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ABSTRACT

Post-training quantization has emerged as the most widely used strategy for de-
ploying large language models at low precision. Still, current methods show per-
plexity degradation at bit-widths ≤ 4, partly because representing outliers causes
precision issues in parameters that share the same scales as these outliers. This
problem is especially pronounced for calibration-free, uniform quantization meth-
ods. We introduce SINQ to augment existing post-training quantizers with an ad-
ditional second-axis scale factor and a fast Sinkhorn–Knopp–style algorithm that
finds scales to normalize per-row and per-column variances, thereby minimizing a
novel per-matrix proxy target for quantization: the matrix imbalance. Our method
has no interactions between layers and can be trivially applied to new architectures
to quantize any linear layers. We evaluate our method on the Qwen3 model family
and DeepSeek-V2.5. SINQ improves WikiText2 and C4 perplexity significantly
against uncalibrated uniform quantization baselines and can be further enhanced
by combining it with calibration and non-uniform quantization levels. Code is
available in the supplementary.

1 INTRODUCTION

Post-training quantization (PTQ) is a powerful approach to reducing the cost of neural network
inference. Weight quantization reduces the storage, memory, and data movement required to run
a neural network. As such, it is useful on its own whenever any of these components bottleneck
the performance of an inference system. When integer (INT) or floating-point (FP) weight quan-
tization is further combined with INT or FP activation quantization, it can also be used to reduce
compute requirements by executing MatMul operations at low-precision. Potential speed-ups are
substantial: For example, moving from bfloat16 to int4 weights yields a potential speedup of 4x in
memory-bound scenarios. Weight-only quantization is especially popular in LLM deployment be-
cause accelerator memory capacity and data movement are often the initial performance bottlenecks
in this scenario.

In this paper, we demonstrate that a carefully chosen uncalibrated, uniform quantizer can approach
the end-to-end output quality of calibrated quantizers or non-uniform formats while being appre-
ciably simpler: Calibration (and even more so end-to-end optimization) is an intuitive approach to
improving the output quality of quantized models, but comes with the inherent downsides of pos-
sible bias and overfitting (Lin et al. (2024b)) and additional compute time required at quantization
time (for models under large-scale deployment, this is not concerning as the quantization cost can
be amortized over time, but for small-scale scenarios, this cost can be prohibitive). Similarly, non-
uniform formats can offer an improvement over integer quantization (Dettmers et al. (2023)), but
require potentially costly look-ups during inference and cannot be combined with activation quan-
tization in compute-limited scenarios. In brief, if uncalibrated uniform quantization were to reach
the same output quality, it would be preferable for these reasons. This paper takes a step towards
closing the gap between these different approaches to quantization.

The key contributions of this paper are:

• We propose adding a scaling factor along the second axis of to-be-quantized matrix tiles.

• We propose a new proxy metric for ease of quantization of a matrix, the matrix imbalance (Eq. 4).
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Figure 1: If we have scales along both dimensions of a matrix that is to be quantized, we can trade off
the impact of outliers between rows and columns, which is impossible in single-scale quantization.
Left: Conceptual illustration of error distributions with single or dual-scaling. Right: Example on
small matrix.

• We propose a fast algorithm based on Sinkhorn-Knopp iterations for finding these dual weight
scales to minimize the matrix imbalance (Sec. 2.2.1).

• In numerous experiments across different model scales, we show that our method improves over
state-of-the-art baselines for calibration-free quantization methods.

• We provide code for easy quantization of LLMs using linear layers.

2 METHODS

We divide our method into two parts: Firstly, the quantized parameterization, i.e. the mathematical
expression used to map between the full precision and the quantized matrix. All quantization meth-
ods used in practice, have some set of auxiliary parameters to use in this mapping. Secondly, the
representation space, i.e. the space in which we instantiate the full precision matrix when quantizing
it.

2.1 QUANTIZED PARAMETRIZATION

Typically, one does not simply replace the weight matrix with, for example, an INT4 matrix, but
rather divides it into tiles and assigns some higher-precision auxiliary parameters to each tile. Here,
we describe different possibilities for the type of auxiliary parameters to use and how to tile the
matrix.

2.1.1 PARAMETERIZATION PER TILE

Scales + Shifts The most widely used approach uses a scale and a shift vector (e.g., Badri & Shaji
(2023)), like so:

Wapprox = s⃗⊙ (Q+ z⃗) (1)
where Wapprox is a N ×M matrix (or matrix tile), s⃗ is a N × 1 vector, z⃗ is a N × 1 vector and Q is
a quantized N ×M matrix. Also, the transpose of this with 1×M vectors is commonly used.

Dual-Scales In this paper, we propose a new parameterization based on an idea we call dual-
scaling: Given a matrix (or a tile of a matrix), instead of supplying a single vector of scales along
one dimension of the matrix, we supply two vectors, one along each dimension. Formulaically, we
propose:

Wapprox = s⃗⊙Q⊙ t⃗ (2)

where s⃗ is a N × 1 vector, t⃗ is a 1×M vector and the rest is as above.

The key benefit of Eq. 2 can be illustrated as follows: Say Wij is an outlying large value. By scaling
up si and scaling down tj we can trade off quantization errors that will occur in row i for errors in
column j. See Fig. 1 for an illustration.

Dual-Scales + Shifts If we do not mind the potential additional overhead (or rather, if an accuracy
improvement justifies it), we can also add shifts to the dual scales:

Wapprox = s⃗⊙ (Q+ z⃗)⊙ t⃗ (3)
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(a) Opt. imbalance (b) Opt. imbalance (c) End-to-end

(d) Opt. kurtosis (e) Opt. kurtosis (f) Per Layer Error

Figure 2: Results on Qwen3-1.7B. Minimizing the imbalance with our algorithm (a and b) decreases
both the imbalance and the kurtosis. Minimizing the kurtosis directly with gradient descent (d and
e) yields lower kurtosis, but causes a large imbalance; note the log-scale on (d). Finally (c) and (f)
show the end-to-end perplexity on wikitext2 and per-layer RTN MSE improvement when optimizing
imbalance or kurtosis, respectively.

2.1.2 TILING

Typically, (e.g., Badri & Shaji (2023); Lin et al. (2024b)) tiling for quantization is implemented
along one dimension of the matrix that is to be quantized. By consequence, these tiles have rectan-
gular shapes; e.g., a N ×M matrix tiled with tile-size T would yield tiles of shape N × T . This
could cause a problem with the dual-scale parameterization. Namely, the standard parameterization
has 2×N ×M/T scale and shift parameters, while the dual-scaled only has N ×M/T +M .

To ensure that the dual-scale parameterization has approximately the same number of additional
parameters, we can use a 2D tiling that divides the N ×M matrix into square tiles, e.g., of shape
T × T . For square matrices, this yields the same number of auxiliary parameters as the single-scale
+ shift approach with rectangular tiling.

Alternatively, we may use dual-scale parameterization together with a shift (as in Eq. 3). With 1D
rectangular tiling, dual-scale + shift parameterization has a small additional overhead compared to
single-scale + shift parameterization; the total auxiliary parameters are 2×N ×M/T +M .

2.2 REPRESENTATION SPACE

Before assigning values to the parameters from which we will reconstruct our matrix, we may want
to transform the space in which the matrix is represented, to make the reconstruction better aligned
with some quality metric (like weight MSE or end-to-end accuracy on some validation data). The
two most common among such transformations of the weight space are rotations (like the Hadamard
transform (Ashkboos et al. (2024)), or even learned rotations (Liu et al.)), and channel-wise scal-
ing (like in activation aware quantization (AWQ, Lin et al. (2024b)) or Smoothquant (Xiao et al.
(2023))). Here, we propose a new transformation of the weight matrix using our dual-scaling pa-
rameterization.

2.2.1 PROXY METRIC AND SINKHORN NORMALIZATION

First, let us give an intuition of why dual-scaling is useful. Our dual-scaling representation offers a
kind of flexibility in parameter assignment missing in other formats (e.g., Eq. 1): In ‘single scaling’
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Algorithm 1 SINQ: Alternatingly normalize the standard deviation of the rows and columns of the
matrix to be quantized. Then apply a standard quantization method (e.g., RTN).
Require: W ∈ Rm×n, niter, bits
Ensure: Q ∈ Zm×n, s⃗ ∈ Rm, t⃗ ∈ Rn

1: σmin ← min(W.std(dim=0).min(),W.std(dim=1).min())

2: Ŵ←W
3: for i← 1 to niter do
4: σ⃗0 ← max(Ŵ.std(dim=0), σmin)

5: Ŵ← Ŵ/σ⃗0

6: σ⃗1 ← max(Ŵ.std(dim=1), σmin)

7: Ŵ← Ŵ/σ⃗1

8: end for ▷ Ŵ has std. dev. σmin on all rows and columns
9: Q, z⃗, s⃗← Quantize(Ŵ) ▷ omit z⃗ in case of symmetric quantization

10: return Q, z⃗, s⃗⊙ σ⃗1, σ⃗0 ▷ the quantized matrix, optional shifts, and the two scale vectors

formats, an outlier at position (i, j) necessarily causes all values either in column i or row j to have
a higher error, because they share a large scale (that is needed to represent the outlier). With dual-
scaling we may choose whether we distribute errors into column i or row j by assigning a higher
scale either on the row or the column (see Fig. 1 for an illustration).

To find scale factors that balance the impact of outliers between rows and columns, we propose to
minimize what we term the imbalance of the matrix. We define the imbalance I as

I(W) =
σ⃗max(W)

σ⃗min(W)
=

maxi∈{0,1} [W.std(dim=i).max()]
mini∈{0,1} [W.std(dim=i).min()]

, (4)

where σ⃗max(W) is the maximum across the standard deviations of all rows and columns of the
matrix and σ⃗min(W) the corresponding minimum (in pseudo-pytorch notation).

Note that the matrix imbalance is inconvenient to optimize with gradient descent, because of the
sparse gradients that result from the maximum and minimum operations. Instead, to find such
doubly normalizing scale-factors, we propose a modified Sinkhorn-Knopp iteration (Sinkhorn &
Knopp (1967)), where the goal is not to normalize all column and row sums (as in the standard
algorithm), but all column and row standard deviations instead. The central idea is to alternatingly
divide the rows and columns by their current standard deviations, see Alg. 1. Note that, in practice,
we accumulate the scale factors in the log-domain for numerical stability, clip update values to
avoid large jumps, and implement an early-stopping measure that keeps track of the imbalance.
Further details are given in the supplementary code. We term this approach Sinkhorn Normalized
Quantization (SINQ).

Akhondzadeh et al. suggest the kurtosis as a local proxy metric and optimization target for making
matrices more easily quantizable, in the context of finding optimal rotations to apply to each layer.
We find that 1) our imbalance optimization substantially reduces the average kurtosis of both rows
and columns and 2) that directly minimizing kurtosis (while increasing imbalance) in our setting
decreases end-to-end accuracy, see Fig. 2. This indicates that for the dual-scaling setting, imbalance
is a better proxy target for ease of quantization than kurtosis.

2.2.2 ACTIVATION-AWARE CALIBRATION: FROM AWQ TO A-SINQ

AWQ (Lin et al. (2024b)) finds a vector of scales for each input of a linear layer, by minimizing the
2-norm between the linear layers output with the original and the scaled, quantized weight matrix.
Formulaically,

α∗ = argmin
α

∥∥x⃗ ·WT − x⃗/µ⃗x
α · x⃗ · dq(q(µ⃗x

α ⊙W))T
∥∥
2
, (5)

where x⃗ is a set of inputs, µ⃗x is the sample mean of the absolute value of x⃗, q(·) is the quantization
function, dq(·) is the dequantization function and α∗ is a per-layer parameter (a scalar).1

1For results in combination with our method, we modify this formula by changing the norm to a 1-norm,
which we observe to give slightly better results in combination with SINQ.
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Notably, AWQ scaling can be combined with SINQ. However, a naı̈ve approach does not work.
Suppose we feed an awq-scaled matrix into the SINQ algorithm. In that case, the iterated normal-
ization can remove the awq-scales. Instead, we first normalize the matrix as in Alg. 1, then scale
the normalized matrix with the awq-scales, and finally quantize. In this ordering of operations, the
awq-scales fulfill their purpose of weighting matrix entries by importance. The awq-scales can be
absorbed into one of the dual-scales.

2.3 IMPLEMENTATION CONSIDERATIONS

When using 1D tiling, the second scale t⃗ can be applied as a scale vector to the output of the
quantized linear layer, rather than when reconstructing the weight (see Eq. 6). In this formulation,
the forward complexity of the dual-scaling approach becomes very similar to AWQ: The term inside
the square bracket is the RTN dequantization, and for each linear layer, we need to do one additional
element-wise scaling of activations (just like in AWQ).

x⃗ ·Wapprox = x⃗ ·
[
s⃗⊙ (Q+ z⃗)⊙ t⃗

]
= (x⃗ · [s⃗⊙ (Q+ z⃗)])⊙ t⃗ (6)

3 EXPERIMENTS

We evaluate our proposed methods against several strong baselines in 4-bit (and to a lesser extent
3-bit) quantization using the permissively licensed and powerful Qwen3 family of models by Yang
et al. (2025). We use the evaluation settings of Zheng et al. (2025). In accordance with Dutta
et al. (2024), we report perplexities for language modeling and flip percentages for QA tasks. Flip
percentages indicate how often the quantized model predicts a different result from the original full-
precision model. Additionally, benchmark results for reasoning benchmarks are provided in the
appendix. Code to reproduce the perplexities reported for our methods in this section can be found
in the supplementary.

We highlight here that our method and implementation are architecture agnostic; i.e., there is no in-
terdependency between the quantization of different layers (unlike, e.g., in methods using Hadamard
transformations). For all models we tried, it works out of the box.

Wherever there is no mention to the contrary, we set the group size to 64, batch-size to 8, and for
SINQ use 1D tiling and dual-scaling + shift parameterization.

To account for the overhead of different parameterizations and tiling strategies fairly, in our experi-
ments, we report the total memory use (including activations) and look for Pareto-optimal parame-
terizations in the output quality vs. memory trade-off.

3.1 UNCALIBRATED UNIFORM QUANTIZATION

In Tab. 1, our method outperforms the baselines in every uncalibrated case in terms of C4 (Raffel
et al. (2020)) and WikiText2 perplexity, sometimes reducing the residual difference to the 16-bit
baseline by more than half. Similarly, our method performs best in terms of the average number of
flips (see Tab. 2). Fig. 3 shows the memory-perplexity Pareto plot for different quantization methods
across a wide range of Qwen3 models. Because the Qwen3 models are available in many different
sizes, our method can dominate the bfloat16 baselines across a large range of available memory, from
ca. 1.5 GB to 65 GB. Some additional perplexity results, including on Llama models (Sec. A.4),
DeepSeek-V3 (Sec. A.5), and Mixture-of-Experts (MoE, Fedus et al. (2022)) models (Sec. A.8).

3.1.1 RESULTS ON LARGE MODELS

We further evaluate our method on two large models, Qwen3-235B-A22B by Yang et al. (2025)
and DeepSeek-V2.5-236B DeepSeek-AI (2024), see Tab. 3. Notably, these are both MoE models,
and the latter uses Multi-head Latent Attention (MLA). This underlines the robustness of SINQ to
different architectures.
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Table 1: Weight-only uncalibrated uniform PTQ on Qwen3 models with 3-bit and 4-bit
quantization, reporting perplexity and actual memory usage (GB). Lower is better for all
metrics. The best result for a given setting is marked in bold.

Qwen3-1.7B Qwen3-14B Qwen3-32B

Method Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓
Original (BF16) 3.44 16.67 19.21 29.54 8.64 12.01 65.52 7.60 10.77

3-
B

IT

RTN† 1.28 32.43 31.10 9.23 10.50 14.88 17.61 30.78 35.83
Hadamard + RTN† 1.28 32.40 31.07 9.23 10.60 15.10 17.61 11.26 14.83
HQQ 1.28 32.10 30.54 9.23 10.73 14.39 17.62 9.09 12.58
SINQ (ours) 1.28 22.39 24.88 9.25 9.33 12.90 17.61 8.79 11.83

4-
B

IT

RTN† 1.42 18.74 20.81 10.54 8.95 12.50 20.78 8.92 12.80
Hadamard + RTN† 1.42 19.10 20.70 10.54 8.85 12.35 20.78 8.28 11.60
HQQ 1.42 18.96 22.10 10.54 8.78 12.36 20.78 8.62 12.20
SINQ (ours) 1.42 17.14 19.83 10.56 8.76 12.21 20.73 7.74 10.96

† Baseline result obtained by running our own implementations.

(a) (b)

Figure 3: Pareto plot in terms of memory vs. WikiText2 perplexity for Qwen3-0.6B to 32B for
different uncalibrated quantization methods. (a) compares different 4-bit methods (including FP4,
INT4, and NF4 where available). The maximum distance from the 4-bit pareto front of our method
is < 0.01ppl. Note that the difference to the baseline is small. (b) allows bit widths of 4, 6, 8.
For 8-bit quantization we inlcude LLM.int8() from Dettmers et al. (2022) as a reference method.
Both plots include the BF16 model as a baseline. For these plots we allow group sizes 64 and 128
for all methods.

3.2 UNCALIBRATED NON-UNIFORM QUANTIZATION

SINQ is compatible with non-uniform quantization levels, for example, NF4 as defined by Dettmers
et al. (2023). In Tab. 4 we compare to various non-uniform 4-bit quantization methods. We simply
replace the quantization function in Alg.1 with the NF4 quantizer. Also here the SINQ method im-
proves over the NF4 baseline. We note that for the 32B model, SINQ with INT4 slightly outperforms
SINQ with NF4.

3.3 CALIBRATED UNIFORM QUANTIZATION

To demonstrate compatibility with calibration approaches, in Tab. 5 we consider the combination
of SINQ and AWQ (see Sec. 2.2.2 for the methodology). For a better match to the original AWQ
implementation, we quantize our s⃗, z⃗ to 8 bits in these calibrated experiments. In several cases, even
our uncalibrated method outperforms the calibrated baselines, but the addition of AWQ calibration
brings further improvements.
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Table 2: Flip rates (%) (as proposed by Dutta et al. (2024)) on HellaSwag, PIQA, and MMLU for
Qwen3 models with 3-bit and 4-bit quantization. Lower is better. The best result for a given setting
is marked in bold.

Qwen3-14B Qwen3-32B

Method HellaSwag PIQA MMLU Avg. ↓ HellaSwag PIQA MMLU Avg. ↓

C
A

L
IB

R
A

T
IO

N
-F

R
E

E

3-
B

IT

RTN† 8.44 8.60 10.97 9.34 22.84 17.08 10.61 16.84
Hadamard + RTN† 10.68 10.93 16.21 12.60 19.83 13.17 12.81 15.27
HQQ 7.99 7.94 14.28 10.07 7.23 9.30 10.98 9.17
SINQ (ours) 5.34 7.02 10.82 7.73 5.54 7.13 10.21 7.63

4-
B

IT

RTN† 2.92 4.57 4.89 4.13 4.18 6.31 5.28 5.26
BnB (FP4) 4.21 5.71 6.72 5.55 12.32 9.14 6.25 9.24
BnB (NF4) 2.66 3.10 4.70 3.49 3.73 3.48 4.76 3.99
Hadamard + RTN† 3.63 5.55 4.88 4.69 4.01 6.02 5.32 5.12
HQQ 2.81 4.35 5.17 4.11 5.83 5.18 4.98 5.33
SINQ (ours) 2.36 3.37 4.65 3.46 2.52 3.59 4.69 3.60

C
A

L
IB

R
A

T
E

D 3-
B

IT

GPTQ 5.18 7.83 11.17 8.06 6.33 8.76 10.25 8.45
Hadamard† + GPTQ 5.14 7.56 11.15 7.95 5.52 8.71 10.08 8.10
A-SINQ (ours) 5.13 7.18 10.36 7.56 5.23 7.62 10.15 7.67

4-
B

IT

GPTQ 2.24 4.13 4.56 3.64 2.78 3.48 4.80 3.69
Hadamard† + GPTQ 2.22 3.54 4.53 3.43 2.70 3.54 4.79 3.68
AWQ 2.23 3.26 4.10 3.20 2.59 4.13 4.44 3.72
A-SINQ (ours) 2.20 3.11 4.23 3.18 2.57 3.86 4.38 3.60

† Baseline result obtained by running our own implementations.

Table 3: Weight-only PTQ on DeepSeek-V2.5-236B and Qwen3-235B-A22B MoE models with
3-bit and 4-bit quantization, reporting perplexity and actual memory usage (GB). Lower is better for
all metrics. The best result for a given setting is marked in bold.

DeepSeek-V2.5-236B Qwen3-235B-A22B

Setting Method Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓
Baseline Original (BF16) 471.56 5.36 8.15 470.19 5.37 9.30

Calibration-free (3-bit) RTN 110.90 5.91 8.84 110.98 10.11 13.92
HQQ 110.92 5.89 8.76 114.43 13.07 16.38
SINQ (ours) 110.91 5.82 8.74 110.99 6.27 10.03

Calibration-free (4-bit) RTN 134.24 5.49 8.27 134.03 5.65 9.49
BnB (FP4) 134.52 5.55 8.41 134.10 6.67 10.21
BnB (NF4) 134.52 5.49 8.28 134.10 5.60 9.49
HQQ 134.25 5.49 8.27 134.03 5.60 9.46
SINQ (ours) 134.51 5.48 8.25 134.06 5.58 9.43

3.4 QUANTIZATION TIME

Quantization with SINQ is fast. On identical hardware, SINQ has an average runtime 1.1× our RTN
baseline. This is faster than the already efficient HQQ, at > 2×, or calibrated methods like AWQ,
at > 30× the RTN baseline. Further details are given in Tab. 7 and Fig. 5 in the appendix.

3.5 ABLATION STUDIES

In this section we compare several variants of our method, namely we compare the conditions 1)
with and without shifts, 2) 1D and 2D tiling, 3) quantized (int8) and half precision (fp16) auxiliary
variables. In Fig. 4, we see that in general, both tilings and precisions work well; differences are
minor, and both settings have their sections of the Pareto front. The use of shifts does improve the
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Table 4: Weight-only uncalibrated PTQ on Qwen3 models with 4-bit non-uniform quantization,
reporting perplexity and actual memory usage (GB). Lower is better for all metrics. The best non-
uniform result for a given setting is marked in bold, the results where SINQ with uniform quantiza-
tion outperforms the non-uniform baselines are marked red.

Qwen3-1.7B Qwen3-14B Qwen3-32B

Method Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓
Original (BF16) 3.44 16.67 19.21 29.54 8.64 12.01 65.52 7.60 10.77

4-
B

IT

BnB (FP4) 1.42 24.05 23.44 10.59 8.88 12.54 20.67 11.93 16.90
BnB (NF4) 1.42 18.00 20.43 10.59 8.89 12.27 20.67 7.94 11.21
HIGGS (non-uniform) 1.51 23.98 25.27 10.28 9.13 12.56 19.88 8.02 11.24
SINQ (NF4) (ours) 1.42 16.94 19.83 10.56 8.72 12.13 20.73 7.83 10.97
SINQ (ours, uniform) 1.42 17.14 19.83 10.56 8.76 12.21 20.73 7.74 10.96

Table 5: Weight-only PTQ on Qwen3 models with 3-bit and 4-bit quantization, reporting perplexity
and actual memory usage (GB). Lower is better for all metrics. The best result for a given setting
is marked in bold, the calibration-free results that outperform all calibrated baselines at equal bits
(other than our own) are marked red.

Qwen3-1.7B Qwen3-14B Qwen3-32B

Method Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓
Original (BF16) 3.44 16.67 19.21 29.54 8.64 12.01 65.52 7.60 10.77

3-
B

IT

GPTQ 1.26 32.21 31.05 9.28 9.54 13.03 17.70 9.03 12.38
Hadamard† + GPTQ 1.26 24.70 25.37 9.28 9.61 12.92 17.70 8.51 11.63
A-SINQ (ours) 1.26 22.30 24.00 8.90 9.31 12.71 16.68 8.45 11.54
SINQ (ours, calibration-free) 1.28 22.39 24.88 9.25 9.33 12.90 17.61 8.79 11.83

4-
B

IT

GPTQ 1.38 19.70 21.51 10.24 8.81 12.22 19.99 7.80 10.99
Hadamard† + GPTQ 1.38 18.12 20.38 10.24 8.81 12.19 19.99 7.78 10.95
AWQ 1.38 16.90 19.95 10.25 8.78 12.24 20.00 7.79 10.96
A-SINQ (ours) 1.38 16.67 19.73 10.21 8.71 12.13 19.83 7.78 10.93
SINQ (ours, calibration-free) 1.42 17.14 19.83 10.58 8.76 12.21 20.73 7.74 10.96

† Baseline result obtained by running our own implementations.

Pareto front appreciably in some places. Based on these results, we choose a 1D tiling with shifts as
a good default setting and quantize the auxiliaries to match the methods we are comparing against.

4 RELATED WORK

4.1 UNCALIBRATED, UNIFORM INTEGER QUANTIZATION

Most closely related to our approach are works focusing on quantization to uniform integer values
without the use of a calibration set. Beyond the trivial (but effective) round-to-nearest (RTN) method
with scales and shifts chosen to cover the full range of the input weights, there have been two
major innovations in this domain. Firstly, half-quadratic quantization (HQQ, Badri & Shaji (2023))
proposes optimizing the values of the shifts found by RTN, so that a p-norm (usually p = 0.7) error
between the original and the quantized matrix becomes minimal. Secondly, applying a Hadamard
transform to all weights in a network has been observed to normalize the weight distributions (Tseng
et al. (2024)), which often eases quantization. The Hadamard approach has a high-level similarity
to our approach, in that we also transform the weight matrices to find an easier-to-quantize format.

4.2 NON-UNIFORM QUANTIZATION

After training, neural network weights are usually not uniformly distributed. Therefore, quantization
incurs lower errors when the quantization levels are also non-uniform, to match the distribution

8
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(a) (b) (c)

Figure 4: Ablation experiments in the form of memory-perplexity Pareto-fronts across the Qwen3
family. (a) Auxiliary variable precision (b) Tiling dimension (c) Using or not using shifts.

of the trained weights. Dettmers et al. (2023) proposes quantiles of the normal distribution as a
preferable set of quantization levels resulting in the normal-float-4 (NF4) format (in the 4-bit case).
The variance between optimal levels across different layers in a network is reduced when the weights
of the network have been Hadamard transformed. This is used in HIGGS by Malinovskii et al.
(2025) together with non-uniform quantization: Non-uniform quantization levels can be synergistic
with weight matrix transformations. SINQ is orthogonal to the uniformity of the quantization levels;
we show that it is compatible with non-uniform quantization in NF4-based experiments.

4.3 CALIBRATION

If quantization time and potential overfitting can be tolerated, using some data to calibrate the quan-
tized value assignments can be a practical approach. A highly influential work is GPTQ Frantar et al.
(2022) that considers the Hessian for a given layer to find weight pairs that can compensate for each
other, if their quantization errors have opposite signs. A second approach, as seen in AWQ Lin et al.
(2024b), is to minimize the prediction error of each linear layer (separately) under quantization (for
more details see Sec. 2.2.2). This per-layer prediction error minimization has been further developed
by Shao et al. and Ma et al.. Elhoushi & Johnson (2025) combine non-uniform quantization with
calibration to learn optimal non-uniform quantization levels. SINQ is orthogonal to calibration; we
demonstrate its compatibility with calibration in AWQ-based experiments.

4.4 WEIGHT SPACE TRANSFORMATIONS

The concept of weight space transformation, such as applying the Hadamard transform, a random
rotation, or scaling with a diagonal matrix, can be further improved by combining it with calibration
and/or non-uniform quantization. HIGGS (Malinovskii et al. (2025)) applies Hadamard transforms
and matches non-uniform quantization levels to the typically resulting distribution. QuaRot (Ashk-
boos et al. (2024)), SpinQuant (Liu et al.), and FlatQuant (Sun et al.) combine various calibration
methods with rotations (including the Hadamard transform). Duquant (Lin et al. (2024a)) combines
learned rotations with permutations for further flexibility. In Kurtail, Akhondzadeh et al. optimize
rotations on a kurtosis proxy target. Several of these methods specifically target joint activation and
weight quantization. The key differences to our method are that we use the dual-scaling and min-
imize the matrix imbalance, allowing the method to be uniform, calibration-free and, compared to
rotated models, architecture agnostic (similar to HQQ (Badri & Shaji (2023)) and BnB (Dettmers
et al. (2023))) in the sense that each linear layer can be treated independently (which is helpful for
generalization to new architectures).

5 CONCLUSION

We have proposed using scaling factors in both matrix dimensions when representing weight matri-
ces at low precision, along with an effective method for finding good values for these scaling factors,
by simultaneously normalizing the row and column standard deviation through a modified Sinkhorn
iteration. We show in numerous experiments that this method is fast and outperforms state-of-the-
art methods for uniform quantization without calibration, and can be combined with widely used
calibrated and/or non-uniform methods.

9
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A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

The code used to derive our LLM quantization results is given in the supplementary. This includes
a full implementation of our method. For our key results, the perplexity evaluations, we use open-
source code by Zheng et al. (2025) to ensure reproducible detail settings (e.g., context length). Our
code, as well as the external code we base ours on, is permissively licensed to facilitate follow-
up research. For our experiments, we use permissively licensed open-weight models to promote
reproducibility further.

A.2 RESULTS ON REASONING

In Tab. 6 we show results on reasoning benchmarks (Ye et al. (2025)). Here, we include the length of
reasoning traces to ensure that lengthened reasoning does not negate some of the upside of quantiza-
tion. Note that these are preliminary pass@1 results. These preliminary findings seem to suggest that
the proposed method sustains robust reasoning capabilities while avoiding an increase in reasoning
trace length, which is crucial for preserving the efficiency gains achieved through quantization.
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Table 6: Reasoning performance on Qwen3-14B with 4-bit weight-only PTQ.

Qwen3-14B

Method AIME 2024 AIME 2025 Avg.

Tok. Acc. (%) ↑ Tok. Acc. (%) ↑ ∆ Tok. Acc. (%) ↑
Original (FP16) 11 464 76.70 12 636 63.30 0 70.00

C
A

L
IB

R
A

T
IO

N
-F

R
E

E

4-
B

IT

RTN 10 973 66.70 12 642 50.00 -242 58.35
BnB (FP4) 11 500 60.00 12 455 53.30 -72 56.65
BnB (NF4) 12 132 70.00 12 899 56.70 +930 63.35
Hadamard + RTN 11 210 70.00 12 989 53.30 +99 61.65
HQQ 11 862 70.00 12 991 56.70 +367 63.35
SINQ 11 660 73.30 12 305 63.30 -67 68.30

A.3 TIMING RESULTS

In Tab. 7 we report quantization time results on a single GPU for various models. Although precise
timings may vary with hardware, our method achieves times comparable to the RTN baseline and
even surpasses HQQ, which is already regarded as a fast quantization technique. Furthermore, the
calibrated version, A-SINQ, is substantially faster than popular state-of-the-art calibrated methods
like GPTQ and AWQ. Fig. 5 shows the distribution of quantization times over 10 runs for various
popular quantization methods on Qwen3-32B on GPU.

Table 7: Average quantization time (seconds) across 10 runs for some Qwen3 models on GPU, com-
paring different quantization methods. The rightmost column reports the relative average slowdown
with respect to RTN.

Method Qwen3-1.7B Qwen3-4B Qwen3-8B Qwen3-14B Qwen3-32B Avg. cost

RTN 2.91 s ±0.11 6.32 s ±0.06 11.35 s ±0.31 20.61 s ±0.87 46.79 s ±2.52 1.00×
HQQ 3.65 s ±0.13 10.15 s ±0.27 24.06 s ±1.54 43.62 s ±0.54 122.45 s ±2.45 2.32×
GPTQ 193.33 s ±1.68 426.89 s ±0.75 669.06 s ±0.84 1160.37 s ±1.68 3064.62 s ±24.33 62.68×
AWQ 104.63 s ±9.26 225.27 s ±3.91 392.51 s ±2.86 695.29 s ±1.19 1613.75 s ±9.79 34.46×
A-SINQ (ours) 23.86 s ±0.17 49.81 s ±0.13 92.17 s ±0.33 173.93 s ±0.38 411.95 s ±0.57 8.54×
SINQ (ours) 3.03 s ±0.29 6.33 s ±0.52 13.23 s ±0.64 21.38 s ±2.15 51.56 s ±2.00 1.09×

RTN HQQ GPTQ AWQ SINQ_AWQ SINQ
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Figure 5: Distribution of quantization times for each method for Qwen3-32B.

A.4 RESULTS ON LLAMA MODELS

In Tab. 8 we report quantization results on Llama family models. These findings further validate the
effectiveness of SINQ also on this type of architecture.
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Table 8: Weight-only PTQ on Llama models with 3-bit and 4-bit quantization, reporting perplexity
and actual memory usage (GB). Lower is better for all metrics. In bold is the best result for a given
setting.

Llama 2-7B Llama 3-8B Llama 3-70B

Method Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓
Original (BF16) 14.08 5.47 6.90 17.45 6.13 9.61 141.11 2.86 7.30

C
A

L
IB

R
A

T
IO

N
-F

R
E

E 3-
B

IT

RTN 3.54 6.40 8.05 5.25 10.18 15.27 35.93 5.26 10.80
Hadamard + RTN 3.54 6.31 7.89 5.25 9.97 15.25 35.93 4.99 10.45
HQQ 3.62 7.05 9.03 5.24 9.55 14.68 36.16 85.64 23.32
SINQ (ours) 3.54 6.14 7.72 5.35 8.04 12.32 35.93 4.52 8.48

4-
B

IT

RTN 4.17 5.67 7.14 6.06 6.61 10.25 42.71 3.56 10.58
BnB (FP4) 4.17 5.76 7.24 6.06 6.93 10.75 42.71 3.58 8.23
Hadamard + RTN 4.17 5.65 7.10 6.06 6.72 10.23 42.71 3.54 9.95
HQQ 4.22 5.68 7.13 6.06 6.58 10.22 42.71 3.26 8.13
SINQ (ours) 4.19 5.60 7.04 6.06 6.53 10.14 42.81 3.17 7.51

BnB (NF4) 4.17 5.65 7.09 6.07 6.56 10.20 42.71 3.22 7.68
SINQ (NF4) (ours) 4.18 5.58 7.03 6.07 6.51 10.09 42.81 3.16 7.50

A.5 RESULTS ON DEEPSEEK-V3

In Tab. 9 we compare HQQ to SINQ on WikiText2 perplexity for DeepSeek-V3 Liu et al. (2024).

Table 9: Weight-only PTQ on DeepSeek-V3-685B with 4-bit quantization. We report perplexity on
WikiText-2 (lower is better). Best per setting in bold.

Setting Method Wiki2 ↓
Calibration-free (4-bit) HQQ 5.38

SINQ 5.31

A.6 ACCURACY RESULTS

In Fig. 6 and Tab. 10 we report accuracy results on various QA tasks. Note that flips (as reported
in the main paper) are the more reliable (and less easily manipulated) metric than accuracy for
QA tasks, as shown in Dutta et al. (2024). Fig. 6 closely follows the analysis presented in prior
work Dutta et al. (2024), further confirming the alignment of our findings with existing literature.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 5 10
 Accuracy (%)

45

50

55

60

65

70

75

80

B
as

el
in

e 
Ac

cu
ra

cy
 (%

)

0 5 10
Flip Rate (%)

45

50

55

60

65

70

75

80

B
as

el
in

e 
Ac

cu
ra

cy
 (%

) Methods
Baseline (BF16)
RTN
BnB FP4
BnB NF4
Had+RTN
GPTQ
Had+GPTQ
AWQ
SINQ
A-SINQ

Figure 6: Comparison of baseline accuracy, accuracy changes, and flip rates across different 4-bit
quantization methods (similar to Dutta et al. (2024)). On QA tasks, flips have been shown to be the
more consistent quality metric of LLM quantization.

Table 10: Accuracy (%) on HellaSwag, PIQA, and MMLU for Qwen3 models with 3-bit and 4-bit
quantization. Higher is better.

Qwen3-14B Qwen3-32B

Method HellaSwag PIQA MMLU Avg. ↑ HellaSwag PIQA MMLU Avg. ↑
Original (BF16) 60.95 80.20 78.83 73.33 63.85 80.96 81.88 75.56

C
A

L
IB

R
A

T
IO

N
-F

R
E

E

3-
B

IT

RTN 56.99 77.80 75.01 69.93 46.98 71.82 78.53 65.78
Hadamard + RTN 49.66 73.45 67.53 63.55 50.43 75.41 78.10 67.98
HQQ 55.50 77.91 72.92 68.78 59.87 77.75 78.17 71.93
SINQ (ours) 58.03 77.20 75.82 70.35 60.65 79.49 78.89 73.11

4-
B

IT

RTN 60.11 79.11 78.44 72.55 61.22 78.78 81.78 73.93
BnB (FP4) 59.41 79.38 77.62 72.14 56.97 77.91 81.20 72.03
BnB (NF4) 60.47 79.71 78.23 72.80 63.12 79.98 81.60 74.90
Hadamard + RTN 58.45 78.67 76.58 71.23 62.90 78.94 80.99 74.28
HQQ 60.24 79.76 78.24 72.75 62.33 79.92 81.68 74.64
SINQ (ours) 60.05 79.54 78.00 72.53 63.20 80.85 81.63 75.23
SINQ (NF4) (ours) 60.35 79.72 78.37 72.81 63.18 80.52 81.32 75.00

C
A

L
IB

R
A

T
E

D 3-
B

IT

GPTQ 58.34 76.71 74.75 69.93 61.16 77.86 78.94 72.65
Hadamard + GPTQ 57.41 77.75 75.10 70.08 61.26 78.45 78.78 72.83
A-SINQ (ours) 58.16 77.15 75.40 70.24 61.47 79.22 79.00 73.23

4-
B

IT

GPTQ 60.55 79.43 78.11 72.70 63.22 80.20 81.36 74.93
Hadamard + GPTQ 60.27 79.60 77.85 72.57 63.01 81.01 80.98 75.00
AWQ 60.48 79.38 78.01 72.62 63.51 79.90 81.38 74.93
A-SINQ (ours) 60.84 79.22 78.07 72.71 63.43 80.03 81.61 75.02

A.7 FURTHER COMPARISON TO HIGGS

For a fairer comparison to the HIGGS method, in Tab. 11 compare it to SINQ with quantized auxil-
iaries (to ensure more similar memory usage).
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Table 11: Comparison to HIGGS method with quantized auxiliary variables to better match the
HIGGS memory use.

Qwen3-1.7B Qwen3-14B Qwen3-32B

Method Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓
Original (BF16) 3.44 16.67 19.21 29.54 8.64 12.01 65.52 7.60 10.77

4-
B

IT

HIGGS (non-uniform) 1.51 23.98 25.27 10.28 9.13 12.56 19.88 8.02 11.24
SINQ (NF4) (ours) 1.42 16.94 19.83 10.56 8.72 12.13 20.73 7.83 10.97
SINQ (NF4) (ours, q. aux.) 1.24 16.92 19.84 10.19 8.72 12.13 19.80 7.82 10.98

A.8 ADDITIONAL RESULTS ON MOE MODELS

In Tab. 12 we show some perplexity results on MoE models to underline the flexibility of our method.
These results further demonstrate that SINQ is able to outperform state-of-the-art calibration-free
methods for weight quantization.

Table 12: Weight-only PTQ on DeepSeek-V2-Lite and Qwen3-30B-A3B MoE models with 3-bit
and 4-bit quantization, reporting perplexity and actual memory usage (GB). Lower is better for all
metrics. In bold is the best result for a given setting.

DeepSeek-V2-Lite Qwen3-30B-A3B

Setting Method Mem. Wiki2 ↓ C4 ↓ Mem. Wiki2 ↓ C4 ↓
Baseline Original (BF16) 32.55 6.31 8.83 61.06 8.70 12.15

Calibration-free (3-bit) RTN 9.12 7.94 10.98 15.10 12.28 15.89
HQQ 9.12 8.36 11.74 15.10 10.52 14.39
SINQ (ours) 9.02 7.45 10.32 15.13 10.19 13.62

Calibration-free (4-bit) RTN 10.63 6.59 9.19 18.07 9.04 12.64
BnB 10.63 6.82 9.49 18.08 9.68 12.93
HQQ 10.85 6.61 9.18 18.07 9.14 12.64
SINQ (ours) 10.50 6.49 9.07 18.13 9.02 12.41
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