
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SINQ: SINKHORN-NORMALIZED QUANTIZATION FOR
CALIBRATION-FREE LOW-PRECISION LLM WEIGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Post-training quantization has emerged as the most widely used strategy for de-
ploying large language models at low precision. Still, current methods show per-
plexity degradation at bit-widths ≤ 4, partly because representing outliers causes
precision issues in parameters that share the same scales as these outliers. This
problem is especially pronounced for calibration-free, uniform quantization meth-
ods. We introduce SINQ to augment existing post-training quantizers with an ad-
ditional second-axis scale factor and a fast Sinkhorn–Knopp–style algorithm that
finds scales to normalize per-row and per-column variances, thereby minimizing a
novel per-matrix proxy target for quantization: the matrix imbalance. Our method
has no interactions between layers and can be trivially applied to new architec-
tures to quantize any linear layers. We evaluate our method on the Qwen3 model
family and DeepSeek-V2.5. SINQ improves WikiText2 and C4 perplexity sig-
nificantly against uncalibrated uniform quantization baselines, incurs a 0 − 2%
compute overhead, and can be further enhanced by combining it with calibration
and non-uniform quantization levels. Code is available in the supplementary.

1 INTRODUCTION

Post-training quantization (PTQ) is a powerful approach to reducing the cost of neural network
inference. Weight quantization reduces the storage, memory, and data movement required to run
a neural network. As such, it is useful on its own whenever any of these components bottleneck
the performance of an inference system. When integer (INT) or floating-point (FP) weight quan-
tization is further combined with INT or FP activation quantization, it can also be used to reduce
compute requirements by executing MatMul operations at low-precision. Potential speed-ups are
substantial: For example, moving from bfloat16 to int4 weights yields a potential speedup of 4x in
memory-bound scenarios. Weight-only quantization is especially popular in LLM deployment be-
cause accelerator memory capacity and data movement are often the initial performance bottlenecks
in this scenario.

In this paper, we demonstrate that a carefully chosen uncalibrated, uniform quantizer can approach
the end-to-end output quality of calibrated quantizers or non-uniform formats while being appre-
ciably simpler: Calibration (and even more so end-to-end optimization) is an intuitive approach to
improving the output quality of quantized models, but comes with the inherent downsides of pos-
sible bias and overfitting (Lin et al. (2024b)) and additional compute time required at quantization
time (for models under large-scale deployment, this is not concerning as the quantization cost can
be amortized over time, but for small-scale scenarios, this cost can be prohibitive). Similarly, non-
uniform formats can offer an improvement over integer quantization (Dettmers et al. (2023)), but
require potentially costly look-ups during inference and cannot be combined with activation quan-
tization in compute-limited scenarios. In brief, if uncalibrated uniform quantization were to reach
the same output quality, it would be preferable for these reasons. This paper takes a step towards
closing the gap between these different approaches to quantization.

The key contributions of this paper are:

• We propose adding a scaling factor along the second axis of to-be-quantized matrix tiles.

• We propose a new proxy metric for ease of quantization of a matrix, the matrix imbalance (Eq. 4).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Outlier

x

xx x

Small Errorsx
x

x Large Error

Scale Vector

Input Matrix Single Scale ErrorSingle Scale Dual Scale (ours) Dual Scale Error

Figure 1: If we have scales along both dimensions of a matrix that is to be quantized, we can trade off
the impact of outliers between rows and columns, which is impossible in single-scale quantization.
Left: Conceptual illustration of error distributions with single or dual-scaling. Right: Example on
small matrix.

• We propose a fast algorithm based on Sinkhorn-Knopp iterations for finding these dual weight
scales to minimize the matrix imbalance (Sec. 2.2.1).

• In numerous experiments across different model scales, we show that our method improves over
state-of-the-art baselines for calibration-free quantization methods.

• We provide code for easy quantization of LLMs using linear layers.

2 METHODS

We divide our method into two parts: Firstly, the quantized parameterization, i.e. the mathematical
expression used to map between the full precision and the quantized matrix. All quantization meth-
ods used in practice, have some set of auxiliary parameters to use in this mapping. Secondly, the
representation space, i.e. the space in which we instantiate the full precision matrix when quantizing
it.

2.1 QUANTIZED PARAMETRIZATION

Typically, one does not simply replace the weight matrix with, for example, an INT4 matrix, but
rather divides it into tiles and assigns some higher-precision auxiliary parameters to each tile. Here,
we describe different possibilities for the type of auxiliary parameters to use and how to tile the
matrix.

2.1.1 PARAMETERIZATION PER TILE

Scales + Shifts The most widely used approach uses a scale and a shift vector (e.g., Badri & Shaji
(2023)), like so:

Wapprox = s⃗⊙ (Q+ z⃗) (1)
where Wapprox is a N ×M matrix (or matrix tile), s⃗ is a N × 1 vector, z⃗ is a N × 1 vector and Q is
a quantized N ×M matrix. Also, the transpose of this with 1×M vectors is commonly used.

Dual-Scales In this paper, we propose a new parameterization based on an idea we call dual-
scaling: Given a matrix (or a tile of a matrix), instead of supplying a single vector of scales along
one dimension of the matrix, we supply two vectors, one along each dimension. Formulaically, we
propose:

Wapprox = s⃗⊙Q⊙ t⃗ (2)

where s⃗ is a N × 1 vector, t⃗ is a 1×M vector and the rest is as above.

The key benefit of Eq. 2 can be illustrated as follows: Say Wij is an outlying large value. By scaling
up si and scaling down tj we can trade off quantization errors that will occur in row i for errors in
column j. See Fig. 1 for an illustration.

Dual-Scales + Shifts If we do not mind the potential additional overhead (or rather, if an accuracy
improvement justifies it), we can also add shifts to the dual scales:

Wapprox = s⃗⊙ (Q+ z⃗)⊙ t⃗ (3)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Opt. imbalance (b) Opt. imbalance (c) End-to-end

(d) Opt. kurtosis (e) Opt. kurtosis (f) Per Layer Error

Figure 2: Results on Qwen3-1.7B. Minimizing the imbalance with our algorithm (a and b) decreases
both the imbalance and the kurtosis. Minimizing the kurtosis directly with gradient descent (d and
e) yields lower kurtosis, but causes a large imbalance; note the log-scale on (d). Finally (c) and (f)
show the end-to-end perplexity on wikitext2 and per-layer RTN MSE improvement when optimizing
imbalance or kurtosis, respectively.

2.1.2 TILING

Typically, (e.g., Badri & Shaji (2023); Lin et al. (2024b)) tiling for quantization is implemented
along one dimension of the matrix that is to be quantized. By consequence, these tiles have rectan-
gular shapes; e.g., a N ×M matrix tiled with tile-size T would yield tiles of shape N × T . This
could cause a problem with the dual-scale parameterization. Namely, the standard parameterization
has 2×N ×M/T scale and shift parameters, while the dual-scaled only has N ×M/T +M .

To ensure that the dual-scale parameterization has approximately the same number of additional
parameters, we can use a 2D tiling that divides the N ×M matrix into square tiles, e.g., of shape
T × T . For square matrices, this yields the same number of auxiliary parameters as the single-scale
+ shift approach with rectangular tiling.

Alternatively, we may use dual-scale parameterization together with a shift (as in Eq. 3). With 1D
rectangular tiling, dual-scale + shift parameterization has a small additional overhead compared to
single-scale + shift parameterization; the total auxiliary parameters are 2×N ×M/T +M .

2.2 REPRESENTATION SPACE

Before assigning values to the parameters from which we will reconstruct our matrix, we may want
to transform the space in which the matrix is represented, to make the reconstruction better aligned
with some quality metric (like weight MSE or end-to-end accuracy on some validation data). The
two most common among such transformations of the weight space are rotations (like the Hadamard
transform (Ashkboos et al. (2024)), or even learned rotations (Liu et al.)), and channel-wise scal-
ing (like in activation aware quantization (AWQ, Lin et al. (2024b)) or Smoothquant (Xiao et al.
(2023))). Here, we propose a new transformation of the weight matrix using our dual-scaling pa-
rameterization.

2.2.1 PROXY METRIC AND SINKHORN NORMALIZATION

First, let us give an intuition of why dual-scaling is useful. Our dual-scaling representation offers a
kind of flexibility in parameter assignment missing in other formats (e.g., Eq. 1): In ‘single scaling’

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 SINQ: Alternatingly normalize the standard deviation of the rows and columns of the
matrix to be quantized. Then apply a standard quantization method (e.g., RTN).
Require: W ∈ Rm×n, niter, bits
Ensure: Q ∈ Zm×n, s⃗ ∈ Rm, t⃗ ∈ Rn

1: σmin ← min(W.std(dim=0).min(),W.std(dim=1).min())

2: Ŵ←W
3: for i← 1 to niter do
4: σ⃗0 ← max(Ŵ.std(dim=0), σmin)

5: Ŵ← Ŵ/σ⃗0

6: σ⃗1 ← max(Ŵ.std(dim=1), σmin)

7: Ŵ← Ŵ/σ⃗1

8: end for ▷ Ŵ has std. dev. σmin on all rows and columns
9: Q, z⃗, s⃗← Quantize(Ŵ) ▷ omit z⃗ in case of symmetric quantization

10: return Q, z⃗, s⃗⊙ σ⃗1, σ⃗0 ▷ the quantized matrix, optional shifts, and the two scale vectors

formats, an outlier at position (i, j) necessarily causes all values either in column i or row j to have
a higher error, because they share a large scale (that is needed to represent the outlier). With dual-
scaling we may choose whether we distribute errors into column i or row j by assigning a higher
scale either on the row or the column (see Fig. 1 for an illustration).

To find scale factors that balance the impact of outliers between rows and columns, we propose to
minimize what we term the imbalance of the matrix. We define the imbalance I as

I(W) =
σ⃗max(W)

σ⃗min(W)
=

maxi∈{0,1} [W.std(dim=i).max()]
mini∈{0,1} [W.std(dim=i).min()]

, (4)

where σ⃗max(W) is the maximum across the standard deviations of all rows and columns of the
matrix and σ⃗min(W) the corresponding minimum (in pseudo-pytorch notation).

Note that the matrix imbalance is inconvenient to optimize with gradient descent, because of the
sparse gradients that result from the maximum and minimum operations. Instead, to find such
doubly normalizing scale-factors, we propose a modified Sinkhorn-Knopp iteration (Sinkhorn &
Knopp (1967)), where the goal is not to normalize all column and row sums (as in the standard
algorithm), but all column and row standard deviations instead. The central idea is to alternatingly
divide the rows and columns by their current standard deviations, see Alg. 1. Note that, in practice,
we accumulate the scale factors in the log-domain for numerical stability, clip update values to
avoid large jumps, and implement an early-stopping measure that keeps track of the imbalance.
Further details are given in the supplementary code. We term this approach Sinkhorn Normalized
Quantization (SINQ).

Akhondzadeh et al. suggest the kurtosis as a local proxy metric and optimization target for making
matrices more easily quantizable, in the context of finding optimal rotations to apply to each layer.
We find that 1) our imbalance optimization substantially reduces the average kurtosis of both rows
and columns and 2) that directly minimizing kurtosis (while increasing imbalance) in our setting
decreases end-to-end accuracy, see Fig. 2. This indicates that for the dual-scaling setting, imbalance
is a better proxy target for ease of quantization than kurtosis.

2.2.2 ACTIVATION-AWARE CALIBRATION: FROM AWQ TO A-SINQ

AWQ (Lin et al. (2024b)) finds a vector of scales for each input of a linear layer, by minimizing the
2-norm between the linear layers output with the original and the scaled, quantized weight matrix.
Formulaically,

α∗ = argmin
α

∥∥x⃗ ·WT − x⃗/µ⃗x
α · x⃗ · dq(q(µ⃗x

α ⊙W))T
∥∥
2
, (5)

where x⃗ is a set of inputs, µ⃗x is the sample mean of the absolute value of x⃗, q(·) is the quantization
function, dq(·) is the dequantization function and α∗ is a per-layer parameter (a scalar).1

1For results in combination with our method, we modify this formula by changing the norm to a 1-norm,
which we observe to give slightly better results in combination with SINQ.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Notably, AWQ scaling can be combined with SINQ. However, a naı̈ve approach does not work.
Suppose we feed an awq-scaled matrix into the SINQ algorithm. In that case, the iterated normal-
ization can remove the awq-scales. Instead, we first normalize the matrix as in Alg. 1, then scale
the normalized matrix with the awq-scales, and finally quantize. In this ordering of operations, the
awq-scales fulfill their purpose of weighting matrix entries by importance. The awq-scales can be
absorbed into one of the dual-scales.

2.3 IMPLEMENTATION CONSIDERATIONS

When using 1D tiling, the second scale t⃗ can be applied as a scale vector to the input of the quantized
linear layer, rather than when reconstructing the weight (see Eq. 6). In this formulation, the forward
complexity of the dual-scaling approach becomes very similar to AWQ: The term inside the square
bracket is the RTN dequantization, and for each linear layer, we need to do one additional element-
wise scaling of activations (just like in AWQ).

x⃗ ·WT
approx = x⃗ ·

[
s⃗⊙ (Q+ z⃗)⊙ t⃗

]T
=

(
x⃗⊙ t⃗

)
· [s⃗⊙ (Q+ z⃗)]

T (6)

The overhead of doing the additional scaling is small in practice, see Sec. 3.4 .

2.3.1 NO-OVERHEAD SINQ

To avoid the small overhead of the additional element-wise scaling, we can absorb these scales into
preceding layers. This comes with the caveat that for many commonly used models, some layers
need to share this second scale. In the experiments, we show that this implies a trade-off between
output quality (Appendix A.3) and a minor inference time overhead (see Sec. 3.4).

3 EXPERIMENTS

We evaluate our proposed methods against several strong baselines in 4-bit (and to a lesser extent
3-bit) quantization using the permissively licensed and powerful Qwen3 family of models by Yang
et al. (2025). We use the evaluation settings of Zheng et al. (2025). In accordance with Dutta
et al. (2024), we report perplexities for language modeling and flip percentages for QA tasks. Flip
percentages indicate how often the quantized model predicts a different result from the original full-
precision model. Additionally, benchmark results for reasoning benchmarks are provided in the
appendix. Code to reproduce the perplexities reported for our methods in this section can be found
in the supplementary.

We highlight here that our method and implementation are architecture agnostic; i.e., there is no in-
terdependency between the quantization of different layers (unlike, e.g., in methods using Hadamard
transformations). For all models we tried, it works out of the box.

Wherever there is no mention to the contrary, we set the group size to 64, batch-size to 8, and for
SINQ use 1D tiling and dual-scaling + shift parameterization.

To account for the overhead of different parameterizations and tiling strategies fairly, in our experi-
ments, we report the total memory use (including activations) and look for Pareto-optimal parame-
terizations in the output quality vs. memory trade-off.

3.1 UNCALIBRATED UNIFORM QUANTIZATION

In Tab. 1, our method outperforms the baselines in every uncalibrated case in terms of C4 (Raffel
et al. (2020)) and WikiText2 perplexity, sometimes reducing the residual difference to the 16-bit
baseline by more than half. Similarly, our method performs best in terms of the average number of
flips (see Tab. 2). Fig. 3 shows the memory-perplexity Pareto plot for different quantization methods
across a wide range of Qwen3 models. Because the Qwen3 models are available in many different
sizes, our method can dominate the bfloat16 baselines across a large range of available memory, from
ca. 1.5 GB to 65 GB. Some additional perplexity results, including on Llama models (Sec. A.6),
DeepSeek-V3 (Sec. A.7), and Mixture-of-Experts (MoE, Fedus et al. (2022)) models (Sec. A.14).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Weight-only uncalibrated uniform PTQ on Qwen3 models with 3-bit and 4-bit
quantization, reporting perplexity and actual memory usage (GB). Lower is better for all
metrics. The best result for a given setting is marked in bold.

Qwen3-1.7B Qwen3-14B Qwen3-32B

Method Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓
Original (BF16) 3.44 16.67 19.21 29.54 8.64 12.01 65.52 7.60 10.77

3-
B

IT

RTN† 1.28 32.43 31.10 9.23 10.50 14.88 17.61 30.78 35.83
Hadamard + RTN† 1.28 32.40 31.07 9.23 10.60 15.10 17.61 11.26 14.83
HQQ 1.28 32.10 30.54 9.23 10.73 14.39 17.62 9.09 12.58
SINQ (ours) 1.28 22.39 24.88 9.25 9.33 12.90 17.61 8.79 11.83

4-
B

IT

RTN† 1.42 18.74 20.81 10.54 8.95 12.50 20.78 8.92 12.80
Hadamard + RTN† 1.42 19.10 20.70 10.54 8.85 12.35 20.78 8.28 11.60
HQQ 1.42 18.96 22.10 10.54 8.78 12.36 20.78 8.62 12.20
SINQ (ours) 1.42 17.14 19.83 10.56 8.76 12.21 20.73 7.74 10.96

† Baseline result obtained by running our own implementations.

(a) (b)

Figure 3: Pareto plot in terms of memory vs. WikiText2 perplexity for Qwen3-0.6B to 32B for
different uncalibrated quantization methods. (a) compares different 4-bit methods (including FP4,
INT4, and NF4 where available). The maximum distance from the 4-bit pareto front of our method
is < 0.01ppl. Note that the difference to the baseline is small. (b) allows bit widths of 4, 6, 8.
For 8-bit quantization we inlcude LLM.int8() from Dettmers et al. (2022) as a reference method.
Both plots include the BF16 model as a baseline. For these plots we allow group sizes 64 and 128
for all methods.

3.1.1 RESULTS ON LARGE MODELS

We further evaluate our method on two large models, Qwen3-235B-A22B by Yang et al. (2025)
and DeepSeek-V2.5-236B DeepSeek-AI (2024), see Tab. 3. Notably, these are both MoE models,
and the latter uses Multi-head Latent Attention (MLA). This underlines the robustness of SINQ to
different architectures.

3.2 UNCALIBRATED NON-UNIFORM QUANTIZATION

SINQ is compatible with non-uniform quantization levels, for example, NF4 as defined by Dettmers
et al. (2023). In Tab. 4 we compare to various non-uniform 4-bit quantization methods. We simply
replace the quantization function in Alg.1 with the NF4 quantizer. Also here the SINQ method im-
proves over the NF4 baseline. We note that for the 32B model, SINQ with INT4 slightly outperforms
SINQ with NF4.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Flip rates (%) (as proposed by Dutta et al. (2024)) on HellaSwag, PIQA, and MMLU for
Qwen3 models with 3-bit and 4-bit quantization. Lower is better. The best result for a given setting
is marked in bold.

Qwen3-14B Qwen3-32B

Method HellaSwag PIQA MMLU Avg. ↓ HellaSwag PIQA MMLU Avg. ↓

C
A

L
IB

R
A

T
IO

N
-F

R
E

E

3-
B

IT

RTN† 8.44 8.60 10.97 9.34 22.84 17.08 10.61 16.84
Hadamard + RTN† 10.68 10.93 16.21 12.60 19.83 13.17 12.81 15.27
HQQ 7.99 7.94 14.28 10.07 7.23 9.30 10.98 9.17
SINQ (ours) 5.34 7.02 10.82 7.73 5.54 7.13 10.21 7.63

4-
B

IT

RTN† 2.92 4.57 4.89 4.13 4.18 6.31 5.28 5.26
BnB (FP4) 4.21 5.71 6.72 5.55 12.32 9.14 6.25 9.24
BnB (NF4) 2.66 3.10 4.70 3.49 3.73 3.48 4.76 3.99
Hadamard + RTN† 3.63 5.55 4.88 4.69 4.01 6.02 5.32 5.12
HQQ 2.81 4.35 5.17 4.11 5.83 5.18 4.98 5.33
SINQ (ours) 2.36 3.37 4.65 3.46 2.52 3.59 4.69 3.60

C
A

L
IB

R
A

T
E

D 3-
B

IT

GPTQ 5.18 7.83 11.17 8.06 6.33 8.76 10.25 8.45
Hadamard† + GPTQ 5.14 7.56 11.15 7.95 5.52 8.71 10.08 8.10
A-SINQ (ours) 5.13 7.18 10.36 7.56 5.23 7.62 10.15 7.67

4-
B

IT

GPTQ 2.24 4.13 4.56 3.64 2.78 3.48 4.80 3.69
Hadamard† + GPTQ 2.22 3.54 4.53 3.43 2.70 3.54 4.79 3.68
AWQ 2.23 3.26 4.10 3.20 2.59 4.13 4.44 3.72
A-SINQ (ours) 2.20 3.11 4.23 3.18 2.57 3.86 4.38 3.60

† Baseline result obtained by running our own implementations.

Table 3: Weight-only PTQ on DeepSeek-V2.5-236B and Qwen3-235B-A22B MoE models with
3-bit and 4-bit quantization, reporting perplexity and actual memory usage (GB). Lower is better for
all metrics. The best result for a given setting is marked in bold.

DeepSeek-V2.5-236B Qwen3-235B-A22B

Setting Method Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓
Baseline Original (BF16) 471.56 5.36 8.15 470.19 5.37 9.30

Calibration-free (3-bit) RTN 110.90 5.91 8.84 110.98 10.11 13.92
HQQ 110.92 5.89 8.76 114.43 13.07 16.38
SINQ (ours) 110.91 5.82 8.74 110.99 6.27 10.03

Calibration-free (4-bit) RTN 134.24 5.49 8.27 134.03 5.65 9.49
BnB (FP4) 134.52 5.55 8.41 134.10 6.67 10.21
BnB (NF4) 134.52 5.49 8.28 134.10 5.60 9.49
HQQ 134.25 5.49 8.27 134.03 5.60 9.46
SINQ (ours) 134.51 5.48 8.25 134.06 5.58 9.43

3.3 CALIBRATED UNIFORM QUANTIZATION

To demonstrate compatibility with calibration approaches, in Tab. 5 we consider the combination
of SINQ and AWQ (see Sec. 2.2.2 for the methodology). For a better match to the original AWQ
implementation, we quantize our s⃗, z⃗ to 8 bits in these calibrated experiments. In several cases, even
our uncalibrated method outperforms the calibrated baselines, but the addition of AWQ calibration
brings further improvements.

3.4 INFERENCE TIME

The inference time of SINQ-quantized models in the default 1D-tiling case is very close to, or iden-
tical to, that of models quantized with standard 1D-tiled methods like HQQ or GPTQ. Specifically,
the no-overhead formulation of SINQ (see Sec. 2.3.1) achieves identical inference time.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Weight-only uncalibrated PTQ on Qwen3 models with 4-bit non-uniform quantization,
reporting perplexity and actual memory usage (GB). Lower is better for all metrics. The best non-
uniform result for a given setting is marked in bold, the results where SINQ with uniform quantiza-
tion outperforms the non-uniform baselines are marked red.

Qwen3-1.7B Qwen3-14B Qwen3-32B

Method Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓
Original (BF16) 3.44 16.67 19.21 29.54 8.64 12.01 65.52 7.60 10.77

4-
B

IT

BnB (FP4) 1.42 24.05 23.44 10.59 8.88 12.54 20.67 11.93 16.90
BnB (NF4) 1.42 18.00 20.43 10.59 8.89 12.27 20.67 7.94 11.21
HIGGS (non-uniform) 1.51 23.98 25.27 10.28 9.13 12.56 19.88 8.02 11.24
SINQ (NF4) (ours) 1.42 16.94 19.83 10.56 8.72 12.13 20.73 7.83 10.97
SINQ (ours, uniform) 1.42 17.14 19.83 10.56 8.76 12.21 20.73 7.74 10.96

Table 5: Weight-only PTQ on Qwen3 models with 3-bit and 4-bit quantization, reporting perplexity
and actual memory usage (GB). Lower is better for all metrics. The best result for a given setting
is marked in bold, the calibration-free results that outperform all calibrated baselines at equal bits
(other than our own) are marked red.

Qwen3-1.7B Qwen3-14B Qwen3-32B

Method Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓
Original (BF16) 3.44 16.67 19.21 29.54 8.64 12.01 65.52 7.60 10.77

3-
B

IT

GPTQ 1.26 32.21 31.05 9.28 9.54 13.03 17.70 9.03 12.38
Hadamard† + GPTQ 1.26 24.70 25.37 9.28 9.61 12.92 17.70 8.51 11.63
A-SINQ (ours) 1.26 22.30 24.00 8.90 9.31 12.71 16.68 8.45 11.54
SINQ (ours, calibration-free) 1.28 22.39 24.88 9.25 9.33 12.90 17.61 8.79 11.83

4-
B

IT

GPTQ 1.38 19.70 21.51 10.24 8.81 12.22 19.99 7.80 10.99
Hadamard† + GPTQ 1.38 18.12 20.38 10.24 8.81 12.19 19.99 7.78 10.95
AWQ 1.38 16.90 19.95 10.25 8.78 12.24 20.00 7.79 10.96
A-SINQ (ours) 1.38 16.67 19.73 10.21 8.71 12.13 19.83 7.78 10.93
SINQ (ours, calibration-free) 1.42 17.14 19.83 10.58 8.76 12.21 20.73 7.74 10.96

† Baseline result obtained by running our own implementations.

For the standard SINQ formulation, we compare the inference time of a HQQ-quantized linear layer
using the gemlite kernel Badri et al. (2024) with that of a SINQ-quantized layer. For the latter,
we naively implement the second scale using a PyTorch element-wise multiply before applying the
kernel. As shown in Tab. 6, this incurs less than 2% overhead.

3.5 QUANTIZATION TIME

Quantization with SINQ is fast. On identical hardware, SINQ has an average runtime 1.1× our RTN
baseline. This is faster than the already efficient HQQ, at > 2×, or calibrated methods like AWQ,
at > 30× the RTN baseline. Further details are given in Tab. 10 and Fig. 5 in the appendix.

3.6 ABLATION STUDIES

In this section we compare several variants of our method, namely we compare the conditions 1)
with and without shifts, 2) 1D and 2D tiling, 3) quantized (int8) and half precision (fp16) auxiliary
variables. In Fig. 4, we see that in general, both tilings and precisions work well; differences are
minor, and both settings have their sections of the Pareto front. The use of shifts does improve the
Pareto front appreciably in some places. Based on these results, we choose a 1D tiling with shifts as
a good default setting and quantize the auxiliaries to match the methods we are comparing against.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Computational overhead of the additional scale in a naive implementation. We compare
the matmul speed of the fast gemlite kernel for W4A16 operation with and without the additional
scale as used by SINQ. In practice, this scale can often be absorbed into other operations to reduce
overhead further.

Batch Size Input Dim gemlite(x⃗) [ms] gemlite(x⃗ · t⃗) [ms] Naive Overhead [%]

1 1024 0.0446 0.0454 1.8%
1 2048 0.0448 0.0455 1.5%

64 1024 0.0472 0.0476 0.8%
64 2048 0.0479 0.0483 0.9%

(a) (b) (c)

Figure 4: Ablation experiments in the form of memory-perplexity Pareto-fronts across the Qwen3
family. (a) Auxiliary variable precision (b) Tiling dimension (c) Using or not using shifts.

4 RELATED WORK

4.1 UNCALIBRATED, UNIFORM INTEGER QUANTIZATION

Most closely related to our approach are works focusing on quantization to uniform integer values
without the use of a calibration set. Beyond the trivial (but effective) round-to-nearest (RTN) method
with scales and shifts chosen to cover the full range of the input weights, there have been two
major innovations in this domain. Firstly, half-quadratic quantization (HQQ, Badri & Shaji (2023))
proposes optimizing the values of the shifts found by RTN, so that a p-norm (usually p = 0.7) error
between the original and the quantized matrix becomes minimal. Secondly, applying a Hadamard
transform to all weights in a network has been observed to normalize the weight distributions (Tseng
et al. (2024a)), which often eases quantization. The Hadamard approach has a high-level similarity
to our approach, in that we also transform the weight matrices to find an easier-to-quantize format.

4.2 NON-UNIFORM QUANTIZATION

After training, neural network weights are usually not uniformly distributed. Therefore, quantization
incurs lower errors when the quantization levels are also non-uniform, to match the distribution
of the trained weights. Dettmers et al. (2023) proposes quantiles of the normal distribution as a
preferable set of quantization levels resulting in the normal-float-4 (NF4) format (in the 4-bit case).
The variance between optimal levels across different layers in a network is reduced when the weights
of the network have been Hadamard transformed. This is used in HIGGS by Malinovskii et al.
(2025) together with non-uniform quantization: Non-uniform quantization levels can be synergistic
with weight matrix transformations. SINQ is orthogonal to the uniformity of the quantization levels;
we show that it is compatible with non-uniform quantization in NF4-based experiments.

4.3 CALIBRATION

If quantization time and potential overfitting can be tolerated, using some data to calibrate the quan-
tized value assignments can be a practical approach. A highly influential work is GPTQ Frantar et al.
(2022) that considers the Hessian for a given layer to find weight pairs that can compensate for each
other, if their quantization errors have opposite signs. A second approach, as seen in AWQ Lin et al.
(2024b), is to minimize the prediction error of each linear layer (separately) under quantization (for

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

more details see Sec. 2.2.2). This per-layer prediction error minimization has been further developed
by Shao et al. and Ma et al.. Similar to AWQ, CrossQuant Liu et al. (2024b) finds an input axis scale
for the weight matrix with a calibration process. Elhoushi & Johnson (2025) combine non-uniform
quantization with calibration to learn optimal non-uniform quantization levels. SINQ is orthogonal
to calibration; we demonstrate its compatibility with calibration in AWQ-based experiments.

4.4 WEIGHT SPACE TRANSFORMATIONS

The concept of weight space transformation, such as applying the Hadamard transform, a random
rotation, or scaling with a diagonal matrix, can be further improved by combining it with calibration
and/or non-uniform quantization. HIGGS (Malinovskii et al. (2025)) applies Hadamard transforms
and matches non-uniform quantization levels to the typically resulting distribution. QuaRot (Ashk-
boos et al. (2024)), SpinQuant (Liu et al.), and FlatQuant (Sun et al.) combine various calibration
methods with rotations (including the Hadamard transform). Duquant (Lin et al. (2024a)) combines
learned rotations with permutations for further flexibility. In Kurtail, Akhondzadeh et al. optimize
rotations on a kurtosis proxy target. Several of these methods specifically target joint activation and
weight quantization. The key differences to our method are that we use the dual-scaling and min-
imize the matrix imbalance, allowing the method to be uniform, calibration-free and, compared to
rotated models, architecture agnostic (similar to HQQ (Badri & Shaji (2023)) and BnB (Dettmers
et al. (2023))) in the sense that each linear layer can be treated independently (which is helpful for
generalization to new architectures).

5 CONCLUSION

We have proposed using scaling factors in both matrix dimensions when representing weight matri-
ces at low precision, along with an effective method for finding good values for these scaling factors,
by simultaneously normalizing the row and column standard deviation through a modified Sinkhorn
iteration. We show in numerous experiments that this method is fast and outperforms state-of-the-
art methods for uniform quantization without calibration, and can be combined with widely used
calibrated and/or non-uniform methods.

REFERENCES

Mohammad Sadegh Akhondzadeh, Aleksandar Bojchevski, Evangelos Eleftheriou, and Martino
Dazzi. Kurtail: Kurtosis-based llm quantization. In Sparsity in LLMs (SLLM): Deep Dive into
Mixture of Experts, Quantization, Hardware, and Inference.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213–100240, 2024.

Hicham Badri and Appu Shaji. Half-quadratic quantization of large machine learning models,
November 2023. URL https://mobiusml.github.io/hqq_blog/.

Hicham Badri, et, and al. Gemlite: Triton kernels for efficient low-bit matrix multiplication, 2024.
URL https://github.com/dropbox/gemlite.

DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model, 2024.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3.int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems, 35:
30318–30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Abhinav Dutta, Sanjeev Krishnan, Nipun Kwatra, and Ramachandran Ramjee. Accuracy is not all
you need. Advances in Neural Information Processing Systems, 37:124347–124390, 2024.

10

https://mobiusml.github.io/hqq_blog/
https://github.com/dropbox/gemlite


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mostafa Elhoushi and Jeff Johnson. any4: Learned 4-bit numeric representation for llms. arXiv
preprint arXiv:2507.04610, 2025.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan
Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger quan-
tized llms. Advances in Neural Information Processing Systems, 37:87766–87800, 2024a.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of machine learning and systems,
6:87–100, 2024b.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Wenyuan Liu, Xindian Ma, Peng Zhang, and Yan Wang. Crossquant: A post-training quantization
method with smaller quantization kernel for precise large language model compression. arXiv
preprint arXiv:2410.07505, 2024b.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantiza-
tion with learned rotations. In The Thirteenth International Conference on Learning Representa-
tions.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao,
and Rongrong Ji. Affinequant: Affine transformation quantization for large language models. In
The Twelfth International Conference on Learning Representations.

Vladimir Malinovskii, Andrei Panferov, Ivan Ilin, Han Guo, Peter Richtárik, and Dan Alistarh.
Higgs: Pushing the limits of large language model quantization via the linearity theorem. In
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
10857–10886, 2025.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. In The Twelfth International Conference on Learning Representations.

Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matri-
ces. Pacific Journal of Mathematics, 21(2):343–348, 1967.

Yuxuan Sun, Ruikang Liu, Haoli Bai, Han Bao, Kang Zhao, Yuening Li, Xianzhi Yu, Lu Hou,
Chun Yuan, Xin Jiang, et al. Flatquant: Flatness matters for llm quantization. In Forty-second
International Conference on Machine Learning.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip #:
Even better llm quantization with hadamard incoherence and lattice codebooks. In International
Conference on Machine Learning, pp. 48630–48656. PMLR, 2024a.

Albert Tseng, Qingyao Sun, David Hou, and Christopher M De Sa. Qtip: Quantization with trellises
and incoherence processing. Advances in Neural Information Processing Systems, 37:59597–
59620, 2024b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
conference on machine learning, pp. 38087–38099. PMLR, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Yixin Ye, Yang Xiao, Tiantian Mi, and Pengfei Liu. Aime-preview: A rigorous and immedi-
ate evaluation framework for advanced mathematical reasoning. https://github.com/
GAIR-NLP/AIME-Preview, 2025. GitHub repository.

Xingyu Zheng, Yuye Li, Haoran Chu, Yue Feng, Xudong Ma, Jie Luo, Jinyang Guo, Haotong Qin,
Michele Magno, and Xianglong Liu. An empirical study of qwen3 quantization. arXiv preprint
arXiv:2505.02214, 2025.

A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

The code used to derive our LLM quantization results is given in the supplementary. This includes
a full implementation of our method. For our key results, the perplexity evaluations, we use open-
source code by Zheng et al. (2025) to ensure reproducible detail settings (e.g., context length). Our
code, as well as the external code we base ours on, is permissively licensed to facilitate follow-
up research. For our experiments, we use permissively licensed open-weight models to promote
reproducibility further.

A.2 RESULTS ON REASONING

In Tab. 7 we show results on reasoning benchmarks (Ye et al. (2025)). Here, we include the length of
reasoning traces to ensure that lengthened reasoning does not negate some of the upside of quantiza-
tion. Note that these are preliminary pass@1 results. These preliminary findings seem to suggest that
the proposed method sustains robust reasoning capabilities while avoiding an increase in reasoning
trace length, which is crucial for preserving the efficiency gains achieved through quantization.

Table 7: Reasoning performance on Qwen3-14B with 4-bit weight-only PTQ.

Qwen3-14B

Method AIME 2024 AIME 2025 Avg.

Tok. Acc. (%) ↑ Tok. Acc. (%) ↑ ∆ Tok. Acc. (%) ↑
Original (FP16) 11 464 76.70 12 636 63.30 0 70.00

C
A

L
IB

R
A

T
IO

N
-F

R
E

E

4-
B

IT

RTN 10 973 66.70 12 642 50.00 -242 58.35
BnB (FP4) 11 500 60.00 12 455 53.30 -72 56.65
BnB (NF4) 12 132 70.00 12 899 56.70 +930 63.35
Hadamard + RTN 11 210 70.00 12 989 53.30 +99 61.65
HQQ 11 862 70.00 12 991 56.70 +367 63.35
SINQ 11 660 73.30 12 305 63.30 -67 68.30

A.3 NO-OVERHEAD VARIANT

In Tab. 8, we show that the overhead-free formulation of SINQ also produces better quality outputs
than comparable prior methods.

A.4 COMBINATION WITH ACTIVATION QUANTIZATION

We consider the 1D tiled case where the input dimension remains ungrouped. Let
K(x4,W4, sw, zw, sx, zx) denote a standard kernel for single-scale 4-bit matrix multiplication,

12

https://github.com/GAIR-NLP/AIME-Preview
https://github.com/GAIR-NLP/AIME-Preview


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 8: Weight-only uncalibrated uniform PTQ on Qwen3 models with 4-bit quantization, re-
porting perplexity and actual memory usage (GB). Lower is better for all metrics. The best result
for a given setting is marked in bold.

Qwen3-1.7B Qwen3-14B Qwen3-32B

Method Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓
Original (BF16) 3.44 16.67 19.21 29.54 8.64 12.01 65.52 7.60 10.77

Hadamard + RTN† 1.42 19.10 20.70 10.54 8.85 12.35 20.78 8.28 11.60
HQQ 1.42 18.96 22.10 10.54 8.78 12.36 20.78 8.62 12.20
SINQ (ours) 1.42 17.14 19.83 10.56 8.76 12.21 20.73 7.74 10.96
SINQ no overhead (ours) 1.42 17.63 19.99 10.56 8.78 12.32 20.73 7.78 11.15

† Baseline result obtained by running our own implementations.

where x4 and W4 represent the 4-bit quantized activations and weights, respectively, with corre-
sponding scales s and zero-points z. Under this formulation, the SINQ linear layer is expressed as
K((x⊙t)4,W4, sw, zw, sx, zx). The key point is that the secondary scaling factor t is applied to the
high-precision input x before quantization. In this way we can preserve the efficiency of standard
4-bit integer arithmetic kernels.

In Tab. 9 we see that SINQ still obtains a consistent improvement over RTN in this setting. More
advanced methods, e.g., with SmoothQuant Xiao et al. (2023), will likely bring further gains in
future work. Additional results in a W4A8 setting (without rotations) can be found in Sec. A.10.

Table 9: Wikitext perplexity comparison on Qwen-3 models using W4A4 quantization combined
with an online block Hadamard rotation (block size 128) on activations. Lower is better. In bold is
the best result.

Qwen-3 1.7B Qwen-3 14B Qwen-3 32B

Method Wiki2 ↓ Wiki2 ↓ Wiki2 ↓
RTN 35.63 10.55 9.65
SINQ 30.76 10.44 9.53

A.5 TIMING RESULTS

In Tab. 10 we report quantization time results on a single GPU for various models. Although precise
timings may vary with hardware, our method achieves times comparable to the RTN baseline and
even surpasses HQQ, which is already regarded as a fast quantization technique. Furthermore, the
calibrated version, A-SINQ, is substantially faster than popular state-of-the-art calibrated methods
like GPTQ and AWQ. Fig. 5 shows the distribution of quantization times over 10 runs for various
popular quantization methods on Qwen3-32B on GPU.

Table 10: Average quantization time (seconds) across 10 runs for some Qwen3 models on GPU,
comparing different quantization methods. The rightmost column reports the relative average slow-
down with respect to RTN.

Method Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B Qwen3-32B Avg. cost

RTN 2.91 s ±0.11 6.32 s ±0.06 11.35 s ±0.31 20.61 s ±0.87 46.79 s ±2.52 1.00×
HQQ 3.65 s ±0.13 10.15 s ±0.27 24.06 s ±1.54 43.62 s ±0.54 122.45 s ±2.45 2.32×
GPTQ 193.33 s ±1.68 426.89 s ±0.75 669.06 s ±0.84 1160.37 s ±1.68 3064.62 s ±24.33 62.68×
AWQ 104.63 s ±9.26 225.27 s ±3.91 392.51 s ±2.86 695.29 s ±1.19 1613.75 s ±9.79 34.46×
A-SINQ (ours) 23.86 s ±0.17 49.81 s ±0.13 92.17 s ±0.33 173.93 s ±0.38 411.95 s ±0.57 8.54×
SINQ (ours) 3.03 s ±0.29 6.33 s ±0.52 13.23 s ±0.64 21.38 s ±2.15 51.56 s ±2.00 1.09×

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

RTN HQQ GPTQ AWQ SINQ_AWQ SINQ
0

500

1000

1500

2000

2500

3000

Qu
an

tiz
at

io
n 

tim
e 

(s
ec

on
ds

) Quantization time distribution by method for Qwen3-32B

Figure 5: Distribution of quantization times for each method for Qwen3-32B.

A.6 RESULTS ON LLAMA MODELS

In Tab. 11 we report quantization results on Llama family models. These findings further validate
the effectiveness of SINQ also on this type of architecture.

Table 11: Weight-only PTQ on Llama models with 3-bit and 4-bit quantization, reporting perplexity
and actual memory usage (GB). Lower is better for all metrics. In bold is the best result for a given
setting.

Llama 2-7B Llama 3-8B Llama 3-70B

Method Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓
Original (BF16) 14.08 5.47 6.90 17.45 6.13 9.61 141.11 2.86 7.30

C
A

L
IB

R
A

T
IO

N
-F

R
E

E 3-
B

IT

RTN 3.54 6.40 8.05 5.25 10.18 15.27 35.93 5.26 10.80
Hadamard + RTN 3.54 6.31 7.89 5.25 9.97 15.25 35.93 4.99 10.45
HQQ 3.62 7.05 9.03 5.24 9.55 14.68 36.16 85.64 23.32
SINQ (ours) 3.54 6.14 7.72 5.35 8.04 12.32 35.93 4.52 8.48

4-
B

IT

RTN 4.17 5.67 7.14 6.06 6.61 10.25 42.71 3.56 10.58
BnB (FP4) 4.17 5.76 7.24 6.06 6.93 10.75 42.71 3.58 8.23
Hadamard + RTN 4.17 5.65 7.10 6.06 6.72 10.23 42.71 3.54 9.95
HQQ 4.22 5.68 7.13 6.06 6.58 10.22 42.71 3.26 8.13
SINQ (ours) 4.19 5.60 7.04 6.06 6.53 10.14 42.81 3.17 7.51

BnB (NF4) 4.17 5.65 7.09 6.07 6.56 10.20 42.71 3.22 7.68
SINQ (NF4) (ours) 4.18 5.58 7.03 6.07 6.51 10.09 42.81 3.16 7.50

A.7 RESULTS ON DEEPSEEK-V3

In Tab. 12 we compare HQQ to SINQ on WikiText2 perplexity for DeepSeek-V3 Liu et al. (2024a).

Table 12: Weight-only PTQ on DeepSeek-V3-685B with 4-bit quantization. We report perplexity
on WikiText-2 (lower is better). Best per setting in bold.

Setting Method Wiki2 ↓
Calibration-free (4-bit) HQQ 5.38

SINQ 5.31

A.8 ACCURACY RESULTS

In Fig. 6 and Tab. 13 we report accuracy results on various QA tasks. Note that flips (as reported
in the main paper) are the more reliable (and less easily manipulated) metric than accuracy for

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 5 10
 Accuracy (%)

45

50

55

60

65

70

75

80

B
as

el
in

e 
Ac

cu
ra

cy
 (%

)

0 5 10
Flip Rate (%)

45

50

55

60

65

70

75

80

B
as

el
in

e 
Ac

cu
ra

cy
 (%

) Methods
Baseline (BF16)
RTN
BnB FP4
BnB NF4
Had+RTN
GPTQ
Had+GPTQ
AWQ
SINQ
A-SINQ

Figure 6: Comparison of baseline accuracy, accuracy changes, and flip rates across different 4-bit
quantization methods (similar to Dutta et al. (2024)). On QA tasks, flips have been shown to be the
more consistent quality metric of LLM quantization.

QA tasks, as shown in Dutta et al. (2024). Fig. 6 closely follows the analysis presented in prior
work Dutta et al. (2024), further confirming the alignment of our findings with existing literature.

Table 13: Accuracy (%) on HellaSwag, PIQA, and MMLU for Qwen3 models with 3-bit and 4-bit
quantization. Higher is better.

Qwen3-14B Qwen3-32B

Method HellaSwag PIQA MMLU Avg. ↑ HellaSwag PIQA MMLU Avg. ↑
Original (BF16) 60.95 80.20 78.83 73.33 63.85 80.96 81.88 75.56

C
A

L
IB

R
A

T
IO

N
-F

R
E

E

3-
B

IT

RTN 56.99 77.80 75.01 69.93 46.98 71.82 78.53 65.78
Hadamard + RTN 49.66 73.45 67.53 63.55 50.43 75.41 78.10 67.98
HQQ 55.50 77.91 72.92 68.78 59.87 77.75 78.17 71.93
SINQ (ours) 58.03 77.20 75.82 70.35 60.65 79.49 78.89 73.11

4-
B

IT

RTN 60.11 79.11 78.44 72.55 61.22 78.78 81.78 73.93
BnB (FP4) 59.41 79.38 77.62 72.14 56.97 77.91 81.20 72.03
BnB (NF4) 60.47 79.71 78.23 72.80 63.12 79.98 81.60 74.90
Hadamard + RTN 58.45 78.67 76.58 71.23 62.90 78.94 80.99 74.28
HQQ 60.24 79.76 78.24 72.75 62.33 79.92 81.68 74.64
SINQ (ours) 60.05 79.54 78.00 72.53 63.20 80.85 81.63 75.23
SINQ (NF4) (ours) 60.35 79.72 78.37 72.81 63.18 80.52 81.32 75.00

C
A

L
IB

R
A

T
E

D 3-
B

IT

GPTQ 58.34 76.71 74.75 69.93 61.16 77.86 78.94 72.65
Hadamard + GPTQ 57.41 77.75 75.10 70.08 61.26 78.45 78.78 72.83
A-SINQ (ours) 58.16 77.15 75.40 70.24 61.47 79.22 79.00 73.23

4-
B

IT

GPTQ 60.55 79.43 78.11 72.70 63.22 80.20 81.36 74.93
Hadamard + GPTQ 60.27 79.60 77.85 72.57 63.01 81.01 80.98 75.00
AWQ 60.48 79.38 78.01 72.62 63.51 79.90 81.38 74.93
A-SINQ (ours) 60.84 79.22 78.07 72.71 63.43 80.03 81.61 75.02

A.9 RESULTS ON PHI MODELS

In Tab. 14 we report quantization results on Phi family models. These findings further validate the
effectiveness of SINQ also on this type of architecture.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 14: Weight-only PTQ on Phi models with 3-bit and 4-bit quantization, reporting perplexity
and actual memory usage (GB). Lower is better for all metrics. In bold is the best result for a given
setting.

Phi-2 (3B) Phi-3 (4B) Phi-4 (15B)

Method Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓
Original (BF16) 5.18 9.82 13.83 7.11 6.01 8.96 27.31 6.67 11.13

C
A

L
IB

R
A

T
IO

N
-F

R
E

E

3-
B

IT

RTN 1.57 12.24 16.27 1.96 9.74 12.39 7.82 7.29 12.23
HQQ 1.57 11.37 15.69 1.96 11.60 16.42 7.82 7.41 15.60
SINQ (ours) 1.64 11.07 15.23 1.99 9.56 12.14 7.91 7.28 12.19

4-
B

IT

RTN 1.81 10.30 14.40 2.28 6.95 9.71 9.18 6.64 11.38
HQQ 1.81 10.09 14.23 2.28 6.85 9.70 9.18 6.80 14.84
SINQ (ours) 1.86 9.98 14.09 2.29 6.79 9.68 9.32 6.61 11.32

A.10 COMPARISON TO CROSSQUANT

Here we compare to the CrossQuant method Liu et al. (2024b). We separate these results from
the main text, because CrossQuant uses a W4A8G128 setting, so that the values are not directly
comparable to the main results (using W4A16G64) of the paper. See Tab. 15

Table 15: Wikitext perplexity comparison to CrossQuant on Llama2 models (we use context length
2048, W4A8G128 to match reported CrossQuant results). Lower is better. In bold is the best result.

Llama2-7B Llama2-13B

Method Wiki2 ↓ Wiki2 ↓
Original (BF-16) 5.47 4.88

CrossQuant 5.79 5.14
ASINQ 5.62 4.97

A.11 COMPARISON TO CODE-BOOK-BASED METHODS

Here we compare to two recent code-book-based methods by Tseng et al. (2024b) and Tseng et al.
(2024a). Note that code-book-based methods are incompatible with activation quantization and
require non-standard operations / kernels (may not be NPU, TPU, mobile compatible). See Tab. 16.

Table 16: Wikitext perplexity comparison to code-book-based models on Llama2 models (context
length 4096). Note that code-book-based methods are incompatible with activation quantization and
require non-standard operations (may not be NPU, TPU, mobile compatible).

Llama2-7B Llama2-13B

Method Wiki2 ↓ Wiki2 ↓
Baseline 5.12 4.57

QTIP 5.17 4.62
QUIP# 5.22 4.65
ASINQ 5.22 4.64

A.12 FURTHER COMPARISON TO HIGGS

For a fairer comparison to the HIGGS method, in Tab. 17 compare it to SINQ with quantized auxil-
iaries (to ensure more similar memory usage).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 17: Comparison to HIGGS method with quantized auxiliary variables to better match the
HIGGS memory use.

Qwen3-1.7B Qwen3-14B Qwen3-32B

Method Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓
Original (BF16) 3.44 16.67 19.21 29.54 8.64 12.01 65.52 7.60 10.77

4-
B

IT

HIGGS (non-uniform) 1.51 23.98 25.27 10.28 9.13 12.56 19.88 8.02 11.24
SINQ (NF4) (ours) 1.42 16.94 19.83 10.56 8.72 12.13 20.73 7.83 10.97
SINQ (NF4) (ours, q. aux.) 1.24 16.92 19.84 10.19 8.72 12.13 19.80 7.82 10.98

A.13 COMBINATION OF SINQ AND HADAMARD ROTATION

We find that combining Hadamard and SINQ does not further improve results. Intuitively, this is
because both Hadamard rotation and SINQ aim to transform the space in which we quantize the
matrix – both succeed to some extent, with SINQ having an advantage, see Tab. 18.

Table 18: Performance comparison different space transformation methods (SINQ, hadamard) and
their combination on Qwen3 models. Lower is better. In bold is the best result.

Qwen3-1.7B Qwen3-14B Qwen3-32B

Method Wiki2 ↓ Wiki2 ↓ Wiki2 ↓
Hadamard+RTN 19.10 8.85 8.28
Hadamard+SINQ 20.46 9.13 8.27
SINQ 17.14 8.76 7.74

A.14 ADDITIONAL RESULTS ON MOE MODELS

In Tab. 19 we show some perplexity results on MoE models to underline the flexibility of our method.
These results further demonstrate that SINQ is able to outperform state-of-the-art calibration-free
methods for weight quantization.

Table 19: Weight-only PTQ on DeepSeek-V2-Lite and Qwen3-30B-A3B MoE models with 3-bit
and 4-bit quantization, reporting perplexity and actual memory usage (GB). Lower is better for all
metrics. In bold is the best result for a given setting.

DeepSeek-V2-Lite Qwen3-30B-A3B

Setting Method Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓
Baseline Original (BF16) 32.55 6.31 8.83 61.06 8.70 12.15

Calibration-free (3-bit) RTN 9.12 7.94 10.98 15.10 12.28 15.89
HQQ 9.12 8.36 11.74 15.10 10.52 14.39
SINQ (ours) 9.02 7.45 10.32 15.13 10.19 13.62

Calibration-free (4-bit) RTN 10.63 6.59 9.19 18.07 9.04 12.64
BnB 10.63 6.82 9.49 18.08 9.68 12.93
HQQ 10.85 6.61 9.18 18.07 9.14 12.64
SINQ (ours) 10.50 6.49 9.07 18.13 9.02 12.41

17


	Introduction
	Methods
	Quantized Parametrization 
	Parameterization per Tile
	Tiling

	Representation Space
	Proxy Metric and Sinkhorn Normalization
	Activation-aware Calibration: From AWQ to A-SINQ

	Implementation Considerations
	No-Overhead SINQ


	Experiments
	Uncalibrated Uniform Quantization
	Results on Large Models

	Uncalibrated Non-Uniform Quantization
	Calibrated Uniform Quantization
	Inference Time
	Quantization Time
	Ablation Studies

	Related Work
	Uncalibrated, Uniform Integer Quantization
	Non-Uniform Quantization
	Calibration
	Weight Space Transformations

	Conclusion
	Appendix
	Reproducibility Statement
	Results on Reasoning
	No-Overhead variant
	Combination with Activation Quantization
	Timing Results
	Results on Llama Models
	Results on DeepSeek-V3
	Accuracy Results
	Results on Phi Models
	Comparison to CrossQuant
	Comparison to Code-Book-Based Methods
	Further Comparison to HIGGS
	Combination of SINQ and Hadamard Rotation
	Additional Results on MoE Models


