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ABSTRACT

Diffusion models have emerged as powerful priors for image editing tasks such
as inpainting and local modification, where the objective is to generate realistic
content that remains consistent with observed regions. In particular, zero-shot
approaches that leverage a pretrained diffusion model, without any retraining, have
been shown to achieve highly effective reconstructions. However, state-of-the-art
zero-shot methods typically rely on a sequence of surrogate likelihood functions,
whose scores are used as proxies for the ideal score. This procedure however
requires vector-Jacobian products through the denoiser at every reverse step, in-
troducing significant memory and runtime overhead. To address this issue, we
propose a new likelihood surrogate that yields simple and efficient to sample Gaus-
sian posterior transitions, sidestepping the backpropagation through the denoiser
network. Our extensive experiments show that our method achieves strong ob-
servation consistency compared with fine-tuned baselines and produces coherent,
high-quality reconstructions, all while significantly reducing inference cost.

1 INTRODUCTION

We focus on inpainting problems in computer vision, which play a central role in applications ranging
from photo restoration to content creation and interactive design. Given an image with prescribed
missing pixels, the objective is to generate a semantically coherent completion while ensuring strict
consistency with the observed region. The importance of this task has motivated extensive research,
spanning both classical approaches and, more recently, generative modeling with diffusion models
(Rombach et al., 2022; Esser et al., 2024; Batifol et al., 2025; Wu et al., 2025).

To address this problem, two main diffusion-based approaches have been popularized. The first relies
on training conditional diffusion models tailored to a specific editing setup. These models directly
approximate the conditional distribution of interest (Saharia et al., 2022; Wang et al., 2023a; Kawar
et al., 2023; Huang et al., 2025) and take as side inputs additional information such as a mask, a text
prompt, or reference pixels (Saharia et al., 2022; Wang et al., 2023a; Kawar et al., 2023; Huang et al.,
2025). An alternative approach, which has recently attracted growing attention, is zero-shot image
editing, requiring no extra training or fine-tuning. In this formulation, the task is cast as a Bayesian
inverse problem: the pre-trained diffusion model serves as a prior, while a likelihood term enforces
fidelity to the observations, and the resulting posterior distribution defines the reconstructions (Song &
Ermon, 2019; Song et al., 2021b; Kadkhodaie & Simoncelli, 2020; Kawar et al., 2022; Lugmayr et al.,
2022; Avrahami et al., 2022; Chung et al., 2023; Mardani et al., 2024; Rout et al., 2024a). Sampling
from this posterior is achieved by approximating the score functions associated with the diffusion
model adapted to this distribution. This plug-and-play paradigm has been investigated across a variety
of inverse problems, from image restoration to scientific imaging, and has demonstrated strong editing
performance without task-specific training.

While current zero-shot methods are appealing, they face a critical practical limitation. Implemen-
tations of strong zero-shot posterior sampling with diffusion priors typically rely on the twisting
function proposed by Ho et al. (2022); Chung et al. (2023); Song et al. (2023a), which corresponds to
the likelihood evaluated at the denoiser’s output given the observation. Simulating the corresponding
reverse diffusion process requires computing gradients of the denoiser with respect to its input. This
in turn entails repeated backpropagation through the denoiser network and costly vector–Jacobian
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Figure 1: Zero-shot inpainting edits generated by DING (50 NFEs) for different masking patterns using Stable
Diffusion 3.5 (medium). Given masked inputs (left column), the model fills the missing regions according to
diverse textual prompts.

product (VJP) evaluations. This makes such methods computationally demanding, memory intensive,
and often slower than training a dedicated conditional model.

Contributions. We propose a new VJP-free framework for zero-shot inpainting with a pre-trained
diffusion prior. Our key idea is to approximate the intractable twisted posterior-sampling transitions
by a closed-form mixture distribution that can be sampled exactly, thereby eliminating the need
for VJP evaluations and backpropagation through the denoiser. Concretely, we modify the twisting
function of Ho et al. (2022); Chung et al. (2023) so that it evaluates the denoiser at an independent
draw from the pretrained transition. This decoupling breaks the dependency between the denoiser
and the arguments of the transition density. As a result, our method provides posterior transitions
that can be sampled efficiently for zero-shot inpainting with latent diffusion models. We demonstrate
through extensive experiments on Stable Diffusion (SD) 3.5 that our method, coined DECOUPLED
INPAINTING GUIDANCE (DING), consistently outperforms state-of-the-art guidance methods under
low NFE budgets. It achieves, across three benchmarks, the best trade-off between fidelity to the
visible content and realism of the reconstructions, while being both faster and more memory-efficient
than competing approaches. Remarkably, even without any task-specific fine-tuning, it outperforms
an SD 3 model that has been fine-tuned for image editing, confirming the effectiveness and practicality
of our framework.

2 BACKGROUND

Diffusion models Denoising diffusion models (DDMs) (Sohl-Dickstein et al., 2015; Song &
Ermon, 2019; Ho et al., 2020) define a generative process for a data distribution p0 by constructing
a continuous path (pt)t∈[0,1] of distributions between p0 and p1 := N (0, Id). More precisely,
pt = Law(Xt), where

Xt = αtX0 + σtX1 , X0 ∼ p0 , X1 ∼ p1 . (2.1)

Here X0 and X1 are supposed to be independent and (αt)t∈[0,1] and (σt)t∈[0,1] are deterministic,
non-increasing and non-decreasing, respectively, schedules with boundary conditions (α0, σ0) :=
(1, 0) and (α1, σ1) := (0, 1). Typical choices include the variance-preserving schedule, satisfying
α2
t + σ2

t = 1 (Ho et al., 2020; Dhariwal & Nichol, 2021), and the linear schedule, defined by
(αt, σt) = (1− t, t) (Lipman et al., 2023; Esser et al., 2024; Gao et al., 2024). The path (pt)t∈[0,1]

defines an interpolation that gradually transforms the clean data distribution p0 into the Gaussian
reference distribution p1. To generate new samples, DDMs simulate a time-reversed Markov chain.
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Given a decreasing sequence (tk)
K
k=0 of time steps with tK = 1 and t0 = 0, reverse transitions are

iteratively applied to map a sample from ptk+1
to one from ptk , thereby progressively denoising until

convergence to the clean distribution p0.

The DDIM framework (Song et al., 2021a) introduces a general family of reverse transitions for
denoising diffusion models. It defines a new schedule (ηt)t∈[0,1], satisfying ηt ≤ σt for all t ∈ [0, 1],
along with a family of transition densities given for s < t by

pηs|t(xs|xt) = E
[
qηs|0,1(xs|X0, X1)

∣∣∣Xt = xt

]
, (2.2)

where qηs|0,1(xs|x0,x1) := N(xs; αsx0+
√

σ2
s − η2s x1, η

2
sI) and the random variables (X0, Xt, X1)

are defined as in (2.1). By construction, this family satisfies the marginalization property
ps(xs) =

∫
pηs|t(xs|xt) pt(xt) dxt (Song et al., 2021a, Appendix B). Thus, (pηtk|tk+1

)K−1
k=0 defines

a consistent set of reverse transitions, enabling stepwise sampling from the sequence (ptk)
K
k=0. In

practice, however, these transitions are intractable. A common approximation is to replace X0

and X1 in (2.2) by their conditional expectations (Ho et al., 2020; Song et al., 2021a). More
precisely, let x̂θ

0(·, t) denote a parametric estimator of x̂0(xt, t) := E[X0 | Xt = xt]. Since
E[X1|Xt = xt] = (xt − αtx̂0(xt, t))/σt, we set x̂θ

1(xt, t) := (xt − αtx̂
θ
0(xt, t))/σt. Then the

parametric model proposed by Ho et al. (2020); Song et al. (2021a) corresponds to approximating
each pηtk|tk+1

by

pη,θtk|tk+1
(xtk |xtk+1

) := qηtk|0,1(xtk |x̂θ
0(xtk+1

, tk+1), x̂
θ
1(xtk+1

, tk+1)) . (2.3)

For k = 0, pη,θ0|t1
(·|xt1) is simply defined as the Dirac mass at x̂θ

0(xt1 , t1). In the rest of the paper we
omit the superscript η when there is no ambiguity.

Image editing In this work, we address the task of image editing via inpainting. We assume access
to some reference image x∗ ∈ Rd that must be modified while remaining consistent with a prescribed
set of observed pixels. Let m ⊂ {1, . . . , d} denote the index set of missing (masked) pixels, and let
m = {1, . . . , d} \m be the index set of observed (unmasked) pixels, with cardinality |m| = dy. For
any x ∈ Rd and i ⊂ {1, . . . , d}, we denote by x[i] ∈ R|i| the subvector formed by the components
of x with indices i. The observation is thus given by y := x∗[m], and the objective is to synthesize
a reconstruction x̂ such that x̂[m] ≈ y while generating the missing region x̂[m] in a realistic and
semantically coherent manner with respect to the observed pixels. In the Bayesian formulation, the
data distribution p0 serves as a prior over natural images, while the observation model is encoded by
a Gaussian likelihood on the observed coordinates:

ℓ0(y|x) = N
(
y;x[m], σ2

y Idy

)
. (2.4)

The parameter σy > 0 serves as a relaxation factor: smaller values enforce strict adherence to
the observation, while larger values permit controlled deviations from x∗, thereby facilitating the
reconstruction process. In this Bayesian framework, the target distribution from which we aim to
sample is the posterior distribution

π0(x0|y) ∝ ℓ0(y|x0) p0(x0) . (2.5)

Inference-time guidance As observed in the seminal works of Song & Ermon (2019); Kadkhodaie
& Simoncelli (2020); Song et al. (2021b); Kawar et al. (2021), approximate sampling from the
posterior distribution can be performed by biasing the denoising process with guidance terms, without
requiring any additional fine-tuning. The central idea is to modify the sampling dynamics of diffusion
models on-the-fly so that the generated samples both satisfy the likelihood constraint ℓ0(y|·) and
remain plausible under the prior p0. More precisely, a standard approach is to approximate the
iterative updates of a diffusion model defined to target the posterior ℓ0(y|·). This in turn entails
deriving an approximation of the posterior denoiser x̂0(xt, t|y) :=

∫
x0 π0|t(x0|xt,y) dx0, where

π0|t(x0|xt,y) ∝ π0(x0|y)N(xt;αtx0, σ
2
t I). The denoiser x̂0(·, t|y) is related to the prior denoiser

via the identity
x̂0(xt, t|y) = x̂0(xt, t) + α−1

t σ2
t∇xt

log ℓt(y|xt) , (2.6)
where the additional term is referred to as the guidance term; see (Daras et al., 2024, Eq. 2.15 and
2.17). It is defined as the logarithmic gradient of the propagated likelihood

ℓt(y|xt) :=

∫
ℓ0(y|x0) p0|t(x0|xt) dx0 , with p0|t(x0|xt) ∝ p0(x0)N(xt; αtx0, σ

2
t I) ; (2.7)
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Algorithm 1 Posterior sampling with decoupled guidance

1: Input: decreasing timesteps (tk)0k=K with tK = 1, t0 = 0; original image x∗; mask m;
DDIM parameters (ηk)0k=K .

2: y← x∗[m]; x ∼ N (0, Id)
3: for k = K − 1 to 1 do
4: x̂0 ← xθ

0(x, tk+1)
5: x̂1 ← (x− αtk+1

x̂0)/σtk+1

6: µ← αtk x̂0 + (σ2
tk
− η2k)

1/2x̂1

/* Sampling (3.4) */
7: (w,w′)

i.i.d.∼ N (0d, Id)
8: z← µ+ ηkw
9: x̂pxy

1 ← (z− αtk x̂
θ
0(z, tk))/σtk

10: γ ← η2tk/(η
2
tk

+ α2
tk
σ2
y)

11: x[m]← µ[m] + ηkw
′[m]

12: x[m]← (1− γ)µ[m] + γ
(
αtky + σtk x̂

pxy
1 [m]

)
+ αtkσy

√
γw′[m]

13: end for
14: Return: x̂θ

0(x, t1)

see (Daras et al., 2024, Equation 2.20). Since the pre-trained parametric approximation x̂θ
0(·, t) of the

prior denoiser x̂0(·, t) is already available, estimating x̂0(·, t|y) reduces to computing the intractable
score term ∇xt log ℓt(y|xt). A widely adopted approximation (Ho et al., 2022; Chung et al., 2023)
replaces p0|t(·|xt) in (2.7) by a Dirac mass at the denoiser estimate x̂θ

0(xt, t), yielding

ℓ̂θt (y|xt) := ℓ0(y|x̂θ
0(xt, t)) . (2.8)

This approximation is often combined with a suitable rescaling weight (possibly depending on xt);
see (Ho et al., 2022, Equation 8) and (Chung et al., 2023, Algorithm 1). Substituting this into the
identity (2.6) yields an approximation of the posterior denoiser, which in turn defines an approximate
diffusion model for π0(·|y).

3 METHOD

The methods discussed in the previous section rely on the likelihood approximation (2.8), which is
then inserted into (2.6). However, computing this term requires differentiating through the denoisers
x̂θ
0(·, tk) at each timestep tk. This operation is computationally demanding: it increases memory

usage, slows down the sampling process, and reduces scalability. By contrast, fine-tuned conditional
diffusion models bypass these inference costs once training is complete, but at the expense of per-task
retraining. This highlights a fundamental trade-off: zero-shot posterior sampling eliminates the
need for retraining, but incurs substantial overhead during inference. Our goal is to bridge this gap
by designing a zero-shot posterior sampler that removes the need for backpropagation through the
denoiser while preserving the effectiveness of guidance.

Reverse transitions for the posterior. Our method builds upon the alternative sampling strategy
introduced in Wu et al. (2023); Zhang et al. (2023); Janati et al. (2024). Instead of initializing
the interpolation (2.1) with the prior X0 ∼ p0, we consider the same process initialized from the
posterior distribution X0 ∼ π0(·|y). This yields a new family of random variables whose marginals
are πt(xt|y) :=

∫
N(xt; αtx0, σ

2
t Id)π0(x0|y) dx0, in analogy with the prior family (pt)t∈[0,1].

Moreover, the DDIM transitions associated with (πt(·|y))t∈[0,1] are given by (Janati et al., 2025b,
Equation 1.17):

πη
s|t(xs|xt,y) ∝ ℓs(y|xs) p

η
s|t(xs|xt) , (3.1)

which defines a valid Markov chain with marginals (πtk
(·|y))Kk=1. This chain defines a path between

the Gaussian reference N (0, Id) and the posterior distribution π0(·|y). However, the presence of
the likelihood term ℓt(y|xt) makes also these transitions intractable. To address this issue, prior
works (Zhang et al., 2023; Wu et al., 2023) introduced the surrogate transitions proportional to
xs 7→ ℓ̂θs(y|xs)p

η,θ
s|t (xs|xt), for fixed xt and y, where ℓ̂θt (y|·) are defined in (2.8). These transitions
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are then approximated using either variational inference (Janati et al., 2024; Pandey et al., 2025) or
sequential Monte Carlo methods (Wu et al., 2023). However, similar to the methods described in the
previous section, these approximations rely on the approximate guidance term and thus suffer from
inflated memory usage and higher runtime.

Our likelihood approximation. To address this limitation, we draw inspiration from (2.8) to
propose a lightweight approximation, designed to eliminate the need for VJP evaluations through
the denoiser. Using the relation x̂θ

0(xs, s) = (xs − σsx̂
θ
1(xs, s))/αs, we first rewrite the standard

likelihood approximation (2.8) in terms of the noise prediction x̂θ
1(xs, s) according to

ℓ̂θs(y|xs) = ℓ0(y|(xs − σsx̂
θ
1(xs, s))/αs) .

Based on this parametrization, we then introduce the following alternative approximation:

ℓ̂θs(y|xs, zs) := ℓ0(y|(xs − σsx̂
θ
1(zs, s))/αs) , (3.2)

where the noise predictor is evaluated at zs ∈ Rd, which serves as a proxy for xs. A key feature of
this decoupling is that it enables lightweight updates, avoids costly denoiser backpropagation, and
still provides high-quality reconstructions. Then, similarly to (3.1), we define

π̂θ
s|t(xs|zs,xt,y) ∝ ℓ̂θs(y|xs, zs) p

η,θ
s|t (xs|xt) .

This leads us to propose the surrogate
π̂θ
s|t(xs|xt,y) := E

[
π̂θ
s|t(xs|Zs,xt,y)

]
, (3.3)

where Zs ∼ pθs|t(·|xt), for (3.1). The transition π̂θ
s|t(xs|xt,y) generally lacks a closed-form ex-

pression; nevertheless, since it has a mixture structure, it allows for straightforward and efficient
sampling. Sampling from π̂θ

s|t(xs|xt,y) can be performed by first drawing Zs from pθs|t(·|xt), and
then sampling from π̂θ

s|t(xs|Zs,xt,y). Moreover, as we will now show, in the case of inpainting, the
second step can be carried out exactly.

Let µθ
s|t(xt;η) denote the mean of the Gaussian reverse transition pη,θs|t (·|xt). In the case of inpainting

(2.4), standard Gaussian conjugacy results (Bishop, 2006, Equation 2.116) show that π̂θ
s|t(·|zs,xt,y)

admits a closed-form Gaussian expression:

π̂θ
s|t(xs|zs,xt,y) = N

(
xs[m];µθ

s|t(xt;η)[m], η2sId−dy

)
×N

(
xs[m]; (1− γs|t)µ

θ
s|t(xt;η)[m] + γs|t

(
αsy + σsx̂

θ
1(zs, s)[m]

)
, α2

sσ
2
yγs|t Idy

)
, (3.4)

with γs|t := η2s/(η
2
s + α2

sσ
2
y). A derivation is provided in Appendix A.1. Thus, a sample Xs from

(3.3) can be drawn exactly by, first, generating a realization zs of Zs ∼ pη,θs|t (·|xt) and, second,
sampling Xs[m] and Xs[m] conditionally independently from the two Gaussian distributions in
(3.4); see Algorithm 1 for a pseudocode of this approach, which we refer to as DING (see Section 1).

Practical implementation. A key practical feature of our method is that it depends on a single
hyperparameter: the sequence (ηt)t∈[0,1] of standard deviations, which controls the level of stochas-
ticity in the DDIM reverse process. This choice is particularly critical in the low-NFE regime, where
only a few function evaluations are available and the variance schedule strongly influences both
observation fidelity and perceptual quality. In all experiments, we adopt the schedule ηt = σt(1−αt).
An ablation study of this parameter is reported in Section 4.

Beyond this hyperparameter, an important practical consideration is that most large-scale diffusion
models for high-resolution image generation operate in a compressed latent space rather than in pixel
space (Rombach et al., 2022; Esser et al., 2024). To apply our algorithm in this setting, we must
therefore formulate the inpainting task in the latent domain. Denote by Enc the encoder, X∗ the
pixel-space ground-truth image and M the corresponding pixel-space mask. Following Avrahami et al.
(2022), we set x∗ := Enc(X∗), the observation to y := x∗[m] where m is a downsampled version of
the pixel-space mask M. Since the encoder reduces spatial resolution by a fixed factor (e.g., s = 8 in
Esser et al. (2024)), we construct the latent mask m by average pooling the binary pixel-space mask
M with kernel and stride s. Each latent site is assigned the fraction of unmasked pixels within its
receptive field. These fractional values are then thresholded (typically at 0.5) to produce a binary
mask; in other words, a latent site is marked as observed if the majority of its underlying pixels are
unmasked. In practice, the mask m is provided as a single-channel image and broadcast across all
latent channels when applied to x∗. Finally, we apply Algorithm 1 with (x∗,y,m) thus defined in
the latent space.
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Related methods. Our work shares similarities with various recent approaches to zero-shot diffusion
guidance, which now briefly review. The closest line of work comprises variants of the replacement
method (Song & Ermon, 2019; Song et al., 2021b), which follows the same structure as Algorithm 1.
In these schemes, the masked coordinates of the state are updated according to the standard DDIM
transition (Line 11), while the unmasked coordinates are replaced by a direct update that enforces
consistency with the observation y (Line 12). In its simplest form, the method performs ancestral
sampling with the transition

π̂θ
s|t(xs|xt,y) = N

(
xs[m]; µθ

s|t(xt;η)[m], η2sId−dy

)
N
(
xs[m]; αsy, σ

2
sIdy

)
, (3.5)

i.e., the unmasked state is set to a noisy version of the observation αsy + σsWs, where Ws ∼
N (0, Idy); see (Song & Ermon, 2019, Algorithm 2) and (Song et al., 2021b, Appendix I.2). Avrahami
et al. (2022) extended this approach to the latent domain using a downsampled mask. The method
was later refined in RePaint (Lugmayr et al., 2022), which improves sample quality by performing
multiple back-and-forth updates: after applying the replacement step from tk+1 to tk, a forward
noising step is applied from tk back to tk+1, and this cycle is repeated several times. Several works
have combined the replacement method with sequential Monte Carlo (SMC) sampling (Trippe et al.,
2023; Cardoso et al., 2023; Dou & Song, 2024; Corenflos et al., 2025; Zhao, 2025). In particular,
Cardoso et al. (2023) update the unmasked coordinates of each particle using a Gaussian transition
whose mean is a convex combination of the DDIM mean and the rescaled observation αtky. In the
inpainting framework, the recently proposed PnP-Flow (Martin et al., 2025) reduces to using similar
transitions without relying on SMC, i.e., by using a single particle. We explicitly compare the update
rules in (Cardoso et al., 2023; Martin et al., 2025) with ours in Appendix A.2, where we also discuss
additional related work.

4 EXPERIMENTS

In this section, we extensively evaluate the inpainting performance of DING when used with different
large-scale models. We benchmark its performance on multiple datasets against several state-of-the-
art baselines. We further analyze the relevance of our modeling choices, specifically the formulation
of the approximation in (3.2) and the schedule of DDIM standard deviations (ηt)t∈[0,1], through a
series of targeted ablations.

Models and datasets. We evaluate our method on Stable Diffusion 3.5 (medium) (Esser et al.,
2024). We set the CFG scale to 2. Our experiments cover three datasets: FFHQ (Karras et al., 2019),
DIV2K (Agustsson & Timofte, 2017), and PIE-Bench (Ju et al., 2024). For FFHQ, we use the first
5k images and condition generation on the prompt “a high-quality photo of a face”. For DIV2K,
we include both training and validation splits (900 images in total), and generate captions for each
image using BLIP-2 (Li et al., 2023); see Appendix B for details. All FFHQ and DIV2K images are
resized to a resolution of 768 × 768. The PIE-Bench dataset contains 700 images of resolution
512× 512, each paired with an inpainting mask and an edit caption. After removing cases where the
mask completely covers the image, the resulting evaluation set contains 556 images.

Evaluation and masks. For FFHQ and DIV2K, we evaluate inpainting performance under four
rectangular masking configurations: (i) right half of the image (Half ), (ii) upper half (Top), (iii)
lower half (Bottom), and (iv) a central 512× 512 square (Center). In contrast, PIE-Bench provides
irregular masks with diverse spatial patterns; see Appendix C for examples. Unless otherwise
stated, we set σy = 0.01 across all tasks. Since exact posterior sampling is infeasible, we assess
inpainting quality using proxy metrics. To measure distributional alignment with the dataset, we
report both FID and patch FID (pFID) (Chai et al., 2022), the latter offering finer granularity for
high-resolution evaluation. Following the standard FID protocol, we extract 10 random 256× 256
patches per image, yielding a total of 50k patches. To quantify consistency with the observed
content, we compute context PSNR (cPSNR), defined as the PSNR over the unmasked region only.
We further report LPIPS (Zhang et al., 2018) relative to the ground truth to evaluate perceptual
similarity, which is especially relevant for FFHQ where facial symmetries make reconstructions
visually close to the reference. For PIE-Bench, which includes edit captions, we additionally report
CLIP-Score (Radford et al., 2021) on both the full image (CLIP) and the edited region (CLIP-ED),
following Ju et al. (2024). Together, these metrics provide a comprehensive evaluation of inpainting
quality. While each captures a different aspect of performance, none should be interpreted in isolation.
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Figure 2: Examples of reconstructions on FFHQ and DIV2K with 50 NFEs.

Table 1: Memory and runtime.

Method Time (s) Mem. (GB)

BLENDED-DIFF 3.0 22.09
DAPS 9.1 22.09
DDNM 3.1 22.09
DIFFPIR 3.1 22.09
FLOWCHEF 3.0 22.09
FLOWDPS 3.0 22.10
PNP-FLOW 3.1 22.09
PSLD 7.4 24.49
REDDIFF 3.1 22.09
RESAMPLE 8.1 24.50
DING (ours) 2.9 22.09

Baselines. We compare against seven state-of-the-art baselines:
FLOWCHEF (Patel et al., 2024), FLOWDPS (Kim et al., 2025),
DAPS (Zhang et al., 2025), REDDIFF (Mardani et al., 2024),
RESAMPLE (Song et al., 2024), PSLD (Rout et al., 2024b),
PNP-FLOW (Martin et al., 2025), DIFFPIR (Zhu et al., 2023),
DDNM (Wang et al., 2023b) and BLENDED-DIFF (Avrahami et al.,
2023) For the main comparison, all methods are evaluated under a
fixed budget of 50 NFEs. Since our method requires two denoiser
evaluations per diffusion step, we use 25 steps to match this budget.
We focus on this low-NFE regime as it reflects realistic settings,
where inference is constrained by latency and compute. To ensure
fairness, all methods are run in the latent space with downsampled masks, and extensive hyperpa-
rameter tuning is performed for each baseline on each dataset. For baselines that require VJP or
backpropagation through the denoiser, we report their actual runtime and memory costs, ensuring
that comparisons reflect effective inference cost rather than nominal NFE counts. Average runtime
and memory usage across all the experiments, measured on H100 GPUs, are provided in Table 1.

4.1 MAIN RESULTS

Table 3: Results on PIE-Bench with 556
samples and 50 NFEs.

Method FID pFID cPSNR LPIPS CLIP CLIP-ED

BLENDED-DIFF 65.5 27.0 26.60 0.31 26.32 23.15
DAPS 65.9 30.2 27.08 0.34 25.57 21.75
DDNM 61.4 26.9 27.29 0.31 26.27 22.96
DIFFPIR 63.5 25.4 26.98 0.30 26.21 23.04
FLOWCHEF 68.3 27.4 26.84 0.30 26.02 22.47
FLOWDPS 74.6 42.7 22.05 0.45 26.35 22.79
PNP-FLOW 66.8 32.1 26.90 0.34 25.62 21.02
PSLD 94.1 56.2 14.25 0.65 26.32 21.81
REDDIFF 69.5 35.2 24.34 0.37 25.27 21.18
RESAMPLE 71.0 33.9 24.45 0.35 25.71 22.03
DING (ours) 61.4 24.7 27.03 0.30 26.30 23.36

Tables 2 and 3 summarize the results on FFHQ, DIV2K
and PIE-Bench, respectively. On FFHQ (Table 3),
DING achieves the best performance on all masks and
almost all the metrics. In particular, it improves both pFID
and FID by significant margins over the strongest com-
peting method FLOWCHEF. It also obtains the highest
cPSNR scores, indicating a faithful reconstruction of the
visible content, while simultaneously producing visually
coherent completions with the lowest LPIPS. On DIV2K,
the comparison is more nuanced. DING consistently at-
tains the best FID and LPIPS across all four masks, while
remaining competitive on pFID and comparable to strong
baselines on cPSNR. On PIE-Bench, DING achieves the best results on all metrics except cPSNR
and CLIP. We note, however, that although FLOWDPS and PSLD obtain slightly higher CLIP

7
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Table 2: Top: Quantitative results on FFHQ 768× 768 with 5k samples. Bottom: DIV2K 768× 768 with 900
samples. For FID, pFID, and LPIPS, the lower the better. For cPSNR, the higher the better. 50 NFEs were used.

Half Center Top Bottom

Method FID pFID cPSNR LPIPS FID pFID cPSNR LPIPS FID pFID cPSNR LPIPS FID pFID cPSNR LPIPS

FFHQ 768× 768

BLENDED-DIFF 23.5 16.3 31.32 0.38 35.3 36.7 31.54 0.33 32.8 15.8 32.05 0.38 43.7 19.8 30.85 0.37
DAPS 17.9 25.1 30.50 0.36 35.1 54.5 31.15 0.32 30.1 30.5 31.54 0.39 52.8 27.6 30.30 0.34
DDNM 12.3 13.68 31.27 0.33 24.4 34.8 31.61 0.27 22.3 23.2 31.82 0.36 38.3 19.6 30.51 0.32
DIFFPIR 12.1 11.23 30.91 0.36 19.4 19.6 31.67 0.30 19.7 14.1 32.07 0.36 30.7 11.4 30.74 0.35
FLOWCHEF 20.2 16.5 30.41 0.36 29.3 35.0 31.00 0.31 27.8 21.1 31.05 0.36 35.9 22.7 29.94 0.35
FLOWDPS 36.2 49.0 26.72 0.46 49.5 79.9 23.36 0.53 52.1 74.2 24.15 0.56 72.3 71.5 23.06 0.55
PNP-FLOW 20.5 33.4 30.62 0.37 36.6 65.1 31.67 0.32 33.6 42.7 31.54 0.38 56.8 33.4 29.95 0.33
PSLD 116.3 73.8 6.89 0.81 98.0 69.1 10.09 0.73 120.6 75.4 7.06 0.81 107.0 70.4 6.46 0.81
REDDIFF 28.5 37.9 27.39 0.39 30.7 41.8 27.85 0.32 33.0 41.1 27.92 0.41 76.4 41.3 26.96 0.39
RESAMPLE 32.4 48.8 28.53 0.44 53.8 103.4 28.46 0.40 63.2 56.2 29.02 0.44 97.8 57.0 28.06 0.44
DING (ours) 9.6 6.6 31.03 0.33 15.5 14.0 31.38 0.27 19.7 12.5 31.64 0.34 29.6 8.6 30.50 0.32

DIV2K 768× 768

BLENDED-DIFF 43.6 12.9 26.03 0.37 54.8 20.2 26.43 0.35 44.8 13.2 25.28 0.39 48.1 13.1 26.85 0.38
DAPS 51.0 38.4 25.92 0.46 74.8 67.6 26.14 0.44 54.8 41.0 25.22 0.44 61.2 39.7 26.71 0.50
DDNM 42.5 21.2 26.03 0.41 57.7 38.5 26.61 0.37 45.7 21.3 25.36 0.42 49.6 23.2 26.81 0.45
DIFFPIR 41.1 12.9 26.09 0.37 52.8 21.4 26.58 0.34 43.5 13.1 25.36 0.39 44.9 14.9 26.91 0.39
FLOWCHEF 43.3 12.2 25.78 0.36 53.6 22.3 26.27 0.32 45.0 13.8 25.09 0.37 46.9 13.2 26.57 0.37
FLOWDPS 50.8 33.2 21.30 0.49 70.3 62.8 18.38 0.63 64.1 57.9 17.43 0.65 64.2 57.3 19.06 0.63
PNP-FLOW 54.2 42.7 26.00 0.46 79.7 71.4 26.63 0.44 57.1 33.5 25.19 0.44 64.7 50.8 26.61 0.50
PSLD 66.4 32.3 6.15 0.79 66.9 35.7 9.89 0.72 66.5 31.9 6.35 0.79 66.3 32.6 6.41 0.78
REDDIFF 54.2 45.7 22.64 0.49 77.4 69.8 23.25 0.46 57.7 40.9 22.17 0.48 60.6 46.3 23.41 0.52
RESAMPLE 52.7 34.1 23.33 0.47 80.8 63.8 23.76 0.43 56.1 33.1 22.84 0.47 60.6 41.0 24.06 0.48
DING (ours) 39.2 13.0 25.90 0.35 50.7 19.5 26.41 0.31 41.4 13.7 25.19 0.37 43.4 13.4 26.72 0.37

scores, they perform markedly worse on fidelity and perceptual quality metrics, suggesting that their
improvements in CLIP may reflect metric hacking rather than genuine reconstruction quality. We
provide qualitative comparisons of the reconstruction in Figure 7 and Appendix C.

We now compare DING with a Stable Diffusion 3 model fine-tuned for inpainting1, trained on
12M images at 1024 × 1024 resolution. To ensure fairness, both models are evaluated under
the same runtime budget (2.2s), which corresponds to 56 NFEs for DING and 28 NFEs for
the fine-tuned baseline. We also provide the results for the finetuned model using 56 NFEs.

Table 4: Results on the PIE-Bench with 556 samples.
Method FID pFID cPSNR LPIPS CLIP CLIP-ED

SD3 Inpaint (28) 68.7 30.5 18.85 0.34 26.37 23.10
SD3 Inpaint (56) 68.2 30.3 19.03 0.34 26.38 23.03
DING (ours) 63.6 24.6 26.98 0.30 26.63 23.70

The results are given in Tables 5 and 4. Across
FFHQ, DIV2K, and PIE-Bench, DING con-
sistently outperforms the fine-tuned SD3 model
on all reported metrics. The gains are especially
pronounced in cPSNR, where DING achieves
8–10 dB higher fidelity to the observed pixels.
This indicates that our method preserves the
known content far more accurately while still producing realistic completions, as confirmed by
lower FID and LPIPS. On PIE-Bench, DING further improves over the fine-tuned baseline on
every metric, including perceptual ones (pFID, LPIPS), while also yielding stronger text–image
alignment (CLIP, CLIP-ED). See Figure 7 for a qualitative comparison of the reconstructions. These
results demonstrate that, even without task-specific fine-tuning on a large amount of images, DING
not only matches but surpasses a specialized SD3 inpaint model. Overall, these results show that our
method provides the strongest overall trade-off between realism and fidelity under low NFE budgets.

Table 5: DING compared to SD3 fine-tuned (28 and 56 NFEs) for inpainting tasks.
Half Center Top Bottom

Method FID pFID cPSNR LPIPS FID pFID cPSNR LPIPS FID pFID cPSNR LPIPS FID pFID cPSNR LPIPS

FFHQ 512× 512

SD3 Inpaint (28) 23.5 10.7 21.69 0.37 62.1 33.9 22.18 0.31 34.7 17.8 21.64 0.36 42.4 16.5 21.78 0.37
SD3 Inpaint (56) 23.7 10.3 21.53 0.37 63.7 34.4 21.94 0.31 35.4 16.5 21.41 0.36 43.8 16.8 21.53 0.36
DING (ours) 9.3 5.8 31.40 0.32 20.2 15.5 31.39 0.28 17.3 8.4 31.96 0.33 33.8 12.2 31.27 0.34

DIV2K 512× 512

SD3 Inpaint (28) 45.9 15.0 17.95 0.40 54.2 22.1 18.57 0.36 48.8 16.6 18.12 0.42 51.0 17.5 18.95 0.41
SD3 Inpaint (56) 45.1 14.0 17.91 0.40 54.2 20.5 18.63 0.36 48.6 16.1 18.16 0.41 50.3 17.2 19.02 0.41
DING (ours) 41.5 14.2 26.09 0.37 52.4 21.5 26.53 0.33 43.7 13.8 25.47 0.38 45.4 15.4 26.94 0.38

4.2 ABLATIONS

Doubled NFE per diffusion step. Because the x1-predictor must be evaluated at the proxy variable
(Line 9 in Algorithm 1), our algorithm requires two NFEs per diffusion step. An immediate question

1https://huggingface.co/alimama-creative/SD3-Controlnet-Inpainting
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is whether this overhead is needed. To explore this, we introduce a variant in which the noise
prediction from the previous step is reused instead of being recomputed at the proxy. We coin this
variant as Delayed DING, where Line 9 is replaced by x̂pxy

1 ← (x − σtk x̂1(x, tk+1))/αtk , and
we further set ηt = σt(1 − αt), which we found to yield the best performance in this setting. A
quantitative comparison with the original DING is reported in Table 6, showing that while Delayed
DING reduces the NFE cost per step, it consistently underperforms across metrics and masking
patterns, indicating that the doubled NFE is necessary to retain the full effectiveness of our approach.

Table 6: Delayed DING compared to DING on FFHQ (5k samples) and DIV2K (900 samples) with 50 NFEs.
Method Half Center Top Bottom

pFID FID cPSNR LPIPS pFID FID cPSNR LPIPS pFID FID cPSNR LPIPS pFID FID cPSNR LPIPS

FFHQ 768× 768

Delayed DING 9.1 7.4 29.21 0.33 21.3 20.7 29.90 0.26 15.7 9.9 29.84 0.33 31.0 12.3 28.88 0.33
DING 9.6 6.6 31.03 0.33 15.5 14.0 31.38 0.27 19.7 12.5 31.64 0.34 29.6 8.6 30.50 0.32

DIV2K 768× 768

Delayed DING 43.9 15.9 24.88 0.36 55.6 24.7 25.52 0.32 45.3 16.8 24.36 0.38 47.8 14.6 25.64 0.38
DING 39.2 13.0 25.90 0.35 50.7 19.5 26.41 0.31 41.4 13.7 25.19 0.37 43.4 13.4 26.72 0.37

DDIM schedule. Here we proceed to compare the behavior of our algorithm under different
schedules (ηt)t∈[0,1]. For this purpose we compare against some natural candidates. (A): we consider
the DDPM schedule used in (Ho et al., 2020) and which corresponds to using in (2.2) a standard
deviation that depends on both s and t, i.e., ηs(t) = σs(σ

2
t − (αt/αs)

2σ2
s)

1/2/σt. (B): as we cannot
use deterministic sampling in our approach, we rescale the DDPM schedule (A) with 0.01 to approach
deterministic sampling. (C): ηs = σs, which is the maximum allowed standard deviation in (2.2). In
this scenario, the transition is pθs|t(xs|xt) = N(xs; x̂

θ
0(xt, t), σ

2
sId) and resembles the prior transition

used in Martin et al. (2025). (D): ηs = σs

√
1− αs, which corresponds to a slower decay of the

standard deviation compared to our default choice ηs = σs(1− αs). The results on FFHQ with 5k
samples and 50 NFEs are reported in Table 7. We observe that the rescaled DDPM schedule (B)
degrades significantly across all metrics, while (A) and (C) yield nearly identical performance. This
suggests that maintaining sufficient stochasticity at the beginning of the diffusion process is crucial
for strong performance. Among the alternatives, (D) performs best; still, it is outperformed by our
default schedule, confirming the benefit of a faster decay of (ηt).

Table 7: Ablation results for the DDIM schedule (ηt) on FFHQ 768× 768 with 5k samples and 50 NFEs.
Method Half Center Top Bottom

FID pFID cPSNR LPIPS FID pFID cPSNR LPIPS FID pFID cPSNR LPIPS FID pFID cPSNR LPIPS

(A) 13.9 14.0 31.19 0.36 19.1 25.5 31.50 0.30 21.8 18.9 31.80 0.38 35.1 15.1 30.70 0.35
(B) 21.5 18.7 26.06 0.41 29.0 31.9 26.23 0.35 31.7 21.1 26.64 0.41 48.4 28.6 25.56 0.40
(C) 13.9 14.2 31.19 0.36 19.1 25.5 31.50 0.30 21.8 19.0 31.80 0.38 35.1 15.6 30.70 0.35
(D) 10.2 10.7 31.33 0.33 16.7 19.0 31.70 0.27 19.6 15.7 31.95 0.35 31.6 12.0 30.81 0.32
Default 9.6 6.6 31.03 0.33 15.5 14.0 31.38 0.27 19.7 12.5 31.64 0.34 29.6 8.6 30.50 0.32

5 CONCLUSION

We have introduced DING, a novel diffusion-based method for zero-shot inpainting that operates
fully in the latent space and enables fast, memory-efficient inference under low-NFE budgets.
Through extensive experiments across multiple benchmarks, we have shown that DING consistently
outperforms existing zero-shot approaches and even surpasses a fine-tuned Stable Diffusion 3 model
for image editing, despite requiring no expensive training. Notably, our method produces globally
coherent reconstructions while preserving the visible content with high fidelity.

Limitations and future directions. While these results highlight the effectiveness and practicality
of DING, several avenues remain open. An important limitation of our current approach is that
performance does not monotonically improve as the compute budget increases. Ideally, one would
like reconstruction accuracy to keep improving with additional sampling steps, potentially beyond
the standard diffusion horizon, but we observe diminishing returns due to the limitations of our
current DDIM schedule. Addressing this issue, for example by designing guidance schemes or noise
schedules that continue to scale gracefully with compute, remains an important direction for future
work. Moreover, while our framework is fully operational in the latent space, its applicability is
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currently limited to inpainting, as this is the only observation operator we can reliably lift to the
latent domain. Extending the method to accommodate more general forward operators and a broader
class of inverse problems, while preserving the same level of efficiency achieved for inpainting, is a
challenging yet promising direction for future research.
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Reproducibility statement. We place strong emphasis on reproducibility. To this end, we provide
the full source code of our method along with implementations of all baseline methods used in the
paper. Our repository also includes scripts to reproduce every experiment, as well as configuration
files specifying all hyperparameters and settings for each baseline and experimental setup. Together,
these resources ensure that all results reported in this work can be fully reproduced and easily
extended.

Ethics statement. While the proposed approach demonstrates clear benefits for applications in
restoration, accessibility, and creative media, it also lies at the borderline of ethical considerations.
Diffusion-based inpainting methods can be misappropriated for producing deceptive or harmful
content, such as manipulated images or synthetic media that obscure authenticity. This dual-use
nature highlights the need for proactive safeguards, including transparent usage guidelines, traceable
model outputs, and continued development of forensic detection tools to ensure responsible integration
of such technologies.
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Figure 3: Latent-space masking and its correspondence to pixel space using a central square mask. The encoder
and decoder of Stable Diffusion 3.5 (medium) were used. The first row shows latent images alongside the
encoded mask applied to each, while the second row shows their decoded counterparts. Notice that the masked
regions in the latent space translate directly to analogous masked regions in pixel space. For that sake of
visualization, since the latent images have 16 channels, we apply PCA and visualize the first 3 components.

A METHOD DETAILS

A.1 DERIVATION OF THE POSTERIOR (3.1)

Recall that given zs, the posterior transition of interest is

π̂θ
s|t(xs|zs,xt,y) ∝ ℓ̂θs(y|xs, zs) p

η,θ
s|t (xs|xt) .

Denoting by ỹs = αsy + σsx̂
θ
1(zs, s)[m] the effective observation, we have that

ℓ̂θs(y|xs, zs) ∝ N(ỹs;xs[m], α2
sσ

2
yIdy) ,

and since the reverse transition writes
pη,θs|t (xs|xt) = N(xs[m];µθ

s|t(xt;η)[m], η2sId−dy)N(xs[m];µθ
s|t(xt;η)[m], η2sIdy) ,

we obtain

π̂θ
s|t(xs|zs,xt,y) = N(xs[m];µθ

s|t(xt;η)[m], η2sId−dy)

×
N(ỹs;xs[m], α2

sσ
2
yIdy)N(xs[m];µθ

s|t(xt;η)[m], η2sIdy)∫
N(ỹs; x̃s[m], α2

sσ
2
yIdy)N(x̃s[m];µθ

s|t(xt;η)[m], η2sIdy) dx̃s[m]
.

The formula (3.4) follows by applying (Bishop, 2006, equation 2.116) to the second normalized
transition on the right-hand side.

A.2 COMPARISON WITH RELATED WORKS

We start by providing an explicit comparison with the closest works.

Comparison with the transition in Cardoso et al. (2023). Let τ ∈ [0, 1] be a timestep such that
σy = στ/ατ . Such a τ always exists when the linear schedule is used for example. The transition
used in the SMC algorithm in Cardoso et al. (2023) for s > τ is given by

π̂θ
s|t(xs|xt) ∝ N(αsy;xs[m], σ2

s|τ Idy)p
η,θ
s|t (xs|xt) (A.1)

Using the same conjugation formulas as in the previous section, we find that

π̂θ
s|t(xs|xt) = N(xs[m], µθ

s|t(xt;η)[m], η2sId−dy)

×N(xs[m], (1− γ̃s|t)µ
θ
s|t(xt;η)[m] + γ̃s|tαsy, σ

2
t|τ γ̃s|tId−dy), (A.2)

where σ2
t|τ := σ2

t − (αt/ατ )
2σ2

τ and γ̃s|t = η2s/(η
2
s + σ2

t|τ ). This is to be contrasted with our update,
given a sample zs,

π̂θ
s|t(xs|zs,xt,y) = N

(
xs[m];µθ

s|t(xt;η)[m], η2sId−dy

)
×N

(
xs[m]; (1− γs|t)µ

θ
s|t(xt;η)[m] + γs|t

(
αsy + σsx̂

θ
1(zs, s)[m]

)
, α2

sσ
2
yγs|t Idy

)
,

where γs|t := η2s/(η
2
s + α2

sσ
2
y). Hence, MCGDIFF differs from DING on the choice of effective

observation, which in this case is ỹs = αsy, the choice of variance in the transition and the coefficient
of the convex combination. From (A.1) it can be seen that MCGDIFF assumes the approximate
model N(αsy;xs[m], σ2

s|τ Idy) for the true likelihood ℓs(y|xs) (2.7).
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Comparison with the transition in Zhu et al. (2023) and Martin et al. (2025). We now write
explicitely the algorithm PNP-FLOW (Martin et al., 2025, Algorithm 3) adapted to the inpainting
problem we consider; see Algorithm 2. We have simply adapted the notations and used F (x) =
∥y−x[m]∥2/(2σ2

y) in (Martin et al., 2025, Algorithm 3). Thus, the transition used in Algorithm 2 is

π̂θ
s|t(xs|xt) ∝ N(xs[m], αsx̂

θ
0(xt, t)[m], σ2

sId−dy)

×N

(
xs[m],

(
1− γs

σ2
y

)
αsx̂

θ
0(xt, t)[m] +

γs
σ2
y

αsy, σ
2
sId−dy

)
.

In the case of the DDIM schedule ηs = σs, we have that µθ
s|t(xt) = αsx̂

θ
0(xt, t), and the MCGDIFF

transition (Cardoso et al., 2023) in (A.2) writes

π̂θ
s|t(xs|xt) = N(xs[m], αsx̂

θ
0(xt, t)[m], σ2

sId−dy)

×N(xs[m], (1− γ̃s|t)αsx̂
θ
0(xt, t)[m] + γ̃s|tαsy, σ

2
s|τ γ̃s|tId−dy).

Hence, the main difference lies in the coefficient of the convex combination and the variance used.

Algorithm 2 PNP-FLOW reinterpreted

1: Input: Decreasing timesteps (tk)0k=K with tK = 1, t0 = 0; adaptive stepsizes (γk)0k=K .
2: Initialize: x̂0 ∈ Rd.
3: for k = K − 1 to 1 do
4: x̂0[m]← (1− γk

σ2
y
)x̂0[m] + γk

σ2
y
y

5: w ∼ N (0d, Id)
6: x← αtk x̂0 + σtkw
7: x̂0 ← x̂θ

0(x, tk)
8: end for
9: Return: x̂0

Comparison with the transition in Kim et al. (2025); Patel et al. (2024). Here we explicitely
write the transition of FLOWDPS for the inpainting case in order to understand the main differences
without our method. For this purpose we rewrite (Kim et al., 2025, Algorithm 1) using our notations.
We note that the algorithm is written for the linear schedule αt = 1 − t, σt = t and the choice
of DDIM schedule ηt = σt

√
1− σt, but we still write it with general notations to streamline the

comparison with Algorithm 1. We also assume for the sake of simplicity that the optimization
problem is solved exactly in (Kim et al., 2025, line 7) (since there is no decoder as we solve the
inverse problem in the latent space). The algorithm is given in Algorithm 3. In the specific setting
where the linear schedule is used, setting γk = σ2

yσtk in Algorithm 2 recovers Algorithm 3 when
ηk = σtk . Finally, we note that FLOWDPS can be understood as a noisy version of the FLOWCHEF
algorithm (Patel et al., 2024) and overall, follows the line of work of methods that learn a residual
that is then used to translate the denoiser (Bansal et al., 2023; Zhu et al., 2023).

Comparison with DiffPIR (Zhu et al., 2023) and DDNM (Wang et al., 2023b). We provide the
DIFFPIR algorithm (Zhu et al., 2023, Algorithm 1) adapted to our inpainting case using our own
notation in Algorithm 4. In Line 6 we write the exact solution to the optimization problem in the
original algorithm. We write the associated transition in a convenient form that allows a seamless
comparison with our algorithm. Define γt := σ2

t /(σ
2
t + λα2

tσ
2
y). Then, the transition

π̂θ
s|t(xs|xt,y) = N

(
xs[m];µθ

s|t(xt;η)[m], η2sId−dy

)
×N

(
xs[m]; (1− γt)µ

θ
s|t(xt;η)[m] + γt

(
αsy + (σ2

s − η2s)
1/2xt[m]− αty

σt

)
, η2s Idy

)
,

corresponds to one step of Algorithm 4. We highlight key distinctions:

• Setting η2s = σ2
s recovers the same transition as in PNP-FLOW.

• The main distinction lies in the mean of the Gaussian transition for the unmasked region: it is a
convex combination of µθ(xt; η)[m] and an effective observation αsy + (σ2

s − η2s)
1/2(xt[m]−
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Algorithm 3 FLOWDPS reinterpreted

1: Input: decreasing timesteps (tk)0k=K with tK = 1, t0 = 0; original image x∗; mask m;
DDIM parameters (ηk)0k=K .

2: y← x∗[m]
3: x ∼ N (0, Id)
4: for k = K − 1 to 0 do
5: x̂0 ← xθ

0(x, tk+1)
6: x̂1 ← (x− αtk+1

x̂0)/σtk+1

7: x̂0[m]← αtk x̂0[m] + σtky
8: µ← αtk x̂0 + (σ2

tk
− η2k)

1/2x̂1

9: w ∼ N (0d, Id)
10: x← µ+ ηkw
11: end for
12: Return: x

αty)/σt. In our algorithm, the effective observation instead takes the form αsy+ σsx̂
θ
1(xs, s)[m].

We estimate the residual noise using the pre-trained model at timestep s, whereas DIFFPIR
computes it as (xt[m]− αty)/σt.

• This residual noise is scaled differently: by (σ2
s − η2s)

1/2 in DIFFPIR, and by σs in our method.
• The convex combination coefficient in our cases is γs|t = η2s/(η

2
s +α2

sσ
2
y) whereas for DIFFPIR it

is set to γt = σ2
t /(σ

2
t + α2

tσ
2
y).

• Finally, the noise-free (σy = 0) version of DIFFPIR recovers the DDNM algorithm (Zhang et al.,
2023).

Algorithm 4 DIFFPIR reinterpreted

1: Input: Decreasing timesteps (tk)0k=K with tK = 1, t0 = 0; scaling λ; original image x∗; mask
m; DDIM parameters (ηk)0k=K

2: y← x∗[m]
3: x ∼ N (0, Id).
4: for k = K − 1 to 1 do
5: x̂0 ← xθ

0(x, tk+1)

6: x̂0[m]←
σ2
tk+1

σ2
tk+1

+λσ2
yα

2
tk+1

y +
λσ2

yα
2
tk+1

σ2
tk+1

+λσ2
yα

2
tk+1

x̂0[m]

7: x̂1 ← (x− αtk+1
x̂0)/σtk+1

8: w ∼ N (0d, Id)
9: x← αtk x̂0 + (σ2

tk
− η2k)

1/2x̂1 + ηkw
10: end for
11: Return: x

Further related methods. Here we continue our discussion of VJP-free methods. The DAPS
algorithm (Zhang et al., 2025) proposes sampling, given the previous state Xtk+1

, a clean state X̂0

by performing Langevin Monte Carlo steps on the posterior distribtion π0|tk+1
(·|Xtk+1

,y). This
step is performed approximately by replacing the prior transition p0|tk+1

(·|Xtk+1
) with a Gaussian

approximation centered at the denoiser x̂θ
0(Xtk+1

, tk+1). Then, given X̂0, the next state is drawn
from N (αtkX̂0, σ

2
tk
Id). Then the transition

One important aspect of our method is that we circumvent differentiation through the denoiser but
also the decoder, as the diffusion models we consider operate in the latent space. We do so by
downsampling the mask into the latent space. In contrast, the recent work of Spagnoletti et al. (2025)
also circumvents differentiation through the denoiser, but does so by lifting the latent states into pixel
space and optimizing the likelihood there. The result of the optimization is then projected back into
the latent space and then undergoes back-and-forth noise-denoising steps.

Finally, several recent works (Mardani et al., 2024; Zilberstein et al., 2025; Erbach et al., 2025) adopt
a variational perspective: the target distribution is approximated by a Gaussian distribution whose
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parameters are iteratively estimated by minimizing a combination of an observation-fidelity loss and
a score-matching-like loss.

VJP-based methods. A broad class of zero-shot approaches builds on the guidance approximation
(2.8) to estimate ∇xt log ℓt(y|xt). Song et al. (2023a) approximate p0|t by a Gaussian with mean
x̂θ
0(·, t) and a tuned covariance. For the inpainting setting in (2.4), plugging this approximation into

(2.7) yields an integral that can be computed in a closed form, providing a proxy for ℓt(y|·). Several
works exploit the link between the covariance of p0|t(·|xt) and the Jacobian of the denoiser (Meng
et al., 2021). This observation underpins the methods of Finzi et al. (2023), Stevens et al. (2023),
and Boys et al. (2023), which derive likelihood scores by estimating or inverting the Jacobian. These
approaches require solving large linear systems and backpropagating through the denoiser, both
computationally expensive operations. To reduce cost, these works assume a locally constant Jacobian
around xt, but updates still involve either explicit matrix inversion or repeated VJPs. In practice,
diagonal approximations based on row sums are commonly used to approximate the covariance
matrix (Boys et al., 2023), or conjugate gradient methods are employed to circumvent the need for full
matrix inversion (Rozet et al., 2024). For general likelihoods ℓ0(y|·), Song et al. (2023b) combine the
Gaussian posterior model of Song et al. (2023a) with Monte Carlo sampling to approximate ℓt(y|·).
In the latent setting, Rout et al. (2024b) apply the DPS approximation jointly with a regularizer that
encourages latent variables to remain near encoder–decoder fixed points. Other methods modify the
sampling dynamics. Moufad et al. (2025) propose a two-stage procedure: the chain is first moved
to an earlier time ℓ≪ tk, where the DPS approximation is applied to sample from an approximate
conditional at ℓ, before returning to tk via additional noising steps. Janati et al. (2025a) incorporate
a related idea into a Gibbs sampling framework. Overall, these methods remain fundamentally
VJP-based and inherit substantial memory and runtime overhead from repeated backpropagation
through the denoiser. By contrast, our decoupled guidance relies exclusively on forward denoiser
evaluations and closed-form Gaussian updates, thereby eliminating VJPs entirely while retaining
competitive performance.

For a complete review of zero-shot posterior sampling methods see Daras et al. (2024); Janati et al.
(2025b); Chung et al. (2025).

A.3 BEHAVIOR UNDER INCREASED RUNTIME.

We extend the ablation study in Section 4.2 by examining the behavior of DING when the number
of NFEs is increased. Specifically, we vary the budget from 20 to 500 NFEs on the DIV2K dataset
and report results across different masking patterns; see Figure 4. All metrics improve steadily as
the budget grows, reaching their best values around 200 NFEs (10s runtime). Beyond this point,
performance saturates and exhibits a slight degradation at 500 NFEs. These results suggest that our
default DDIM schedule is well suited to low and mid-NFE regimes—which are most relevant for
practical settings—but may not be fully optimized for larger budgets.

Figure 4: Performance of DING on DIV2K under varying NFE budgets (20 to 500) across different masking
patterns. Runtimes are measured on a H100 GPU.

A.4 LIMITATION

We observed that the quality of reconstructions is highly sensitive to the specificity of the textual
prompt. When the prompt is under-specified or lacks sufficient semantic detail, the resulting samples
may exhibit reduced coherence, particularly in large masked regions where contextual consistency
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Figure 5: Effect of prompt precision on inpainting quality

is critical. This issue manifests as mismatched textures or backgrounds, or inconsistent object
boundaries, even when the visible area is faithfully preserved. To illustrate this behavior, we compare
reconstructions obtained with well-defined prompts against those generated using vague or ambiguous
ones. Examples are provided in Figure 5 and 6.

A.5 BIAS IN GAUSSIAN CASE

For the sake of simplicity we assume that p0 := N (0d,Σ) where Σ is a covariance matrix. We also
write the likelihood as ℓ0(y|x0) = N(y;Pmx0, σ

2
yIdy) where Pm ∈ Rdy×d is the matrix satisfying

Pmx = x[m]. Define Dt := αtΣ(α
2
tΣ+ σ2

t Id)
−1. Then, the denoiser and noise predictors are given

by

x̂0(xt, t) = Dtxt , x̂1(xt, t) = σ−1
t (Id − αtDt)xt .

We consider hereafter the DDIM transitions pηs|t(xt|xt) := N(xs;µs|t(xt; η), η
2
sId) where

µs|t(xt; η) := αsx̂0(xt, t) +
√

σ2
s − η2s x̂1(xt, t)

In this section we analyze the bias of the DING one-step transition relative to the posterior transition
involving the DPS likelihood (2.8); i.e. we compare the transition

π̂ding
s|t (xs|xt,y) := E

[
π̂ding
s|t (xs|Zs,xt,y)

]
, (A.3)

where Zs ∼ pηs|t(·|xt) and

π̂ding
s|t (xs|zs,xt,y) ∝ ℓ0(y|

xs − σsx̂1(zs, s)

αs
)pηs|t(xs|xt)

against
π̂dps
s|t (xs|xt,y) ∝ ℓ0(y|x̂0(xs, s))p

η
s|t(xs|xt) .
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Figure 6: Effect of prompt precision on inpainting quality

We define M := P⊤
mPm, which is an orthogonal projection matrix since M⊤ = M , PmP⊤

m = Idy ,
and thus M2 = M . We also introduce the quantity

εs := ∥(D⊤
s − α−1

s Id)M∥op,

which quantifies how far the Jacobian of the denoiser x̂0(·, s) deviates from the Jacobian of the DING
denoiser approximation on the observed coordinates. In the following proposition, we characterize
the asymptotic behavior of the DPS and DING posterior transition means and covariances as ηs → 0,
and we express the mean bias in terms of εs. In Proposition 2, we also provide an explicit upper
bound on εs in terms of the schedule and the minimum eigenvalue of the prior covariance Σ.

Proposition 1. Both π̂dps
s|t (·|xt,y) and π̂ding

s|t (·|xt,y) are Gaussian distributions with mean and
covariance respectively (µdps

s|t (xt,y),Σ
dps
s|t ) and (µding

s|t (xt,y),Σ
ding
s|t ) satisfying

∥Σdps
s|t − Σding

s|t ∥ = O(η4s)

and

∥µdps
s|t (xt,y)− µding

s|t (xt,y)∥ = O
(
η2s
(
εs(∥y∥+ ∥Mµs|t(xt; η)∥

)
+ ε2s∥µs|t(xt; η)∥

))
.

as ηs → 0.

Proof. Using the standard Gaussian conjugation formula (Bishop, 2006, equation 2.116), we have
that π̂dps

s|t (xs|xt,y) = N(x;mdps
s|t (xt,y),Σ

dps
s ) with

mdps
s|t (xt,y) := Σdps

s|t (η
−2
s µs|t(xt; η) + σ−2

y D⊤
s P

⊤
my) ,

Σdps
s|t :=

(
η−2
s Id + σ−2

y (PmDs)
⊤PmDs

)−1
.
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Next, for the DING transition, first set bs(Zs) := −(σs/αs)Pm x̂1(Zs, s). Gaussian conjugacy with
pηs|t(xs|xt) = N (xs;µs|t(xt; η), η

2
sId) gives

π̂ding
s|t (xs|Zs,xt,y) = N

(
xs; Σ̃

ding
s|t

(
η−2
s µs|t(xt; η) + σ−2

y α−1
s P⊤

m

(
y − bs(Zs)

))
, Σ̃ding

s|t

)
,

and Σ̃ding
s|t :=

(
η−2
s Id +α−2

s σ−2
y P⊤

mPm

)−1
. Since the mean of this conditional distribution is clearly

affine in Zs, we integrate it out, yielding that π̂ding
s|t (xs|xt,y) = N(xs;m

ding
s|t (xt,y),Σ

ding
s|t ) where

mding
s|t (xt,y) := Σ̃ding

s|t

(
η−2
s µs|t(xt; η) + σ−2

y α−1
s P⊤

my

+ (σ−2
y α−2

s )P⊤
mPm(Id − αsDs)µs|t(xt; η)

)
,

Σding
s|t := Σ̃ding

s|t +
η2s

σ4
yα

4
s

Σ̃ding
s|t P⊤

mPm(Id − αsDs)(Σ̃
ding
s|t P⊤

mPm(Id − αsDs))
⊤ .

Small-noise regime. We now study the behavior of both transitions when the DDIM kernel variance
η2s tends to zero. For simplicity we define

Kdps := σ−2
y D⊤

s P
⊤
mPmDs , Kding := α−2

s σ2
yM

and Rs = Id − αsDs, M = P⊤
mPm. Then,

Σdps
s|t = (η−2

s Id +Kdps)
−1 ,

Σding
s|t = (η−2

s Id +Kding)
−1 +

η2s
α4
sσ

4
y

(η−2
s Id +Kding)

−1MRsR
⊤
s M(η−2

s Id +Kding)
−1.

We use throughout that for any fixed matrix K, we have that when η2s∥K∥op < 1,

(η−2
s Id +K)−1 = η2s(Id − η2sK) +R2(ηs), ∥R2(ηs)∥ ≤ η6s

∥K∥2op
1− η2s∥K∥op

. (A.4)

This follows from the standard Neumann (geometric) series expansion. Applying (A.4) with η2s ≤
min(1/∥Kdps∥op, 1/∥Kding∥op), we get

Σdps
s|t = η2s(Id − η2sKdps) +O(η6s),

Σding
s|t = η2s(Id − η2sKding) +

η6s
α4
sσ

4
y

MRsR
⊤
s M +O(η6s).

and thus
Σdps

s|t − Σding
s|t = O(η4s) .

Plugging these expansions in the mean terms, we find that

mdps
s|t (xt,y) = µs|t(xt; η) + η2s(σ

−2
y D⊤

s P
⊤
my −Kdpsµs|t(xt; η)) +O(η4s),

mding
s|t (xt,y) = µs|t(xt; η) + η2s(α

−1
s σ−2

y P⊤
my + α−2

s σ−2
y MRsµs|t −Kdingµs|t(xt; η)) +O(η4s).

This yields

mdps
s|t (xt,y)−mding

s|t (xt,y) = η2sσ
−2
y

[
(α−1

s Id −D⊤
s )P

⊤
my

+ α−2
s MRsµs|t(xt; η)− (α−2

s M −D⊤
s MDs)µs|t(xt; η)

]
+O(η4s),

We now proceed to further upper bound the leading term. Define Es := Ds − α−1
s Id. Then

Rs = −αsEs and we have that

mdps
s|t (xt,y)−mding

s|t (xt,y) =

η2sσ
−2
y

(
− E⊤

s P⊤
my + α−1

s E⊤
s Mµs|t(xt; η) + E⊤

s MEsµs|t(xt; η)
)
+O(η4s) .

with M = P⊤
mPm, which is an orthogonal projection matrix since M⊤ = M and PmP⊤

m = Idy and
thus M2 = M . We proceed by bouding each term of

−E⊤
s P⊤

my + α−1
s E⊤

s Mµs|t(xt; η) + E⊤
s MEsµs|t(xt; η)
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separately. Define εs := ∥MEs∥op. Then, since v := P⊤
my ∈ range(M), we have Mv = v. Hence

E⊤
s P⊤

my = E⊤
s MP⊤

my = (MEs)
⊤(MP⊤

my)

where we have used that M⊤M = M . By the operator norm inequality, and the fact that ∥P⊤
my∥ =

∥y∥, we get
∥E⊤

s P⊤
my∥ ≤ ∥MEs∥op ∥MP⊤

my∥ = εs∥P⊤
my∥ = εs∥y∥.

Next, using the same operator norm inequality we get that

∥E⊤
s Mµs|t(xt; η)∥ ≤ εs∥Mµs|t(xt; η)∥ , ∥E⊤

s MEsµs|t(xt; η)∥ ≤ ε2s∥µs|t(xt; η)∥ .
which yields the desired bound.

Proposition 2 (Upperbound on εs). We have that

εs ≤
σ2
s

αs

1

α2
s λmin(Σ) + σ2

s

where λmin(Σ) is the smallest eigenvalue of Σ.

Proof. By noting that (α2
sΣ+ σ2

sI)Es = −α−1
s σ2

sId, we get the alternative expression

Es = −
σ2
s

αs
(α2

sΣ+ σ2
sId)

−1 .

By the submultiplicativity of the operator norm and the fact that M is a non-trivial orthogonal
projection matrix, we have that

∥E⊤M∥op ≤ ∥E∥op =
σ2
s

αs

1

λmin(α2
sΣ+ σ2

sId)
≤ σ2

s

αs

1

α2
sλmin(Σ) + σ2

s

.

B DETAILS ABOUT THE EXPERIMENTS

B.1 MODELS

We use both the SD 3 and SD 3.5 (medium) (Esser et al., 2024) models with the linear schedule
αt = 1− t and σt = t. In all the experiments we run the zero-shot methods with a guidance scale
of 2. The fine-tuned baseline, which we refer to as SD3 Inpaint, is based on the publicly available
model2 trained for inpainting with a ControlNet-augmented version of Stable Diffusion 3. It has
been finetuned on a large dataset of approximately 12 million 1024 × 1024 image–mask pairs to
directly predict high-quality inpainted completions conditioned on the masked image and the mask
itself. We have found the model to perform well also on lower resolutions, despite not undergoing
multi-resolution training. Examples of image editing of lower resolution images are presented in
the the HuggingFace page of the smae project. We run this baseline using a guidance scale of 7 for
optimal results.

Finally, all experiments use bfloat16 for model forward passes (and backward passes for baselines
that require it), with other computations performed in float32.

B.2 MASK DOWNSAMPLING

To construct the mask in the latent space, we start from the original binary mask defined in pixel
space. Since the encoder reduces spatial resolution by a fixed factor (here, 8), we downsample the
pixel-space mask to match the resolution of the latent representation. This is done by applying
bilinear interpolation with antialiasing. The resulting low-resolution mask captures the proportion of
masked pixels within each latent receptive field. Finally, we threshold this downsampled mask at
0.95 to obtain a binary latent mask, slightly overestimating the masked region to prevent boundary
artifacts during sampling.

2https://huggingface.co/alimama-creative/SD3-Controlnet-Inpainting
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B.3 IMPLEMENTATION OF THE BASELINES

Here, we give implementation details of the baselines. We stress that each baseline is run in the latent
space, and thus no method computes the gradient w.r.t. the input of the decoder. We also manually
tuned each baseline for the considered tasks. We provide the used hyperparameters in Table 8.

BLENDED-DIFF. We implemented Avrahami et al. (2023, Algorithm 1) following their official
code3. The codebase includes an additional hyperparameter, blending_percentage, which
determines at what fraction of the inference steps blending begins. We set it to zero, as applying
blending across all steps produced the best results. A key detail is the original implementation is
that the observed region (background) is re-noised to the noise level defined by the current timestep;
see Avrahami et al. (2023, step 1-2 within the for loop in Algo 1), yet the reconstructed region
(foreground) has less noise as it comes from applying a DDIM transition. This causes the background
and foreground to follow different noise levels, and hence, introduces minor artifacts in the final
reconstructions. We fixed this issue in our implementation by matching the two noise levels.

DAPS. We adapt Zhang et al. (2025, Algorithm 1) based on the released code4 to the flow matching
formulation. We found that using Langevin as MCMC sampler for enforcing data consistency works
the best for low NFE regime.

DIFFPIR. We make Zhu et al. (2023, Algorithm 1) compatible with the flow matching formulation
with step 4 being implemented in the case of mask operator. We found in practice that the hyper-
parameter λ has little impact on the quality of reconstructions and hence we use the recommended
values λ = 15. On the other hand for the second hyperparameter ζ , we find that using ζ = 0.3 yielded
the best reconstructions.

DDNM. We adapt the implementation in the released code6 to the flow matching formulation with
the step 4 in Wang et al. (2023b, Algorithm 3) being implemented for a mask operator. The official
implementation uses a DDIM transition in step 5 of Algorithm 3 whose stochasticity is controlled by
the hyperparemters η. As recommended, we set the latter to η = 0.85.

FLOWCHEF & FLOWDPS. For both algorithms, we adapt the implementations available in the
released codes FLOWCHEF7 8 to our codebase. We observe that the two algorithms are quite similar,
with FLOWDPS being distinct by adding stochasticity between iterations.

PNP-FLOW. We reimplement Martin et al. (2025, Algorithm 3) while taking as a reference the
released code9. For the stepsizes on data fidelity term, we find that a constant scheduler with higher
stepsize enables the algorithm to fit the observation, mitigate the smooth and blurring effects in the
reconstruction and hence yield better reconstructions.

PSLD. We implement the PSLD algorithm provided in Rout et al. (2024b, Algorithm 2). We find
that PSLD algorithm requires several diffusion steps, e.g. at least 150 diffusion steps, to yield good
results. Unfortunately, we were not able to make it work well for the low NFE setup.

REDDIFF. We implement Mardani et al. (2024, Algorithm 1) based on the official code10 and adapt
it to the flow matching formulation. We initialize the algorithm with a sample for a standard Gaussian.
For low NFE setups, we find that using a constant weight schedule yields better results, namely in
terms fitting the observation and providing consistent reconstructions.

3https://github.com/omriav/blended-latent-diffusion
4https://github.com/zhangbingliang2019/DAPS
5https://github.com/yuanzhi-zhu/DiffPIR
6https://github.com/wyhuai/DDNM
7https://github.com/FlowDPS-Inverse/FlowDPS
8https://github.com/FlowChef/flowchef
9https://github.com/annegnx/PnP-Flow

10https://github.com/NVlabs/RED-diff
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RESAMPLE. We reimplemented Song et al. (2024, Algorithm 1) based on the provided implementa-
tion details in Song et al. (2024, Appendix) and the reference code11. As noted in Janati et al. (2025a),
we set the tolerance ε for optimizing the data consistency to the noise level σy. Since we are working
with low NEFs, we set the frequency at which hard data consistency is applied (skip step size) to 5.
That aside, we found that the algorithm requires several diffusion steps (200) in order to output good
enough reconstructions. We note that removing the DPS step in the data consistency steps reduces
the quality of the reconstructions.

Table 8: Hyperparameters for each algorithm (using the same notations as in their paper) and task variations.
“—” indicates identical across tasks.

Algorithm nsteps Base hyperparameters Latent tasks

Half Top Bottom Center Strip

BLENDED-DIFF 50 blending_percentage = 0 — — — — —

DAPS 50

Node = 2
MCMC steps = 20

βy = 10−2

Min ratio = 0.43
MCMC sampler = Langevin
ρ = 1

η0 = 2 × 10−5 η0 = 3 × 10−5 η0 = 2 × 10−5 η0 = 9 × 10−6 η0 = 2 × 10−5

DDNM 50 η = 0.85 — — — — —

DIFFPIR 50 λ = 1
ζ = 0.3

— — — — —

FLOWCHEF 50 step size = 0.9
grad_descent_steps = 10

— — — — —

FLOWDPS 50 grad_descent_steps = 3 step_size = 20 step_size = 10 step_size = 10 step_size = 10 step_size = 10

PNP-FLOW 50 α = 1.0
lr style = constant

γn = 0.8 γn = 1.3 γn = 1.4 γn = 0.8 γn = 0.8

PSLD 50 DDIM_param = 1.0
γ = 0.01
η = 0.01

γ = 0.01
η = 0.01

γ = 0.01
η = 0.01

γ = 0.05
η = 0.1

γ = 0.1
η = 0.5

REDDIFF 50
lr = 0.2
grad_term_weight = 0.25
obs_weight = 1.0

— — — — —

RESAMPLE 50

C = 5
grad_descent_steps = 200
γscale = 40.0

lrpixel = 10−2

lrlatent = 5 × 10−3

— — — — —

DING (ours) 25 η = σs(1 − αs) — — — — —

C EXAMPLES OF RECONSTRUCTIONS

11https://github.com/soominkwon/resample

25
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Figure 7: Comparison of DING and finetuned SD3 on PIE-Bench. Both methods have the same
runtime of 2.2s.
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Figure 8: Comparison of DING and zero-shot baselines on PIE-Bench. All methods use 50 NFEs.
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Figure 9: Comparison of DING and zero-shot baselines on PIE-Bench. All methods use 50 NFEs.
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Figure 10: Comparison of DING and zero-shot baselines on PIE-Bench. All methods use 50
NFEs.
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Figure 11: Comparison of DING and zero-shot baselines on PIE-Bench. All methods use 50
NFEs.
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