XU

[∑
l∈A

〈
w

(0)
i ,Mlϕl

〉
≥ bi

2

]
+ Pr

x∼XU

∑
l∈A⊥

〈
w

(0)
i ,Mlϕl

〉
≥ bi

2

 (412)

≤O

(
1

dτ

)
. (413)
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For the forth statement, when x ∼ Xj,+, by CSure,1 ≥ 3
2 and previous statements,

Pr
x∼Xj,+

∑
l∈[d]

〈
w

(0)
i ,Mlϕl

〉
− bi ≥ 0

 (414)

= Pr
x∼Xj,+

∑
l∈Aj

〈
w

(0)
i ,Mlϕl

〉
+

∑
l∈A\Aj

〈
w

(0)
i ,Mlϕl

〉
+
∑
l∈A⊥

〈
w

(0)
i ,Mlϕl

〉
≥ bi

 (415)

≥ Pr
x∼Xj,+

∑
l∈A⊥

〈
w

(0)
i ,Mlϕl

〉
≥ (1− CSure,1)bi

 (416)

≥ Pr
x∼Xj,+

∑
l∈A⊥

〈
w

(0)
i ,Mlϕl

〉
≥ −bi

2

 (417)

≥1−O

(
1

dτ

)
. (418)

For the last statement, we prove similarly by 0 < CSure,2 ≤ 1
2 .

Then, Lemma E.26 gives gradients of neurons in SDj ,Sure. It shows that these gradients are highly
aligned with Dj .
Lemma E.26 (Parity Functions: Feature Emergence). Assume the same conditions as in Lemma E.23,
for all j ∈ [r], i ∈ SDj ,Sure, we have the following holds:

(1) For all l ∈ Aj , we have

pA −O

(
1

dτ

)
≤ E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
ϕl

]
≤ pA +O

(
1

dτ

)
. (419)

(2) For all l ∈ Aj′ , any j′ ̸= j, j′ ∈ [r], we have∣∣∣E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
ϕl

]∣∣∣ ≤ O

(
1

dτ

)
. (420)

(3) For all l ∈ A⊥, we have∣∣∣E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
ϕl

]∣∣∣ ≤ O

(
1

dτ

)
. (421)

Proof of Lemma E.26. For all l ∈ [d], we have

E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
ϕl

]
(422)

=pA
∑
l∈[r]

(
Ex∼Xl,+

[
σ′
(〈

w
(0)
i ,x

〉
− bi

)
ϕl

]
− Ex∼Xl,−

[
σ′
(〈

w
(0)
i ,x

〉
− bi

)
ϕl

])
(423)

+ (1− 2rpA)Ex∼XU

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
ϕl

]
. (424)

For the first statement, for all l ∈ Aj , by Lemma E.25 (3) and (4), we have

E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
ϕl

]
(425)

=pA

(
Ex∼Xj,+

[
σ′
(〈

w
(0)
i ,x

〉
− bi

)]
+ Ex∼Xj,−

[
σ′
(〈

w
(0)
i ,x

〉
− bi

)])
(426)

+ (1− 2rpA)Ex∼XU

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
ϕl

]
(427)

≥pA

(
1−O

(
1

dτ

))
−O

(
1

dτ

)
(428)

≥pA −O

(
1

dτ

)
, (429)
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and we also have

E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
ϕl

]
(430)

=pA

(
Ex∼Xj,+

[
σ′
(〈

w
(0)
i ,x

〉
− bi

)]
+ Ex∼Xj,−

[
σ′
(〈

w
(0)
i ,x

〉
− bi

)])
(431)

+ (1− 2rpA)Ex∼XU

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
ϕl

]
(432)

≤pA +O

(
1

dτ

)
. (433)

Similarly, for the second statement, for all l ∈ Aj′ , any j′ ̸= j, j′ ∈ [r], by Lemma E.25 (3) and (5),
we have∣∣∣E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
ϕl

]∣∣∣ (434)

≤
∣∣∣pA (Ex∼Xj′,+

[
σ′
(〈

w
(0)
i ,x

〉
− bi

)]
+ Ex∼Xj′,−

[
σ′
(〈

w
(0)
i ,x

〉
− bi

)])∣∣∣+O

(
1

dτ

)
≤O

(
1

dτ

)
. (435)

For the third statement, for all l ∈ A⊥, by Lemma E.25 (3), (4), (5), we have∣∣∣E(x,y)

[
yσ′
(〈

w
(0)
i ,x

〉
− bi

)
ϕl

]∣∣∣ (436)

≤pA
∑
l∈[r]

∣∣∣Ex∼Xl,+

[
σ′
(〈

w
(0)
i ,x

〉
− bi

)
ϕl

]
− Ex∼Xl,−

[
σ′
(〈

w
(0)
i ,x

〉
− bi

)
ϕl

]∣∣∣+O

(
1

dτ

)

≤pA

∣∣∣Ex∼Xj,+

[
σ′
(〈

w
(0)
i ,x

〉
− bi

)
ϕl

]
− Ex∼Xj,−

[
σ′
(〈

w
(0)
i ,x

〉
− bi

)
ϕl

]∣∣∣+O

(
1

dτ

)
≤pA

∣∣∣Ex∼Xj,+

[(
1− σ′

(〈
w

(0)
i ,x

〉
− bi

))
ϕl

]
− Ex∼Xj,−

[(
1− σ′

(〈
w

(0)
i ,x

〉
− bi

))
ϕl

]∣∣∣
+ pA

∣∣Ex∼Xj,+
[ϕl]− Ex∼Xj,− [ϕl]

∣∣+O

(
1

dτ

)
(437)

=pA

∣∣∣Ex∼Xj,+

[(
1− σ′

(〈
w

(0)
i ,x

〉
− bi

))
ϕl

]
− Ex∼Xj,−

[(
1− σ′

(〈
w

(0)
i ,x

〉
− bi

))
ϕl

]∣∣∣
+O

(
1

dτ

)
(438)

≤O

(
1

dτ

)
, (439)

where the second inequality follows 2rpA ≤ 1 and the third inequality follows the triangle inequality.

E.4.3 Parity Functions: Final Guarantee

Lemma E.27 (Parity Functions: Existence of Good Networks. Part statement of Lemma 4.7). Assume
the same conditions as in Lemma E.23. Define

f∗(x) =

r∑
j=1

k∑
i=0

(−1)i+1
√
k (440)

·
[
σ

(
⟨Dj ,x⟩ −

2i− k − 1√
k

)
− 2σ

(
⟨Dj ,x⟩ −

2i− k√
k

)
+ σ

(
⟨Dj ,x⟩ −

2i− k + 1√
k

)]
.

For Dparity setting, we have f∗ ∈ Fd,3r(k+1),BF ,Sp,γ,BG
, where BF = (Ba1, Ba2, Bb) =(

2
√
k, 2
√
rk(k + 1), k+1√

k

)
, p = Θ

(
1

√
τr log d·d(9C

2
b
τr/8)

)
, γ = 1

dτ−2 , BG =
√
kpA − O

(√
k

dτ

)
and Bx1 =

√
d,Bx2 = d. We also have OPTd,3r(k+1),BF ,Sp,γ,BG

= 0.
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Proof of Lemma E.27. We can check Bx1 =
√
d,Bx2 = d by direct calculation. By Lemma E.23,

we have f∗ ∈ Fd,3r(k+1),BF ,Sp,γ,BG
. We note that

σ

(
⟨Dj ,x⟩ −

2i− k − 1√
k

)
− 2σ

(
⟨Dj ,x⟩ −

2i− k√
k

)
+ σ

(
⟨Dj ,x⟩ −

2i− k + 1√
k

)
(441)

is a bump function for ⟨Dj ,x⟩ at 2i−k√
k

. We can check that yf∗(x) ≥ 1. Thus, we have

OPTd,3r(k+1),BF ,Sp,γ,BG
≤LDparity (f

∗) (442)

=E(x,y)∼Dparity
L(x,y)(f

∗) (443)

=0. (444)

Theorem 4.8 (Parity Functions: Main Result). Assume Assumption 4.5. For any ϵ, δ ∈ (0, 1), when
Algorithm 1 uses hinge loss with

m = poly
(
1

δ
,
1

ϵ
, dΘ(τr), k,

1

pA

)
≤ ed, T = poly (m) , n = poly (m)

and proper hyper-parameters, then with probability at least 1− δ, there exists t ∈ [T ] such that

Pr[sign(fΞ(t)(x)) ̸= y] ≤ 3r
√
k

d(τ−3)/2
+ ϵ.

Proof of Theorem 4.8. Let b̃ = Cb

√
τrk log dσw, where Cb is a large enough universal con-

stant. By Lemma E.27, we have f∗ ∈ Fd,3r(k+1),BF ,Sp,γ,BG
, where BF = (Ba1, Ba2, Bb) =(

2
√
k, 2
√
rk(k + 1), k+1√

k

)
, p = Θ

(
1

√
τr log d·d(9C

2
b
τr/8)

)
, γ = 1

dτ−2 , BG =
√
kpA − O

(√
k

dτ

)
and Bx1 =

√
d,Bx2 = d. We also have OPTd,3r(k+1),BF ,Sp,γ,BG

= 0.

Adjust σw such that b̃ = Cb

√
τrk log dσw = Θ

(
B

1
4
GBa2B

3
4
b√

rBa1

)
. Injecting above parameters into

Theorem 3.12, we have with probability at least 1 − δ over the initialization, with proper hyper-
parameters, there exists t ∈ [T ] such that

Pr[sign(fΞ(t)(x)) ̸= y] ≤2
√
2r
√
k

d(τ−3)/2
+O

(
rBa1Bx1Bx2

1
4 (log n)

1
4

√
BGn

1
4

)
+ ϵ/2 ≤ 3r

√
k

d(τ−3)/2
+ ϵ.

E.5 Uniform Parity Functions

We consider the sparse parity problem over the uniform data distribution studied in [15]. We use
the properties of the problem to prove the key lemma (i.e., the existence of good networks) in our
framework and then derive the final guarantee from our theorem of the simple setting (Theorem 3.4).
We provide Theorem E.31 as (1) use it as a warm-up and (2) follow the original analysis in [15] to
give a comparison. We will provide Theorem E.40 as an alternative version that trains both layers.

Consider the same data distribution in Appendix E.4.1 and Definition E.22 with the following
assumptions.
Assumption E.28 (Uniform Parity Functions). We follow the data distribution in Appendix E.4.1.
Let r = 1, pA = 0, po = 1

2 , M = Id×d and d ≥ 2k2, and k is an even number.

We denote this data distribution as Dparity−uniform setting.

To apply our framework, again we only need to compute the parameters in the Gradient Feature set
and the corresponding optimal approximation loss. To this end, we first define the gradient features:
let

D =

∑
l∈A Ml

∥
∑

l∈A Ml∥2
. (445)

We follow the initialization and training dynamic in [15].
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Initialization and Loss. We use hinge loss and we have unbiased initialization, for all i ∈ [m],

a
(0)
i ∼ Unif({±1}),w(0)

i ∼ Unif({±1}d),bi = Unif({−1 + 1/k, . . . , 1− 1/k}). (446)

Training Process. We use the following one-step training algorithm for this specific data distribu-
tion.

Algorithm 4 Network Training via Gradient Descent [15]. Special case of Algorithm 2

Initialize (a(0),W(0),b) as in Equation (8) and Equation (446); Sample Z ∼ Dn
parity−uniform

W(1) = W(0) − η(1)(∇WL̃Z(fΞ(0)) + λ(1)W(0))

a(1) = a(0) − η(1)(∇aL̃Z(fΞ(0)) + λ(1)a(0))
for t = 2 to T do
a(t) = a(t−1) − η(t)∇aL̃Z(fΞ(t−1))

end for

Use the notation in Section 5.3 of [92], for every S ∈ [n], s.t. |S| = k, we define

ξk := M̂aj(S) = (−1)
k−1
2

( d−1
2

d−1
2

)
(
d−1
k−1

) · 2−(d−1)

(
d− 1
d−1
2

)
. (447)

Lemma E.29 (Uniform Parity Functions: Existence of Good Networks. Rephrase of Lemma 5 in
[15]). For every ϵ, δ ∈ (0, 1/2), denoting τ = |ξk−1|

16k
√

2d log(32k3d/ϵ)
, let η(1) = 1

k|ξk−1| , λ
(1) = 1

η(1) ,

m ≥ k · 2k log(k/δ), n ≥ 2
τ2 log(4dm/δ) and d ≥ Ω

(
k4 log(kd/ϵ)

)
, w.p. at least 1− 2δ over the

initialization and the training samples, there exists ã ∈ Rm with ∥ã∥∞ ≤ 8k and ∥ã∥2 ≤ 8k
√
k

such that f(ã,W(1),b) satisfies

LDparity−uniform

(
f(ã,W(1),b)

)
≤ ϵ. (448)

Additionally, it holds that ∥σ(W(1)⊤x− b)∥∞ ≤ d+ 1.

Remark E.30. In [15], they update the bias term in the first gradient step. However, if we check the
proof carefully, we can see that the fixed bias still goes through all their analysis.

E.5.1 Uniform Parity Functions: Final Guarantee

Considering training by Algorithm 4, we have the following results.

Theorem E.31 (Uniform Parity Functions: Main Result). Fix ϵ ∈ (0, 1/2) and let m ≥
Ω
(
k · 2k log(k/ϵ)

)
, n ≥ Ω

(
k7/6d

(
d

k−1

)
log(kd/ϵ) log(dm/ϵ) + k3md2

ϵ2

)
, d ≥ Ω

(
k4 log(kd/ϵ)

)
.

Let η(1) = 1
k|ξk−1| , λ(1) = 1

η(1) , and η = η(t) = Θ
(

1
d2m

)
, for all t ∈ {2, 3, . . . , T}. If

T ≥ Ω
(

k3md2

ϵ

)
, then training by Algorithm 4 with hinge loss, w.h.p. over the initialization

and the training samples, there exists t ∈ [T ] such that

Pr[sign(fΞ(t))(x) ̸= y] ≤ LDparity−uniform
f(a(t),W(1),b) ≤ ϵ. (449)

Proof of Theorem E.31. By Lemma E.29, w.h.p., we have for properly chosen hyper-parameters,

OPTW(1),b,Ba2
≤ LDparity−uniform

(
f(ã,W(1),b)

)
≤ ϵ

3
. (450)
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We compute the L-smooth constant of L̃Z
(
f(a,W(1),b)

)
to a.∥∥∥∇aL̃Z

(
f(a1,W(1),b)

)
−∇aL̃Z

(
f(a2,W(1),b)

)∥∥∥
2

(451)

=

∥∥∥∥∥ 1n ∑
x∈Z

[(
ℓ′
(
yf(a1,W(1),b)(x)

)
− ℓ′

(
yf(a2,W(1),b)(x)

))
σ(W(1)⊤x− b)

]∥∥∥∥∥
2

(452)

≤

∥∥∥∥∥ 1n ∑
x∈Z

[∣∣f(a1,W(1),b)(x)− f(a2,W(1),b)(x)
∣∣σ(W(1)⊤x− b)

]∥∥∥∥∥
2

(453)

≤ 1

n

∑
x∈Z

[
∥a1 − a2∥2

∥∥∥σ(W(1)⊤x− b)
∥∥∥2
2

]
. (454)

By the Lemma E.29, we have ∥σ(W(1)⊤x− b)∥∞ ≤ d+ 1. Thus, we have,

L = O

(
1

n

∑
x∈Z

∥∥∥σ(W(1)⊤x− b)
∥∥∥2
2

)
(455)

≤ O(d2m). (456)
This means that we can let η = Θ

(
1

d2m

)
and we will get our convergence result. Note that we have

a(1) = 0 and ∥ã∥2 = O
(
k
√
k
)

. So, if we choose T ≥ Ω
(

k3

ϵη

)
, there exists t ∈ [T ] such that

L̃Z
(
f(a(t),W(1),b)

)
− L̃Z

(
f(ã,W(1),b)

)
≤ O

(
L∥a(1)−ã∥2

2

T

)
≤ ϵ/3.

We also have
√

∥ã∥2
2(∥W(1)∥2

FB2
x+∥b∥2

2)

n ≤ ϵ
3 . Then our theorem gets proved by Theorem 3.4.

E.6 Uniform Parity Functions: Alternative Analysis

It is also possible to unify [15] into our general Gradient Feature Learning Framework by mildly
modifying the framework in Theorem 3.12. In order to do that, we first need to use a different metric
in the definition of gradient features.

E.6.1 Modified General Feature Learning Framework for Uniform Parity Functions

Definition E.32 (Gradient Feature with Infinity Norm). For a unit vector D ∈ Rd with
∥D∥2 = 1, and a γ∞ ∈ (0, 1), a direction neighborhood (cone) C∞

D,γ∞
is defined as: C∞

D,γ∞
:={

w
∣∣∣ ∥∥∥ w

∥w∥ −D
∥∥∥
∞

< γ∞

}
. Let w ∈ Rd, b ∈ R be random variables drawn from some distribu-

tion W,B. A Gradient Feature set with parameters p, γ∞, BG, BG1 is defined as:

S∞
p,γ∞,BG,BG1

(W,B) :=
{
(D, s)

∣∣∣∣ Pr
w,b

[
G(w, b) ∈ C∞

D,γ∞
, BG1 ≥ ∥G(w, b)∥2 ≥ BG , s =

b

|b|

]
≥ p

}
.

When clear from context, write it as S∞
p,γ∞,BG,BG1

.
Definition E.33 (Optimal Approximation via Gradient Features with Infinity Norm). The Optimal
Approximation network and loss using gradient feature induced networks Fd,r,BF ,S∞

p,γ∞,BG,BG1
are

defined as:
f∗ := argmin

f∈Fd,r,BF ,S∞
p,γ∞,BG,BG1

LD(f), (457)

OPTd,r,BF ,S∞
p,γ∞,BG,BG1

:= min
f∈Fd,r,BF ,S∞

p,γ∞,BG,BG1

LD(f). (458)

We consider the data distribution in Appendix E.4.1 with Assumption E.28, i.e., Dparity−uniform

in Appendix E.5. Note that with this dataset, we have ∥x∥∞ ≤ Bx∞ = 1. We use the following
unbiased initialization:

for i ∈ {1, . . . ,m} : a
(0)
i ∼ N (0, σ2

a),w
(0)
i ∼ {±1}d,bi = b̃ ≤ 1,

for i ∈ {m+ 1, . . . , 2m} : a
(0)
i = −a

(0)
i−m,w

(0)
i = −w

(0)
i−m,bi = −bi−m,

for i ∈ {2m+ 1, . . . , 4m} : a
(0)
i = −a

(0)
i−2m,w

(0)
i = w

(0)
i−2m,bi = bi−2m (459)
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Let ∇i denote the gradient of the i-th neuron ∇wiLD(fΞ(0)). Denote the subset of neurons with nice
gradients approximating feature (D, s) as:

G∞
(D,s),Nice :=

{
i ∈ [2m] : s =

bi

|bi|
,

∥∥∥∥ ∇i

∥∇i∥
−D

∥∥∥∥
∞

≤ γ∞,
∣∣∣a(0)i

∣∣∣BG1 ≥ ∥∇i∥2 ≥
∣∣∣a(0)i

∣∣∣BG

}
.

Lemma E.34 (Existence of Good Networks. Modified Version of Lemma 3.14 Under Uniform
Parity Setting). Let λ(1) = 1

η(1) . For any Bϵ ∈ (0, Bb), let σa = Θ
(

b̃
−ℓ′(0)η(1)BGBϵ

)
and δ =

2re−
√
mp + 1

d2 . Then, with probability at least 1 − δ over the initialization, there exists ãi’s such

that f(ã,W(1),b)(x) =
∑4m

i=1 ãiσ
(〈

w
(1)
i ,x

〉
− bi

)
satisfies

LD(f(ã,W(1),b)) ≤ rBa1

(
Bx1BG1Bb√
mpBGBϵ

+
√
2 log(d)dγ∞ +Bϵ

)
+OPTd,r,BF ,S∞

p,γ∞,BG,BG1
,

and ∥ã∥0 = O
(
r(mp)

1
2

)
, ∥ã∥2 = O

(
Ba2Bb

b̃(mp)
1
4

)
, ∥ã∥∞ = O

(
Ba1Bb

b̃(mp)
1
2

)
.

Proof of Lemma E.34. Recall f∗(x) =
∑r

j=1 a
∗
jσ(
〈
w∗

j ,x
〉

− b∗
j ), where f∗ ∈

Fd,r,BF ,S∞
p,γ∞,BG,BG1

is defined in Definition E.33 and let s∗j =
b∗

j

|b∗
j |

. By Lemma D.3, with

probability at least 1 − δ1, δ1 = 2re−cmp, for all j ∈ [r], we have |G∞
(w∗

j ,s
∗
j ),Nice| ≥

mp
4 . Then

for all i ∈ G∞
(w∗

j ,s
∗
j ),Nice ⊆ [2m], we have −ℓ′(0)η(1)G(w

(0)
i ,bi)

b∗
j

b̃
only depend on w

(0)
i and bi,

which is independent of a(0)i . Given Definition E.32, we have

−ℓ′(0)η(1)∥G(w
(0)
i ,bi)∥2

b∗
j

b̃
∈
[
ℓ′(0)η(1)Bx1

Bb

b̃
,−ℓ′(0)η(1)Bx1

Bb

b̃

]
. (460)

We split [r] into Γ = {j ∈ [r] : |b∗
j | < Bϵ}, Γ− = {j ∈ [r] : b∗

j ≤ −Bϵ} and Γ+ = {j ∈ [r] :

b∗
j ≥ Bϵ}. Let ϵa = BG1Bb√

mpBGBϵ
. Then we know that for all j ∈ Γ+ ∪ Γ−, for all i ∈ G∞

(w∗
j ,s

∗
j ),Nice,

we have

Pr
a
(0)
i ∼N (0,σ2

a)

[∣∣∣∣−a
(0)
i ℓ′(0)η(1)∥G(w

(0)
i ,bi)∥2

|b∗
j |
b̃

− 1

∣∣∣∣ ≤ ϵa

]
(461)

= Pr
a
(0)
i ∼N (0,σ2

a)

[
1− ϵa ≤ −a

(0)
i ℓ′(0)η(1)∥G(w

(0)
i ,bi)∥2

|b∗
j |
b̃

≤ 1 + ϵa

]
(462)

= Pr
g∼N (0,1)

[
1− ϵa ≤ gΘ

(
∥G(w

(0)
i ,bi)∥2|b∗

j |
BGBϵ

)
≤ 1 + ϵa

]
(463)

= Pr
g∼N (0,1)

[
(1− ϵa)Θ

(
BGBϵ

∥G(w
(0)
i ,bi)∥2|b∗

j |

)
≤ g ≤ (1 + ϵa)Θ

(
BGBϵ

∥G(w
(0)
i ,bi)∥2|b∗

j |

)]

=Θ

(
ϵaBGBϵ

∥G(w
(0)
i ,bi)∥2|b∗

j |

)
(464)

≥Ω

(
ϵaBGBϵ

BG1Bb

)
(465)

=Ω

(
1

√
mp

)
. (466)

Thus, with probability Ω
(

1√
mp

)
over a(0)i , we have∣∣∣∣−a

(0)
i ℓ′(0)η(1)∥G(w

(0)
i ,bi)∥2

|b∗
j |
b̃

− 1

∣∣∣∣ ≤ ϵa,
∣∣∣a(0)i

∣∣∣ = O

(
b̃

−ℓ′(0)η(1)BGBϵ

)
. (467)
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Similarly, for j ∈ Γ, for all i ∈ G∞
(w∗

j ,s
∗
j ),Nice, with probability Ω

(
1√
mp

)
over a(0)i , we have

∣∣∣∣−a
(0)
i ℓ′(0)η(1)∥G(w

(0)
i ,bi)∥2

Bϵ

b̃
− 1

∣∣∣∣ ≤ ϵa,
∣∣∣a(0)i

∣∣∣ = O

(
b̃

−ℓ′(0)η(1)BGBϵ

)
. (468)

For all j ∈ [r], let Λj ⊆ G∞
(w∗

j ,s
∗
j ),Nice be the set of i’s such that condition Equation (467) or

Equation (468) are satisfied. By Chernoff bound and union bound, with probability at least 1 −
δ2, δ2 = re−

√
mp, for all j ∈ [r] we have |Λj | ≥ Ω(

√
mp). We have for ∀j ∈ Γ+ ∪ Γ−,∀i ∈ Λj ,

∣∣∣∣ |b∗
j |
b̃

〈
w

(1)
i ,x

〉
−
〈
w∗

j ,x
〉∣∣∣∣ (469)

≤

∣∣∣∣∣
〈
−a

(0)
i ℓ′(0)η(1)∥G(w

(0)
i ,bi)∥2

|b∗
j |
b̃

w
(1)
i

∥w(1)
i ∥2

− w
(1)
i

∥w(1)
i ∥2

,x

〉
+

〈
w

(1)
i

∥w(1)
i ∥2

−w∗
j ,x

〉∣∣∣∣∣
≤ϵa∥x∥2 +

√
2 log(d)dγ∞. (470)

With probability 1− 1
d2 by Hoeffding’s inequality. Similarly, for ∀j ∈ Γ,∀i ∈ Λj ,

∣∣∣∣Bϵ

b̃

〈
w

(1)
i ,x

〉
−
〈
w∗

j ,x
〉∣∣∣∣ ≤ ϵa∥x∥2 +

√
2 log(d)dγ∞. (471)

If i ∈ Λj , j ∈ Γ+ ∪ Γ−, set ãi = a∗j
|b∗

j |
|Λj |b̃

, if i ∈ Λj , j ∈ Γ, set ãi = a∗j
Bϵ

|Λj |b̃
, otherwise set ãi = 0,

we have ∥ã∥0 = O
(
r(mp)

1
2

)
, ∥ã∥2 = O

(
Ba2Bb

b̃(mp)
1
4

)
, ∥ã∥∞ = O

(
Ba1Bb

b̃(mp)
1
2

)
.
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Finally, we have
LD(f(ã,W(1),b)) (472)

=LD(f(ã,W(1),b))− LD(f
∗) + LD(f

∗) (473)

≤E(x,y)

[∣∣f(ã,W(1),b)(x)− f∗(x)
∣∣]+ LD(f

∗) (474)

≤E(x,y)

∣∣∣∣∣∣
m∑
i=1

ãiσ
(〈

w
(1)
i ,x

〉
− b̃
)
+

2m∑
i=m+1

ãiσ
(〈

w
(1)
i ,x

〉
+ b̃
)
−

r∑
j=1

a∗jσ(
〈
w∗

j ,x
〉
− b∗

j )

∣∣∣∣∣∣


+ LD(f
∗) (475)

≤E(x,y)

∣∣∣∣∣∣
∑
j∈Γ+

∑
i∈Λj

a∗j
1

|Λj |

∣∣∣∣ |b∗
j |
b̃

σ
(〈

w
(1)
i ,x

〉
− b̃
)
− σ(

〈
w∗

j ,x
〉
− b∗

j )

∣∣∣∣
∣∣∣∣∣∣
 (476)

+ E(x,y)

∣∣∣∣∣∣
∑
j∈Γ−

∑
i∈Λj

a∗j
1

|Λj |

∣∣∣∣ |b∗
j |
b̃

σ
(〈

w
(1)
i ,x

〉
+ b̃
)
− σ(

〈
w∗

j ,x
〉
− b∗

j )

∣∣∣∣
∣∣∣∣∣∣
 (477)

+ E(x,y)

∣∣∣∣∣∣
∑
j∈Γ

∑
i∈Λj

a∗j
1

|Λj |

∣∣∣∣Bϵ

b̃
σ
(〈

w
(1)
i ,x

〉
− b̃
)
− σ(

〈
w∗

j ,x
〉
− b∗

j )

∣∣∣∣
∣∣∣∣∣∣
+ LD(f

∗) (478)

≤E(x,y)

∣∣∣∣∣∣
∑
j∈Γ+

∑
i∈Λj

a∗j
1

|Λj |

∣∣∣∣ |b∗
j |
b̃

〈
w

(1)
i ,x

〉
−
〈
w∗

j ,x
〉∣∣∣∣
∣∣∣∣∣∣
 (479)

+ E(x,y)

∣∣∣∣∣∣
∑
j∈Γ−

∑
i∈Λj

a∗j
1

|Λj |

∣∣∣∣ |b∗
j |
b̃

〈
w

(1)
i ,x

〉
−
〈
w∗

j ,x
〉∣∣∣∣
∣∣∣∣∣∣
 (480)

+ E(x,y)

∣∣∣∣∣∣
∑
j∈Γ

∑
i∈Λj

a∗j
1

|Λj |

∣∣∣∣Bϵ

b̃

〈
w

(1)
i ,x

〉
+Bϵ −

〈
w∗

j ,x
〉∣∣∣∣
∣∣∣∣∣∣
+ LD(f

∗) (481)

≤r∥a∗∥∞(ϵaE(x,y)∥x∥2 +
√
2 log(d)dγ∞) + |Γ|∥a∗∥∞Bϵ + LD(f

∗) (482)

≤rBa1(ϵaBx1 +
√

2 log(d)dγ∞) + |Γ|Ba1Bϵ +OPTd,r,BF ,S∞
p,γ,BG,BG1

. (483)

We finish the proof by union bound and δ ≥ δ1 + δ2 +
1
d2 .

Lemma E.35 (Empirical Gradient Concentration Bound for Single Coordinate). For i ∈ [m], when

n ≥ (log(d))6, with probability at least 1−O
(
exp

(
−n

1
3

))
over training samples, we have∣∣∣∣∣∂L̃Z(fΞ)

∂wi,j
− ∂LD(fΞ)

∂wi,j

∣∣∣∣∣ ≤ O

(
|ai|Bx∞

n
1
3

)
, ∀j ∈ [d]. (484)

Proof of Lemma E.35. First, we define,

z
(l)
i,j =ℓ′(y(l)fΞ(x

(l)))y(l)
[
σ′
(〈

wi,x
(l)
〉
− bi

)
x
(l)
j

]
(485)

− E(x,y) [ℓ
′(yfΞ(x))y [σ

′ (⟨wi,x⟩ − bi)]xj ] . (486)

As |ℓ′(z)| ≤ 1, |y| ≤ 1, |σ′(z)| ≤ 1, we have z
(l)
i,j is zero-mean random variable with

∣∣∣z(l)i,j

∣∣∣ ≤ 2Bx∞

as well as E
[∣∣∣z(l)i,j

∣∣∣2
2

]
≤ 4B2

x∞. Then by Bernstein Inequality, for 0 < z < 2Bx∞, we have

Pr

(∣∣∣∣∣∂L̃Z(fΞ)

∂wi,j
− ∂LD(fΞ)

∂wi,j

∣∣∣∣∣ ≥ |ai|z

)
= Pr

∣∣∣∣∣∣ 1n
∑
l∈[n]

z
(l)
i,j

∣∣∣∣∣∣ ≥ z

 (487)

≤ exp

(
−n · z2

8Bx∞

)
. (488)
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Thus, for some i ∈ [m], when n ≥ (log(d))6, with probability at least 1−O
(
expΘ

(
−n

1
3

))
, from

a union bound over j ∈ [d], we have, for ∀j ∈ [d],∣∣∣∣∣∂L̃Z(fΞ)

∂wi,j
− ∂LD(fΞ)

∂wi,j

∣∣∣∣∣ ≤ O

(
|ai|Bx∞

n
1
3

)
. (489)

Lemma E.36 (Existence of Good Networks under Empirical Risk. Modi-
fied version of Lemma D.13 Under Uniform Parity Setting). Suppose n >

Ω

((
Bx√
Bx2

+ log 1
p + Bx∞

BG|ℓ′(0)| +
Bx∞

BG1|ℓ′(0)|

)3
+ (log(d))6

)
. Let λ(1) = 1

η(1) . For any

Bϵ ∈ (0, Bb), let σa = Θ
(

b̃
−|ℓ′(0)|η(1)BGBϵ

)
and δ = 2re−

√
mp
2 + 1

d2 . Then, with proba-
bility at least 1 − δ over the initialization and training samples, there exists ãi’s such that
f(ã,W(1),b)(x) =

∑4m
i=1 ãiσ

(〈
w

(1)
i ,x

〉
− bi

)
satisfies

LD(f(ã,W(1),b)) (490)

≤rBa1

(
2Bx1BG1Bb√

mpBGBϵ
+
√
2 log(d)d

(
γ∞ +O

(
Bx∞

BG|ℓ′(0)|n
1
3

))
+Bϵ

)
+OPTd,r,BF ,S∞

p,γ,BG,BG1
,

and ∥ã∥0 = O
(
r(mp)

1
2

)
, ∥ã∥2 = O

(
Ba2Bb

b̃(mp)
1
4

)
, ∥ã∥∞ = O

(
Ba1Bb

b̃(mp)
1
2

)
.

Proof of Lemma E.36. Denote ρ = O
(
expΘ

(
−n

1
3

))
and β = O

(
Bx∞

n
1
3

)
. Note that by symmetric

initialization, we have ℓ′(yfΞ(0)(x)) = |ℓ′(0)| for any x ∈ X , so that, by Lemma E.35, we have∣∣∣G̃(w
(0)
i ,bi)j −G(w

(0)
i ,bi)j

∣∣∣ ≤ β
|ℓ′(0)| with probability at least 1 − ρ. Thus, by union bound,

we can see that S∞
p,γ∞,BG,BG1

⊆ S̃∞
p−ρ,γ∞+ β

BG|ℓ′(0)| ,BG− β
|ℓ′(0)| ,BG1+

β
|ℓ′(0)|

. Consequently, we have

OPTd,r,BF ,S̃∞
p−ρ,γ∞+

β
BG|ℓ′(0)| ,BG− β

|ℓ′(0)| ,BG1+
β

|ℓ′(0)|

≤ OPTd,r,BF ,S∞
p,γ∞,BG,BG1

. Exactly follow the

proof in Lemma D.4 by replacing S∞
p,γ∞,BG,BG1

to S̃∞
p−ρ,γ∞+ β

BG|ℓ′(0)| ,BG− β
|ℓ′(0)| ,BG1+

β
|ℓ′(0)|

. Then,

we finish the proof by ρ ≤ p
2 ,

β
|ℓ′(0)| ≤ (1− 1/

√
2)BG,

β
|ℓ′(0)| ≤ (

√
2− 1)BG1.

Theorem E.37 (Online Convex Optimization under Empirical Risk. Modified version of Theo-
rem D.17 Under Uniform Parity Setting ). Consider training by Algorithm 1, and any δ ∈ (0, 1).
Assume d ≥ logm, δ ≤ O( 1

d2 ). Set

σw > 0, b̃ > 0, η(t) = η, λ(t) = 0 for all t ∈ {2, 3, . . . , T},

η(1) = Θ

(
min{O(η), O(ηb̃)}

−ℓ′(0)(Bx1σw

√
d+ b̃)

)
, λ(1) =

1

η(1)
, σa = Θ

(
b̃(mp)

1
4

−ℓ′(0)η(1)Bx1

√
BGBb

)
.

Let 0 < TηBx1 ≤ o(1), m = Ω
(

1√
δ
+ 1

p

(
log
(
r
δ

))2)
and n >

Ω

((
Bx√
Bx2

+ log Tm
pδ + (1 + 1

BG
+ 1

BG1
) Bx∞
|ℓ′(0)|

)3)
. With probability at least 1 − δ over the
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initialization and training samples, there exists t ∈ [T ] such that

LD (fΞ(t)) (491)

≤OPTd,r,BF ,Sp,γ,BG
+ rBa1

(
2
√
2
√
Bx1BG1

(mp)
1
4

√
Bb

BG
+
√
2 log(d)d

(
γ∞ +O

(
Bx∞

BG|ℓ′(0)|n
1
3

)))

+ η
(√

rBa2BbTηB
2
x1 +mb̃

)
O

(√
logmBx1(mp)

1
4

√
BbBG

+ 1

)
+O

(
B2

a2B
2
b

ηT b̃2(mp)
1
2

)
(492)

+
1

n
1
3

O

((
rBa1Bb

b̃
+m

(
b̃
√
logm(mp)

1
4

√
BbBG

+
b̃

Bx1

))
(493)

·

((
b̃
√
logm(mp)

1
4

√
BbBG

+ Tη2Bx1b̃

)
Bx + b̃

)
+ 2

)
(494)

+
1

n
1
3

O

(
mη

(
b̃
√
logm(mp)

1
4

√
BbBG

+ Tη2Bx1b̃

)√
Bx2

)
. (495)

Furthermore, for any ϵ ∈ (0, 1), set

b̃ =Θ

(
B

1
4

GBa2B
3
4

b√
rBa1

)
, m = Ω

 1

pϵ4

(
rBa1

√
Bx1BG1

√
Bb

BG

)4

+
1√
δ
+

1

p

(
log
(r
δ

))2 ,

η =Θ

 ϵ(√
rBa2BbBx1

(mp)
1
4

+mb̃

)(√
logmBx1(mp)

1
4√

BbBG
+ 1

)
 , T = Θ

(
1

ηBx1(mp)
1
4

)
,

n =Ω

(mBxB
2
a2

√
Bb(mp)

1
2 logm

ϵrBa1

√
BG

)3

+

(
Bx√
Bx2

+ log
Tm

pδ
+ (1 +

1

BG
+

1

BG1
)
Bx∞

|ℓ′(0)|

)3
 ,

we have there exists t ∈ [T ] with

Pr[sign(fΞ(t))(x) ̸= y] ≤ LD (fΞ(t)) (496)

≤OPTd,r,BF ,S∞
p,γ∞,BG,BG1

+ rBa1

√
2 log(d)d

(
γ∞ +O

(
Bx∞

BG|ℓ′(0)|n
1
3

))
+ ϵ. (497)

Proof of Theorem E.37. Proof of the theorem and parameter choices remain the same as Theo-

rem D.17 except for setting Bϵ =
√
Bx1BG1

(mp)
1
4

√
Bb

BG
and apply Lemma E.36.

E.6.2 Feature Learning of Uniform Parity Functions

We denote

gi,j = E(x,y)

[
yσ′
[〈

w
(0)
i ,x

〉
− bi

]
xj

]
(498)

ξk = (−1)
k−1
2

(
n−1
2

k−1
2

)
(
n− 1
k − 1

) · 2−(n−1)

(
n− 1
n−1
2

)
. (499)

Lemma E.38 (Uniform Parity Functions: Gradient Feature Learning. Corollary of Lemma 3 in [15]).
Assume that n ≥ 2(k + 1)2. Then, the following holds:

If j ∈ A, then

gi,j = ξk−1

∏
l∈A\{j}

(w
(0)
i,l ). (500)
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If i /∈ A, then

gi,j = ξk−1

∏
l∈A∪{j}

(w
(0)
i,l ). (501)

Lemma E.39 (Uniform Parity Functions: Existence of Good Networks (Alternative)). Assume the
same condition as in Lemma E.38. Define

D =

∑
l∈A Ml

∥
∑

l∈A Ml∥2
(502)

and

f∗(x) =

k∑
i=0

(−1)i
√
k (503)

·
[
σ

(
⟨D,x⟩ − 2i− k − 1√

k

)
− 2σ

(
⟨D,x⟩ − 2i− k√

k

)
+ σ

(
⟨D,x⟩ − 2i− k + 1√

k

)]
.

For Dparity−uniform setting, we have f∗ ∈ Fd,3(k+1),BF ,S∞
p,γ∞,BG,BG1

where BF =

(Ba1, Ba2, Bb) =
(
2
√
k, 2
√
(k(k + 1)), k+1√

k

)
, p = Θ

(
1

2k−1

)
, γ∞ = O

( √
k

d−k

)
, BG = Θ(BG1) =

Θ(d−k) and Bx1 =
√
d, Bx2

= d. We also have OPTd,3(k+1),BF ,S∞
p,γ∞,BG,BG1

= 0.

Proof of Lemma E.39. Fix index i, with probability p1 = Θ(2−k), we will have
w

(0)
i,j = sign(a(0)i ) · sign(ξk−1), for ∀j. For w

(0)
i that satisfy these conditions, we will

have:

sign(a(0)i )gi,j = |ξk−1|, ∀j ∈ A (504)

sign(a(0)i )gi,j = |ξk+1|, ∀j /∈ A. (505)
Then by Lemma 4 in [15], we have∥∥∥∥∥ sign(a(0)i )G(w

(0)
i , b̃)

∥G(w
(0)
i , b̃)∥

−D

∥∥∥∥∥
∞

≤ max


∣∣∣∣∣∣ 1

k
√

1
k + 1

d−k

− 1√
k

∣∣∣∣∣∣ ,
∣∣∣∣∣∣ 1

(d− k)
√

1
k + 1

d−k

∣∣∣∣∣∣
 (506)

≤
√
k

d− k
(507)

and
∥sign(a(0)i )G(w

(0)
i , b̃)∥2 =

√
k|ξk−1|2 + (d− k)|ξk+1|2 = Θ(dΘ(k)). (508)

From here, we can see that if we set γ∞ =
√
k

d−k , BG = BG1 =
√

k|ξk−1|2 + (d− k)|ξk+1|2,
p = p1, we will have (D,+1), (D,−1) ∈ S∞

p,γ∞,BG,BG1
by our symmetric initialization. As a result,

we have f∗ ∈ Fd,3(k+1),BF ,S∞
p,γ∞,BG,BG1

. Finally, it is easy to verify that f∗(x) = XOR(xA), thus
OPTd,3(k+1),BF ,S∞

p,γ∞,BG,BG1
= 0.

Theorem E.40 (Uniform Parity Functions: Main Result (Alternative)). For Dparity−uniform setting,
for any δ ∈ (0, 1) satisfying δ ≤ O( 1

d2 ) and for any ϵ ∈ (0, 1) when

m = poly
(
log

(
1

δ

)
,
1

ϵ
, 2Θ(k), d

)
, T = Θ

(
dΘ(k)

)
, n = Θ

(
dΘ(k)

)
(509)

trained by Algorithm 1 with hinge loss, with probability at least 1− δ over the initialization, with
proper hyper-parameters, there exists t ∈ [T ] such that

Pr[sign(fΞ(t)(x)) ̸= y] ≤
k2
√
d log(d)

d− k
+ ϵ. (510)

Proof of Theorem E.40. Plug the values of parameters into Theorem E.37 and directly get the result.
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E.7 Multiple Index Model with Low Degree Polynomial

E.7.1 Problem Setup

The multiple-index data problem has been used for studying network learning [18, 32]. We consider
proving guarantees for the setting in [32], following our framework. We use the properties of the
problem to prove the key lemma (i.e., the existence of good networks) in our framework and then
derive the final guarantee from our theorem of the simple setting (Theorem 3.4).

Data Distributions. We draw input from the distribution DX = N (0, Id×d), and we assume
the target function is g∗(x) : Rd −→ R, where g∗ is a degree τ polynomial normalized so that
Ex∼DX [g

∗(x)2] = 1.
Assumption E.41. There exists linearly independent vectors u1, . . . , ur such that g∗(x) =
g(⟨x, u1⟩, . . . , ⟨x, ur⟩). H := Ex∼DX [∇2g∗(x)] has rank r, where H is a Hessian matrix.

Definition E.42. Denote the normalized condition number of H by

κ :=
∥H†∥√

r
. (511)

Initialization and Loss. For ∀i ∈ [m], we use the following initialization:

a
(0)
i ∼ {−1, 1}, w

(0)
i ∼ N

(
0,

1

d
Id×d

)
and bi = 0. (512)

For this regression problem, we use mean square loss:

LDX (fΞ) = Ex∼DX

[
(fΞ(x)− g∗(x))2

]
. (513)

Training Process. We use the following one-step training algorithm for this specific data distribu-
tion.

Algorithm 5 Network Training via Gradient Descent [32]. Special case of Algorithm 2

Initialize (a(0),W(0),b) as in Equation (8) and Equation (512); Sample Z ∼ Dn
X

ρ = 1
n

∑
x∈Z g∗(x), β = 1

n

∑
x∈Z g∗(x)x

y = g∗(x)− ρ− β · x
W(1) = W(0) − η(1)(∇WL̃Z(fΞ(0)) + λ(1)W(0))
Re-initialize bi ∼ N (0, 1)
for t = 2 to T do
a(t) = a(t−1) − η(t)∇aL̃Z(fΞ(t−1))

end for

Lemma E.43 (Multiple Index Model with Low Degree Polynomial: Existence of Good Networks.
Rephrase of Lemma 25 in [32]). Assume n ≥ d2rκ2(Cl log(nmd))τ+1, d ≥ Cdκr

3/2, and m ≥
rτκ2τ (Cl log(nmd))6τ+1 for sufficiently large constants Cd, Cl, and let η(1) =

√
d

(Cl log(nmd))3 and

λ(1) = 1
η(1) . Then with probability 1− 1

poly(m,d) , there exists ã ∈ Rm such that f(ã,W(1),b) satisfies

LDX

(
f(ã,W(1),b)

)
≤ O

(
1

n
+

rτκ2τ (Cl log(nmd))6τ+1)

m

)
(514)

and

∥ã∥22 ≤ O

(
rτκ2τ (Cl log(nmd))6τ

m

)
. (515)

E.7.2 Multiple Index Model: Final Guarantee

Considering training by Algorithm 5, we have the following results.
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Theorem E.44 (Multiple Index Model with Low Degree Polynomial: Main Result). Assume n ≥
Ω
(
d2rκ2(Cl log(nmd))τ+1 +m

)
, d ≥ Cdκr

3/2, and m ≥ Ω
(
1
ϵ r

τκ2τ (Cl log(nmd))6τ+1
)

for

sufficiently large constants Cd, Cl. Let η(1) =
√

d
(Cl log(nmd))3 and λ(1) = 1

η(1) , and η = η(t) =

Θ(m−1), for all t ∈ {2, 3, . . . , T}. For any ϵ ∈ (0, 1), if T ≥ Ω
(

m2

ϵ

)
, then with properly set

parameters and Algorithm 5, with high probability that there exists t ∈ [T ] such that

LDX f(a(t),W(1),b) ≤ ϵ. (516)

Proof of Theorem E.44. By Lemma E.43, we have for properly chosen hyper-parameters,

OPTW(1),b,Ba2
≤ LDX

(
f(ã,W(1),b)

)
≤O

(
1

n
+

rτκ2τ (Cl log(nmd))6τ+1)

m

)
(517)

≤ ϵ

3
. (518)

We compute the L-smooth constant of L̃Z
(
f(a,W(1),b)

)
to a.∥∥∥∇aL̃Z

(
f(a1,W(1),b)

)
−∇aL̃Z

(
f(a2,W(1),b)

)∥∥∥
2

(519)

=

∥∥∥∥∥ 1n ∑
x∈Z

[
2
(
f(a1,W(1),b)(x)− g∗ − f(a2,W(1),b)(x) + g∗

)
σ(W(1)⊤x− b)

]∥∥∥∥∥
2

(520)

≤

∥∥∥∥∥ 1n ∑
x∈Z

[
2
(
a⊤1 σ(W

(1)⊤x− b)− a⊤2 σ(W
(1)⊤x− b)

)
σ(W(1)⊤x− b)

]∥∥∥∥∥
2

(521)

≤ 1

n

∑
x∈Z

[
2 ∥a1 − a2∥2

∥∥∥σ(W(1)⊤x− b)
∥∥∥2
2

]
. (522)

By the proof of Lemma 25 in [32], we have for ∀i ∈ [4m], with probability at least 1 − 1
poly(m,d) ,

|⟨wi,x⟩| ≤ 1, with some large polynomial poly(m, d). As a result, we have

1

n

∑
x∈Z

∥∥∥W(1)⊤x
∥∥∥2
2
≤ m+

1

poly(m, d)
≤ O(m). (523)

Thus, we have,

L = O

(
1

n

∑
x∈Z

∥∥∥σ(W(1)⊤x− b)
∥∥∥2
2

)
(524)

≤ O

(
1

n

∑
x∈Z

∥∥∥W(1)⊤x− b
∥∥∥2
2

)
(525)

≤ O

(
1

n

∑
x∈Z

∥∥∥W(1)⊤x
∥∥∥2
2
+ ∥b∥22

)
(526)

≤ O(m). (527)

This means that we can let η = Θ
(
m−1

)
and we will get our convergence result. We can bound

∥a(1)∥2 and ∥ã∥2 by ∥a(1)∥2 = O (
√
m) and ∥ã∥2 = O

(
rτκ2τ (Cl log(nmd))6τ

m

)
= O(ϵ). So, if

we choose T ≥ Ω
(

m
ϵη

)
, there exists t ∈ [T ] such that L̃Z

(
f(a(t),W(1),b)

)
− L̃Z

(
f(ã,W(1),b)

)
≤

O
(

L∥a(1)−ã∥2
2

T

)
≤ ϵ/3.

We also have
√

∥ã∥2
2(∥W(1)∥2

FB2
x+∥b∥2

2)

n ≤ ϵ
3 . Then our theorem gets proved by Theorem 3.4.
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Discussion. We would like to unify [32], whcih are very closely related to our framework: their
analysis for multiple index data follows the same principle and analysis approach as our general frame-
work, although it does not completely fit into our Theorem 3.12 due to some technical differences.
We can cover it with our Theorem 3.4.

Our work and [32] share the same principle and analysis approach. [32] shows that the first layer
learns good features by one gradient step update, which can approximate the true labels by a low-
degree polynomial function. Then, a classifier (the second layer) is trained on top of the learned first
layer which leads to the final guarantees. This is consistent with our framework: we first show that
the first layer learns good features by one gradient step update, which can approximate the true labels,
and then show a good classifier can be learned on the first layer.

Our work and [32] have technical differences. First, in the second stage, [32] fix the first layer and
only update the top layer which is a convex optimization. Our framework allows updates in the
first layer and uses online convex learning techniques for the analysis. Second, they consider the
square loss (this is used to calculate Hermite coefficients explicitly for gradients, which are useful in
the low-degree polynomial function approximation). While in our online convex learning analysis,
we need boundedness of the derivative of the loss to show that the first layer weights’ changes are
bounded in the second stage. Given the above two technicalities, we analyze their training algorithm
(Algorithm 2) which fixes the first layer weights and fits into our Theorem 3.4.

F Auxiliary Lemmas

In this section, we present some Lemmas used frequently.

Lemma F.1 (Lemmas on Gradients).

∇WL(x,y)(fΞ) =

[
∂L(x,y)(fΞ)

∂w1
, . . . ,

∂L(x,y)(fΞ)

∂wi
, . . . ,

∂L(x,y)(fΞ)

∂w4m

]
, (528)

∂L(x,y)(fΞ)

∂wi
= aiℓ

′(yfΞ(x))y [σ
′ (⟨wi,x⟩ − bi)]x, (529)

∇WLD(fΞ) =

[
∂LD(fΞ)

∂w1
, . . . ,

∂LD(fΞ)

∂wi
, . . . ,

∂LD(fΞ)

∂w4m

]
, (530)

∂LD(fΞ)

∂wi
= aiE(x,y) [ℓ

′(yfΞ(x))y [σ
′ (⟨wi,x⟩ − bi)]x] , (531)

∂LD(fΞ)

∂ai
= E(x,y) [ℓ

′(yfΞ(x))y [σ (⟨wi,x⟩ − bi)]] . (532)

Proof. These can be verified by direct calculation.

Lemma F.2 (Property of Symmetric Initialization). For any x ∈ Rd, we have fΞ(0)(x) = 0 . For
all i ∈ [2m], we have w

(1)
i = −w

(1)
i+2m. When input data is symmetric, i.e, E(x,y)[yx] = 0, for all

i ∈ [m], we have w
(1)
i = w

(1)
i+m.

Proof of Lemma F.2. By symmetric initialization, we have fΞ(0)(x) = 0. For all i ∈ [2m], we have

w
(1)
i =− η(1)ℓ′(0)a

(0)
i E(x,y)

[
yσ′
[〈

w
(0)
i ,x

〉
− bi

]
x
]

(533)

=η(1)ℓ′(0)a
(0)
i+2mE(x,y)

[
yσ′
[〈

w
(0)
i+2m,x

〉
− bi+2m

]
x
]

(534)

=−w
(1)
i+2m. (535)
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When E(x,y)[yx] = 0, for all i ∈ [m], we have

w
(1)
i =− η(1)ℓ′(0)a

(0)
i E(x,y)

[
yσ′
[〈

w
(0)
i ,x

〉
− bi

]
x
]

(536)

=η(1)ℓ′(0)a
(0)
i+mE(x,y)

[
yσ′
[〈

−w
(0)
i+m,x

〉
+ bi+m

]
x
]

(537)

=η(1)ℓ′(0)a
(0)
i+mE(x,y)

[
yσ′
[〈

−w
(0)
i+m,x

〉
+ bi+m

]
x− yx

]
(538)

=η(1)ℓ′(0)a
(0)
i+mE(x,y)

[
−yσ′

[〈
w

(0)
i+m,x

〉
− bi+m

]
x
]

(539)

=w
(1)
i+m. (540)

Lemma F.3 (Property of Direction Neighborhood). If w ∈ CD,γ , we have ρw ∈ CD,γ for any ρ ̸= 0.
We also have 0 /∈ CD,γ . Also, if (D, s) ∈ Sp,γ,BG

, we have (−D, s) ∈ Sp,γ,BG
.

Proof. These can be verified by direct calculation.

Lemma F.4 (Maximum Gaussian Tail Bound). Mn is the maximum of n i.i.d. standard normal
Gaussian. Then

Pr

(
Mn ≥

√
2 log n+

z√
2 log n

)
≤ e−z. (541)

Proof. These can be verified by direct calculation.

Lemma F.5 (Chi-squared Tail Bound). If X is a χ2(k) random variable. Then, ∀z ∈ R, we have

Pr(X ≥ k + 2
√
kz + 2z) ≤ e−z. (542)

Proof. These can be verified by direct calculation.

Lemma F.6 (Gaussian Tail Bound). If g is standard Gaussian and z > 0, we have

1√
2π

z

z2 + 1
e−z2/2 < Pr

g∼N (0,1)
[g > z] <

1√
2π

1

z
e−z2/2. (543)

Proof. These can be verified by direct calculation.

Lemma F.7 (Gaussian Tail Expectation Bound). If g is standard Gaussian and z ∈ R, we have

|Eg∼N (0,1)[I[g > z]g]| < 2 Pr
g∼N (0,1)

[g > z]0.9. (544)

Proof of Lemma F.7. For any p ∈ (0, 1), we have∣∣∣∣∣
∫ √

2erf−1(2p−1)

−∞

e−
x2

2 x√
2π

dx

∣∣∣∣∣ < 2p0.9, (545)

where
√
2erf−1(2p− 1) is the quantile function of the standard Gaussian. We finish the proof by

replacing p to be Prg∼N (0,1)[g > z].

Lemma F.8. If a function g satisfy h(n+ 2) = 2h(n+ 1)− (1− ρ2)h(n) + β for n ∈ N+ where
ρ, β > 0, then h(n) = − β

ρ2 + c1(1− ρ)n + c2(1+ ρ)n, where c1, c2 only depends on h(1) and h(2).

Proof. These can be verified by direct calculation.

Lemma F.9 (Rademacher Complexity Bounds. Rephrase of Lemma 48 in [32]). For fixed W,b, let
F = {f(a,W,b) : ∥a∥ ≤ Ba2}. Then,

R(F) ≤
√

B2
a2(∥W∥2FB2

x + ∥b∥22)
n

. (546)
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