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ABSTRACT

Diffusion models have emerged as powerful priors for image editing tasks such
as inpainting and local modification, where the objective is to generate realistic
content that remains consistent with observed regions. In particular, zero-shot
approaches that leverage a pretrained diffusion model, without any retraining, have
been shown to achieve highly effective reconstructions. However, state-of-the-art
zero-shot methods typically rely on a sequence of surrogate likelihood functions,
whose scores are used as proxies for the ideal score. This procedure however
requires vector-Jacobian products through the denoiser at every reverse step, in-
troducing significant memory and runtime overhead. To address this issue, we
propose a new likelihood surrogate that yields simple and efficient to sample Gaus-
sian posterior transitions, sidestepping the backpropagation through the denoiser
network. Our extensive experiments show that our method achieves strong ob-
servation consistency compared with fine-tuned baselines and produces coherent,
high-quality reconstructions, all while significantly reducing inference cost.

1 INTRODUCTION

We focus on inpainting problems in computer vision, which play a central role in applications ranging
from photo restoration to content creation and interactive design. Given an image with prescribed
missing pixels, the objective is to generate a semantically coherent completion while ensuring strict
consistency with the observed region. The importance of this task has motivated extensive research,
spanning both classical approaches and, more recently, generative modeling with diffusion models
(Rombach et al., 2022; Esser et al., 2024; Batifol et al., 2025; Wu et al., 2025).

To address this problem, two main diffusion-based approaches have been popularized. The first relies
on training conditional diffusion models tailored to a specific editing setup. These models directly
approximate the conditional distribution of interest (Saharia et al., 2022; Wang et al., 2023a; Kawar
et al., 2023; Huang et al., 2025) and take as side inputs additional information such as a mask, a text
prompt, or reference pixels (Saharia et al., 2022; Wang et al., 2023a; Kawar et al., 2023; Huang et al.,
2025). An alternative approach, which has recently attracted growing attention, is zero-shot image
editing, requiring no extra training or fine-tuning. In this formulation, the task is cast as a Bayesian
inverse problem: the pre-trained diffusion model serves as a prior, while a likelihood term enforces
fidelity to the observations, and the resulting posterior distribution defines the reconstructions (Song &
Ermon, 2019; Song et al., 2021b; Kadkhodaie & Simoncelli, 2020; Kawar et al., 2022; Lugmayr et al.,
2022; Avrahami et al., 2022; Chung et al., 2023; Mardani et al., 2024; Rout et al., 2024a). Sampling
from this posterior is achieved by approximating the score functions associated with the diffusion
model adapted to this distribution. This plug-and-play paradigm has been investigated across a variety
of inverse problems, from image restoration to scientific imaging, and has demonstrated strong editing
performance without task-specific training.

While current zero-shot methods are appealing, they face a critical practical limitation. Implemen-
tations of strong zero-shot posterior sampling with diffusion priors typically rely on the twisting
function proposed by Ho et al. (2022); Chung et al. (2023); Song et al. (2023a), which corresponds to
the likelihood evaluated at the denoiser’s output given the observation. Simulating the corresponding
reverse diffusion process requires computing gradients of the denoiser with respect to its input. This
in turn entails repeated backpropagation through the denoiser network and costly vector—Jacobian
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Figure 1: Zero-shot inpainting edits generated by DING (50 NFEs) for different masking patterns using Stable
Diffusion 3.5 (medium). Given masked inputs (left column), the model fills the missing regions according to
diverse textual prompts.

product (VJP) evaluations. This makes such methods computationally demanding, memory intensive,
and often slower than training a dedicated conditional model.

Contributions. We propose a new VJP-free framework for zero-shot inpainting with a pre-trained
diffusion prior. Our key idea is to approximate the intractable twisted posterior-sampling transitions
by a closed-form mixture distribution that can be sampled exactly, thereby eliminating the need
for VJP evaluations and backpropagation through the denoiser. Concretely, we modify the twisting
function of Ho et al. (2022); Chung et al. (2023) so that it evaluates the denoiser at an independent
draw from the pretrained transition. This decoupling breaks the dependency between the denoiser
and the arguments of the transition density. As a result, our method provides posterior transitions
that can be sampled efficiently for zero-shot inpainting with latent diffusion models. We demonstrate
through extensive experiments on Stable Diffusion (SD) 3.5 that our method, coined DECOUPLED
INPAINTING GUIDANCE (DING), consistently outperforms state-of-the-art guidance methods under
low NFE budgets. It achieves, across three benchmarks, the best trade-off between fidelity to the
visible content and realism of the reconstructions, while being both faster and more memory-efficient
than competing approaches. Remarkably, even without any task-specific fine-tuning, it outperforms
an SD 3 model that has been fine-tuned for image editing, confirming the effectiveness and practicality
of our framework.

2 BACKGROUND

Diffusion models Denoising diffusion models (DDMs) (Sohl-Dickstein et al., 2015; Song &
Ermon, 2019; Ho et al., 2020) define a generative process for a data distribution p,, by constructing
a continuous path (p;)c[o,1] of distributions between py and p; = N(0,14). More precisely,
p; = Law(Xy), where

Xi = Xog+0: X1, Xo~py, X1~p;. 2.1

Here X and X are supposed to be independent and (a)¢cjo,1) and (0¢).e[0,1] are deterministic,
non-increasing and non-decreasing, respectively, schedules with boundary conditions («, 0¢) =
(1,0) and (a1, 01) := (0, 1). Typical choices include the variance-preserving schedule, satisfying
ozf + af = 1 (Ho et al., 2020; Dhariwal & Nichol, 2021), and the linear schedule, defined by
(at,01) = (1 —t,t) (Lipman et al., 2023; Esser et al., 2024; Gao et al., 2024). The path (p,):c[o.1]
defines an interpolation that gradually transforms the clean data distribution p, into the Gaussian
reference distribution p,. To generate new samples, DDMs simulate a time-reversed Markov chain.
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Given a decreasing sequence (;)1_ of time steps with ¢ = 1 and ¢y = 0, reverse transitions are
iteratively applied to map a sample from p,, _ to one from p, , thereby progressively denoising until
convergence to the clean distribution p,.

The DDIM framework (Song et al., 2021a) introduces a general family of reverse transitions for
denoising diffusion models. It defines a new schedule (7;)c|o,1), satisfying n; < o forall ¢ € [0, 1],
along with a family of transition densities given for s < ¢ by

P (xslxe) = B[ a2 (51X, X1) | X0 = %] 22)

where 7o  (Xs[x0,X1) = N(Xs; asXo+1/02 — 12 x1, 12I) and the random variables (Xo, X, X1)
are defined as in (2.1). By construction, this family satisfies the marginalization property
ps(xs) = [ Pl (xs|%¢) pp(x¢) dx; (Song et al., 2021a, Appendix B). Thus, (ngtkH)kK:_O1 defines

a consistent set of reverse transitions, enabling stepwise sampling from the sequence (p;, )&_,. In
practice, however, these transitions are intractable. A common approximation is to replace X
and X; in (2.2) by their conditional expectations (Ho et al., 2020; Song et al., 2021a). More
precisely, let X§(-,¢) denote a parametric estimator of X,(x;,t) = E[X, | X; = x;]. Since
E[X1|Xt = Xt] = (Xt — Oét)ACO(Xt, t))/O’t, we set )Ac?(xt,t) = (Xt — Oét)A(g(Xht))/Ut. Then the
parametric model proposed by Ho et al. (2020); Song et al. (2021a) corresponds to approximating
each py, ., by

,0 . -0 50
p?klthrl (th|xtk+1) = q;’k\o,l(xtk|X0(th+17tk’+1)7xl(xtk+17tk'+1)) . (2.3)

For k =0, pg(fl (:|x¢,) is simply defined as the Dirac mass at X§(x;, , ¢1). In the rest of the paper we
omit the superscript  when there is no ambiguity.

Image editing In this work, we address the task of image editing via inpainting. We assume access
to some reference image x,, € R? that must be modified while remaining consistent with a prescribed
set of observed pixels. Letm C {1,...,d} denote the index set of missing (masked) pixels, and let
m = {1,...,d} \ m be the index set of observed (unmasked) pixels, with cardinality |m| = dy,.. For
any x € R?andi C {1,...,d}, we denote by x[i] € Rl the subvector formed by the components
of x with indices i. The observation is thus given by y := x.[m], and the objective is to synthesize
a reconstruction X such that X[m] ~ y while generating the missing region X[m)] in a realistic and
semantically coherent manner with respect to the observed pixels. In the Bayesian formulation, the
data distribution pg serves as a prior over natural images, while the observation model is encoded by
a Gaussian likelihood on the observed coordinates:

— 2
lo(ylx) = N(y; x[m], o3 I, ) 24
The parameter o, > 0 serves as a relaxation factor: smaller values enforce strict adherence to
the observation, while larger values permit controlled deviations from x.., thereby facilitating the

reconstruction process. In this Bayesian framework, the target distribution from which we aim to
sample is the posterior distribution

7o (X0ly) o £o(¥|x0) Po(%0) - (2.5)

Inference-time guidance As observed in the seminal works of Song & Ermon (2019); Kadkhodaie
& Simoncelli (2020); Song et al. (2021b); Kawar et al. (2021), approximate sampling from the
posterior distribution can be performed by biasing the denoising process with guidance terms, without
requiring any additional fine-tuning. The central idea is to modify the sampling dynamics of diffusion
models on-the-fly so that the generated samples both satisfy the likelihood constraint ¢,(y|-) and
remain plausible under the prior p,. More precisely, a standard approach is to approximate the
iterative updates of a diffusion model defined to target the posterior £,(y|-). This in turn entails
deriving an approximation of the posterior denoiser X, (xy, t|y) = [ xq 7, (Xo|x¢, y) dxo, where
o (Xo|Xt, ¥) o 7o (x0]y)N(x¢; uxo, 071). The denoiser X (-, t|y) is related to the prior denoiser
via the identity

%o (X4, ty) = %o (X1, 1) + o 02V, log £, (y|x) (2.6)
where the additional term is referred to as the guidance term; see (Daras et al., 2024, Eq. 2.15 and
2.17). It is defined as the logarithmic gradient of the propagated likelihood

C(y|xt) = /60(y|x0)po‘t(xo|xt) dxg , with pg;(xo|x¢) x po(xo) N(x¢; cuxo, atzl) @27
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Algorithm 1 Posterior sampling with decoupled guidance

1: Input: decreasing timesteps (tk)gzK with tx = 1, tg = 0; original image x,; mask m;
DDIM parameters (1) s

2: y « x,[m]; x~N(0,1y)

3: fork=K —1to1ldo

D %o ¢ X0(%, b))

X1 (X - atk+1X0)/Utk+1

W ay Xo + (Jfk — 77,%)1/2&1

/* Sampling (3.4) */

7: (W7 Wl) ES N(Od, Id)

8  zZ+ p+ngw

9: XYV« (z— atk_fcg(z,tk))/atk

10: gy g /(nF, + a7 0y)

11:  x[m] < p[m] + npw'[m]

12:  x[m] < (1 —y)pu[m] + 'y(atky + otkiﬁ’xy[ﬁ]) + a4, 0y /W' [M]

13: end for

14: Return: x§(x, ;)

AN AN

see (Daras et al., 2024, Equation 2.20). Since the pre-trained parametric approximation x(-, ¢) of the
prior denoiser X (-, t) is already available, estimating X, (-, t|y) reduces to computing the intractable
score term Vi, log £, (y|x:). A widely adopted approximation (Ho et al., 2022; Chung et al., 2023)
replaces pq, (+|x¢) in (2.7) by a Dirac mass at the denoiser estimate X{(x;, t), yielding

L (yIxe) = Loy [%5 (xe, 1)) - (2.8)

This approximation is often combined with a suitable rescaling weight (possibly depending on x;);
see (Ho et al., 2022, Equation 8) and (Chung et al., 2023, Algorithm 1). Substituting this into the
identity (2.6) yields an approximation of the posterior denoiser, which in turn defines an approximate
diffusion model for 7, (-|y).

3 METHOD

The methods discussed in the previous section rely on the likelihood approximation (2.8), which is
then inserted into (2.6). However, computing this term requires differentiating through the denoisers
%4 (-, %) at each timestep t). This operation is computationally demanding: it increases memory
usage, slows down the sampling process, and reduces scalability. By contrast, fine-tuned conditional
diffusion models bypass these inference costs once training is complete, but at the expense of per-task
retraining. This highlights a fundamental trade-off: zero-shot posterior sampling eliminates the
need for retraining, but incurs substantial overhead during inference. Our goal is to bridge this gap
by designing a zero-shot posterior sampler that removes the need for backpropagation through the
denoiser while preserving the effectiveness of guidance.

Reverse transitions for the posterior. Our method builds upon the alternative sampling strategy
introduced in Wu et al. (2023); Zhang et al. (2023); Janati et al. (2024). Instead of initializing
the interpolation (2.1) with the prior Xy ~ p,, we consider the same process initialized from the
posterior distribution X ~ ,(:|y). This yields a new family of random variables whose marginals
are T, (x¢ly) = [ N(x¢; ayxo, 071q) 7o(%0|y) dxo, in analogy with the prior family (p;):efo11-
Moreover, the DDIM transitions associated with (7, (-|y)):e[o,1] are given by (Janati et al., 2025b,
Equation 1.17):

T (Xs %2, y) o gs(Y|XS)pZ\t<X8|Xt) ) 3.1

which defines a valid Markov chain with marginals (7, (-|y))7—,. This chain defines a path between
the Gaussian reference N (0,1;) and the posterior distribution 7, (-|y). However, the presence of
the likelihood term ¢, (y|x:) makes also these transitions intractable. To address this issue, prior
works (Zhang et al., 2023; Wu et al., 2023) introduced the surrogate transitions proportional to

Xg > @g(y|xs)pggf(xs\xt), for fixed x; and y, where ¢ (y|-) are defined in (2.8). These transitions
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are then approximated using either variational inference (Janati et al., 2024; Pandey et al., 2025) or
sequential Monte Carlo methods (Wu et al., 2023). However, similar to the methods described in the
previous section, these approximations rely on the approximate guidance term and thus suffer from
inflated memory usage and higher runtime.

Our likelihood approximation. To address this limitation, we draw inspiration from (2.8) to
propose a lightweight approximation, designed to eliminate the need for VJP evaluations through
the denoiser. Using the relation X (x,, s) = (x, — 0% (x5, 5))/as, we first rewrite the standard
likelihood approximation (2.8) in terms of the noise prediction x{ (x, s) according to

Cylxs) = Loly(xs — 0u%] (x5, 8)) fs) -
Based on this parametrization, we then introduce the following alternative approximation:

gg(Y‘Xm zs) = Lo(y|(xs — Usf{?(zs’ s))/as) (3.2)
where the noise predictor is evaluated at z, € R, which serves as a proxy for x,. A key feature of
this decoupling is that it enables lightweight updates, avoids costly denoiser backpropagation, and
still provides high-quality reconstructions. Then, similarly to (3.1), we define

~ Py 0
7rg|t(xs|zs,xt,y) X Eg(y|xs, zs) Py (Xs|xt) -
This leads us to propose the surrogate

The(alxey) = B [7 (%l Ze %0 ¥)] (3.3)
where Zs ~ p?,(-|x;), for (3.1). The transition 7%, (xs|x;,y) generally lacks a closed-form ex-
pression; nevertheless, since it has a mixture structure, it allows for straightforward and efficient
sampling. Sampling from 7%, (x,|x;,y) can be performed by first drawing Z, from p?,(-|x;), and
then sampling from frf‘t(xs |Zs,x¢,y). Moreover, as we will now show, in the case of inpainting, the
second step can be carried out exactly.

Let p?,,(x4;n) denote the mean of the Gaussian reverse transition p; 9(.|x,). In the case of inpainting

(2.4), standard Gaussian conjugacy results (Bishop, 2006, Equation 2.116) show that frg‘t( |Zs, Xt,Y)
admits a closed-form Gaussian expression:

0 (%25, %2, y) = N (s [ml; puy (xe5m) (], 72T4-a, )
X N(Xs [ﬁ] (]- - ’Yslt)ll/g\t(xﬁn)[ﬁ] + Vsit (asy + Us*?(zsa S)[ﬁ]) Oéz(ff,%\t Iq ) , (3.4)

with v ¢ == n2/(n? + o20 ) A derivation is provided in Appendix A.1. Thus, a sample X from
(3.3) can be drawn exactly by, first, generating a realization zs of Z; ~ psng (-|x¢) and, second,
sampling X[m] and X[m]| conditionally independently from the two Gaussian distributions in
(3.4); see Algorithm 1 for a pseudocode of this approach, which we refer to as DING (see Section 1).

Practical implementation. A key practical feature of our method is that it depends on a single
hyperparameter: the sequence (7;)¢c|o,1] of standard deviations, which controls the level of stochas-
ticity in the DDIM reverse process. This choice is particularly critical in the low-NFE regime, where
only a few function evaluations are available and the variance schedule strongly influences both
observation fidelity and perceptual quality. In all experiments, we adopt the schedule 1, = o¢(1 — ).
An ablation study of this parameter is reported in Section 4.

Beyond this hyperparameter, an important practical consideration is that most large-scale diffusion
models for high-resolution image generation operate in a compressed latent space rather than in pixel
space (Rombach et al., 2022; Esser et al., 2024). To apply our algorithm in this setting, we must
therefore formulate the inpainting task in the latent domain. Denote by Enc the encoder, X, the
pixel-space ground-truth image and M the corresponding pixel-space mask. Following Avrahami et al.
(2022), we set x, := Enc(X,), the observation to y := x,[m]| where m is a downsampled version of
the pixel-space mask M. Since the encoder reduces spatial resolution by a fixed factor (e.g., s = 8 in
Esser et al. (2024)), we construct the latent mask m by average pooling the binary pixel-space mask
M with kernel and stride s. Each latent site is assigned the fraction of unmasked pixels within its
receptive field. These fractional values are then thresholded (typically at 0.5) to produce a binary
mask; in other words, a latent site is marked as observed if the majority of its underlying pixels are
unmasked. In practice, the mask m is provided as a single-channel image and broadcast across all
latent channels when applied to x,. Finally, we apply Algorithm 1 with (x,,y, m) thus defined in
the latent space.
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Related methods. Our work shares similarities with various recent approaches to zero-shot diffusion
guidance, which now briefly review. The closest line of work comprises variants of the replacement
method (Song & Ermon, 2019; Song et al., 2021b), which follows the same structure as Algorithm 1.
In these schemes, the masked coordinates of the state are updated according to the standard DDIM
transition (Line 11), while the unmasked coordinates are replaced by a direct update that enforces
consistency with the observation y (Line 12). In its simplest form, the method performs ancestral
sampling with the transition

70 (x| %, y) = N(x;[m]; pl, (xe5m) [m), nela—a, ) N(xs[m]; oy, o2la,) , (3.5)
i.e., the unmasked state is set to a noisy version of the observation o,y + osW,, where Wy ~
N(0, Idy); see (Song & Ermon, 2019, Algorithm 2) and (Song et al., 2021b, Appendix 1.2). Avrahami
et al. (2022) extended this approach to the latent domain using a downsampled mask. The method
was later refined in RePaint (Lugmayr et al., 2022), which improves sample quality by performing
multiple back-and-forth updates: after applying the replacement step from ¢ to tx, a forward
noising step is applied from ¢, back to £, and this cycle is repeated several times. Several works
have combined the replacement method with sequential Monte Carlo (SMC) sampling (Trippe et al.,
2023; Cardoso et al., 2023; Dou & Song, 2024; Corenflos et al., 2025; Zhao, 2025). In particular,
Cardoso et al. (2023) update the unmasked coordinates of each particle using a Gaussian transition
whose mean is a convex combination of the DDIM mean and the rescaled observation o, y. In the
inpainting framework, the recently proposed PnP-Flow (Martin et al., 2025) reduces to using similar
transitions without relying on SMC, i.e., by using a single particle. We explicitly compare the update
rules in (Cardoso et al., 2023; Martin et al., 2025) with ours in Appendix A.2, where we also discuss
additional related work.

4 EXPERIMENTS

In this section, we extensively evaluate the inpainting performance of DING when used with different
large-scale models. We benchmark its performance on multiple datasets against several state-of-the-
art baselines. We further analyze the relevance of our modeling choices, specifically the formulation
of the approximation in (3.2) and the schedule of DDIM standard deviations (;):e[o,1), through a
series of targeted ablations.

Models and datasets. We evaluate our method on Stable Diffusion 3.5 (medium) (Esser et al.,
2024). We set the CFG scale to 2. Our experiments cover three datasets: FFHQ (Karras et al., 2019),
DIV2K (Agustsson & Timofte, 2017), and PIE-Bench (Ju et al., 2024). For FFHQ, we use the first
5k images and condition generation on the prompt “a high-quality photo of a face”. For DIV2K,
we include both training and validation splits (900 images in total), and generate captions for each
image using BLIP-2 (Li et al., 2023); see Appendix B for details. All FFHQ and DIV2K images are
resized to a resolution of 768 x 768. The PIE-Bench dataset contains 700 images of resolution
512 x 512, each paired with an inpainting mask and an edit caption. After removing cases where the
mask completely covers the image, the resulting evaluation set contains 556 images.

Evaluation and masks. For FFHQ and DIV2K, we evaluate inpainting performance under four
rectangular masking configurations: (i) right half of the image (Half), (ii) upper half (Top), (iii)
lower half (Bottom), and (iv) a central 512 x 512 square (Center). In contrast, PIE-Bench provides
irregular masks with diverse spatial patterns; see Appendix C for examples. Unless otherwise
stated, we set oy, = 0.01 across all tasks. Since exact posterior sampling is infeasible, we assess
inpainting quality using proxy metrics. To measure distributional alignment with the dataset, we
report both FID and patch FID (pFID) (Chai et al., 2022), the latter offering finer granularity for
high-resolution evaluation. Following the standard FID protocol, we extract 10 random 256 x 256
patches per image, yielding a total of 50k patches. To quantify consistency with the observed
content, we compute context PSNR (cPSNR), defined as the PSNR over the unmasked region only.
We further report LPIPS (Zhang et al., 2018) relative to the ground truth to evaluate perceptual
similarity, which is especially relevant for FFHQ where facial symmetries make reconstructions
visually close to the reference. For PTE-Bench, which includes edit captions, we additionally report
CLIP-Score (Radford et al., 2021) on both the full image (CLIP) and the edited region (CLIP-ED),
following Ju et al. (2024). Together, these metrics provide a comprehensive evaluation of inpainting
quality. While each captures a different aspect of performance, none should be interpreted in isolation.
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Figure 2: Examples of reconstructions on FFHQ and DIV2K with 50 NFEs.

Baselines. We compare against seven state-of-the-art baselines:  Table 1: Memory and runtime.
FLOWCHEF (Patel et al., 2024), FLOWDPS (Kim et al., 2025),

DAPS (Zhang et al., 2025), REDDIFF (Mardani et al., 2024),  Method Time (s) Mem. (GB)
RESAMPLE (Song et al.,, 2024), PSLD (Rout et al., 2024b), BLENDED-DIFF 30 209
PNP-FLOW (Martin et al., 2025), DIFFPIR (Zhu et al., 2023), ppnm 31 2209
DDNM (Wang et al., 2023b) and BLENDED-DIFF (Avrahami et al., ]F)LIZFvlv)Icl;EF g:(l) §§j83
2023) For the main comparison, all methods are evaluated undera  FLowpPs 3.0 22.10
fixed budget of 50 NFEs. Since our method requires two denoiser  pyr ™" - Yo
evaluations per diffusion step, we use 25 steps to match this budget.  RepDrre 3.1 22.09
We focus on this low-NFE regime as it reflects realistic settings, E?ﬁg“f;’;‘; 5 e

where inference is constrained by latency and compute. To ensure
fairness, all methods are run in the latent space with downsampled masks, and extensive hyperpa-
rameter tuning is performed for each baseline on each dataset. For baselines that require VJP or
backpropagation through the denoiser, we report their actual runtime and memory costs, ensuring
that comparisons reflect effective inference cost rather than nominal NFE counts. Average runtime
and memory usage across all the experiments, measured on H100 GPUs, are provided in Table 1.

4.1 MAIN RESULTS

Tables 2 and 3 summarize the results on FFHQ, DIV2K

and PIE-Bench, respectively. On FFHQ (Table 3), Table 3: Results on PIE-Bench with 556
DING achieves the best performance on all masks and samples and 50 NFEs.

almost all the metrics. In particular, it improves both pFID

and FID by significant margins over the strongest com- _Method FID_pFID cPSNR LPIPS CLIP CLIP-ED
. . . B -D! 655 27.0 26.60 0.31 26.32 2315
peting method FLOWCHEF. It also obtains the highest — paps 655 302 2708 03 2557 2175
. . . . . 4 M 27.29 h n -
cPSNR scores, indicating a faithful reconstruction of the — Depik s 254 3608 o030 2631 2304

visible content, while simultaneously producing visually — frowvors  Sie 17 ats 043 2es8 279

coherent completions with the lowest LPIPS. On DTV2K, ap™™ 9% %3 1599 0 aew a4
the comparison is more nuanced. DING consistently at-  growime 919 335 ats  ose 2531 2ros
tains the best FID and LPIPS across all four masks, while —RING(us) 614" 247 27.03 030 263072336
remaining competitive on pFID and comparable to strong

baselines on cPSNR. On PIE-Bench, DING achieves the best results on all metrics except cPSNR

and CLIP. We note, however, that although FLOWDPS and PSLD obtain slightly higher CLIP
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Table 2: Top: Quantitative results on FFHQ 768 x 768 with 5k samples. Bottom: DIV2K 768 x 768 with 900
samples. For FID, pFID, and LPIPS, the lower the better. For cPSNR, the higher the better. 50 NFEs were used.

Half Center Top Bottom
Method FID pFID cPSNR LPIPS | FID pFID cPSNR LPIPS | FID pFID cPSNR LPIPS | FID pFID cPSNR LPIPS
FFHQ 768 x 768
BLENDED-DIFF 235 163 3132 038 | 353 367 31.54 033 328 158 3205 038 | 437 198 30.85 0.37

DAPS 179 251 3050 036 |351 545 3115 032 | 301 305 3154 039 | 528 276 3030 034
DDNM 123 1368 3127 033 |244 348 3161 027 223 232 3182 036 | 383 196 3051 032
DIFFPIR 120 1123 3091 036 | 194 196 3167 030 197 141 3207 036 | 307 114 3074 035
FLOWCHEF 202 165 3041 036 |293 350 3100 031 | 278 211 3105 036 | 359 227 2994 035
FLOWDPS 362 490 2672 046 | 495 799 2336 053 | 521 742 2415 056 | 723 715 2306 055
PNP-FLOW 205 334 3062 037 |366 651 3167 032 | 336 427 3154 038 | 568 334 2995 033
PSLD 1163 738 689 081 |980 69.1 1009 073 | 1206 754 706 081 |107.0 704 646 08I
REDDIFF 285 379 2739 039 [307 418 2785 032 | 330 411 2792 041 | 764 413 2696 039
RESAMPLE 324 488 2853 044 | 538 1034 2846 040 | 632 562 2902 044 | 978 570 2806 044
DING (ours) 96 66 3103 033 | 155 140 3138 027 197 125 3164 034 | 296 86 3050 032

DIV2K 768 x 768
BLENDED-DIFF  43.6 129  26.03 037 | 548 202 2643 0.35 448 132 2528 0.39 48.1 131 2685 0.38

DAPS 510 384 2592 046 |748 67.6 2614 044 | 548 410 2522 044 | 612 397 2671 050
DDNM 425 212 2603 041 |577 385 2661 037 457 213 2536 042 | 496 232 2681 045
DIFFPIR 411 129 2609 037 | 528 214 2658 034 435 131 2536 039 | 449 149 2691 039
FLOWCHER 433 122 2578 036 |53.6 223 2627 032 | 450 138 2509 037 | 469 132 2657 037
FLOWDPS 508 332 2130 049 |703 628 1838  0.63 | 641 579 1743 065 | 642 573 1906  0.63
PNP-FLOW 542 427 2600 046 | 797 714 2663 044 | 571 335 2519 044 | 647 508 2661 050
PSLD 664 323 615 079 | 669 357 989 072 | 665 319 635 079 | 663 326 641 078
REDDIFF 542 457 2264 049 | 774 698 2325 046 | 577 409 2217 048 | 60.6 463 2341 052
RESAMPLE 527 341 2333 047 |808 638 2376 043 | 56.1 331 2284 047 | 60.6 410 2406 048

DING (ours) 392 13.0 2590 035 | 507 195 2641 0.31 414 137 2519 0.37 434 134 2672 0.37

scores, they perform markedly worse on fidelity and perceptual quality metrics, suggesting that their
improvements in CLIP may reflect metric hacking rather than genuine reconstruction quality. We
provide qualitative comparisons of the reconstruction in Figure 7 and Appendix C.

We now compare DING with a Stable Diffusion 3 model fine-tuned for inpainting', trained on
12M images at 1024 x 1024 resolution. To ensure fairness, both models are evaluated under
the same runtime budget (2.2s), which corresponds to 56 NFEs for DING and 28 NFEs for
the fine-tuned baseline. We also provide the results for the finetuned model using 56 NFEs.
The results are given in Tables 5 and 4. Across

FFHQ, DIV2K, and PIE-Bench, DING con- Table 4: Results on the PTE-Bench with 556 samples.
sistently outperforms the fine-tuned SD3 model —;50q FID pFID cPSNR LPIPS CLIP CLIPED
on all reported metrics. The gains are especially  sp3impant28) 687 305 1885 034 2637 2310
pronounced in cPSNR, where DING achieves %?iénfji?:)(%) % % % % % gg%
8-10 dB higher fidelity to the observed pixels. — - - - -
This indicates that our method preserves the

known content far more accurately while still producing realistic completions, as confirmed by
lower FID and LPIPS. On PIE-Bench, DING further improves over the fine-tuned baseline on
every metric, including perceptual ones (pFID, LPIPS), while also yielding stronger text—image
alignment (CLIP, CLIP-ED). See Figure 7 for a qualitative comparison of the reconstructions. These
results demonstrate that, even without task-specific fine-tuning on a large amount of images, DING
not only matches but surpasses a specialized SD3 inpaint model. Overall, these results show that our
method provides the strongest overall trade-off between realism and fidelity under low NFE budgets.

Table 5: DING compared to SD3 fine-tuned (28 and 56 NFEs) for inpainting tasks.
Half Center Top Bottom
Method FID pFID cPSNR LPIPS | FID pFID cPSNR LPIPS | FID pFID cPSNR LPIPS | FID pFID cPSNR LPIPS
FFHQ 512 x 512

SD3 Inpaint (28) 23.5 107 2169 037 | 62.01 2339 2218 031 |347 178 2164 036 |424 165 2178 037

SD3 Inpaint (56) 237 103 2153 037 637 344 2194 031 354 165 2141 036 438 168 2153 036

DING (ours) 93 58 3140 032 202 155 3139 028 173 84 3196 033 338 122 3127 034
DIV2K 512 x 512

SD3 Tnpaint (28) 459 150 1795 040 |542 221 1857 036 |488 166 1812 042 | 510 175 1895 041

SD3 Inpaint (56) 45.1 140 1791 040 542 205 1863 036 486 161 1816 041 503 172 1902 041

DING (ours) 415 142 2609 037 524 215 2653 033 437 138 2547 038 454 154 2694 038

4.2 ABLATIONS

Doubled NFE per diffusion step. Because the x; -predictor must be evaluated at the proxy variable
(Line 9 in Algorithm 1), our algorithm requires two NFEs per diffusion step. An immediate question

"https://huggingface.co/alimama-creative/SD3-Controlnet—Inpainting
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is whether this overhead is needed. To explore this, we introduce a variant in which the noise
prediction from the previous step is reused instead of being recomputed at the proxy. We coin this
variant as Delayed DING, where Line 9 is replaced by X™ < (x — o4, X1 (X, tg+1))/cu, , and
we further set 7, = 04(1 — ay), which we found to yield the best performance in this setting. A
quantitative comparison with the original DING is reported in Table 6, showing that while Delayed
DING reduces the NFE cost per step, it consistently underperforms across metrics and masking
patterns, indicating that the doubled NFE is necessary to retain the full effectiveness of our approach.

Table 6: Delayed DING compared to DING on FFHQ (5k samples) and DIV2K (900 samples) with 50 NFEs.
Method Half Center Top Bottom
pFID FID CcPSNR LPIPS | pFID FID CcPSNR LPIPS | pFID FID CcPSNR LPIPS | pFID FID CcPSNR LPIPS
FFHQ 768 x 768

29.21 033 | 21.3 207 29.90 0.26 157 99 29.84 0.33 31.0 123 28.88 0.33
31.03 0.33 197 125 31.64 0.34 30.50 0.32

Delayed DING 9.1
DING 9.6

~
T

5; 140 3138 0.27 29.6 8.
DIV2K 768 x 768

556 247 2552 032 | 453 168 24.36 0.

=
N
"
n
EN

Delayed DING ~ 43.9
DING 39.2

&
=)

24.88 036 ‘

25.90 0.35

L
[N

038 | 478 146 2564 038
507 195 2641 031 | 414 137 2519 037 | 434 134 2672 037

5
50

-
i
=

DDIM schedule. Here we proceed to compare the behavior of our algorithm under different
schedules (7))¢e[o,1). For this purpose we compare against some natural candidates. (A): we consider
the DDPM schedule used in (Ho et al., 2020) and which corresponds to using in (2.2) a standard
deviation that depends on both s and ¢, i.e., n(t) = 04(0? — (as/as)?02) /2 /oy, (B): as we cannot
use deterministic sampling in our approach, we rescale the DDPM schedule (A) with 0.01 to approach
deterministic sampling. (C): ns = o, which is the maximum allowed standard deviation in (2.2). In
this scenario, the transition is p%, (x;|x;) = N(x4; X§(x¢, 1), 021;) and resembles the prior transition
used in Martin et al. (2025). (D): ns = 04v/1 — s, which corresponds to a slower decay of the
standard deviation compared to our default choice 7, = o5(1 — ;). The results on FFHQ with 5k
samples and 50 NFEs are reported in Table 7. We observe that the rescaled DDPM schedule (B)
degrades significantly across all metrics, while (A) and (C) yield nearly identical performance. This
suggests that maintaining sufficient stochasticity at the beginning of the diffusion process is crucial
for strong performance. Among the alternatives, (D) performs best; still, it is outperformed by our
default schedule, confirming the benefit of a faster decay of (7;).

Table 7: Ablation results for the DDIM schedule (7:) on FFHQ 768 X 768 with 5k samples and 50 NFEs.

Method Half Center Top Bottom

FID pFID cPSNR LPIPS | FID pFID cPSNR LPIPS | FID pFID cPSNR LPIPS | FID pFID cPSNR LPIPS
(A) 139 140 31.19 036 | 19.1 255  31.50 030 |21.8 189  31.80 038 | 351 15.1 30.70 0.35
(B) 215 187  26.06 041 290 319 2623 035 | 31.7 21.1 26,64 041 | 484 286 2556 0.40
©) 139 142 3119 036 | 19.1 255  31.50 030 |21.8 19.0 31.80 038 | 351 156 3070 0.35
(D) 102 107 3133 033 | 167 19.0 3170 027 | 196 157 3195 035 |31.6 120 3081 0.32

Default 9.6 6.6 31.03 033 | 155 140 31.38 027 | 197 125 31.64 0.34 | 29.6 .6 30.50 0.32

5 CONCLUSION

We have introduced DING, a novel diffusion-based method for zero-shot inpainting that operates
fully in the latent space and enables fast, memory-efficient inference under low-NFE budgets.
Through extensive experiments across multiple benchmarks, we have shown that DING consistently
outperforms existing zero-shot approaches and even surpasses a fine-tuned Stable Diffusion 3 model
for image editing, despite requiring no expensive training. Notably, our method produces globally
coherent reconstructions while preserving the visible content with high fidelity.

Limitations and future directions. While these results highlight the effectiveness and practicality
of DING, several avenues remain open. An important limitation of our current approach is that
performance does not monotonically improve as the compute budget increases. Ideally, one would
like reconstruction accuracy to keep improving with additional sampling steps, potentially beyond
the standard diffusion horizon, but we observe diminishing returns due to the limitations of our
current DDIM schedule. Addressing this issue, for example by designing guidance schemes or noise
schedules that continue to scale gracefully with compute, remains an important direction for future
work. Moreover, while our framework is fully operational in the latent space, its applicability is
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currently limited to inpainting, as this is the only observation operator we can reliably lift to the
latent domain. Extending the method to accommodate more general forward operators and a broader
class of inverse problems, while preserving the same level of efficiency achieved for inpainting, is a
challenging yet promising direction for future research.
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Reproducibility statement. We place strong emphasis on reproducibility. To this end, we provide
the full source code of our method along with implementations of all baseline methods used in the
paper. Our repository also includes scripts to reproduce every experiment, as well as configuration
files specifying all hyperparameters and settings for each baseline and experimental setup. Together,
these resources ensure that all results reported in this work can be fully reproduced and easily
extended.

Ethics statement. While the proposed approach demonstrates clear benefits for applications in
restoration, accessibility, and creative media, it also lies at the borderline of ethical considerations.
Diffusion-based inpainting methods can be misappropriated for producing deceptive or harmful
content, such as manipulated images or synthetic media that obscure authenticity. This dual-use
nature highlights the need for proactive safeguards, including transparent usage guidelines, traceable
model outputs, and continued development of forensic detection tools to ensure responsible integration
of such technologies.
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Latent

Pixel

Figure 3: Latent-space masking and its correspondence to pixel space using a central square mask. The encoder
and decoder of Stable Diffusion 3.5 (medium) were used. The first row shows latent images alongside the
encoded mask applied to each, while the second row shows their decoded counterparts. Notice that the masked
regions in the latent space translate directly to analogous masked regions in pixel space. For that sake of
visualization, since the latent images have 16 channels, we apply PCA and visualize the first 3 components.

A  METHOD DETAILS

A.1 DERIVATION OF THE POSTERIOR (3.1)

Recall that given zg, the posterior transition of interest is
7?rglt(xs|zsyxt’ y) ég(}’|xsa zZs) p2|7t9(xs|xt) .
Denoting by s = a,y + 0.%4(zs, s)[m] the effective observation, we have that
éz (ylxsv ZS) X N(S’S; Xs [ﬁ]v aiaiIdy) )
and since the reverse transition writes
,0 - __
P (xs]xe) = N [ml; e, (305m) (], 12 Ta—a, N (x[m]; 13 (i) [0, 7214, )
we obtain
ﬁ'f‘t(xs |Zs, Xt,y) = N(x [m]; MZ\t(Xtm)[m]a U?Id—dy)
N(¥s; xs[m], aZogla, )N (s [00]; ), (xe5) (0], 7314, )
JN(Fs:%s[m], 02031, )N(X[m]; ), (x45m) (0], n2la, ) d, [m]

The formula (3.4) follows by applying (Bishop, 2006, equation 2.116) to the second normalized
transition on the right-hand side.

A.2 COMPARISON WITH RELATED WORKS

We start by providing an explicit comparison with the closest works.

Comparison with the transition in Cardoso et al. (2023). Let 7 € [0, 1] be a timestep such that
oy = 0-/a,. Such a T always exists when the linear schedule is used for example. The transition
used in the SMC algorithm in Cardoso et al. (2023) for s > 7 is given by

it (s xe) o Ny s [m], 02 Loy Jply (/) (A1)

Using the same conjugation formulas as in the previous section, we find that
7Arg\zs(XSh’(t) = N(xs[m], ugn(xt;n)[ml, U?Idfdy)

X N(Xs [ﬁ]a (1 - ’?s\t)“ilt(xt;’r/)[m] + :ys\tasy7 O’?‘T’?s‘t:[d—dy)7 (AZ)
where 07 . == 07 — (o /a;)?0? and Y5¢ = 2 /(9?2 + o). This is to be contrasted with our update,
given a sample z,

0 (xs|2s, %e,¥) = N (s [m]; ), (xe5m) (m], 731a-4, )

X N(Xs[ﬁ]; (1= yar )l (xe5m) (0] + Yoit (asy + o.%!(zs, s)[m]), 043032,%” Idy> ,

where v,; = 12 /(n? + aio}). Hence, MCGDIFF differs from DING on the choice of effective
observation, which in this case is y; = a;y, the choice of variance in the transition and the coefficient
of the convex combination. From (A.1) it can be seen that MCGDIFF assumes the approximate
model N(cv,y;x,[m], 02 14, ) for the true likelihood £, (y|x;) (2.7).

slT
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Comparison with the transition in Zhu et al. (2023) and Martin et al. (2025). We now write
explicitely the algorithm PNP-FLOW (Martin et al., 2025, Algorithm 3) adapted to the inpainting
problem we consider; see Algorithm 2. We have simply adapted the notations and used F'(x) =
|y —x[m]||*/(203) in (Martin et al., 2025, Algorithm 3). Thus, the transition used in Algorithm 2 is

79, (s [x¢¢) o N, [m], v, (¢, )], 021y, )

x N (xs[m], (1 — U/;) asfcg(xt,t)[ﬁ] + ﬁ(xsy, ﬂfId_dy) .
y y

In the case of the DDIM schedule 75 = o, we have that uf ,(x;) = as%4(x;, t), and the MCGDIFF
transition (Cardoso et al., 2023) in (A.2) writes

0 (%alxr) = N(xa[m], 0,0 (e, 1) [m], 031, )
X N(Xs [ﬁ]; (1 - :/s\t)asf(g<xta t)[ﬁ] + g/s\tasyv US\T’?S\T,Idfdy)'

Hence, the main difference lies in the coefficient of the convex combination and the variance used.

Algorithm 2 PNP-FLOW reinterpreted

1: Input: Decreasing timesteps (t5))_ - with tx = 1, tg = 0; adaptive stepsizes (Vx)9_j-
2: Initialize: X, € RY.

3: fork=K —1to1ldo

4 &()[ﬁ] <— ( — ng)&(][m} + %y

50 w~ N(Od, Id)

6: X(—Ottkf(o—i-atkw

7: Xg )Eg(x, tk)

8: end for

9: Return: x

Comparison with the transition in Kim et al. (2025); Patel et al. (2024). Here we explicitely
write the transition of FLOWDPS for the inpainting case in order to understand the main differences
without our method. For this purpose we rewrite (Kim et al., 2025, Algorithm 1) using our notations.
We note that the algorithm is written for the linear schedule oy = 1 — ¢, oy = t and the choice
of DDIM schedule n; = o¢1/1 — oy, but we still write it with general notations to streamline the
comparison with Algorithm 1. We also assume for the sake of simplicity that the optimization
problem is solved exactly in (Kim et al., 2025, line 7) (since there is no decoder as we solve the
inverse problem in the latent space). The algorithm is given in Algorithm 3. In the specific setting
where the linear schedule is used, setting v, = af,ot . 1n Algorithm 2 recovers Algorithm 3 when
N, = o, . Finally, we note that FLOWDPS can be understood as a noisy version of the FLOWCHEF
algorithm (Patel et al., 2024) and overall, follows the line of work of methods that learn a residual
that is then used to translate the denoiser (Bansal et al., 2023; Zhu et al., 2023).

Comparison with DiffPIR (Zhu et al., 2023) and DDNM (Wang et al., 2023b). We provide the
DIFFPIR algorithm (Zhu et al., 2023, Algorithm 1) adapted to our inpainting case using our own
notation in Algorithm 4. In Line 6 we write the exact solution to the optimization problem in the
original algorithm. We write the associated transition in a convenient form that allows a seamless
comparison with our algorithm. Define v; = 07 /(0? + /\(lfaf,). Then, the transition

79 (xs|xe,y) = N(xs[m]; pd), (x¢m) [m], n21a—q, )
. . . 1 /9 X¢ M| — oy
x N(Xs[m}; (1= 7o) (xesm) 0] + 7 sy + (07 — 713)1/2“7%), n? Idy> :

corresponds to one step of Algorithm 4. We highlight key distinctions:

* Setting 72 = o2 recovers the same transition as in PNP-FLOW.

* The main distinction lies in the mean of the Gaussian transition for the unmasked region: it is a
convex combination of p?(x;;7n)[m] and an effective observation a,y + (02 — 12)'/?(x,[m] —
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Algorithm 3 FLOWDPS reinterpreted

1: Input: decreasing timesteps (tk)gz i Withtg =1, ¢y = 0; original image x,; mask m;
DDIM parameters (1x)%_y-

2: y + x,[m]
3 X~ N(O, Id)
4: fork=K —1to0do
5: Xo — XO(X tk+1)
6: Xl «— ( atk+1X0)/th+1
7 Xo[m] < oy, Xo[M| + 04,y

. 1/24
8 g g Ko+ (0f, —17)

9: W~ N(Od, Id)
10: X < @+ mew
11: end for
12: Return: x

a;y)/o¢. In our algorithm, the effective observation instead takes the form a,y + o,%{ (xs, s)[m].
We estimate the residual noise using the pre-trained model at timestep s, whereas DIFFPIR
computes it as (x;[m] — azy)/oy.

* This residual noise is scaled differently: by (o2 — 7> 2)1/2 in DIFFPIR, and by o, in our method.

* The convex combination coefficient in our cases is v ;¢ = 172/ (n? + aﬁaf,) whereas for DIFFPIR it
is settoy, = 07 /(0F + ajoy).

* Finally, the noise-free (o, = 0) version of DIFFPIR recovers the DDNM algorithm (Zhang et al.,
2023).

Algorithm 4 DIFFPIR reinterpreted

1: Input: Decreasing timesteps (tk)gz i Withtg =1, ¢ty = 0; scaling A; original image x,; mask
m; DDIM parameters (1 ))_
Dy + X, [m]
DX N(O, Id)
cfork=K—-1to1ldo
: )A(() — xg(x, tk+12)

2
Ufk+|+/\a Yt Uwﬂ

)Acl — ( atk+1X0)/Utk+1

w ~ N (04,14
L x4 a Ko+ (07 —ni)V2% +mew
: end for

2

3

4

5

6 R[] ¢ iy Y g [m]
7

8

9

0

1: Return: x

Further related methods. Here we continue our discussion of VJP-free methods. The DAPS
algorithm (Zhang et al., 2025) proposes sampling, given the previous state Xy, , ,, a clean state X
by performlng Langevin Monte Carlo steps on the posterior distribtion g, k+1( | Xt,,.,y). This
step is performed approximately by replacing the prior transition py, . (+|X¢,.,) with a Gaussian
approximation centered at the denoiser %§ (X, w1 tkt1). Then, given Xo, the next state is drawn
from N (v, Xo, atk I;). Then the transition

One important aspect of our method is that we circumvent differentiation through the denoiser but
also the decoder, as the diffusion models we consider operate in the latent space. We do so by
downsampling the mask into the latent space. In contrast, the recent work of Spagnoletti et al. (2025)
also circumvents differentiation through the denoiser, but does so by lifting the latent states into pixel
space and optimizing the likelihood there. The result of the optimization is then projected back into
the latent space and then undergoes back-and-forth noise-denoising steps.

Finally, several recent works (Mardani et al., 2024; Zilberstein et al., 2025; Erbach et al., 2025) adopt
a variational perspective: the target distribution is approximated by a Gaussian distribution whose
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parameters are iteratively estimated by minimizing a combination of an observation-fidelity loss and
a score-matching-like loss.

VJP-based methods. A broad class of zero-shot approaches builds on the guidance approximation
(2.8) to estimate V, log ¢,(y|x;). Song et al. (2023a) approximate pg, by a Gaussian with mean
%§(-,t) and a tuned covariance. For the inpainting setting in (2.4), plugging this approximation into
(2.7) yields an integral that can be computed in a closed form, providing a proxy for ¢,(y|-). Several
works exploit the link between the covariance of py,(-|x;) and the Jacobian of the denoiser (Meng
et al., 2021). This observation underpins the methods of Finzi et al. (2023), Stevens et al. (2023),
and Boys et al. (2023), which derive likelihood scores by estimating or inverting the Jacobian. These
approaches require solving large linear systems and backpropagating through the denoiser, both
computationally expensive operations. To reduce cost, these works assume a locally constant Jacobian
around x;, but updates still involve either explicit matrix inversion or repeated VJPs. In practice,
diagonal approximations based on row sums are commonly used to approximate the covariance
matrix (Boys et al., 2023), or conjugate gradient methods are employed to circumvent the need for full
matrix inversion (Rozet et al., 2024). For general likelihoods £,(y]|-), Song et al. (2023b) combine the
Gaussian posterior model of Song et al. (2023a) with Monte Carlo sampling to approximate ¢, (y|-).
In the latent setting, Rout et al. (2024b) apply the DPS approximation jointly with a regularizer that
encourages latent variables to remain near encoder—decoder fixed points. Other methods modify the
sampling dynamics. Moufad et al. (2025) propose a two-stage procedure: the chain is first moved
to an earlier time ¢ < ¢, where the DPS approximation is applied to sample from an approximate
conditional at ¢, before returning to t; via additional noising steps. Janati et al. (2025a) incorporate
a related idea into a Gibbs sampling framework. Overall, these methods remain fundamentally
VIJP-based and inherit substantial memory and runtime overhead from repeated backpropagation
through the denoiser. By contrast, our decoupled guidance relies exclusively on forward denoiser
evaluations and closed-form Gaussian updates, thereby eliminating VJPs entirely while retaining
competitive performance.

For a complete review of zero-shot posterior sampling methods see Daras et al. (2024); Janati et al.
(2025b); Chung et al. (2025).

A.3 BEHAVIOR UNDER INCREASED RUNTIME.

We extend the ablation study in Section 4.2 by examining the behavior of DING when the number
of NFE:s is increased. Specifically, we vary the budget from 20 to 500 NFEs on the DIV2K dataset
and report results across different masking patterns; see Figure 4. All metrics improve steadily as
the budget grows, reaching their best values around 200 NFEs (10s runtime). Beyond this point,
performance saturates and exhibits a slight degradation at 500 NFEs. These results suggest that our
default DDIM schedule is well suited to low and mid-NFE regimes—which are most relevant for
practical settings—but may not be fully optimized for larger budgets.
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Figure 4: Performance of DING on DIV2K under varying NFE budgets (20 to 500) across different masking
patterns. Runtimes are measured on a H100 GPU.

A.4 LIMITATION
We observed that the quality of reconstructions is highly sensitive to the specificity of the textual

prompt. When the prompt is under-specified or lacks sufficient semantic detail, the resulting samples
may exhibit reduced coherence, particularly in large masked regions where contextual consistency
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Masked image "man face under a hut" "man face"

"A tall brick building

surrounded by city streets
under a clear blue sky."

Figure 5: Effect of prompt precision on inpainting quality

is critical. This issue manifests as mismatched textures or backgrounds, or inconsistent object
boundaries, even when the visible area is faithfully preserved. To illustrate this behavior, we compare
reconstructions obtained with well-defined prompts against those generated using vague or ambiguous
ones. Examples are provided in Figure 5 and 6.

A.5 BIAS IN GAUSSIAN CASE

For the sake of simplicity we assume that p,, := N (04, X) where X is a covariance matrix. We also
write the likelihood as £,(y|xo) = N(y; PmXo, Jf,ldy) where Py € R% %4 is the matrix satisfying
Pax = x[m). Define D; = a;Y(a?Y + 0214) L. Then, the denoiser and noise predictors are given
by

)A(O(Xt7 t) — DtXt s )A(I(Xt,t) = G';l (Id — (JctDt) Xt .

We consider hereafter the DDIM transitions p_, (x¢|x;) == N(Xs; pesie (%45 7), n214) where

st (X3 M) = asXy (x4, 1) + /02 — 2%, (x4, 1)

In this section we analyze the bias of the DING one-step transition relative to the posterior transition
involving the DPS likelihood (2.8); i.e. we compare the transition

G y) = E (75l Zexey)| | (A3)
where Z; ~ p!,(-|x;) and

~ding

Xy — 0sXq(Zg, S
F908 (o, 2 0, ) o L (y| 0B )

)PZH (xs]xt)
against

~d A 9
Tty (X5 /x4, y) o Lo (¥ [Ro (s, 8))p e (%[ ) -
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"A red mountain train climbing
a steep track surrounded by

grass and mountains in the

Masked image background" "a train on a hill"

. “aerial view of downtown
Masked image Washington

Figure 6: Effect of prompt precision on inpainting quality

We define M = P%Pﬁ, which is an orthogonal projection matrix since M T =M, PEP% = Idy,
and thus M? = M. We also introduce the quantity

es = ||(D] — a7 1) M|op,

which quantifies how far the Jacobian of the denoiser X (-, s) deviates from the Jacobian of the DING
denoiser approximation on the observed coordinates. In the following proposition, we characterize
the asymptotic behavior of the DPS and DING posterior transition means and covariances as s — 0,
and we express the mean bias in terms of 4. In Proposition 2, we also provide an explicit upper
bound on ¢ in terms of the schedule and the minimum eigenvalue of the prior covariance .

Proposition 1. Both 7% (-|x;,y) and #%"%(-|x;,y) are Gaussian distributions with mean and

covariance respectively (u2% (x;,y), 59%) and (u18(x:,y), S48 satisfying

dps din
=5 — =528l = O ;)

and
dps din ,
1% (e, ) — S (o, )| = O(n?(Es(WII M m)) + s§|ust<><t;n>||>) |

asns — 0.

Proof. Using the standard Gaussian conjugation formula (Bishop, 2006, equation 2.116), we have
that 7% (x5]x¢, ¥) = N(x; mP (x;,y), £9°) with

mcsi\PtS(XMY) = Eﬁﬂs(n;zusu(xt; n) + UJQDIP%)’) )

33 1= (07 1a + 03 2(PaxDs) T PasDs)
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Next, for the DING transition, first set bs(Zs) := —(0s/as) Par X1 (Zs, ). Gaussian conjugacy with
Pl (Xs[xe) = N (x5 st (xe31), m21a) gives

T (%] Zs, X0, ) = N (53 D08 (1572 pasie(x5m) + 03 20 ' P (y — bs(Zs))),i‘iEg}

Sdi -1 o : » e
and 348 = (17214 + o 20, 2PLPw) . Since the mean of this conditional distribution is clearly
affine in Z,, we integrate it out, yielding that 7978 (x,|x;,y) = N(xs; m?78(x;,y), 29"8) where

mfl\gg (Xt7 y) Egl\gg( p’s\t(xt? 77) + U_ a_lPly

+(ay oy ?) P Pr(Ia — s D) psie (x437m))

zmﬁzimﬂ%& 7500 PPl = 0 D) (55 Py Pan(la = 0 D))

y

Small-noise regime. We now study the behavior of both transitions when the DDIM kernel variance
n? tends to zero. For simplicity we define

Kaps = 0y°D] PoiPD, ,  Kging = o, 203 M
and Ry = Iy — asDs, M = PLPg. Then,
520 = (051 Keps) "

st

2
S8 = (1200 + Kaing) ™" + —2og (05 2La + Keting) " MR.RT M (121g + Ketng) ™

s%y

We use throughout that for any fixed matrix K, we have that when 72| K ||op < 1,

i N K12
(05 %La + K) 7 = ni(la = niK) + Ra(n),  [[Ra(m)ll <5 2

— o (A4)
= 021K |op

This follows from the standard Neumann (geometric) series expansion. Applying (A.4) with n? <
min(1/{| Kdpslop, 1/ Kdingllop ), we get
dps
S = 2 (Lo — 12 Kaps) + O(12),

6
din s
Es\tg =T (Id - nstmg) + o MR&RSTM + O(’lg)
7Y

and thus | p ,
Es\pt o Zs\tg - 0(773) :
Plugging these expansions in the mean terms, we find that
dps .
mS (%, y) = psie(xe3m) + 030, 2D, Py — Kapshsie(xe3)) + O(11,),
ms\tg(xta Y) = psie(xe5n) + 12 (0t oy S 2Py + O‘;2O—;2MRS/J’SHE — Kaing a1t (x51)) + O(173).
This yields

mY (x¢,y) — m$yE(xs,y) = 020, *[(a;'1g — D) ) Py
+ a; MRy pae(x¢:n) — (a7 M — D M D) g (x45m)] + O(n3),

We now proceed to further upper bound the leading term. Define E, := D, — a; '1;. Then
R, = —a,E, and we have that

d di
s\pts(xhy> - msl\:g(xt’ Y) -

s ;2( — E] Py + a; 'E] Mpge(xe;m) + ESTMEsMs\t(XtW)) +0(n3) .

m

with M = P.L Pg, which is an orthogonal projection matrix since M T = M and PPl = I4, and
thus M? = M. We proceed by bouding each term of

—EB] Piy + oy "E] Mpgi(xe;m) + E] M Egpuge (x45m)
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separately. Define €5 = || M Es||op- Then, since v := P%y € range(M ), we have Mv = v. Hence
E!Ply=FEMPLy=(ME,) " (MPly)
where we have used that M " M = M. By the operator norm inequality, and the fact that || PLy| =

lyll, we get
1ES Payll < [IME;lop | M Pgyll = esl| Pyl = esllyll-
Next, using the same operator norm inequality we get that
||E3TMM,swt(Xt§ M < esl|Mpsie(xe5m)| HE,IAMEsHs\t(th”])H < fiH.Us\t(Xt? |l -

which yields the desired bound. O
Proposition 2 (Upperbound on ;). We have that

- o2 1

e Qg (V% )\min(z) + (73

where Amin(X) is the smallest eigenvalue of X..

Proof. By noting that (a?Y + o02)Es = —aj 'o21,, we get the alternative expression

oz 21 -1
E,=——(a:X 401y .

o
By the submultiplicativity of the operator norm and the fact that M is a non-trivial orthogonal
projection matrix, we have that

2 2
T A o O 1 Os 1
”b ‘"T\[“Op < HbHop - 2 2 = — 2 2

Qg >\min(()4sZ + Os Ll) Qg Qg Anlin(X:) + (o=

B DETAILS ABOUT THE EXPERIMENTS

B.1 MODELS

We use both the SD 3 and SD 3.5 (medium) (Esser et al., 2024) models with the linear schedule
oy = 1 —t and o, = t. In all the experiments we run the zero-shot methods with a guidance scale
of 2. The fine-tuned baseline, which we refer to as SD3 Inpaint, is based on the publicly available
model® trained for inpainting with a ControlNet-augmented version of Stable Diffusion 3. It has
been finetuned on a large dataset of approximately 12 million 1024 x 1024 image—mask pairs to
directly predict high-quality inpainted completions conditioned on the masked image and the mask
itself. We have found the model to perform well also on lower resolutions, despite not undergoing
multi-resolution training. Examples of image editing of lower resolution images are presented in
the the HuggingFace page of the smae project. We run this baseline using a guidance scale of 7 for
optimal results.

Finally, all experiments use bfloat 16 for model forward passes (and backward passes for baselines
that require it), with other computations performed in f1oat 32.

B.2 MASK DOWNSAMPLING

To construct the mask in the latent space, we start from the original binary mask defined in pixel
space. Since the encoder reduces spatial resolution by a fixed factor (here, 8), we downsample the
pixel-space mask to match the resolution of the latent representation. This is done by applying
bilinear interpolation with antialiasing. The resulting low-resolution mask captures the proportion of
masked pixels within each latent receptive field. Finally, we threshold this downsampled mask at
0.95 to obtain a binary latent mask, slightly overestimating the masked region to prevent boundary
artifacts during sampling.

https://huggingface.co/alimama-creative/SD3-Controlnet—Inpainting
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B.3 IMPLEMENTATION OF THE BASELINES

Here, we give implementation details of the baselines. We stress that each baseline is run in the latent
space, and thus no method computes the gradient w.r.t. the input of the decoder. We also manually
tuned each baseline for the considered tasks. We provide the used hyperparameters in Table 8.

BLENDED-DIFF. We implemented Avrahami et al. (2023, Algorithm 1) following their official
code3. The codebase includes an additional hyperparameter, blending_percentage, which
determines at what fraction of the inference steps blending begins. We set it to zero, as applying
blending across all steps produced the best results. A key detail is the original implementation is
that the observed region (background) is re-noised to the noise level defined by the current timestep;
see Avrahami et al. (2023, step 1-2 within the for loop in Algo 1), yet the reconstructed region
(foreground) has less noise as it comes from applying a DDIM transition. This causes the background
and foreground to follow different noise levels, and hence, introduces minor artifacts in the final
reconstructions. We fixed this issue in our implementation by matching the two noise levels.

DAPS. We adapt Zhang et al. (2025, Algorithm 1) based on the released code” to the flow matching
formulation. We found that using Langevin as MCMC sampler for enforcing data consistency works
the best for low NFE regime.

DIFFPIR. We make Zhu et al. (2023, Algorithm 1) compatible with the flow matching formulation
with step 4 being implemented in the case of mask operator. We found in practice that the hyper-
parameter A has little impact on the quality of reconstructions and hence we use the recommended
values A = 1°. On the other hand for the second hyperparameter ¢, we find that using ¢ = 0.3 yielded
the best reconstructions.

DDNM. We adapt the implementation in the released code® to the flow matching formulation with
the step 4 in Wang et al. (2023b, Algorithm 3) being implemented for a mask operator. The official
implementation uses a DDIM transition in step 5 of Algorithm 3 whose stochasticity is controlled by
the hyperparemters 7. As recommended, we set the latter to n = 0.85.

FLOWCHEF & FLOWDPS. For both algorithms, we adapt the implementations available in the
released codes FLOWCHEF’ 8 to our codebase. We observe that the two algorithms are quite similar,
with FLOWDPS being distinct by adding stochasticity between iterations.

PNP-FLOW. We reimplement Martin et al. (2025, Algorithm 3) while taking as a reference the
released code’. For the stepsizes on data fidelity term, we find that a constant scheduler with higher
stepsize enables the algorithm to fit the observation, mitigate the smooth and blurring effects in the
reconstruction and hence yield better reconstructions.

PSLD. We implement the PSLD algorithm provided in Rout et al. (2024b, Algorithm 2). We find
that PSLD algorithm requires several diffusion steps, e.g. at least 150 diffusion steps, to yield good
results. Unfortunately, we were not able to make it work well for the low NFE setup.

REDDIFF. We implement Mardani et al. (2024, Algorithm 1) based on the official code'® and adapt
it to the flow matching formulation. We initialize the algorithm with a sample for a standard Gaussian.
For low NFE setups, we find that using a constant weight schedule yields better results, namely in
terms fitting the observation and providing consistent reconstructions.

*https://github.com/omriav/blended-latent—diffusion
*nttps://github.com/zhangbingliang2019/DAPS
Shttps://github.com/yuanzhi-zhu/DiffPIR
Shttps://github.com/wyhuai/DDNM
"https://github.com/FlowDPS-Inverse/FlowDPS
$https://github.com/FlowChef/flowchef
‘https://github.com/annegnx/PnP-Flow
Ohttps://github.com/NVlabs/RED-diff
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RESAMPLE. We reimplemented Song et al. (2024, Algorithm 1) based on the provided implementa-
tion details in Song et al. (2024, Appendix) and the reference code'!. As noted in Janati et al. (2025a),
we set the tolerance ¢ for optimizing the data consistency to the noise level o,. Since we are working
with low NEFs, we set the frequency at which hard data consistency is applied (skip step size) to 5.
That aside, we found that the algorithm requires several diffusion steps (200) in order to output good
enough reconstructions. We note that removing the DPS step in the data consistency steps reduces
the quality of the reconstructions.

Table 8: Hyperparameters for each algorithm (using the same notations as in their paper) and task variations.
“—" indicates identical across tasks.

Algorithm Ngeps Base hyperparameters Latent tasks
Half Top Bottom Center Strip
BLENDED-DIFF 50 blending percentage =0 = = = =
Noge =2
MCMC steps = 20
By =107 - -5 -5 -5 - -5
DAPS 50 M Catio — 043 o =2 x 10 no =3 x 10 no =2 x 10 o =9x10"° o =2 x 10
MCMC sampler = Langevin
p=1
DDNM 50 n=0385 — — = =
A=1
DIFFPIR 50 ‘=03 — — — —
step size = 0.9
FLOWCHEF 50 grad_descent_steps = 10 - - - -
FLowDPS 50 grad_descent_steps = 3 step_size =20 step_size =10 step_size = 10 step_size =10 step_size = 10
a=1.0 _ iy _ _ P
PNP-FLOW 50 Lt style = constant Yn = 0.8 Yn =13 Yo =14 Y = 0.8 Y = 0.8
_ 5 =0.01 ¥ =0.01 v =0.01 5 =0.05 ¥ =01
PSLD 50 ppmM param=1.0 7 =0.01 n=0.01 n=0.01 n=0.1 n=05
1r =02
REDDIFF 50 grad_term_weight = 0.25 — — — —
obs_weight = 1.0
c=5
grad_descent_steps = 200
RESAMPLE 50 Fscale = 40.0 — _ _ _

1rppa = 1072
1o = 5 X 1072

DING (ours) 25 n=0s(l— o) = —

C EXAMPLES OF RECONSTRUCTIONS

"https://github.com/soominkwon/resample
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Figure 7: Comparison of DING and finetuned SD3 on PIE-Bench. Both methods have the same
runtime of 2.2s.
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Figure 8: Comparison of DING and zero-shot baselines on PIE-Bench. All methods use 50 NFEs.
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Figure 9: Comparison of DING and zero-shot baselines on PIE-Bench. All methods use 50 NFEs.
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Figure 10: Comparison of DING and zero-shot baselines on PIE-Bench. All methods use 50
NFEs.
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Figure 11: Comparison of DING and zero-shot baselines on PIE-Bench. All methods use 50

NFEs.
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