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Abstract

Systems with both language comprehension
and generation capabilities can benefit from the
tight connection between the two. This work
studies coupling comprehension and genera-
tion with focus on continually learning from
interaction with users. We propose techniques
to tightly integrate the two capabilities for both
learning and inference. We situate our stud-
ies in two-player reference games, and deploy
various models for thousands of interactions
with human users, while learning from inter-
action feedback signals. We show dramatic
improvements in performance over time, with
comprehension-generation coupling leading to
performance improvements up to 26% in ab-
solute terms and up to 17% higher accuracies
compared to a non-coupled system. Our analy-
sis also shows coupling has substantial qualita-
tive impact on the system’s language, making
it significantly more human-like.

1 Introduction

Language comprehension and generation are
closely related processes. Indeed, observations
such as the ability to finish incomplete partner
utterances in dialogue (Clark and Wilkes-Gibbs,
1986; Howes et al., 2011), as well as neuroscien-
tific evidence (Paus et al., 1996; Opitz et al., 2003;
Menenti et al., 2011) have led to integrated ac-
counts of comprehension and generation in cogni-
tive science (Pickering and Garrod, 2013; Pickering
and Gambi, 2018), where processes related to gen-
eration are active during comprehension and vice
versa. This suggests a potential for coupling the
two in computational systems, and creating a virtu-
ous cycle, where the improvement of one capability
drives learning and performance in the other. This
is particularly compelling in systems that contin-
ually learn and improve through interaction with
users, where the dynamics between the two capa-
bilities play out over time.
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Figure 1: Illustration of our reference game interaction
scenario involving a speaker and listener. Each game
includes a single turn. Speakers are assigned a target
image and write a description such that their partner
can guess the image from the description. The game
succeeds if the listener guesses correctly. We deploy
our models (gray bot) as speaker to interact with human
listeners (top) or vice versa (bottom).

We study the dynamics of this coupling in a con-
tinual learning1 setting, where trends in learning
and behavior can be observed over time. We design
an interaction scenario where models can take both
listener (comprehension) and speaker (generation)
roles, and receive feedback while interacting with
human partners. We couple comprehension and
generation through several mechanisms, and ob-
serve the impact this coupling has on the long-term
dynamics of performance and language.

We instantiate comprehension and generation as
the listener and speaker roles of a two-player refer-
ence game (Krauss and Weinheimer, 1964; Clark
and Wilkes-Gibbs, 1986) involving abstract visual
stimuli (Ji et al., 2022), which remain challenging

1Continual learning is at times used to describe scenarios
where models are adapted to new tasks. We use it in the sense
of improving a model on its original task over time.
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Figure 2: Illustration of our continual learning scenario with coupled comprehension and generation. The process
alternates between interactions with human partners in a reference game, and training using learning signals from
the interactions. The model performs both the generation (left) and comprehension (right) tasks, while jointly
reasoning over the other role (thought bubbles). Training leverages feedback for the role the model performs as well
as the opposing role. Following each round of training, we re-deploy the updated model and repeat the process.

for state-of-the-art vision-language models (Fig-
ure 1). We deploy a single model that can take both
roles. The process alternates between the model
interacting with human partners, and training to
improve both comprehension and generation capa-
bilities based on feedback from the interactions.

We couple comprehension and generation
through two strategies: (a) at inference-time via
a joint inference process that incorporates the op-
posing role, and (b) at training time by generating
examples and rewards for each role from feedback
on performance in that role as well as the oppos-
ing role. Figure 2 illustrates the deployment and
coupling mechanisms. The combination of these
strategies creates a virtuous cycle that evolves over
time, as the system continually trains and improves.
As one capability improves (e.g., comprehension),
the model’s performance on the opposing capabil-
ity (e.g., generation) also improves via the joint
inference procedure. This, in turn, leads to better
interactions, and the feedback the model receives
changes as its capabilities advance and its failure
modes change. The coupling of feedback signals
via the training data qualitatively changes the train-
ing beyond a simple increase in the amount of data.
Whereas a generation system that trains on feed-
back is only exposed to its own language, the cou-
pled system is continually exposed to a stream of
new human language. This can enable the sys-
tem to expand its generation abilities and make the
language more similar to humans, beyond simply
refining it to maximize interaction performance.

We conduct extensive experiments, concurrently
deploying a baseline and multiple model variants

for thousands of interactions with human partners
in a controlled study. Our focus is to observe both
performance and language trends over time. Our
coupled approach shows dramatic and fast perfor-
mance gains, overall improving by 19.48% for
comprehension and 26.07% for generation, in ab-
solute terms. At the conclusion of our deployment,
the coupled approach outperforms the non-coupled
baseline by 14.80% for comprehension and 17.10%
for generation. Furthermore, coupling results in
greater data efficiency, with the full system still out-
performing this baseline with less than one-third
the number of human interactions. We observe
coupling dramatically influences the generated lan-
guage, with the coupled approach exhibiting a
larger effective vocabulary and greater alignment
with human language according to both linguistic
measures such as utterance length and automated
metrics such as MAUVE (Pillutla et al., 2021). Our
code, data, and experiment logs are available at
https://github.com/lil-lab/cogen.

2 Interaction Scenario and Overview

We study the coupling of comprehension and gen-
eration by training and deploying an agent that
interacts with human users, and continually learns
from these interactions. This allows us to observe
how the interplay between comprehension and gen-
eration evolves over time, and what the long-term
effects of coupling the two processes are.

Interaction Scenario We use a reference game
as our interaction scenario (Figure 1). Each game
involves two players: a speaker and listener. Both

https://github.com/lil-lab/cogen


participants are presented a set of abstract tangram
images as context I = {I1, . . . , IN}. Each partici-
pant observes the images in a different order. The
speaker is given a target It ∈ I, and generates an
utterance u, with the goal of allowing the listener
to pick the target It from the set of the images.
The listener then makes a choice. An interaction
succeeds if the listener picks the intended target.

Reference games have been extensively used
in research, including in NLP (e.g., Andreas and
Klein, 2016; Ji et al., 2022) and cognitive sci-
ence (e.g., Krauss and Weinheimer, 1964; Rosen-
berg and Cohen, 1964; Clark and Wilkes-Gibbs,
1986; Hawkins et al., 2023), and provide a balance
between complexity and research feasibility: (a)
the interaction includes both generation and com-
prehension; (b) they are relatively accessible for
crowdsourcing workers; (c) they are well scoped
so learning is feasible without excessive data re-
quirements; and (d) success is easy to measure.
The tangram shapes we use have been shown to
elicit rich linguistic behavior, both from listeners
and speakers (Schober and Clark, 1989; Ji et al.,
2022). They also remain challenging for contem-
porary models. Our models’ initial performance is
at least 33.1% below human accuracy (Section 6).

Deployment We deploy our model to interact
with humans in rounds. Each round includes a pre-
determined number of interactions, each with the
model taking one of the roles (speaker or listener)
and the human participant taking the other. We
derive feedback signals from the interactions, con-
struct training examples, and train our model. Fol-
lowing training, we re-deploy for the next round.

Inference and Learning We use IDEFICS2-
8B (Laurençon et al., 2024) as our model, an auto-
regressive LLM that can also take images as part
of its input. The model is parameterized by θ. As a
speaker (generation), the model computes a proba-
bility distribution Ps(u|I, t; θ) over descriptions u
of the target t ∈ {1, . . . , N} in the given context I .
As a listener (comprehension), it computes a distri-
bution Pl(t|I, u; θ) over target t selections, given
the context I and a description utterance u. Both
utterances and target selections are generated via
a conventional auto-regressive process. Following
each deployment round, we train the model using
all the feedback data collected so far by treating the
feedback as rewards for contextual bandit learning.

Evaluation Our main evaluation is conducted
through interaction with humans, where each round

forms the evaluation of the model so far. We evalu-
ate the comprehension performance of the model
from its target selection accuracy as a listener. We
evaluate generation as the accuracy of the human
listener in selecting the target given the model’s
generated description when in the speaker role. We
also study the linguistic trends of the model’s gener-
ations over time to better understand the dynamics
created by coupling comprehension and generation.
This includes analyzing its similarity to human lan-
guage and its linguistic properties.

3 Continual Learning

We combine the continual learning approaches
of Kojima et al. (2021) (generation) and Suhr
and Artzi (2024) (comprehension). Both ap-
proaches map feedback to rewards, treat learn-
ing as a contextual bandit problem, and use RE-
INFORCE (Williams, 1992), a relatively simple
policy gradient algorithm. We adopt these design
choices. A key difference of our process is that we
combine the comprehension and generation objec-
tives to train a single model.

Deployment and learning are interleaved. Each
round ρ starts with deploying the model parame-
terized by θρ to collect interactions with humans.
We record feedback signals from these interactions.
Upon collecting a set of interactions, we re-train
the model given all data collected so far to estimate
new parameters θρ+1. The model is then deployed
for the next round, and the process continues.

3.1 Feedback Collection

Feedback collection is part of the model interacting
with human partners (i.e., the system deployment),
and differs depending on the model’s role. As the
listener, the model is given context I and a human-
generated utterance u and predicts the index of
the target image t̂ = argmaxt Pl(t|I, u; θρ). The
game then indicates if the selection was correct
or not, and terminates. We treat this indication as
feedback,2 and directly map it to a binary reward to
create a comprehension datapoint: (I, u, t̂, r), with
r = 1 upon game success and r = −1 otherwise.
Likewise, as the speaker, the model samples an ut-
terance û ∼ Ps(u|I, t; θρ) given context I and tar-

2In single-turn reference games, such as in our scenario,
task success and feedback are the same, so we do not solicit
explicit feedback. However, our approach is designed to be
applicable to settings where feedback and task success do not
collapse to be the same, such as the setting considered by
Kojima et al. (2021) and Suhr and Artzi (2024).



get image index t. The game indication of success
provides the feedback, resulting in a generation dat-
apoint: (I, û, t, r) with r ∈ {−1, 1} accordingly.
Each round results in two datasets: Dl,ρ and Ds,ρ

for comprehension and generation. In both, dat-
apoints constitute model output produced during
interaction, and a reward for it. This is in contrast
to supervised learning, where datapoints include
output annotations, or human feedback as used in
RLHF, where datapoints are pairwise preferences
drawn from external annotators.

3.2 Learning
We estimate the next round’s model parameters
θρ+1 by re-training from the initial weights (i.e., the
original IDEFICS2 weights). The comprehension
training dataset is a union of all collected feedback
data so far Dl,≤ρ =

⋃ρ
i=1Dl,i. The production task

dataset Ds,≤ρ is similarly defined.
We frame learning as a contextual bandit prob-

lem with a multi-task additive objective combin-
ing the comprehension and generation components.
We optimize with a REINFORCE-style policy gra-
dient algorithm (Williams, 1992). This choice fol-
lows prior work (Kojima et al., 2021; Suhr and
Artzi, 2024), and is motivated by the simplicity of
REINFORCE, critical in a setting where humans
are part of the iterative learning process.3 The gra-
dient for a comprehension example (I, u, t̂, r) ∼
Dl,≤ρ collected at round m is:

∆l = clr∇ logPl(t̂|I, u; θ) , (1)

where cl is the cased inverse propensity score (IPS)
coefficient introduced by Kojima et al. (2021) to
mitigate the effect of negative examples (i.e., r =
−1) allowing for unbounded loss:

cl =

{
Pl(t̂|I,u;θ)
Pl(t̂|I,u;θm)

if r = −1

1 else
, (2)

where Pl(t̂|I, u; θm) is the probability of the tar-
get t̂ when it was sampled during the interaction
at round m. Without this coefficient, negative ex-
amples (i.e., r = −1) can dominate the loss and
destabilize learning as their probabilities decrease,
because limPl(·)→0 logPl(·) = −∞. The coeffi-
cient cl decreases the importance of such examples
as their probability decreases. The gradient ∆s for
generation datapoints (I, û, t, r) is identical, ex-
cept using the generation distribution Ps(û|I, t; θ).

3More generally, Ahmadian et al. (2024) recently showed
REINFORCE can match more modern methods, such as PPO.

4 Coupling Comprehension and
Generation

We couple comprehension and production during
both learning and inference. We also use one model
for both tasks, creating a coupling at the parameter
level, which is common in contemporary methods,
partially due to high memory needs.

4.1 Learning with Data Sharing

We convert comprehension datapoints to genera-
tion datapoints, and vice versa, to fully utilize the
data models are exposed to in interactions. For
example, consider the case of an agent in the role
of a listener. If the speaker partner generates the
utterance the target is a swan facing right and the
listener correctly guesses the target image (as in
Figure 2), the listener does not only receive posi-
tive feedback for their guess, but also can learn that
a swan facing right is a valid description for the
current context-target pair.

Given datasets for comprehension Dl,ρ and gen-
eration Ds,ρ collected at round ρ, we expand both:

Dl,ρ = Dl,ρ ∪ {(I, û, t, r) ∈ Ds,ρ | r = 1}, (3)

Ds,ρ = Ds,ρ ∪ {(I, u, t̂, r) ∈ Dl,ρ | r = 1}. (4)

We only convert positively labeled feedback
(r = 1), because we generally find positive re-
wards to be more reliable. A negative reward for a
generated utterance could be because the utterance
is incorrect or ambiguous, or the human listener
made a mistake. The listener task is essentially clas-
sification. Creating a comprehension example with
negative reward from such an example indicates to
the model the utterance is a valid description for
another target. This is a misleading signal, and in
early pilot studies we found it not to be helpful, so
we only convert examples with positive reward.

An important result of this process is introduc-
ing human language into the training data of the
speaker model. Generally, if a generating model
learns from feedback only (Kojima et al., 2021), it
is only exposed to language it has generated. This
can lead to its language drifting from human lan-
guage, even if its accuracy and legibility to human
partners increase. Taking advantage of human utter-
ances for the purpose of generation training opens
up this closed system. We further discuss this in
our results and analysis (Section 6).



4.2 Joint Inference

We couple the two distributions Pl and Ps during
inference by sampling from one distribution (i.e.,
Pl in the case of comprehension) and then re-rank
with a weighted geometric mean of the two distribu-
tions. The weight controlling the geometric mean
is a hyper-parameter: λs for generation and λl for
comprehension. In the case of comprehension, the
joint probability distribution is:

P j
l (t|I, u; θ) = (5)

Pl(t|I, u; θ)λlPs(u|I, t; θ)1−λl∑N
t′=1 Pl(t′|I, u; θ)λlPs(u|I, t′; θ)1−λl

,

where N is the number of targets. The joint genera-
tion distribution P j

s (u|I, t; θ) is defined in a similar
fashion, but with the λs hyperparameter. Enumer-
ating all possible utterances for the normalization
of the joint generation distribution is intractable, so
we sample k utterances from Ps(u|I, t; θ) and sum
over them to compute the normalization. In the
case of comprehension, we can compute the joint
distribution exactly because the number of outputs
is small (i.e., 10 targets). However, if the number
of targets was intractably large, the same approxi-
mation could also be performed for comprehension.
In practice, we observe the multiplicative genera-
tion distribution to skew inference heavily towards
short utterances when doing joint inference, and
find λs = 0 to be the best combination for the joint
generation distribution (Section 5). Although this
eliminates the term Ps from the joint probability,
Ps is still influential as the source of samples.

This joint formulation is similar to a rational
speech act model (RSA; Goodman and Frank,
2016) with a single level of recursion. RSA is a
model of pragmatic reasoning, and has been evalu-
ated extensively in reference games (Cohn-Gordon
et al., 2018; McDowell and Goodman, 2019). We
analyze this property for our speaker model in Sec-
tion 6.2. Our approximation of the joint speaker
distribution is inspired by similar approaches that
were applied to RSA (Fried et al., 2018a).

5 Experimental Setup

Game Construction We construct reference
game contexts using the KILOGRAM dataset (Ji
et al., 2022) of 1,016 abstract tangram shapes.
Each context comprises 10 images drawn from
this dataset. We use a CLIP model (Radford
et al., 2021) finetuned on KILOGRAM annotations

from Ji et al. (2022) to ensure visual similarity be-
tween images in each context and increase task
difficulty. Appendix B provides further details.

Model and Initialization We fine-tune the
instruction-tuned IDEFICS2-8B (Laurençon et al.,
2024). The tasks are delineated via prompting.
Training hyperparameters are kept fixed through-
out different continual learning rounds and system
variants. For systems with joint inference, we set
λL = 0.5 and λS = 0. Appendix A details prompt
design, hyperparameters, and training. Before the
first round of interactions, we initialize the model
by fine-tuning IDEFICS2 with a small set of 104
successful human-human games. We also add this
data to the later rounds of re-training, by assigning
all these examples a reward of 1. We use 280 suc-
cessful human-human games as a validation set for
model selection throughout our experiments.

System Variants We refer to our proposed sys-
tem coupling comprehension and generation with
joint inference and data sharing as FULL. We com-
pare against three other systems: ablations with-
out data sharing (NO-DS; Section 4.1) or joint
inference (NO-JI; Section 4.2), and a baseline that
uses neither (BASELINE). We additionally collect
human-human interaction data (HUMAN) to con-
textualize performance over time relative to human
performance. We also use this human-human data
for language analysis.

Deployment We conduct four rounds of deploy-
ment, including interactions with human partners
and learning. All interactions for each round are
collected concurrently in a randomized experiment.
We collect an equal number of interactions for
the speaker and listener roles for each system and
round. We collect 2,000 interactions for each role
for each system in the first round, and increase the
number by 500 each round, as the marginal benefit
of more examples decreases as the data grows.4

Because data sharing is not applicable for the first
round, the FULL and NO-DS, and the NO-JI and
BASELINE systems are identical on the first round.
We deploy our systems to interact with human
workers on MTurk, at a total cost of $12,980USD.
Appendix E provides crowdsourcing details.

Evaluation At each round, we evaluate compre-
hension performance from interactions in the lis-
tener role using the target selection accuracy. We

4Comprehension and generation performance are identical
for the HUMAN system, so we collect half the number of
interactions for that system.



1 2 3 4

40

50

60

70

80

90

0 2000 4500 7500

θ1

Round

C
om

pr
eh

en
si

on
R

ol
e

A
cc

ur
ac

y

Cumulative # Interactions

1 2 3 4

40

50

60

70

80

90

0 2000 4500 7500

θ1

Round

G
en

er
at

io
n

R
ol

e
A

cc
ur

ac
y

Cumulative # Interactions

FULL NO-JI NO-DS
BASELINE HUMAN

Figure 3: Comprehension and generation performance
for system variants across four rounds of deployment,
with 95% confidence intervals.5 The top x-axis indi-
cates the total number of interactions collected for a role
up to the deployment round. Coupling comprehension
and generation leads to FULL outperforming all abla-
tions throughout.

evaluate a system’s generation performance (i.e.,
as a speaker) as the accuracy of the human inter-
locutor’s target selections. For HUMAN, compre-
hension and generation performance are identical.

6 Results and Analysis

We focus on two broad questions: (a) does cou-
pling influence the rate of improvement on task
performance (Section 6.1) and (b) does it lead to
quantifiable differences in the generated language
over time (Section 6.2). Overall, we find the answer
to both questions is positive, with strong effects.

6.1 Performance Analysis

Figure 3 shows model performance over time. All
systems show dramatic improvement in perfor-
mance for both comprehension and generation.
Immediately, we observe significant effect from
joint inference, with FULL and NO-DS outper-
forming NO-JI and BASELINE on the first round
(53.31% vs. 42.64% comprehension, 52.00% vs.
48.45% generation). FULL achieves the highest
performance at the end of the study, with compre-
hension improving 53.31→72.79% (19.48% abso-
lute improvement) and generation 52.00→78.07%
(26.07% improvement). For generation, FULL

shows the biggest performance delta, even though it

5Confidence intervals are computed using bootstrap sam-
pling, where n = 10,000.
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Figure 4: Model comprehension and generation accu-
racy when the speaker utterance includes ( ) and does
not include ( ) words for spatial reasoning.

starts with already higher performance compared to
variants without joint inference. With comprehen-
sion, NO-JI (42.64→66.86%) shows the biggest
delta (24.22%). Coupling dramatically increases
learning sample efficiency: FULL at the second
round already performs better than BASELINE at
the end of study, even though it trained on less than
one third of the data BASELINE has seen at the end.

Overall, the gap in performance between FULL

and BASELINE only increases over time. For
comprehension, the gap widens 10.67→14.80%,
but it is much more dramatic for generation with
3.55→17.10%. Both coupling strategies play a role
in this widening gap in performance, but between
the two strategies the relation changes over time.
Although NO-DS starts with higher performance
than NO-JI, they are essentially equivalent at the
end, with NO-JI showing a trend of outperforming
NO-DS. This may be because NO-JI is exposed to
more data from the opposing role with data sharing,
compensating for the lack of joint inference.6

User adaptation is an important potential con-
founder, potentially explaining any improvements
in system performance. During the final round,
we deploy the initial FULL model in a concurrent
randomized deployment. We observe that human
adaptation cannot explain model improvement, see-
ing very limited improvement due to adaptation:
0.42% and 2.56% for comprehension and genera-
tion (cross and dashed curve in Figure 3).

During deployment, a recurring complaint from
workers was about the models’ inconsistent spatial
reasoning, echoing recent evaluations of vision-

6Figure 8 in Appendix D.2 depicts data sharing’s impact
on training set size over time.



language models (Kamath et al., 2023; Tong et al.,
2024a,b). We identified games where utterances
involve a word relating to spatial reasoning.7 Fig-
ure 4 shows a breakdown of performance trends
to games that contain spatial reasoning utterances
and games that do not. We see a clear difference
between the two sets. Although models improve
on utterances that contain spatial reasoning, they
perform worse on them throughout. During the
final round, we observe that FULL’s performance
nears that of humans for generation when not using
words for spatial reasoning.

Coupling demonstrates a very strong effect, both
on performance and language trends. Balancing
the utility of further rounds versus the high cost
of each round, we ended the deployment after
four rounds. Appendix D.1 discusses this deci-
sion, and provides an extrapolation of performance
for one more round, showing a continuation of the
observed trends.

6.2 Language Analysis
We study trends in language use over time.
Throughout this section, except the pragmatic rea-
soning analysis, we eliminate factors that can com-
plicate the analysis by generating new utterances
on the same set of context-target pairs per round for
all systems. We randomly sample 2,000 context-
target pairs from the human-human games for each
round, and generate utterances for them with each
system using the same inference process as during
deployment. Figure 5 plots the observed trends.8

We observe a decrease in utterance length for
all variants. Humans also show a downward trend
in length, likely reflecting the participants becom-
ing experts and therefore more economical in
their language. This is a known phenomenon in
reference games (Krauss and Weinheimer, 1964;
Clark and Wilkes-Gibbs, 1986), and was also ob-
served in other collaborative scenarios (Effenberger
et al., 2021). FULL and NO-JI track the human
trends best, but generally generate shorter utter-
ances throughout.

The effective vocabulary of all systems, that is
the number of unique words generated for the set
of context-target pairs, is also decreasing. This
has been observed in prior studies for generation
systems that are exposed only to their output in
continual learning (Kojima et al., 2021). We ex-

7Appendix C.1 provides the set of words we considered.
8For all analysis but MAUVE, utterances are lowercased

and tokenized with spaCy (Honnibal et al., 2020).

pected this effect to be less strong or even reversed
once the system is exposed to human utterances,
either through data sharing or through joint infer-
ence with a comprehension model trained on hu-
man utterances. The decrease in the vocabulary
size is much smaller for the coupled variants, and
the smallest for FULL, but it remains present. We
also plot, for each round, how many words a model
added to the cumulative set of words it generated
until that round (third panel). More new words ap-
pear for the coupled variants throughout the study.
All systems display a significantly less rich vocab-
ulary compared to humans, leaving an important
direction for future work.

We use MAUVE (Pillutla et al., 2021), a
reference-less generation evaluation metric, to eval-
uate the similarity of each model’s language to
human language. For each round and system, we
compute the metric between the model- and human-
produced utterances for that round. We use GPT2-
Large as the embedding model (Radford et al.,
2019), similar to Pillutla et al. (2021), and keep
the number of clusters fixed at 200. We find cou-
pling avoids the drift from human language the
BASELINE displays. The FULL system not only
does not stray further from human language, but
actually moves closer to it over time. Data sharing
is particularly critical, but the combination of joint
inference further helps to align the model language
with human language.

Finally, we briefly look into whether coupling af-
fects the model’s pragmatic reasoning. In reference
games, the pragmatic information is the images in
the context that are not the target. A speaker that
employs pragmatic reasoning well will take into
account the other images so to help the speaker
make the right selection in the specific context they
share (i.e., the speaker will refer to properties of the
target that specifically distinguish from the other
images). We operationalize this question by mea-
suring the diversity of model descriptions for a
specific tangram within different context sets. We
use the Shape Naming Divergence (SND) metric,
introduced by (Ji et al., 2022) to measure the diver-
sity of human annotations for individual tangrams.9

Roughly speaking, high SND means high lexical
diversity between the descriptions of a specific im-
age. For each system and each round, we generate
utterances for every context-target pair observed
in all human-human games throughout continual

9We describe SND in Appendix C.2.
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Figure 5: Language analysis plots, with 95% confidence intervals.11 Trends in utterance length mirror that of
humans when using data sharing (FULL and NO-JI). FULL possesses the highest effective vocabulary size and
produces the largest number of new words each round. The FULL system additionally shows an increase in MAUVE
scores (↑) over time and exhibits the highest SND (↑) throughout.

learning.10 We get 10.67 utterances per tangram
on average. Figure 5 (right pane) shows mean
SND across all tangrams for each model and round.
Largely, we observe BASELINE’s pragmatic ability
to collapse over time. Data sharing helps to some
degree. While we see a decrease in SND over time
even when using joint inference, this type of cou-
pling shows much higher SND values throughout,
indicating greater diversity of utterances and hence
a greater pragmatic effect. While this effect tracks
the vocabulary size trends in practice, it is indepen-
dent, even if a diverse vocabulary is a necessary,
but insufficient condition. That said, this analysis
of pragmatic reasoning is rudimentary, and future
in-depth analysis is required to identify the exact
qualities of this phenomena and how it correlates
with system performance.

7 Related Work

Our joint inference strategy (Section 4.2) is tech-
nically based on approximations (Fried et al.,
2018a,b) of the Rational Speech Acts frame-
work (RSA; Goodman and Frank, 2016; Yuan et al.,
2018), which frames pragmatic reasoning as a re-
cursive process between listener and speaker mod-
els. RSA has been studied extensively with the
focus of developing models that reason pragmati-
cally (e.g., Monroe et al., 2017; Andreas and Klein,
2016), including through incorporation in learn-

10We cannot compute SND for human participants because
of insufficient data per round.

11Confidence intervals are computed over n = 10,000
random samples of 2,000 context-target pairs for each round.

ing (McDowell and Goodman, 2019) and infer-
ence (White et al., 2020). We use it for different
aims, as one of two strategies to couple compre-
hension and generation. Liu et al. (2023) studied
the incorporation of joint inference for generation
learning, which is a component of our study, with
a static model listener. In contrast, we study learn-
ing dynamics for both comprehension and genera-
tion, evaluate data sharing as an additional coupling
mechanism, and deploy for continual learning with
humans, who constitute non-static partners.

Continually learning from interactions with hu-
man users has been studied in the context of in-
struction generation (Kojima et al., 2021) and
following (Suhr and Artzi, 2024), question an-
swering (Gao et al., 2023), and ad-hoc adapta-
tion (Hawkins et al., 2020). In our work, continual
learning enables us to study long-term dynamics
that arise from coupling comprehension and genera-
tion. Our continual learning setup is different from
the Reinforcement Learning from Human Feed-
back framework (RLHF; Ziegler et al., 2019) in
relying on binary signals derived from interactions
with users, while RLHF requires external annota-
tors that compare output pairs.

The reference game scenario has been exten-
sively used in cognitive studies as a prototyp-
ical, but simple interaction design (Rosenberg
and Cohen, 1964; Krauss and Weinheimer, 1964).
It has been used to study convention forma-
tion at dyadic (Clark and Wilkes-Gibbs, 1986;
Wilkes-Gibbs and Clark, 1992) and population-
levels (Hawkins et al., 2023), and demonstrate com-



putational theories of pragmatic reasoning (Good-
man and Frank, 2016; Cohn-Gordon et al., 2019),
among other behaviors. It has also been used to
develop computational methods, such as to evalu-
ate contrastive captioning (Vedantam et al., 2017;
Ou et al., 2023) and abstract reasoning of vision-
language models (Ji et al., 2022). The tangram im-
ages we use, abstract shapes composed of the same
set of seven primitives, likewise have extensive use
as stimuli in cognitive science (Clark and Wilkes-
Gibbs, 1986; Schober and Clark, 1989; Horton and
Gerrig, 2002). They also remain challenging for
contemporary models (Ji et al., 2022), making them
well suited to demonstrate model improvement.

8 Conclusion

We study the dynamics of coupling language
comprehension and generation at inference- and
training-time through a continual learning setting
where an agent learns from interactions with hu-
mans. Coupling has significant impact over time,
leading to improved agent performance, sample
efficiency, and similarity to human language.

Our work points to multiple directions for future
work, including coupling the processes through the
training objective in addition to data at training-
time, developing more efficient alternatives to sam-
pling utterances during joint inference for genera-
tion, and the study of alternative interaction scenar-
ios, including multi-turn settings where dynamics
between comprehension and generation can affect
an interaction throughout its duration. Scaling up
our approach and experimental setting to a real-
world deployment featuring a wider range of tasks
and a broader set of feedback signals, such as nat-
ural language feedback, constitutes a particularly
important direction.

Limitations

Our work does not touch on an important factor in
deployed systems: the addition of new participants
into the system. To simplify the crowdsourcing
setup, we keep the set of workers fixed during our
experiments. This does not allow us to observe the
effect of new participants joining the population
and the impact of the data they create interacting
with our agents. This is an important direction for
future work. While our methods are not specifically
designed for English, our study is only done in
English. We restrict the language to English and
recruit workers from English-majority locales only.

This qualifies our findings, both with regard to the
language choice and the impact of the culture of
the participants. These are also important variables
for future studies.

Unlike how RL is usually studied in the research
community, our continual learning process involves
humans in the loop. This entails restrictions in
terms of time and cost. We opt for simplicity
and choose to train models with a REINFORCE-
style policy gradient algorithm (Williams, 1992)
and retrain models from scratch on the cumulative
set of collected data with each round of continual
learning. A more extensive (and costly) search
over methods might impact results. We leave the
study of more complex RL algorithms, such as
PPO (Schulman et al., 2017), as well as differ-
ent strategies for incorporating data from previous
rounds to future work.

We invested significant effort and resources in
running our study for a significant amount of in-
teractions and rounds. While we show consistent
trends, it is hard to predict trends at much larger
scale (e.g., thousands of rounds or millions of inter-
actions). This is beyond the resource available for
this research. That said, even if trends change dra-
matically with such a long horizon, our approach
remains useful for faster learning (i.e., reduce re-
gret) in the early life of the system.

Ethical Considerations

Our work studies how the coupling of comprehen-
sion and generation affects the dynamics of perfor-
mance and model language. Through coupling at
training time, our model trains on both its own gen-
erations alongside generations its human partners
produced at interaction time. A naive implementa-
tion of this strategy during real-world deployment
risks aligning model behavior with the biases of
its human interlocutors at best and exposing the
model to adversarial actors at worst. Appropriate
guardrails or further research for selecting when to
apply data sharing should be implemented before
deployment is considered to ensure safety.
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A Training and Inference Details

A.1 Training Hyperparameters
We use the instruction-tuned IDEFICS2-8B
model (Laurençon et al., 2024) for all our experi-
ments, and optimize with AdamW (Loshchilov and
Hutter, 2019) with a learning rate of 0.0001 and
a weight decay of 0.1. Each gradient step is com-
puted over independently sampled minibatches of
size 32 for comprehension and generation tasks.

We use LoRA for finetuning (Hu et al., 2022),
where r = 16 and α = 8. We apply adapters to
all feedforward layers in the vision encoder, the
modality projection and the perceiver-resampler
block, but only to the key, query and value pro-
jections of the text decoder. We found applying
further adapters for the text decoder to exacerbate
overfitting. We load and train models with BF16
precision to reduce memory and compute costs.

We observe the IPS term for negatively rewarded
examples (Section 3.2) to infrequently attain high
values in early epochs during pilot experiments. To
increase training stability, we clip the IPS term at
5. During our main experiment, clipping is acti-
vated for 2-3% of negatively rewarded generation

examples in the first epoch, with the proportion
declining afterwards.

A.2 Stopping Criterion
Each model is trained for a maximum of 15 epochs.
An epoch is a complete pass over data for the
comprehension task. We use patience stopping,
ending training when model validation accuracy
for the comprehension task does not improve for
five epochs. For models with joint inference, we
compute validation accuracy with the joint listener
model P j

l (t|I, u; θ), while for models without joint
inference, we compute it with the base listener
Pl(t|I, u; θ). We exclusively use comprehension
accuracy. Pilot experiments showed it correlates
well with deployment performance.

A.3 Hyperparameter Search
Hyperparameter search is done on the seed initial-
ization data, using comprehension accuracy on the
validation set as the metric. We vary learning rates
{1e − 5, 5e − 5, 1e − 4, 2e − 4}, weight decay
{0, 1e − 3, 1e − 1}, LoRA α {8, 32} and adapter
placements (only key-query-value projections; all
forward projections; and all forward projections
except for the language decoder, which used key-
query-value projections) and prompt designs. The
selection of LoRA adapters is the most important
hyperparameter, showing a strong impact on over-
fitting at the data scales we work in.

The λl hyperparameter for the joint comprehen-
sion distribution is tuned on the seed data with the
hyperparameters described on Appendix A.1. We
save model checkpoints for each epoch of training
and inspect comprehension accuracy values on the
validation set for different settings of λl. We find
λl = 0.5 consistently perform well.

We choose λs by training models with the joint
inference strategy with λl = 0.5 and using the
hyperparameters and stopping criterion from Ap-
pendix A.1 and Appendix A.2. We sample ut-
terances on the validation set and inspect the re-
ranking behavior of the joint generation distribution
P j
s (u|I, t; θ) with different λs values. We observe

that the utterance the joint distribution P j
s (u|I, t; θ)

ranked as the best was often equivalent to the utter-
ance the base generation distribution Ps(u|I, t; θ)
ranked as the most likely. This skew towards the
base generation distribution is additionally exacer-
bated with longer training times.

To determine λs in light of this, we probe how
accurately the joint generation distribution could

https://arxiv.org/abs/2006.00418
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rank utterances on the validation set. Specifically,
for each context-target pair on the validation set,
we measure whether the distribution P j

s (u|I, t; θ)
assigned higher probabilities to the ground-truth
utterance for that pair than distractor utterances
collected for other target images in that context.
We vary λs in [0, 1] with increments of 0.01 and
find that λs = 0 achieved the best accuracy at
selecting the ground-truth utterance.

A.4 Prompt Design
We use the same model (i.e., same architectures
and same parameters) for comprehension and gen-
eration and designate which task the model should
perform through prompting. Figure 6 and Figure 7
show the prompts for comprehension and genera-
tion.

A.5 Generation Sampling Details
We sample utterances autoregressively using a tem-
perature of τ = 0.7. We sample k = 10 utterances
to generate with the joint inference procedure. To
isolate the influence of reranking with the compre-
hension model, we also sample k = 10 utterances
when not performing joint inference and return the
utterance with the highest probability.

A.6 Computational Resources
Each model is trained with a single GPU, RTX
A6000 or NVIDIA A100. Hyperparameter tuning
experiments took 100-200 GPU hours total, while
training for the main continual learning experiment
took approximately 225 GPU hours. For deploy-
ment, on the other hand, Models are deployed using
RTX A6000 and V100 GPUs, with Ray for infer-
ence parallelization (Moritz et al., 2018).

B Context Construction

Each reference game round involves a context of
size N = 10 comprising 3 blocks (two of size
3 and one of size 4) of visually similar tangrams.
We use a CLIP model (Radford et al., 2021) fine-
tuned by Ji et al. (2022) on annotations from the
KILOGRAM dataset to construct these sub-blocks.
The blocks increase the difficulty of the context,
because elements within each block have high vi-
sual similarity, making both comprehension and
generation more challenging.

Each similarity block is constructed by randomly
sampling a tangram, and sampling the rest of the
block members from all other tangrams. The sam-
pling is done using a distribution of normalized sim-

ilarity scores between the first sampled tangrams
and all other tangrams. The similarities are com-
puted using CLIP.

C Experiment Details

C.1 Set of Spatial Reasoning Words
We curate the set of words relating to spatial
reasoning by parsing the set of all human and
model-generated utterances using spaCy with the
en_core_web_sm pipeline (Honnibal et al., 2020).
We collect the set of all words marked with an
ADP (adposition) part-of-speech tag, which pre-
dominantly contained terms for spatial reasoning
in our task, and manually filtered out the words
such as “like” that are irrelevant to spatial reason-
ing. We then added words relating to notions of
“left” and “right,” which were not captured under
the ADP tag.

The full set of words we used was: ’from’,
’towards’, ’thru’, ’to’, ’through’, ’until’, ’next’,
’above’, ’along’, ’about’, ’out’, ’inside’, ’be-
hind’, ’outside’, ’forward’, ’back’, ’around’, ’be-
neath’, ’atop’, ’up’, ’apart’, ’near’, ’at’, ’below’,

’into’, ’onto’, ’toward’, ’past’, ’upwards’, ’before’,
’within’, ’against’, ’between’, ’beside’, ’on’, ’after’,
’by’, ’over’, ’across’, ’down’, ’opposite’, ’under-
neath’, ’in’, ’under’, ’left’, ’leftward’, ’leftwards’,

’right’, ’rightward’, ’rightwards’.

C.2 Shape Naming Divergence Metric
We analyze pragmatic reasoning using the Shape
Naming Divergence (SND) metric (Ji et al., 2022),
which measures how much the naming of individ-
ual tangrams varies across different annotations.
We repurpose it to probe pragmatic reasoning by
measuring how much a model’s description of a
given tangram varies across different contexts. In-
stead of descriptions from different annotators, we
compute SND over descriptions of that tangram in
different contexts. This gives insight into the im-
pact of the context (i.e., via pragmatic reasoning)
on the description of the individual tangram.

D Additional Performance Analyses

D.1 Estimating Performance on Future
Rounds

The decisions of experiment length (i.e., in the
number of rounds) requires to balance costs and
research utility. Our main experiment included four
rounds of deployment and learning, which was suf-
ficient to answer our research questions given the



Comprehension Prompt:
[User] You will be presented with a sequence of 10 images and a caption describing exactly one of them. Your task is to guess
which image the caption describes. Image 0: <img0>, Image 1: <img1>, Image 2: <img2>, Image 3: <img3>, Image 4:
<img4>, Image 5: <img5>, Image 6: <img6>, Image 7: <img7>, Image 8: <img8>, Image 9: <img9>. Caption: <speaker
caption>. Does this caption describe Image 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9?

[Assistant] The caption describes Image <target image index>

Figure 6: IDEFICS2 comprehension prompt. The target image index is not provided during inference time.

Generation Prompt:
[User] You will be presented with a sequence of 10 images and be assigned a target image. Your task is to produce a caption
for your target image such that anyone could guess the image from your description. Image 0: <img0>, Image 1: <img1>,
Image 2: <img2>, Image 3: <img3>, Image 4: <img4>, Image 5: <img5>, Image 6: <img6>, Image 7: <img7>, Image 8:
<img8>, Image 9: <img9>. Your target is Image <image index>. Produce your caption now.

[Assistant] <caption>

Figure 7: IDEFICS2 generation prompt. The caption is not provided during inference time.

dramatic differences between the systems. Our
data does allow us to estimate performance trends
for one more round, without collecting additional
data. We train models for a fifth round given all the
interaction data collected in prior rounds, includ-
ing the last round of deployment, which provided
the final performance numbers. We compute of-
fline estimate of comprehension performance using
human-model interactions collected on the fourth
round by the control system (i.e., the initial FULL

model), which come from the same distribution
of human utterances and are unseen by models in
training.

This estimate indicates the trends we observe are
robust, and continue for at least one more round be-
yond our experiment. Comprehension performance
continues to improve for all models (FULL: 72.79
→ 76.79%; NO-JI: 66.86 → 68.25%; NO-DS:
64.73 → 65.93%; BASELINE: 58.04 → 64.25%).
FULL still outperforms all other systems by a large
margin. Importantly, the performance of FULL on
the second round remains larger than the improved
performance of BASELINE (65.24% > 64.25%),
validating our observation that coupling boosts data
efficiency. This indicates that the positive impacts
the coupling of comprehension and generation has
on performance trends are likely to persist.

D.2 Impact of Data Sharing on Training Set
Size

Figure 8 shows how the number of datapoints mod-
els train on for comprehension and generation tasks
change over time. Coupling with data sharing leads
to a strong data augmentation effect for FULL and
NO-JI, with the number of datapoints shared from
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Figure 8: Number of training examples for comprehen-
sion and generation tasks across four rounds of deploy-
ment. The plots account for datapoints converted from
the opposing role when data sharing is applied.

the opposing role increasing as the model perfor-
mance increases.

E Crowdsourcing

E.1 Worker Recruitment

We recruit workers with a minimum HIT (Human
Intelligence Task) approval rate of 98% and at least
1,000 approved HITs. We restrict the pool to work-
ers from English-majority locales (United States,
Canada, Great Britain, Ireland, Australia, and New
Zealand). Workers complete a video tutorial and
a qualification quiz to qualify for our tasks.11 The
quiz also includes accepting a consent form. The

11The quiz may be found in our codebase. The
video tutorial is accessible at https://lil-lab.github.io/
tangrams-refgame-dev/.

https://lil-lab.github.io/tangrams-refgame-dev/
https://lil-lab.github.io/tangrams-refgame-dev/


consent form details how identifiable information
of workers (i.e.,AMT worker IDs) is encrypted,
how the collected data would be published, and
benefits and risks from participating in the study.
We recruit a total of 84 workers. This study was
qualified as exempt by Cornell University’s Institu-
tional Review Board.

Even with the qualification process, workers that
produced low-effort responses or colluded with oth-
ers entered the worker pool. We further estimate
the the effectiveness of workers via human-human
games. We collected a set of 113 pilot games be-
tween humans, where at the end of each HIT, play-
ers rated their satisfaction with their partner on a
Likert scale from 1–6. We removed workers with
an average less than 4 from the pool and manu-
ally reviewed the games of the remaining workers.
With this process, we restricted the pool of work-
ers to a set of 50 experts, 41 of whom joined our
final experiments. We collected our initialization
and validation data, and performed our continual
learning experiment with this set of experts.

E.2 Payment Details
The HIT base pay is $0.60USD. For each round
of reference games played within a HIT, workers
receive a bonus of $0.125USD upon success or
$0.05USD upon failure. The estimated hourly pay
was $18.31 USD for games between humans, and
$20.55 USD for games between humans and mod-
els at the final round. We set the base pay and
bonuses through pilot studies among researchers
and tuned the values based on estimates of hourly
pay during pilot studies.

E.3 Game Interface
The reference game interface is built using the Em-
pirica framework (Almaatouq et al., 2021). It in-
cludes a chatbox at the left hand of the screen and
the context tangrams at the center. When in the
speaker role, the target is indicated to the speaker
with a black square. The speaker has 45 seconds
to type and send an utterance through the chatbox.
After the speaker sends a message, the listener is
given 15 additional seconds to make a selection.
Each round lasts at most 60 seconds. The listener
makes a selection by clicking on a tangram im-
age. If successful, the target flashes green for both
players. Upon failure, the target tangram flashes
red for the speaker and the chosen tangram flashes
red for the listener. Workers in the speaker role
are not revealed their partners’ choice and work-

ers in the listener role are not revealed the target.
We do this to mitigate worker adaptation to mod-
els and convention formation throughout a HIT. If
neither player makes a decision within the given
timeframe, the round is considered unsuccessful.
The HIT terminates if an individual worker does
not take an action for two consecutive rounds. Fig-
ure 9 shows the HIT introduction, listener role, and
speaker role.

E.4 Deployment Details

In each deployment, we give each worker access to
an equal number of HITs to uniformly sample from
the worker pool. Within a given HIT, a worker
plays 40 rounds of reference games, either against
a human or model partner. If playing against a
model, the worker plays against each system vari-
ant an equal number of times and in a random order.
During the final round of deployment, we addition-
ally evaluate the initial FULL system, and therefore
increase the number of rounds per HIT to 50.

Throughout the execution of a HIT, players al-
ternate between roles every 3–4 rounds. In each
group of 3–4 rounds, the underlying context is kept
fixed, with the targets changing each round. This
balances the cognitive load of observing a com-
pletely new context while preventing workers from
being able to guess targets based on what has not
been mentioned yet. If a worker is playing against
a model, the system they are playing against is kept
fixed within this group of 3–4 rounds. Workers
are not revealed whether they are playing against a
human or a model.

Each HIT additionally includes an attention
check round at a random position. The attention
checks are randomly sampled from a set of 100
manually annotated context-target pairs. To ensure
simplicity, we sample the targets from the bottom
15th percentile of tangrams in terms of the SND
metric (indicating high annotator agreement for
tangram naming within the KILOGRAM dataset)
and restrict the remaining tangrams in the context
to those with a CLIP cosine similarity less than 0.
The rest of the attention check construction follows
the process outlined in Appendix B.

In practice, we did not disqualify any workers.
Our main continual learning experiment spanned
from May 3rd to May 21st.



Figure 9: Top: the introduction screen shown upon accepting a HIT. Center: worker view in the listener role.
Bottom: worker view in the speaker role.

F Data Details

F.1 Interactions Per Round

We collect 2,000 interactions for each role for each
system in the first round, and increase the number

by 500 each round (Section 5). For each role and
each system, we collect 2,000 interactions on round
1, 2,500 on round 2, 3,000 on round 3, and 3,500
on round 4.



F.2 Data Release
We release all of the data collected during our
experiments alongside the code used to conduct
them. This includes the seed training and valida-
tion sets of 104 and 280 successful human-human
reference games as well as all of the interactions
collected during continual learning, comprising
10,811 rounds of human-human reference games,
and 43,442 and 43,492 rounds of human-model
reference games where the model is in the listener
or speaker roles. We do not include rounds where
the human partner idled.

During data collection, all worker IDs were en-
crypted with MD5 hashes. Worker information is
further anonymized during the release by mapping
each ID hash to a numeric index.

G Licenses of Scientific Artifacts Used

Our chosen model architecture, IDEFICS2-
8B (Laurençon et al., 2024), and the Ray library
have open licenses (Apache 2.0); the repository for
MAUVE (Pillutla et al., 2021) has a GNU General
Public License; and spaCy (Honnibal et al., 2020)
has an MIT license.
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