
Federated Behavioural Planes: Explaining the
Evolution of Client Behaviour in Federated Learning

Dario Fenoglio
Università della Svizzera italiana

Lugano, Switzerland
dario.fenoglio@usi.ch

Gabriele Dominici
Università della Svizzera italiana

Lugano, Switzerland
gabriele.dominici@usi.ch

Pietro Barbiero
Università della Svizzera italiana

Lugano, Switzerland
pietro.barbiero@usi.ch

Alberto Tonda
INRAE

Paris, France
alberto.tonda@inrae.fr

Martin Gjoreski
Università della Svizzera italiana

Lugano, Switzerland
martin.gjoreski@usi.ch

Marc Langheinrich
Università della Svizzera italiana

Lugano, Switzerland
marc.langheinrich@usi.ch

Abstract

Federated Learning (FL), a privacy-aware approach in distributed deep learning
environments, enables many clients to collaboratively train a model without sharing
sensitive data, thereby reducing privacy risks. However, enabling human trust
and control over FL systems requires understanding the evolving behaviour of
clients, whether beneficial or detrimental for the training, which still represents
a key challenge in the current literature. To address this challenge, we introduce
Federated Behavioural Planes (FBPs), a novel method to analyse, visualise, and
explain the dynamics of FL systems, showing how clients behave under two
different lenses: predictive performance (error behavioural space) and decision-
making processes (counterfactual behavioural space). Our experiments demonstrate
that FBPs provide informative trajectories describing the evolving states of clients
and their contributions to the global model, thereby enabling the identification of
clusters of clients with similar behaviours. Leveraging the patterns identified by
FBPs, we propose a robust aggregation technique named Federated Behavioural
Shields to detect malicious or noisy client models, thereby enhancing security and
surpassing the efficacy of existing state-of-the-art FL defense mechanisms. Our
code is publicly available on GitHub1.

1 Introduction

Federated Learning (FL), a privacy-aware deep learning (DL) approach in distributed environments,
is a dynamic system where many clients collaborate to train a model without sharing sensitive data,
thus mitigating privacy risks [1, 2]. Analyzing the behaviour of FL systems is crucial to detect
anomalies—such as distribution shifts [3, 4], biased data [5], or adversarial clients [6–9]—which
may compromise the global model’s predictive performance and introduce biases into its decision-
making process. Various strategies have been developed to detect FL anomalies [10–15]. However,

Author contributions are detailed in the Acknowledgement section.
1https://github.com/dariofenoglio98/CF_FL

https://github.com/dariofenoglio98/CF_FL

Counterfactuals Behavioural Plane

Errors Behavioural Plane

Client 1

Client 2

Attacker

Server

1st Principal Comp.

Client 3

2n
d

Pr
in

cip
al

 C
om

p.

No attack DP I.Loss
Type of Attack

55

60

65

70

75

80

85

A
cc

ur
ac

y
(%

)

small-MNIST Dataset

Krum

Median

Trim

RFA

Ours

Best Accuracy

Figure 1: The Federated Behavioural Planes framework enables the visualization of client behaviour
in FL from two perspectives: predictive performance (Error Behavioural Plane) and decision-making
processes (Counterfactuals Behavioural Plane). It highlights client trajectories and similarities,
offering insights into client interactions and supporting the introduction of a new and effective robust
aggregation mechanism with performance that surpasses state-of-the-art baselines.

existing techniques are not designed to track, visualise, and explain how client behaviours affect the
performance of the global model, thus limiting human trust and control on FL dynamics.

Various studies have analysed models’ behaviour in terms of predictive performance and decision-
making processes independently. Predictive performance behaviour is primarily investigated in the
context of non-linear optimisation using behavioural spaces [16–18]. This technique allows the
visualisation of the predictive diversity of a set of regression models by considering the vector of
errors that each model produces on a set of samples. The decision-making process is studied mainly in
explainable AI (XAI) research using, for example, counterfactual explanations [19]. Counterfactuals
can be used to identify relevant input features used by a model to make predictions, thus describing
the position and orientation of the model’s decision boundaries. However, these techniques have not
yet been applied to FL systems, resulting in a lack of insight into how the behaviour of individual
clients affects the overall model’s accuracy and decision-making capabilities, leading to inefficiency
in the training process.

To bridge this gap, we introduce Federated Behavioural Planes (FBPs), a method designed to
visualise, explain, and give insights into the dynamics of FL systems. Our key innovation involves
the creation of two behavioural planes for FL clients: one to highlight their predictive diversity and
another to emphasise their decision-making process diversity via counterfactuals. Building on the
client behaviour information provided by FBPs, to show their practical utility, we propose Federated
Behavioural Shields, a robust aggregation mechanism that enhances security against malicious or
noisy clients by accurately weighting the client models according to their constructive contributions
during training. The results of our experiments demonstrate that: (i) counterfactual generators
jointly trained with FL systems produce valid and client-specific counterfactual explanations which
effectively describe clients’ decision-making diversity; (ii) FBPs facilitate the identification of clusters
of clients with similar behaviours (e.g., normal vs. outlier clients), allowing for tracking of their
trajectories during the entire training; (iii) Federated Behavioural Shields surpasses existing state-of-
the-art defense mechanisms, demonstrating that the information contained in FBPs provides valuable
descriptors of client behaviour.

2 Background

Federated learning. FL systems [20, 3] involve a network of K ∈ N clients, coordinated by a
central server, which collaboratively train a DL model. Each client k possesses a local and private
dataset characterised by a set of z ∈ N features x(k) ∈ X(k) ⊆ Rz and a set of u ∈ N class labels
y(k) ∈ Y (k) ⊆ {0, 1}u. In each training round t ∈ N , each client trains a model f : X(k) → Y (k)

on local data to maximise the likelihood L(θ(k) | x(k), y(k)). Once trained, clients send their local
model’s parameters θ(k)(t) ∈ Rq, q ∈ N to a central server which aggregates these parameters using
a permutation-invariant aggregation ⊕ : Rq×K → Rq (such as the mean or median). The server then

2

sends the aggregated model parameters θ(t+ 1) back to the clients to start a new training round:

(local training) θ(k)(t) = arg max
θ(k)(t)

L(θ(k)(t) | x(k), y(k)) (1)

(aggregation) θ(t+ 1) =
⊕
k∈K

θ(k)(t) (2)

While FL is an efficient process to safeguard privacy, the inherent lack of direct control over each
individual client makes FL systems particularly vulnerable to various poisoning attacks [6–9, 21,
22, 14, 23–26]. These can be categorised into model and data poisoning attacks. Model poisoning
involves altering gradients on compromised devices before transmission to the server [9, 14, 23, 24],
while data poisoning indirectly manipulates gradients by tampering with training datasets on malicious
devices [25, 27, 21].

Counterfactual explanations. Counterfactual explanations [19] describe a model’s decision-
making process by identifying minimal and plausible changes to an observed input’s features that
lead to a desired model prediction. In explainable AI, finding counterfactual explanations is framed
as an optimisation problem where the objective is to identify, for each sample x, the nearest data
point x′ such that the classifier f(θ, x′) assigns a desired class label y′:

argmin
x′
||x− x′|| s.t. f(θ, x′) = y′ (3)

As a result, the variations in the input’s features between x and x′ offer actionable insights into how
the model’s decisions can be altered, highlighting the most important features.

Semantic and behavioural spaces. Semantic spaces [16, 17] represent the semantics of a model
by considering the error vector e = [ϵ(f(θ, xi), yi)]i=1,...,n that a model produces on a set of n ∈ N
samples, where ϵ could be the Mean Squared Error, for instance. Given a set of K models, the
semantic space contains n-dimensional data points [e1, . . . , eK] ∈ RK×n. Behavioural spaces [18]
summarise semantic spaces into lower-dimensional spaces applying a transformation ψn→m : Rn →
Rm with m≪ n (typically m = 2 for most applications) i.e., ψn→m([e1, . . . , eK]).

3 Federated Behavioural Planes

Problem definition: Given an FL system composed of a set of K clients with local data (x(k), y(k))
and models f(θ(k)), we aim to analyse the evolution of the system to understand how clients impact
the global model’s predictive performance and decision-making over time. In Section 3.1, we
introduce what drives our method and formalise the problem. In Section 3.2, we introduce Federated
Behavioural Planes (FBPs), describing its components in more detail: the Error Behavioural Plane
(Section 3.3) and the Counterfactual Behavioural Plane (Section 3.4). Finally, in Section 3.5, we
introduce Federated Behavioural Shields, a new robust aggregation mechanism to enhance security in
FL systems, showing a practical application of FBPs.

3.1 Dynamic behaviour of federated learning

FL is a dynamic process transitioning from a state where all participating clients behave randomly
to a state where the behaviour of participating entities becomes coherent (the parameters of client
models tend to converge to values which lead to high model accuracy). Thus, FL systems can be
effectively analysed through the lens of dynamical systems using tools traditionally employed for
such studies, such as differential equations. Defining b(θ(k)) as the evolving state of the behaviour of
the client k at time t, we introduce two primary forces that influence b(θ(k)): g(θ(k), x(k), y(k)), the
local training dynamics, which drives the client towards its local optimum by leveraging information
from the local dataset (x(k), y(k)); and b

(⊕
k∈K θ(k)

)
− b(θ(k)), a correction term that periodically

aligns b(θ(k)) with the aggregated state of all clients within the federated system. These dynamics
can be encapsulated in the following differential equation2, which describes how client behaviours
evolve during training and are influenced by internal forces within the FL system:

2For simplicity, we omit the dependency on the time variable t in our notation for variables b and θ.

3

db
(
θ(k)

)
dt

= g
(
θ(k), x(k), y(k)

)
(1− δT) +

[
b

(⊕
k∈K

θ(k)

)
− b

(
θ(k)

)]
· δT (4)

Here, δT is characterised by a periodic Dirac delta function, defined as δT =
∑∞

r=0 δ(t − r · T),
which triggers instantaneous adjustments at intervals determined by period T .

3.2 Federated Behavioural Planes (FBPs)

Instead of finding a general analytical solution for Equation 4 (which is not trivial and requires
strong assumptions on its components), we aim to empirically analyse the phase space of a FL
system by considering different descriptors of client behaviours. More specifically, we focus on
investigating (i) the predictive performance, evaluating how well the model is solving the task, and (ii)
the decision-making process, as it contains information on how the model is solving the task. During
each round, client behaviours are assessed through their respective models on the server, utilising
a server-owned dataset reserved for this evaluation phase. This methodology aligns with existing
protocols [9, 14, 28–32]. Each client behaviour is visualised through a two-dimensional plane: Error
Behavioural Plane representing predictive performance and the Counterfactual Behavioural Plane
to illustrate decision-making processes, collectively referred to as Federated Behavioural Planes.
However, this framework offers a general approach to visualise and monitor different descriptors of
the client behaviours simultaneously, which can be customised through specific functions, enabling
the creation of additional planes.

3.3 Error Behavioural Plane (EBP)

To comprehensively evaluate each model from the predictive performance point of view, we analyse
the errors made by the model on all samples, rather than relying solely on a simpler aggregate metric,
such as loss or error [14]. This approach enables a more detailed examination of the differences in the
model’s performance as observed by Mouret and Clune [18]. Following the methodology proposed
by Zhang et al. [33], we first construct a semantic error space for each model and then map it to a
reduced space, called Error Behavioural Plane (EBP).
Definition 3.1 (Error Behavioural Plane). Given a model f , parametrised with a set of weights
θ(k)(t), related to the client k at round t, a dataset (x(server), y(server)), owned by the server, and a
dimensionality reduction technique ψn→2, the representation e(k)(t) ∈ R2 in the EBP of the client k
is the following:

e(k)(t) = ψn→2

([
f(θ(k)(t), x

(server)
i)− y(server)

i

]
i=1,...,n

)
(5)

It is worth noting that two clients, despite having similar accuracy or loss, may receive significantly
different representations in the EBP if they produce errors on distinct subsets of samples. In contrast,
clients whose trajectories in the EBP converge over time form clusters representing clients whose
predictive performance is similar on the same set of samples. However, clusters and trajectories in the
EBP do not explain the decision-making process that leads to a prediction. This information could be
used to further distinguish different types of clients and can be analysed using counterfactuals.

3.4 Counterfactual Behavioural Plane (CBP)

The analysis of a model’s decision-making process is the main research objective of explainable
AI. Counterfactual explanations represent one of the most effective techniques as they give insights
concerning the position and orientation of decision boundaries. Similar counterfactual explanations
indicate models having similar decision boundaries, i.e. models taking decisions using a similar
decision-making process. To this end, most differentiable counterfactual generators are trained to
model the training data distribution [34, 35], thus potentially providing insights on non identical
distributions in clients’ data. To produce these explanations, clients’ predictive models should be
concurrently trained with a counterfactual generator. Additional information on the optimisation
objective are provided in Appendix A.2, A.3. To obtain the Counterfactual Behavioural Plane (CBP),
we first compute the distances between the counterfactual distribution generated by the server using a

4

model of the client k and the distribution of other clients. Then, we apply dimensionality reduction to
obtain the CBP.

Definition 3.2 (Counterfactual Behavioural Plane). Given a model f with parameters θ(k)(t), related
to the client k at round t, a set of samples x(server) ∈ Rn×z owned by the server with n samples and
z features, a distance function d : Rn×z → R+, such as Wasserstein distance, and a dimensionality
reduction technique ψK→2, the representation c(k)(t) ∈ R2 in the Counterfactual Behavioural Plane
of client k in an FL settings is the following:

a(k)(t) =

[
argmin

x′
i

||x(server)
i − x′i|| s.t. f(θ(k)(t), x′i) ̸= f(θ(k)(t), x

(server)
i)

]
i=1,...,n

(6)

l(k)(t) =
[
d(a(k)(t), a(i)(t))

]
i=1,...,K

, c(k)(t) = ψK→2

(
l(k)(t)

)
(7)

CBP produces complementary information to EBP as clients which are similar in the CBP might
be far away in the EBP (as discussed in Appendix B.4). Furthermore, as the purpose of CBP is to
track clients’ behaviour rather than explaining the model decision to a user, counterfactuals can be
generated based on predictive models’ embeddings, instead of input features, concealing sensitive
information.

3.5 Federated Behavioural Shields – FBPs as a defence mechanism

FBPs provide descriptors of client behaviours during training, enabling various applications. Notably,
trajectories in behavioural planes converging over time form clusters representing clients with similar
predictive performance and decision-making process. This property can be used in practice to identify
anomalies, such as malicious clients attempting to compromise FL training. In particular, leveraging
this detailed information on client behaviours, we propose Federated Behavioural Shields (FBSs),
a new class of robust aggregation strategies designed to enhance security in FL without requiring
prior knowledge on the attack. This defensive mechanism generates a behavioural score in round t
for a client k, denoted as s(k)(t), which is formulated through the composition of multiple scores
s
(k)
j computed on S behavioural spaces, to guide the aggregation process in creating the next round’s

global model θ(t+ 1), as outlined below:

s(k)(t) =

∏
j∈S s

(k)
j (t)∑

i∈K

∏
j∈S s

(i)
j (t)

, θ(t+ 1) =
⊕
k∈K

s(k)(t)θ(k)(t) (8)

Specifically, based on the FBPs we previously defined, we can compute these scores as follows:

s(k)(t) =
s
(k)
error(t)s

(k)
cf (t)∑

i∈K s
(i)
error(t)s

(i)
cf (t)

s(k)error(t) = 1−min(||e(k)(t)||, 1) s
(k)
cf (t) =

1
1
K

∑
i∈K l

(k)
i (t)

The error score s(k)error(t) measures the distance between the client k and the optimal point at the center
of the plane, while the counterfactual score s(k)cf measure the average distance between the distribution
of counterfactual generated by a client and all the other clients. In addition, considering that honest
clients may occasionally deviate from the norm but generally contribute positively, we introduce a
moving average mechanism to track client behaviours (see Appendix A.2 for details).

4 Experiments

The preliminary goal of our experiments is to assess whether counterfactual generators can provide
insights in an FL context without compromising the performance of the predictor. We then visualise
FBPs to verify that they can reveal information about the behaviour of various clients through the
error and counterfatual behavioural planes (EBP and CBP). Lastly, we analyse the effectiveness of
Federated Behavioural Shields as a robust aggregation mechanism, demonstrating the utility of the
information provided by FBPs. Our experiments aim to answer the following questions:

5

• Counterfactuals in FL: Does the integration of counterfactual generators impact clients’
predictive performance? Do counterfactuals have the same quality in FL compared to cen-
tralised scenarios? Could counterfactual generators be adapted for each client? Answering
these questions is an essential preliminary step to check whether counterfactuals can be used
to generate FBPs.

• Explaining FL training: Can trajectories in FBPs describe the evolving client behaviours
during the training phase? Is it possible to visually identify clusters of clients using FBPs?

• Leveraging FBPs information: Do FBPs provide sufficient detail to Federated Behavioural
Shields to enhance the security of the FL training process against security attacks?

This section describes essential information about the experiments. Further details on model con-
figuration, training setup, and computational cost are presented in Appendices A.2, A.4, and A.6,
respectively.

4.1 Data & task setup

In our experiments, we utilise four datasets: a Synthetic dataset (tabular) we designed to have full
control on clients’ data distributions, and thus test our assumptions; the Breast Cancer Wisconsin
[36] (tabular); the Diabetes Health Indicator [37] (tabular); small-MNIST [38] (image); and small-
CIFAR-10 [39] (image), reducing its size by 76% to increase task difficulty and highlight client
differences in performance. For all the experiments with the small-MNIST dataset, our approach
involves generating counterfactuals at a non-interpretable internal representation level of the model
instead of the input space. To reflect the most realistic cross-silo scenario [40], we distribute the
training data among various clients such as data are not independent and identically distributed (IID)
[41]. This represents the most challenging scenario to detect malicious clients due to the significant
variations even among benign clients. Further details on the datasets and non-IID implementation are
provided in Appendix A.1. Additional experiments analysing setup characteristics such as window
length, local epochs, server validation set size, and differences between non-IID and IID scenarios
can be found in Appendix B.

4.2 Evaluation

Metrics. To determine the efficacy of counterfactuals generated through end-to-end training in
FL, we measure several key metrics: task accuracy (↑ – higher is better); counterfactual validity (↑)
[19], which checks if the counterfactuals’ labels align with user-provided labels; proximity (↓) [35],
assessing the realism of counterfactuals by their closeness to the training data (distance between the
counterfactual and the closest data point in the training set with the same label); and sparsity (↓) [19],
which quantifies the changes made to the input to generate the counterfactuals (number of features
changed between the initial sample and the counterfactual). The latter is quantified using Euclidean
distance, as counting the number of changes provides less insight on the generated counterfactuals.
To evaluate the effectiveness of client-specific adaptation, we analyse the relative change in client
proximity between global and client-specific models, expressed as (Pglobal−Plocal)/Pglobal. Finally,
we measure the task accuracy (↑) of the FL system under different attacks and defenses. All metrics
are reported as the mean and standard error across five experimental runs with distinct parameter
initialization.

Baselines. In our experiments, we compare Federated Behavioural Shields with the following
state-of-the-art robust aggregation methods: Median [11], Trimmed-mean [11], Krum [12], and RFA
[42]. Further information is provided in the Appendix A.7.

Federated Attacks. We focus on attacks with realistic assumptions and where additional infor-
mation outside the typical FL scenario are not available [10, 14, 23]. We test the following attacks:
Label-flipping (Data Poisoning) [26, 43], changes each sample’s label to 1− y (performed in the con-
text of binary classification); Inverted-loss (Data Poisoning) [25], creates an update that maximises
the loss on the local dataset; Crafted-noise (Model Poisoning) [44], adds noiseN (0, β · σ(wt)) to the
previous global model wt, where σ(wt) is the standard deviation of wt and β is a scale factor set to
1.2; and Inverted-gradient (Model Poisoning) [24, 45], inverts the gradient derived from the server’s
previous update, misaligning it with the true gradient. Further details are provided in Appendix A.8.

6

Table 1: Performance comparison of our model, which includes a Predictor and Counterfactual
Generator (CF), across various settings: Local Centralised (Local CL), Centralised Learning (CL),
Federated Learning (FL), and FL with only the Predictor in a non-IID setting.

Metric Dataset Local CL CL FL FL
Predictor + CF Predictor + CF Predictor + CF Predictor

Accuracy (↑) Diabetes 55.9 ± 0.5% 75.0 ± 0.2% 74.7 ± 0.1% 74.2 ± 0.1%
Breast Cancer 86.9 ± 0.7% 97.7 ± 0.0% 98.4 ± 0.1% 97.7 ± 0.4%
Synthetic 75.0 ± 2.0% 99.4 ± 0.2% 99.8 ± 0.1% 99.9 ± 0.1%

Validity (↑) Diabetes 87.6 ± 2.6% 99.9 ± 0.1% 99.9 ± 0.0% N/A
Breast Cancer 100.0 ± 0.1% 100.0 ± 0.0% 100.0 ± 0.0% N/A
Synthetic 97.1 ± 1.9% 100.0 ± 0.0% 100.0 ± 0.0% N/A

Sparsity (↓) Diabetes 45.4 ± 2.1 34.5 ± 1.7 37.1 ± 1.2 N/A
Breast Cancer 1459 ± 25 1325 ± 20 1448 ± 43 N/A
Synthetic 8.63 ± 0.15 6.24 ± 0.22 6.14 ± 0.07 N/A

Proximity (↓) Diabetes 8.91 ± 0.61 5.45 ± 0.40 6.23 ± 0.44 N/A
Breast Cancer 61.2 ± 2.1 70.1 ± 1.8 72.1 ± 5.5 N/A
Synthetic 0.142 ± 0.026 0.091 ± 0.003 0.089 ± 0.002 N/A

5 Key Findings & Results

5.1 Counterfactuals in FL

Integrating counterfactual generators in FL optimisation does not compromise predictive
performance (Table 1). We compared model accuracy across four settings: two centralised learning
(CL) and two FL, using three different datasets under non-IID conditions. For FL experiments, we
used the traditional FedAvg approach with two variations: predictor-only and predictor with CF
generator. The results indicate that our model, which involves the concurrent training of both the
predictor and the counterfactual generator, achieves performance comparable to that of the predictor
alone in FL. In the context of our model, both Local CL—where each client trains a model on its
local data—and FL, implemented across all clients, comply with privacy standards [2]. For Local
CL, we report the average accuracy of models trained independently by each client and evaluated
on a common test set. However, only FL reaches the performance levels of the CL scenario, which
assumes local access to all client data. This result indicates that incorporating counterfactuals during
training does not compromise the predictor’s performance, thus supporting their beneficial application
without adverse effects on performance.

Counterfactuals generated in FL have similar quality to those in CL (Table 1). Unlike Local CL,
FL leverages information from all clients, thereby producing counterfactuals that more accurately
reflect non-IID clients’ data. As shown in Table 1, FL achieves higher validity compared to the Local
CL approach, indicating that the FL’s counterfactuals better match ground-truth labels. Additionally,
FL exhibits lower sparsity, which measures the number of modifications needed to achieve the
counterfactuals. Table 1 shows these results using a counterfactual generator we adapted for this
scenario (see Appendix A.3), however, similar conclusions are also obtained using out-of-the-box
generators [34] (see Appendix B.2).

Diabetes Breast Cancer Synthetic
Dataset

0

20

40

60

80

R
el

at
iv

e
P

ro
xi

m
it

y
(%

)

Comparison of Non-IID Settings Across Datasets

Figure 2: Relative variation of client-
proximity across datasets.

Counterfactual generators can be adapted to specific
clients (Figure 2). In our study, we explored the impact of
client adaptation on counterfactual generation within FL en-
vironments, as detailed in Section 4.2. Client-personalisation
is key whenever we need to extract client-specific infor-
mation. This adaptation can be achieved by training (or
fine-tuning) a counterfactual generator on local client’s data
(which naturally happens at each round). The effectiveness
of client-specific adaptation can be measured by the relative
change in client proximity between global and client-specific
models, as shown in Figure 2. The figure shows a marked
reduction in relative proximity across the three datasets un-
der non-IID conditions (up to 70% in the Synthetic dataset).
This suggests that client-specific counterfactuals after adaptation are more representative of individual
client datasets, providing unique descriptors of client-specific behaviours in the CBP.

7

5.2 Explaining FL training

Figure 3: Client trajectories on Counterfactuals and Error Behavioural Planes for Synthetic, Breast
Cancer, and small-MNIST datasets, corresponding to Inverted-loss, Crafted-noise, and Inverted-
gradient attacks, respectively. The figure highlights the deviation of the malicious client (red) from
honest clients, who tend to cluster together over time, along with the previous-round global model (S)

The trajectories in FBPs enable the identification of different client behaviours during training
(Figure 3). Figure 3 illustrates FBPs’ client trajectories over the last 15 rounds, where we introduced a
different attack on each dataset (from left to right: Inverted-loss, Crafted-noise, and Inverted-gradient
attacks). Each dataset was configured with five non-IID clients and one attacker (red). In the Synthetic
dataset, to highlight the visualization of honest client clusters, the two largest clients were subdivided
into three (Client 2,3,4) and two smaller clients (Client 6,7), respectively, forming distinct clusters.
Specifically, on the EBP for the Synthetic dataset, the attacker (Client 9) significantly deviates from
the trajectories of other clients, aiming to disrupt the server model (S). On the CBP, clusters with
similar data distributions converge, indicating similarity in decision boundaries and client training
data. In Breast Cancer and small-MNIST, FBPs are also able to give insights on the type of attack.
On the Breast Cancer EBP, Client 6 exhibits a random trajectory around the server trajectory, which
indicates a Crafted-noise attack. In small-MNIST, both the CBP and EBP reveal that at each round
the trajectory of the attacker consistently moves in the opposite direction to that of the server, which
indicates an Inverted-gradient attack. These insights might be useful for FL users as they explain the
nature of clients’ behaviours, allowing the identification of as various types of attacks. Additional
visualizations are available in the Appendix B.3.

FBPs allow the identification of clusters of clients (see Figure 3). In the Synthetic dataset, CBPs’s
clusters reflect client-specific data distributions (Client 1,2-3-4,5,6-7,8 and Attacker 9). Clients
sharing similar data distributions tend to cluster closely in the CBP, which in the Synthetic dataset
is structured with adjacent slices in the feature space (for example, Client 1 is positioned between
Client 8 and Client 2). Similarly, in Breast Cancer and small-MNIST, two primary clusters are
identifiable in the CBP: honest clients and attackers. This clustering capability is crucial for users
aiming to comprehend client characteristics without direct access to data or models’ parameters,
thereby informing strategic decisions in training a federated model. For instance, one might consider
reducing the number of clients with identical data distributions to avoid redundancy and enhance
training efficiency. Conversely, identifying distinct clusters in FBPs can be useful to maximise model
performance (at the expense of the generalisation ability) by forming a Clustered FL system where
independent federated models are trained using a subset of similar clients.

5.3 Leveraging FBPs information

FBPs offer detailed insights into client behaviours, enabling the Federated Behavioural Shields
to outperform existing state-of-the-art defense mechanisms (Figure 4). Our comparative analysis
demonstrates that Federated Behavioural Shields generally outperform traditional methods such as
Krum, Median, and Trimmed-mean across various datasets including Breast, Diabetes, and small-

8

MNIST. The only exception was in the scenario of the Inverted gradient on the small-MNIST dataset,
where Trimmed-mean performed better. Overall, our method enhanced the performance up to 10
percentage points (pp) over Median—the most robust aggregation baseline—when the FL system is
under Label-flipping attack and up to 16 pp when the system is not under attack on small-MNIST. The
proposed approach surpasses even a FedAvg aggregation in absence of attackers on the Breast Cancer
and on the small-MNIST datasets, under both normal and crafted-noise conditions. These results
suggest that an aggregation strategy based on predictive performance or decision-making similarities
is superior to methods that solely consider sample count. Unlike other baselines, the independence
of our method from prior knowledge about attackers establishes it as a robust aggregation tool in
both adversarial and non-adversarial settings. Contrary to previous studies [14, 28], we find that
predictive performance alone does not reliably identify malicious clients in non-IID settings, as
honest clients may also show consistently low performance, leading to potential misclassification
in the aggregation process. Occasionally, this reliance on predictive performance can reduce our
method’s accuracy compared to scenarios where only counterfactual information is used. For instance,
under no-attack conditions, counterfactual information alone often offers more effective behavioural
descriptors than combining it with predictive metrics. Further detailed analyses in Appendix B.12
indicate that using both descriptors generally yields better results than relying solely on counterfactual
behaviour. Furthermore, visualizations in Appendix B.5 show how client scores consistently identify
malicious clients during training, while Appendix B.11 demonstrates the robustness of our Federated
Behavioural Shields against varying attack intensities.

No attack MP Noise MP I.Grad. DP Flip DP I.Loss

90

92

94

96

98

A
cc

ur
ac

y
(%

)

Breast Cancer Dataset

No attack MP Noise MP I.Grad. DP Flip DP I.Loss

65

70

Diabetes Dataset

No attack MP Noise MP I.Grad. DP Flip DP I.Loss
Type of Attack

60

70

80

A
cc

ur
ac

y
(%

)

small-MNIST Dataset

No attack MP Noise MP I.Grad. DP Flip DP I.Loss
Type of Attack

80

85

90

95

100
small-CIFAR10 Dataset

Krum Median Trim RFA Ours (error) Ours (cf) Ours Best Accuracy

Figure 4: Comparative analysis of Federated Behavioural Shields and its simpler version with
only counterfactuals (cf) or predictive-performance (error) versus Krum, Median, and Trimmed-
mean defenses across five attack types—No attack, Crafted-noise, Inverted-gradient, Label-flipping,
Inverted-loss—on three distinct datasets. Red dashed lines represent the accuracy achieved using
FedAvg without attackers.

6 Discussion

6.1 Related works

Client behaviours in FL have been analysed using integrated visual tools [31, 46, 47] or indirectly
through methods such as robust aggregation [10–14, 28, 30, 32, 40, 48–52] and clustering-based
aggregation [53–59]. These studies typically focus on similarities in model or gradient parameters
[10–13, 31, 40, 46–52, 55–59], under the premise that distinct client data distributions manifest as
unique model parameters. Nevertheless, these methods might overlook valuable information about
how client models behave with the data, particularly in terms of predictive performance. To mitigate
this issue, previous studies adopted evaluation methods that utilise a clean validation set on the server
to delineate clients’ behaviour. Common descriptors used in such cases are straightforward metrics
such as accuracy, error rates, and loss [14, 31, 46, 47, 53, 54]. Despite their utility, these metrics might
not be able to reveal behavioural patterns, such as those involved in the decision-making processes of
models, which may suggest subtle similarities or manipulations. Notably, Wang et al. [46] introduced

9

a post-hoc explainable approach, Grad-CAM [60], to explain client model behaviours during training.
However, Grad-CAM is limited to CNN models and provides primarily qualitative visual insights,
which cannot be easily automated and thus still require human intervention. Similarly, SentiNet
[32] uses Grad-CAM to detect potentially malicious regions in input images, yet client behaviour
assessments continue to rely primarily on evaluating predictive performance on manipulated and
unmanipulated images. To the best of our knowledge, this work represents the first systematic attempt
to formalise the evolving dynamics of clients in FL, showing how behavioural client trajectories
affect the predictive performance and decision-making processes of the global model.

6.2 Limitations and future works

The primary constraint of our framework lies in its assumption that the server possesses a minimal
validation set for querying client models. While this assumption is common across various methods,
it can be mitigated, as demonstrated in Wang et al. [46], by generating synthetic data points. To this
end, our approach might already integrate a potential mechanism as differentiable counterfactual
methods can be used to generate synthetic data [61]. Furthermore, as indicated by the promising
results in Appendix B.6, utilizing validation-independent descriptors, such as counterfactuals, renders
our defense method robust against biased or unfair validation sets. Given the significance of ensuring
fairness across clients, developing additional validation-independent descriptors represents a promis-
ing direction for future research. Another consideration is the computational overhead introduced
by counterfactual generators, which, although minimal compared to other baselines (see Appendix
A.6), is higher than that of traditional FedAvg. However, this overhead can be mitigated by using a
smaller network for the counterfactual generator, thereby reducing the number of neurons (e.g., 1.8%
of predictor parameters) without compromising accuracy.

Future work could leverage the extensive information provided by FBPs to explore additional
strategies for optimizing the learning process, such as the development of Clustered FL among clusters
of clients and the fine-grained categorization of attack types. Incorporating additional behavioural
planes may also enhance the specificity of the FBPs explanations. Lastly, since our method allows
for the integration of privacy-enhancing techniques such as Local Differential Privacy [62] and
Homomorphic Encryption [63], future studies could analyze their impact on the overall performance
and computational efficiency of our system.

6.3 Conclusions

In this work, we proposed Federated Behavioural Planes, a method to explain the dynamics of
FL systems and client behaviours. This innovative method allows to visualise, track, and analyse
client behaviours based on specific characteristics. Our focus was twofold: examining predictive
performance by analysing prediction errors and investigating the decision-making process through
counterfactual generation. The results of our experiments showed that Federated Behavioural Planes
enable to track client behaviours over time, cluster similar clients, and identify clients’ contributions
to the global model with respect to a specific descriptor. Based on Federated Behavioural Planes’
information, we introduced a novel robust aggregation mechanism that improves existing state-of-
the-art methods by not requiring prior knowledge of the attacker. This work lays the foundation to
explain the evolution of client behaviours, with the potential to enhance reliability and control over
FL systems.

Acknowledgments and Disclosure of Funding

This research was supported by the Swiss National Science Foundation, the European Union’s Horizon
Europe research program, and the Slovenian Research and Innovation Agency under SmartCHANGE
(No. 101080965), TRUST-ME (No. 205121L_214991), and XAI-PAC (No. Z00P2_216405) projects.

Author Contributions. Dario Fenoglio: Conceptualization, Methodology, Implementation, Experi-
ments, Writing – Original Draft, Writing and supplementary experiments – Rebuttal and Final Paper.
Gabriele Dominici: Conceptualization, Methodology, Implementation of Counterfactual Generators,
Writing – Original Draft. Pietro Barbiero: Conceptualization, Review, Supervision. Alberto Tonda:
Review. Martin Gjoreski: Review, Supervision, Funding Acquisition. Marc Langheinrich: Review,
Supervision, Funding Acquisition.

10

References
[1] Health insurance portability and accountability act. Public Law 104-191, 104th Congress, 1996.

[2] General data protection regulation. Regulation (EU) 2016/679 of the European Parliament and
of the Council, 2018.

[3] Peter et al. Kairouz. Advances and open problems in federated learning. Foundations and
Trends® in Machine Learning, 14(1-2):1–210, 2021.

[4] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. Learning under
concept drift: A review. IEEE Transactions on Knowledge and Data Engineering, 31(12):
2346–2363, 2018.

[5] Hongyan Chang and Reza Shokri. Bias propagation in federated learning. arXiv preprint
arXiv:2309.02160, 2023.

[6] Pengrui Liu, Xiangrui Xu, and Wei Wang. Threats, attacks and defenses to federated learning:
issues, taxonomy and perspectives. Cybersecurity, 5(1):4, 2022.

[7] Lingjuan Lyu, Han Yu, Qiang Yang, et al. Privacy and robustness in federated learning: Attacks
and defenses. IEEE Transactions on Neural Networks and Learning Systems, 2022.

[8] Lingjuan Lyu, Han Yu, and Qiang Yang. Threats to federated learning: A survey. arXiv preprint
arXiv:2003.02133, 2020.

[9] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. Analyzing feder-
ated learning through an adversarial lens. In International Conference on Machine Learning.
PMLR, 2019.

[10] Virat Shejwalkar and Amir Houmansadr. Manipulating the byzantine: Optimizing model
poisoning attacks and defenses for federated learning. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2021.

[11] Dong Yin, Yu-Xiang Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust dis-
tributed learning: Towards optimal statistical rates. In Proceedings of the International Confer-
ence on Machine Learning, ICML. PMLR, 2018.

[12] Peva Blanchard et al. Machine learning with adversaries: Byzantine tolerant gradient descent.
In Advances in Neural Information Processing Systems, volume 30, 2017.

[13] Rachid Guerraoui and Sébastien Rouault. The hidden vulnerability of distributed learning in
byzantium. In International Conference on Machine Learning. PMLR, 2018.

[14] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Local model poisoning
attacks to Byzantine-Robust federated learning. In 29th USENIX Security Symposium (USENIX
Security 20), 2020.

[15] Yi Zeng and et al. Meta-Sift: How to sift out a clean subset in the presence of data poisoning?
In 32nd USENIX Security Symposium (USENIX Security 23), 2023.

[16] Leonardo Vanneschi, Mauro Castelli, and Sara Silva. A survey of semantic methods in genetic
programming. Genetic Programming and Evolvable Machines, 15(2):195–214, January 2014.
ISSN 1573-7632. doi: 10.1007/s10710-013-9210-0. URL http://dx.doi.org/10.1007/
s10710-013-9210-0.

[17] Alberto Moraglio, Krzysztof Krawiec, and Colin G. Johnson. Geometric Semantic Genetic
Programming, page 21–31. Springer Berlin Heidelberg, 2012. ISBN 9783642329371. doi: 10.
1007/978-3-642-32937-1_3. URL http://dx.doi.org/10.1007/978-3-642-32937-1_
3.

[18] Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. CoRR,
abs/1504.04909, 2015. URL http://arxiv.org/abs/1504.04909.

11

http://dx.doi.org/10.1007/s10710-013-9210-0
http://dx.doi.org/10.1007/s10710-013-9210-0
http://dx.doi.org/10.1007/978-3-642-32937-1_3
http://dx.doi.org/10.1007/978-3-642-32937-1_3
http://arxiv.org/abs/1504.04909

[19] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without
opening the black box: Automated decisions and the gdpr. Harv. JL & Tech., 31:841, 2017.

[20] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics, pages 1273–1282.
PMLR, April 2017.

[21] Ali Shafahi, W. Ronny Huang, Christoph Studer, et al. Poison frogs! targeted clean-label
poisoning attacks on neural networks. In Advances in Neural Information Processing Systems,
volume 31, 2018.

[22] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How
to backdoor federated learning. In International Conference on Artificial Intelligence and
Statistics. PMLR, 2020.

[23] Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses
for distributed learning. In Advances in Neural Information Processing Systems, volume 32,
2019.

[24] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall of empires: Breaking byzantine-
tolerant sgd by inner product manipulation. In Uncertainty in Artificial Intelligence. PMLR,
2020.

[25] Prajjwal Gupta, Fan Jin, Bingyan Li, Yuzheng Wu, et al. A novel data poisoning attack in
federated learning based on inverted loss function. Computers & Security, 130:103270, 2023.

[26] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples
for robust deep learning. In International Conference on Machine Learning. PMLR, 2018.

[27] Hongyi Wang, Jared Kaplan, Keith Saab, Ben Goodman, Junfeng Bai, et al. Attack of the tails:
Yes, you really can backdoor federated learning. Advances in Neural Information Processing
Systems, 33:16070–16084, 2020.

[28] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno: Distributed stochastic gradient descent
with suspicion-based fault-tolerance. In International Conference on Machine Learning, page
PMLR, 2019.

[29] Suyi Li et al. Abnormal client behavior detection in federated learning. arXiv preprint
arXiv:1910.09933, 2019.

[30] Xiaoyu Cao et al. Fltrust: Byzantine-robust federated learning via trust bootstrapping. arXiv
preprint arXiv:2012.13995, 2020.

[31] Linhao Meng, Yating Wei, Rusheng Pan, Shuyue Zhou, Jianwei Zhang, and Wei Chen. Vadaf:
Visualization for abnormal client detection and analysis in federated learning. ACM Transactions
on Interactive Intelligent Systems (TiiS), 11(3-4):1–23, 2021.

[32] Edward Chou, Florian Tramer, and Giancarlo Pellegrino. Sentinet: Detecting localized universal
attacks against deep learning systems. In 2020 IEEE Security and Privacy Workshops (SPW).
IEEE, 2020.

[33] Hengzhe Zhang, Qi Chen, Alberto Tonda, Bing Xue, Wolfgang Banzhaf, and Mengjie Zhang.
MAP-Elites with Cosine-Similarity for Evolutionary Ensemble Learning. In 26th European
Conference, EuroGP, volume 13986 of Lecture Notes in Computer Science, pages 84–100, Brno,
Czech Republic, April 2023. Springer Nature Switzerland. doi: 10.1007/978-3-031-29573-7_6.
URL https://hal.science/hal-04230184.

[34] Victor Guyomard, Françoise Fessant, Thomas Guyet, Tassadit Bouadi, and Alexandre Termier.
Vcnet: A self-explaining model for realistic counterfactual generation. In Massih-Reza Amini,
Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, and Grigorios Tsoumakas, editors,
Machine Learning and Knowledge Discovery in Databases, pages 437–453, Cham, 2023.
Springer International Publishing. ISBN 978-3-031-26387-3.

12

https://hal.science/hal-04230184

[35] Martin Pawelczyk, Klaus Broelemann, and Gjergji Kasneci. Learning model-agnostic counter-
factual explanations for tabular data. In Proceedings of The Web Conference 2020, WWW ’20.
ACM, April 2020. doi: 10.1145/3366423.3380087. URL http://dx.doi.org/10.1145/
3366423.3380087.

[36] William Wolberg, Olvi Mangasarian, Nick Street, and W. Street. Breast Cancer Wisconsin (Di-
agnostic). UCI Machine Learning Repository, 1995. DOI: https://doi.org/10.24432/C5DW2B.

[37] Centers for Disease Control and Prevention (CDC). CDC Diabetes Health Indicators Dataset,
2017.

[38] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

[39] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[40] Yanli Li et al. Enhancing federated learning robustness through clustering non-iid features. In
Proceedings of the Asian Conference on Computer Vision, 2022.

[41] Junyu Shi et al. Challenges and approaches for mitigating byzantine attacks in federated
learning. In 2022 IEEE International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom). IEEE, 2022.

[42] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated
learning. IEEE Transactions on Signal Processing, 70:1142–1154, 2022.

[43] Vale Tolpegin et al. Data poisoning attacks against federated learning systems. In Proceedings
of the 25th European Symposium on Research in Computer Security (ESORICS), volume 25 of
Computer Security - ESORICS 2020, pages 25–40, Guildford, UK, 2020. Springer International
Publishing.

[44] Jierui Lin, Min Du, and Jian Liu. Free-riders in federated learning: Attacks and defenses. arXiv
preprint arXiv:1911.12560, 2019.

[45] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Byzantine-robust learning on heteroge-
neous datasets via bucketing. arXiv preprint arXiv:2006.09365, 2020.

[46] Xumeng Wang et al. Hetvis: A visual analysis approach for identifying data heterogeneity in
horizontal federated learning. IEEE Transactions on Visualization and Computer Graphics, 29
(1):310–319, 2022.

[47] Quan Li et al. Inspecting the running process of horizontal federated learning via visual analytics.
IEEE Transactions on Visualization and Computer Graphics, 28(12):4085–4100, 2021.

[48] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. The limitations of federated learning in
sybil settings. In 23rd International Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2020), 2020.

[49] Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial
settings: Byzantine gradient descent. In Abstracts of the 2018 ACM International Conference
on Measurement and Modeling of Computer Systems, 2018.

[50] Yunlong Mao et al. Romoa: Robust model aggregation for the resistance of federated learning
to model poisoning attacks. In Computer Security–ESORICS 2021: 26th European Symposium
on Research in Computer Security, Darmstadt, Germany, October 4-8, 2021, Proceedings, Part
I, volume 26. Springer International Publishing, 2021.

[51] Cody Lewis, Vijay Varadharajan, and Nasimul Noman. Attacks against federated learning
defense systems and their mitigation. Journal of Machine Learning Research, 24(30):1–50,
2023.

[52] Najeeb Moharram Jebreel et al. Lfighter: Defending against the label-flipping attack in federated
learning. Neural Networks, 170:111–126, 2024.

13

http://dx.doi.org/10.1145/3366423.3380087
http://dx.doi.org/10.1145/3366423.3380087

[53] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework
for clustered federated learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 19586–
19597. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/e32cc80bf07915058ce90722ee17bb71-Paper.pdf.

[54] Mahdi Morafah, Saeed Vahidian, Weijia Wang, and Bill Lin. Flis: Clustered federated learning
via inference similarity for non-iid data distribution. IEEE Open Journal of the Computer
Society, 4:109–120, 2023. doi: 10.1109/OJCS.2023.3262203.

[55] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE Transactions on
Neural Networks and Learning Systems, 32(8):3710–3722, 2021. doi: 10.1109/TNNLS.2020.
3015958.

[56] Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical cluster-
ing of local updates to improve training on non-iid data. In 2020 International Joint Conference
on Neural Networks (IJCNN), pages 1–9, 2020. doi: 10.1109/IJCNN48605.2020.9207469.

[57] Guodong Long, Ming Xie, Tao Shen, Tianyi Zhou, Xianzhi Wang, and Jing Jiang. Multi-
center federated learning: clients clustering for better personalization. World Wide Web, 26
(1):481–500, 2023. doi: 10.1007/s11280-022-01046-x. URL https://doi.org/10.1007/
s11280-022-01046-x.

[58] Biyao Gong, Tianzhang Xing, Zhidan Liu, Wei Xi, and Xiaojiang Chen. Adaptive client
clustering for efficient federated learning over non-iid and imbalanced data. IEEE Transactions
on Big Data, pages 1–1, 2022. doi: 10.1109/TBDATA.2022.3167994.

[59] Moming Duan, Duo Liu, Xinyuan Ji, Yu Wu, Liang Liang, Xianzhang Chen, Yujuan Tan, and
Ao Ren. Flexible clustered federated learning for client-level data distribution shift. IEEE
Transactions on Parallel and Distributed Systems, 33(11):2661–2674, 2022. doi: 10.1109/
TPDS.2021.3134263.

[60] Ramprasaath R. Selvaraju et al. Grad-cam: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE International Conference on Computer Vision,
2017.

[61] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.

[62] Stacey Truex, Ling Liu, Ka-Ho Chow, Mehmet Emre Gursoy, and Wenqi Wei. Ldp-fed:
Federated learning with local differential privacy. In Proceedings of the third ACM international
workshop on edge systems, analytics and networking, pages 61–66, 2020.

[63] Arnaud Grivet Sébert, Marina Checri, Oana Stan, Renaud Sirdey, and Cedric Gouy-Pailler.
Combining homomorphic encryption and differential privacy in federated learning. In 2023
20th Annual International Conference on Privacy, Security and Trust (PST), pages 1–7. IEEE,
2023.

[64] Xin Jin and Jiawei Han. K-means clustering. In Claude Sammut and Geoffrey I. Webb, editors,
Encyclopedia of Machine Learning, pages 563–564. Springer US, Boston, MA, 2010. ISBN
978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8_425.

[65] Gabriele Dominici, Pietro Barbiero, Francesco Giannini, Martin Gjoreski, Giuseppe Marra,
and Marc Langheinrich. Climbing the ladder of interpretability with counterfactual concept
bottleneck models, 2024.

[66] Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-Marques, Yan Gao,
Lorenzo Sani, Hei Li Kwing, Titouan Parcollet, Pedro PB de Gusmão, and Nicholas D Lane.
Flower: A friendly federated learning research framework. arXiv preprint arXiv:2007.14390,
2020.

14

https://proceedings.neurips.cc/paper_files/paper/2020/file/e32cc80bf07915058ce90722ee17bb71-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e32cc80bf07915058ce90722ee17bb71-Paper.pdf
https://doi.org/10.1007/s11280-022-01046-x
https://doi.org/10.1007/s11280-022-01046-x

[67] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems,
32, 2019.

[68] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[69] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9
(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

[70] Michael L. Waskom. seaborn: statistical data visualization. Journal of Open Source Software,
6(60):3021, 2021. doi: 10.21105/joss.03021. URL https://doi.org/10.21105/joss.
03021.

[71] Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der Walt
and Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference, pages 56 –
61, 2010. doi: 10.25080/Majora-92bf1922-00a.

15

https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021

A Experimental setup

A.1 Datasets

In our experiments, we employ five distinct datasets:

• Synthetic dataset (Tabular): It consists of two features randomly extracted from a range
of -5 to +5. As shown in Figure 6.a, we partition this feature space into K slices, where K
equals the number of clients. Each slice corresponds to a specific client. We assign a label
of 1 to all data points where x1 > αx2, effectively creating a linear decision boundary that
varies with α. For each client, we generally draw 1000 samples. This controlled setup allows
us to precisely manipulate and visually understand the data distribution across different
clients, as illustrated in Figure 6a.

• Breast Cancer Wisconsin (Tabular): It contains data from 569 patients with 30 continuous
variables derived from digitised images of a fine needle aspirate of a breast mass. The
variables describe characteristics of the cell nuclei present in the image (e.g., radius, area,
perimeter), aimed at predicting breast cancer [36].

• Diabetes Health Indicator (Tabular): It comprises data from 70,692 patients, encompassing
questionnaire-based variables (e.g., smoking, physical activity, fruit intake) and medical
measurements (e.g., BMI, cholesterol levels), with a total of 21 features, to predict the
presence of diabetes [37].

• MNIST (Image): It is a comprehensive database of handwritten digits frequently used to
benchmark image classification algorithms [38]. Each image is a 28x28 pixel grayscale
representation of a digit, ranging from 0 to 9. To increase task difficulty and highlight client
differences in performance, our experiments utilise only 10,000 of the available 70,000
images, referred to as small-MNIST. Additionally, we transform these images into color,
randomly assigning colors with equal probabilities: red, green, or blue. To explore the
decision-making process through counterfactuals, we employed a ResNet-18 architecture to
extract 1,000 features from each image.

• CIFAR-10 (Image): The CIFAR-10 dataset comprises 60,000 color images categorised into
10 classes, widely used for evaluating object recognition algorithms [39]. Each image has a
resolution of 32x32 pixels and is represented in RGB format. Similar to our small-MNIST
setup, we reduce the sample size to 10,000 images. Features are extracted using a ResNet-18
architecture, resulting in 1,000-dimensional feature vectors for each image.

IID distributions across clients are achieved by randomly selecting samples from each dataset. In
contrast, non-IID distributions are created using KMeans clustering [64] to form K clusters of
samples within each class—10 for the Synthetic dataset and 5 for others. We then assign the samples
of the two nearest clusters from different classes to each client. To ensure each client’s distribution is
equally represented, we randomly extract 15% of the samples from each client and combine them
into the test set to assess the performance of our experiments. We create a clean validation set on the
server by extracting 89 samples for Breast Cancer and 250 samples for other datasets. Additionally,
we partition each client’s dataset locally, allocating 80% for training and 20% for validation.

A.2 Model configuration

In our work, the model is composed of a predictor, any Deep Neural Network, which in our is a
multi-layer perceptron that takes tabular data as input and makes a prediction. It is composed of five
layers with hidden dimension equal to 512, 256, 256, 64, respectively. In addition, in our work, the
model is also composed of a counterfactual generator, which can be implemented in different ways.
The only requirement is that it can be trained concurrently with the main model, in an end-to-end
fashion. To generalise our results, we tested the model with two different counterfactual generators.
In Section 5, we used a counterfactual generator designed by us, adapting the intuition from Dominici
et al. [65], that explicitly optimises the generation of counterfactual with respect to specific labels
using two VAEs, named CFGen and described in Appendix A.3. On the other hand, in Appendix
B.2 we also tested VCNet [34], which could generate counterfactual training a VAE, implementing
it according to the original paper. In the context of creating Federated Behavioural Planes, PCA is
employed as the dimensionality reduction technique ψn→2 within the EBP, centering the reduced

16

space around a zero vector, which signifies the absence of errors. For CBP, tSNE is utilised as the
dimensionality reduction method ψK→2, ensuring the preservation of distances between clients and
their respective clusters. Finally, in terms of the implementation of FBSs, at each round t, the score
s(k)(t) for each client k is computed using a moving average with a window length of L, as follow:

s(k)(t) =
1

L

L−1∑
i=0

s(k)(t− i) (9)

Additionally, client exclusion (s(k)(t) = 0) is automatically triggered if a client exhibits a score
approaching zero (i.e., < 10−7) within the specified window.

A.3 CFGen architecture

CFGen is designed to adapt the approach proposed by Dominici et al. [65] to tabular data, eliminating
the need for predefined concepts. It is a latent variable model that generates counterfactuals through
variational inference. To this end, we have two random variables z and z′. These variables represent
latent factors of variation whose probability distributions are easier to model and sample compared to
those for x and x′. We also include dependencies from y to the counterfactual latent distribution z′ in
order to explicitly model the dependency of z′ on the class labels, resulting in the following overall
probabilistic graphical model:

x x̂ y

x′ y′

z

z′

(10)
This way, the generative distribution factorises as:

p(x̂, y, z, x′, y′, z′, x) = p(x̂, y|z)p(x′, y′|z′)p(x|z)p(z|x̂, y) (11)

p(x̂, y|z) = p(y|x̂)p(x̂|z), p(x′, y′|z′) = p(y′|x′)p(x′|z′), p(z|x̂, y) = p(z)p(z′|z, x̂, y) (12)

In our approach, p(y|x̂) and p(y′|x′) are the task predictor; p(x̂|z) and p(x′|z′) are the same decoder.
In practice, we assume that the input x is always observed at test time, making the term and p(x|z)
irrelevant. Finally, p(z) is a standard normal prior distribution and p(z′|z, x̂, y) is a learnable normal
prior whose mean and variance are parametrised by a pair of neural networks ϕpµ and ϕpσ .

Amortised inference. CFGen amortise inference needed for training by introducing two approxi-
mate Gaussian posteriors q(z|x̂) and q(z′|z, x̂, y, y′) whose mean and variance are parametrised by a
pair of neural networks (ϕµ, ϕσ) ((ϕµ′ , ϕσ′), respectively).

Optimization problem. In order to obtain these counterfactuals, it is important to optimise their
generation during training. CFGen is trained to maximise the log-likelihood of tuples (x̂, y, y′), while
observing x. Following a variational inference approach, we optimise the evidence lower bound of
the log-likelihood, which results in the following objective function to maximise:

L =

reconstruction of x̂ and y︷ ︸︸ ︷
Ez∼q(z|x)[log p(x̂|z)] + log p(y|x̂)−

prior regularization on z︷ ︸︸ ︷
DKL[q(z|x)||p(z)]

+

reconstruction of y′︷ ︸︸ ︷
Ez,z′,x′∼p(x′|z′)q(z′|α)q(z|x))[log p(y

′|x′)]−

prior regularization on z′︷ ︸︸ ︷
DKL[q(z

′|α)||p(z′|z, x̂, y)] (13)

where DKL is the Kullback–Leibler divergence and α = (z, x̂, y, y′). Moreover, in order to enforce
the counterfactuals to be as close as possible to the initial input, we add an additional term to the
objective:

Ldz =

posterior distance︷ ︸︸ ︷
−DKL [q(z|x)||q(z′|α)]−

prior distance︷ ︸︸ ︷
DKL [p(z)||p(z′|z, x̂, y)] (14)

A.4 Training configuration

Gradient Descent was employed as the optimisation algorithm, with a batch size equivalent to the
dimension of the training dataset. Both the momentum and learning rate were set at 0.9 and 0.01,

17

respectively. For centralised training scenarios, the model was trained over 1,000 epochs. The Flower
library was utilised to implement FL [66]. In all federated experiments, except for those evaluating
local epochs, we employed 2 local epochs. During the assessment of various defense mechanisms,
the number of communication rounds was capped at 200 and the window length for the moving
average of 30 rounds. For comparisons with centralised training, 1,000 rounds were used. For client
personalization, the generator was trained across 25 local epochs. In each experiments, performance
metrics were evaluated on the model that exhibited the lowest aggregated loss during training. The
aggregated loss represents the weighted average of client losses, evaluated on each client’s local
validation set, proportional to the respective number of samples.

A.5 Code, licenses and hardware

For our experiments, we implement all baselines and methods in Python 3.9 and relied upon open-
source libraries such as PyTorch 2.2 [67] (BSD license), Sklearn 1.4 [68] (BSD license), Flower 1.6
[66] (Apache License). In addition, we used Matplotlib [69] 3.8.2 (BSD license) and Seaborn [70]
0.13 (BSD license) to produce the plots shown in this paper. Data processing is performed using
Pandas [71] 2.2 (BSD license). The four datasets we used are freely available on the web with licenses:
Breast Cancer Wisconsin (CC BY-NC-SA 4.0 license), Diabetes Health Indicators (CC0 license),
MNIST (GNU license), and CIFAR-10. Our code, along with all the necessary details to reproduce
the experiments, is publicly available on GitHub 3 under the MIT license. Additionally, we provide
pseudo-code for both client-side (Algorithm 2) and server-side (Algorithm 1) implementations of our
proposed approach, which includes creating behavioural planes on the server and applying our FBSs.
All experiments were conducted on a workstation equipped with an NVIDIA RTX A6000 GPU, two
AMD EPYC 7513 32-Core processors, and 512 GB of RAM.

Algorithm 1 The Federated Behavioural Shields Algorithm

Require: Initial model f(θ(0)), number of communication rounds T , number of selected clients per
round M , clean validation set (x(server), y(server)), set of plane functions S

1: for t = 0, 1, . . . , T − 1 do
2: Sample M out of N clients
3: Send θ(t) to the selected M clients
4: wait
5: for each selected client k in M in parallel do
6: x′(k), y(k) = f(θ(k)(t+ 1), x(server))
7: end for
8: for plane_fn in S do ▷ Creation of planes
9: skj (t) = plane_fn(x′(k), y(k), x′(k), y(server)) ▷ Our case: Eq.5 and Eq.6-7

10: end for
11: Behavioural planes visualization (FBPs)
12: s(k)(t) = client score in Eq. 8 (part 1)
13: f(θ(t+ 1)) = Model aggregation in Eq. 8 (part 2) with s(k)(t) ▷ Eq. 2 for FBPs
14: end for

Algorithm 2 Local Training on Client k

Require: Initial model architecture f , number of local epochs E, local dataset (x(k), y(k))
1: Receive current global model parameters θ(t) from the server
2: Initialise client model with global parameters: f(θ(k)(t))← f(θ(t))
3: Update local model θ(k)(t+ 1) by training for E epochs ▷ Both predictor and generator
4: Send updated model parameters θ(k)(t+ 1) back to the server

A.6 Computational cost

This section outlines the computational costs associated with our proposed method, focusing on three
primary components: local computation, communication overhead, and server-side computation.

3https://github.com/dariofenoglio98/CF_FL

18

https://github.com/dariofenoglio98/CF_FL

Local computation. Our methods (both FBPs and FBSs) integrate a counterfactual generator
with the original predictor to analyse decision-making and provide insights into the client’s data
distribution. For small neural networks, local computation is minimal compared to other costs in the
FL framework, such as communication latency and synchronization. In these cases, the counterfactual
generator can produce counterfactuals for the model input without impacting training efficiency.
As the predictor size increases, as shown with MNIST and CIFAR-10, we can efficiently generate
counterfactuals for intermediate layers using a relatively small number of neurons. For instance, in
our experiments with small-MNIST and small-CIFAR-10, we used a ResNet-18, which has 12.42M
parameters and requires 71.1M GFLOPs for inference with an input RGB image of size 28x28. As
shown in Table 2, the generator with embedding size of 128 contributes only 5.1% of the operations
compared to the predictor alone. Furthermore, by reducing the embedding size to 32, we maintained
performance while reducing GFLOPs to just 2.7% of the ResNet-18.

Communication overhead. Similar to the predictor, the counterfactual generator must be transmit-
ted to the server for evaluation and aggregation, thereby increasing the number of model parameters
sent. However, the additional communication overhead is marginal compared to the size of the
predictor. As illustrated in Table 2, the counterfactual generator with an embedding size of 32, which
maintains high task performance, consists of only 1.8% of the parameters of the ResNet-18. Conse-
quently, with 32-bit precision, our counterfactual requires 0.92 megabytes (MB) out of approximately
49.68 MB for the predictor.

Server-side computation. On the server, our methods involve evaluating client models’ perfor-
mances on a clean validation set and calculating the pair-wise distances of the generated counterfac-
tuals between clients. As shown in Figure 13, the validation set size can be relatively small, e.g., 250
samples, which can be processed with a single forward pass of the model. Consequently, the models’
evaluation on the server, which can also be parallelised, is negligible compared to the computational
load of calculating pair-wise distances between client counterfactuals.

The primary computational bottleneck on the server is the pair-wise Wasserstein distance between
client counterfactuals. To address this, we use the sliced Wasserstein distance implementation,
which has a computational complexity of O(m logm), where m is the number of supports, given by
m = n_samples× reduction dimension (ψK→2). In our implementation, m = 250× 2 = 500, and
this operation is repeated for each unique pair of clients (i.e., binomial coefficient

(
n
2

)
), leading to a

computational complexity of O(n2 ·m logm) where n is the number of selected clients.

Compared to Krum, which has a complexity ofO(n2d) with d being the number of model parameters,
our pair-wise operation is more efficient for neural networks with more than approximately 4480
parameters, which is likely the case in most practical applications.

Overall computational cost. We evaluated the overall computational cost of our defense mecha-
nism in comparison to both the Krum algorithm and the traditional FedAvg algorithm, considering
different network sizes and varying numbers of clients. In all experiments, a validation set of 250
samples was used. For tests involving an increasing number of clients, our method incorporated a
counterfactual generator utilizing 7.6% of the predictor’s parameters (in the worst-case scenario), as
described in the original paper. Computational time was measured over 10 training rounds across
3 folds, and we reported the mean and standard error of the time per round. As shown in Figure 5,
our method’s computational cost scales more efficiently with both the number of model parameters
and the number of clients when compared to Krum. Specifically, our method adds only an additional
minute per round for 200 clients compared to FedAvg, while Krum introduces over 15 minutes per
round. Importantly, our approach maintains the robustness and security benefits, demonstrating its
efficiency and scalability in large-scale FL scenarios.

A.7 Robust aggregation baselines

This section details the robust aggregation methods used as baselines in our experiments. These
methods are designed to mitigate the effects of poisoning attacks by malicious clients and include:

• Median: This approach performs aggregation using the median of the client updates [11].
Compared to the mean, the median is less affected by outliers. Theoretical guarantees

19

Table 2: Comparison of embedding sizes of the counterfactual generator
Metrics Model Parameters GFLOP

Embedding size Accuracy Validity Pred.+CF CF Increase Pred.+CF CF Increase

128 (paper) 86.0± 0.3% 100.0± 0.0% 13.36M 0.94M 7.6% 74.7M 3.6M 5.1%

64 85.6± 0.4% 100.0± 0.0% 12.88M 0.47M 3.8% 73.6M 2.5M 3.5%

32 87.6± 0.5% 100.0± 0.0% 12.65M 0.23M 1.8% 73.1M 1.9M 2.7%

0.771.68 3.87 6.58 9.80 13.54 17.80
Model Parameters (Millions)

0

5

10

15

20

25

Ti
m

e
(S

ec
on

ds
)

Computational Time vs. Model Parameters per Round
FedAvg
Ours
Krum

(a)

5 25 50 100 200
Number of Clients

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ti
m

e
(M

in
ut

es
)

Computational Time vs. N. Clients per Round
FedAvg
Ours
Krum

(b)

Figure 5: Comparison of the computational time of our proposed method against the traditional
FedAvg, and the robust aggregation Krum per round of training, across (a) different model parameters
and (b) different numbers of clients.

on the robustness of Median aggregation are provided in [11], while empirical evidence
demonstrates that it exhibits better robustness than the more sophisticated Krum [14].

• Trimmed-mean: This approach [11] aggregates each dimension of input gradients separately.
For each dimension i, it sorts the values of the ith dimension of all gradients, removes the
βt largest and smallest values, and averages the remaining values to obtain the aggregate for
dimension i. We use a default βt equal to 20% of the number of clients.

• Krum: Krum [12] is based on the intuition that malicious gradients must be far from benign
gradients to poison the global model. Assuming knowledge of the upper bound on the
number of malicious clients m, Krum selects the gradient from the set of K input gradients
that is closest to its K −m− 2 nearest neighbors in terms of the squared Euclidean norm.

• Robust Federated Aggregation (RFA): RFA [42] replaces the standard arithmetic mean
aggregation with the geometric median to ensure robustness against poisoned updates.
It employs a Weiszfeld-type algorithm to compute the geometric median in a privacy-
preserving and communication-efficient manner.

A.8 Federated attacks

This section outlines and provides additional details about the federated attack scenarios implemented
into our experiments, focusing on both model and data poisoning without prior knowledge of the
server aggregation methods. We implemented these attacks assuming 20% of the clients are malicious:

• Label-flipping (Data Poisoning): In a multiclass scenario, this attack changes all samples
in the dataset with a source class csrc into a target class ctarget [26, 43]. For binary
classification, label flipping is implemented as 1− csource, effectively inverting the class
labels. For multiclass classification, we perform targeted label flipping by changing all
instances of class 2 (Bird) to class 8 (Ship).

• Inverted-loss (Data Poisoning): This attack aims to create an update that maximises the
loss and, consequently, causes a significant drop in accuracy [25]. The implemented loss
function follows the algorithm outlined in [25].

• Crafted-noise (Model Poisoning): Inspired by the Free-riding attack described in [44], this
attack aims for stealthiness by adding noise to the previous model received from the server,

20

4 2 0 2 4
Feature 1

4

2

0

2

4

Fe
at

ur
e

2

Synthetic Data Distribution
Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9
Client 10
Label Boundary

(a)

4 2 0 2 4

Feature 1

4

2

0

2

4

Fe
at

ur
e

2

Generated Counterfactuals

Class 0
Class 1
Label Boundary

(b)

4 2 0 2 4
Feature 1

4

2

0

2

4

Fe
at

ur
e

2

Generated Counterfactuals Client 4

Class 0
Class 1
Label Boundary

(c)

4 2 0 2 4
Feature 1

4

2

0

2

4

Fe
at

ur
e

2

Generated Counterfactuals Client 8

Class 0
Class 1
Label Boundary

(d)

Figure 6: (a) Synthetic dataset. (b) Counterfactuals generated by the server on the synthetic test
set. (c) Counterfactuals for Client 4 after adaptation. (d) Counterfactuals for Client 8, similar to (c).
Notably, Client 4, with a data distribution perpendicular to the decision boundary, achieves effective
adaptation, whereas Client 8 encounters more challenges.

wt. The noise is added as follows: w∗ = wt +N (0, β · σ(wt)), where σ(wt) represents
the standard deviation of wt and β is a scale factor. We adopted β equal to 1.2, except when
we tested the sensitivity values: 0.3, 0.5, 0.8, 1.2, and 1.6.

• Inverted-gradient (Model Poisoning): This attack modifies the inner product between the
true gradient and the malicious gradient updates sent by the attacker, affecting the alignment
with the true gradient [24, 45]. In our implementation, the malicious gradient is inverted:
−∇w. Given the lack of information about honest clients, the true gradient is taken from
the previous update sent by the server, representing the previous improvement of the global
model.

For both data poisoning attacks, the attacker uses a local dataset drawn from the same distribution as
other clients and with an average number of samples.

B Additional experiments and analysis

B.1 Client-specific adaptation in IID and non-IID scenario

As depicted in Figure 2, there is a significant reduction in the relative proximity measure between
global and client-specific models across all three datasets on average, indicating a high degree of
customization in the client models. Nonetheless, a few clients are still unable to tailor the model
effectively to their specific distribution. To explore this phenomenon, we visually represent the
generated counterfactuals pre-adaptation in Figure 6.a, showcasing models with the highest and
lowest degrees of client-specific adaptation in Figures 6.c and 6.d, respectively. Notably, the most
adapted model corresponds to client 4, whose data is almost perpendicular to the class boundary. In
contrast, client 8, whose data distribution lies close to the boundary, struggles to adapt, remaining
akin to the pre-adaptation conditions. This could highlight an increased capacity in personalisation in
clients whose data is perpendicular to the learnt decision boundary, also indicating that personalization
varies among clients, thereby offering more insights on the behaviour of the clients. Furthermore, we
analyse the effects of client-specific adaptation under both IID and non-IID conditions. As shown in
Figure 7, in contrast to non-IID, under IID conditions where data distributions are uniform between
clients, the enhancements were minimal, indicating an alignment between global and local optima.
The lack of customization implies that all client models share a similar decision-making processes,
correctly reflecting with their IID condition. However, this setting also facilitates the identification of
outliers or anomalous clients, which exhibit a higher degree of customization.

B.2 Architecture independence in counterfactual generation

To explore the independence of FBPs from the counterfactual generator, we evaluate our methodology
with an alternative model named VCNet [34], maintaining identical experimental conditions. As
illustrated in Table 3, VCNet achieves comparable performance in both Federated Learning (FL) and
Centralised Learning (CL) configurations, where data from all clients is placed on a single machine.
Similarly to our counterfactual generator, the results demonstrate that the privacy-preserving training

21

Non-IID IID
Setting

10

20

30

40

R
el

at
iv

e
P

ro
xi

m
it

y
(%

)

Diabetes

Non-IID IID
Setting

0

20

40

60

80

R
el

at
iv

e
P

ro
xi

m
it

y
(%

)

Breast Cancer

Non-IID
Setting

0

10

20

30

40

50

60

70

R
el

at
iv

e
P

ro
xi

m
it

y
(%

)

Synthetic

Figure 7: Relative variation of client-proximity across Diabetes, Breast Cancer, and Synthetic datasets
in both IID and non-IID settings. Client-personalization is particularly effective in non-IID settings.

Table 3: Comparison of model performance in Local Centralised, Federated Learning, and Centralised
Learning (i.e., privacy-intrusive) for non-IID setting using VCNet [34]

Metric Dataset Local CL CL FL

Accuracy (↑) Diabetes 56.8±0.0% 73.8±0.0% 73.9±0.0%
Breast Cancer 84.0±0.2% 97.0±0.3% 97.5±0.6%
Synthetic 74.6±0.1% 99.5±0.1% 99.8±0.1%

Validity (↑) Diabetes 100±0% 100±0% 100±0%
Breast Cancer 100±0% 100±0% 100±0%
Synthetic 100±0% 100±0% 100±0%

Sparsity (↓) Diabetes 51.1±0.1 42.1±0.1 35.4±0.0
Breast Cancer 2131± 10 1555±4 1560±19
Synthetic 9.19±0.01 7.07±0.11 6.95±0.03

Proximity (↓) Diabetes 11.58±0.28 9.23±0.24 8.17±0.56
Breast Cancer 132.4±4.5 69.5±0.7 71.5±5.6
Synthetic 0.080±0.002 0.096±0.006 0.090±0.002

strategy (i.e., FL) does not compromise the VCNet’s effectiveness compared to the ideal CL condition.
Operating under similar privacy constraints, FL enables VCNet to learn from the diverse distributions
of client data, thereby surpassing the performance of the Local CL approach, where each client
independently trains their own model.

To assess VCNet’s capacity for adapting the counterfactual distribution to individual clients, we
conduct client-specific adaptations starting from the global model achieved through FL. Figure 8
illustrates the relative variation in client-proximity across three datasets: Diabetes, Breast Cancer, and
Synthetic. The observed significant reduction in proximity indicates that VCNet can be effectively
personalised to each client’s distribution, thereby confirming its utility in accurately reflecting client
behaviours during the training process.

Diabetes Breast Cancer Synthetic
Dataset

20

40

60

80

100

R
el

at
iv

e
P

ro
xi

m
it

y
(%

)

Relative Variation for VCNet - Non-IID

Figure 8: Relative variation of client-proximity across Diabetes, Breast Cancer, and Synthetic datasets
for VCNET.

22

B.3 Explaining FL training with Behavioural Planes

Figure 9 illustrates client trajectories within the FBPs for different scenarios from those presented in
Section 5. Specifically, the left side of the figure displays the FBPs for the Synthetic dataset, now
including an attacker employing an Inverted Loss attack, while the right side shows the FBPs for the
Diabetes dataset under a Data Flip attack scenario. In both cases, the largest clients are subdivided
into smaller clients (three and two), forming distinct clusters of clients (2,3,4 and 6,7 for Synthetic;
3,4,5 and 7,8 for Diabetes). These clusters are particularly evident on the CBP, and even within the
Synthetic dataset’s plane, one can observe clients with similar data distributions (e.g., Client 8’s data
distribution lies between that of Clients 7 and 1). This observation holds across all clients in the
Synthetic dataset, underscoring the ability to highlight information about data distribution similarities
among clients without direct access to their data. Moreover, Client 9 (the attacker) is noticeably
diverging from the others across all four planes. It is crucial to note the distinct behavioural patterns
of the attacker depending on the attack type. In the Inverted Loss scenario, Client 9 moves in the exact
opposite direction to the others, converging at the same point in the EBP. Conversely, in the Diabetes
dataset with a Data Flip attack, Client 9 simply diverges from the others, each moving towards
different minima. This variation highlights the potential to identify the type of attack deployed by the
malicious client based on these behavioural information.

Figure 9: Client trajectories on Counterfactuals and Error Behavioural Planes for Synthetic, and
Diabetes datasets, corresponding to Inverted-loss, and Label-Flipping attacks, respectively. The figure
highlights the deviation of the malicious client (red) from honest clients, who tend to cluster together
over time.

B.4 The complementary roles of CBP and EBP

As previously observed in Figure 6, EBP and CBP provide orthogonal descriptions of client be-
haviours. In the Synthetic dataset, CBP effectively identifies clusters of clients with analogous
data distributions. In contrast, EBP shows all honest clients moving in the same direction, thereby
obscuring individual cluster distinctions but effectively contrasting the movements of honest clients
with that of the attacker. Similarly, in the Breast Cancer dataset, the identification of an attack (i.e.,
Crafted-noise), is more discernible through EBP, which elucidates the direction of the malicious
client relative to the server. These findings highlight the distinct yet complementary roles that EBP
and CBP play in the analysis of client behaviour across different datasets.

To illustrate the complexity of model behaviour and the utility of EBP and CBP, consider the behaviour
of three different models with respect to the same input changes. For instance, a data point with
features [1, 2] is misclassified as class 1 by Model A and correctly classified as class 0 by Model B.
However, both models would change their predictions to class 1 if the features were altered to [2, 3].

23

0 20 40 60 80 100 120 140 160 180 200
Round

0.00

0.05

0.10

0.15

0.20

0.25

Cl
ie

nt
 S

co
re

Client score vs. Rounds - MP Noise Attack

Client Type
honest
malicious

0 20 40 60 80 100 120 140 160 180 200
Round

0.00

0.05

0.10

0.15

0.20

0.25

Cl
ie

nt
 S

co
re

Client score vs. Rounds - MP I.Gradient Attack

Client Type
honest
malicious

0 20 40 60 80 100 120 140 160 180 200
Round

0.00

0.05

0.10

0.15

0.20

0.25

Cl
ie

nt
 S

co
re

Client score vs. Rounds - DP Flip Attack

Client Type
honest
malicious

0 20 40 60 80 100 120 140 160 180 200
Round

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Cl
ie

nt
 S

co
re

Client score vs. Rounds - DP I.Loss Attack
Client Type

honest
malicious

Figure 10: Mean and 95% confidence interval of client scores assigned by our FBSs over 200 rounds
on CIFAR-10 across different attacks.

In a similar fashion to Model A, a third model, Model C, may also initially misclassify the point as
class 1 but would require a change in features to [2, -1] to alter its prediction to class 0, highlighting
different sensitivities and prediction dynamics in response to input variations.

B.5 Client score visualization

FBPs provide a detailed representation of each client’s behaviour, enabling a deeper understanding of
the conditions under which malicious clients deviate from the expected behaviour of benign clients.
However, in large-scale FL systems, visual inspection may not always be necessary. Instead, statistical
metrics derived from these planes can be automatically extracted and analyzed. This is demonstrated
in our FBSs, which extract client-specific scores to mitigate or exclude the contributions of malicious
clients during aggregation. To demonstrate the scalability and efficacy of automatic detection, we
evaluated our approach using the small-CIFAR-10 dataset and recorded client scores throughout the
training process using a 5-fold cross-validation scheme. As shown in Figure 10, the extracted scores
consistently identify and diminish the influence of malicious clients on the global model, as indicated
by the 95% confidence interval, which varies based on the type of attack. Notably, as the model
converges (with updates between rounds close to zero), more weight is given to the attacker with an
inverted gradient, since its model closely resembles the global model from the previous round (plus a
negligible inverted update).

B.6 Client scoring under unfair server-side validation sets

Our proposed methods rely on a clean validation set on the server to characterize client behaviours.
However, in real-world FL scenarios, obtaining a validation set that is entirely fair and representative
for each client may not be feasible. This challenge underscores the rationale behind incorporating a
multi-plane evaluation in our approach, which assesses client behaviour through two distinct criteria:
task performance and counterfactual analysis. Traditional performance metrics in machine learning,
such as accuracy, loss, or error, are heavily dependent on the validation set used (i.e., error plane). In
contrast, information derived from counterfactuals is more indicative of the learned decision process
and provides insight into the training data distribution of each client, even when the validation set is
biased (i.e., counterfactual plane). Consequently, an attacker or anomalous client will exhibit distinct
behaviours across both planes, particularly showing an unrelated counterfactual distribution compared
to other clients. Conversely, an underrepresented client will produce plausible counterfactuals similar
to those of other clients, and will only be affected by the unfair validation set in the error plane.

24

0 20 40 60 80 100 120 140 160 180 200
Round

0.0

0.1

0.2

0.3

0.4

Cl
ie

nt
 S

co
re

Client score vs. Rounds - MP Noise A. - Unfair validation set
Client Type

Honest
Malicious
Unfair

Figure 11: Mean and 95% confidence interval of client scores assigned by our FBSs over 200 rounds
on CIFAR-10 with one attacker (MP Noise) and one unfair client (i.e., their data distribution is not in
the validation set).

To validate the robustness of our defense mechanism under an unfair validation set, we conducted
experiments in which data from one client was excluded from the validation set. We then analyzed
the behavioural scores assigned by our method. Preliminary results, shown in Figure 11, indicate that
the 95% confidence interval of the scores for the underrepresented client consistently overlaps with
those of other honest clients, thereby distinguishing them clearly from malicious clients.

B.7 Federated Behavioural Shields on IID and non-IID scenarios

In our main study, we focus on the non-IID setting, which is the most prevalent scenario for cross-silo
FL in practice [40]. This setting presents considerable challenges due to the substantial differences
between updates from honest clients, which can obscure the divergent behaviours of malicious clients
[41]. Consequently, we conducted experiments on the Breast Cancer dataset in both IID and non-IID
settings using our FBPs for comparative analysis. As depicted in Figure 12, we initially visualised
client trajectories on both behavioural planes and within the counterfactual distance space l (defined in
Equation 7). The trajectories illustrate the uniform nature of honest client behaviours on both planes,
distinctly highlighting the divergent behaviour of the malicious client. Notably, the visualization of
the counterfactual distance space, employed by our FBSs, effectively identifies the malicious client.
It indicates a high distance of the attacker from all other clients, leading to a low score during the
aggregation process. To further validate our approach, we compared the performance of our FBSs
under No-attack, Crafted-noise, Inverted-gradient, Label-flipping, and Inverted-loss attacks in both
IID and non-IID settings. Table 4 demonstrates that higher accuracy is achieved in the IID setting
under almost all conditions compared to the non-IID setting, underscoring the increased complexity
of operating in non-IID environments.

Figure 12: Client trajectories on Counterfactuals and Error Behavioural Planes for Breast Cancer
datasets in IID setting under Inverted-loss attacks. The figure highlights the deviation of the malicious
client (red - number 6) from honest clients, who tend to cluster together over time.

B.8 Impact of server validation set size

Considering the crucial role of the validation set size on the server in the creation of behavioural
planes, we initially examined its impact on computational time and accuracy through 10 distinct
trials. Specifically, we evaluated our FBSs (without moving average) against a malicious client
executing an inverted gradient attack on the Diabetes dataset. As depicted in Figure 13, computational

25

Table 4: Comparison of our FBSs across across five attacks types—No attack, Crafted-noise, Inverted-
gradient, Label-flipping, Inverted-loss—on Breast Cancer dataset for both IID and non-IID configura-
tions

Condition No attack MP Noise MP I.Grad DP Flip DP I.Loss Mean

non-IID 95.7±1.1 98.0±0.8 95.3±0.7 94.2±0.6 95.9±0.9 95.8±0.4
IID 98.2±0.3 98.43±0.4 98.2±0.2 96.4±0.9 93.7±1.0 97.0±0.4

time increases exponentially with the size of the dataset. However, a dataset containing as few as
250 samples is sufficient to adequately represent the data distribution, achieving performance on
par with that observed in larger datasets. Additionally, with fewer than 1000 samples, our method
demonstrates greater efficiency compared to the Krum algorithm.

125250 500 1000 2000 4000
Test Set Size

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Co
m

pu
ta

tio
na

l T
im

e
(lo

g1
0

m
in

s)

Krum
72.0

72.5

73.0

73.5

74.0

74.5

Ac
cu

ra
cy

 (%
)

Test Set Size vs. Computational Time & Accuracy

Figure 13: Relationship between test set size, computational time, and accuracy evaluated on Diabetes
dataset against inverted gradient attack. As test set size increases (logarithmic x-axis), computational
time grows exponentially (log10 scale, red line), while accuracy (blue line) only slightly increases
before plateauing.

B.9 Impact of the window length in the moving average

We analyse the impact of window length on our FBSs and its two variations, one using only predictive
performance (error) and the other focusing solely on decision-making processes (counterfactual).
The results presented in Figure 14 depict the average accuracy across various conditions—including
No attack, Label-flipping, Inverted-loss, Crafted-noise, and Inverted-gradient—for window lengths
ranging from 3 to 30 rounds. While no definitive patterns are clearly evident, on average, a longer
window length tends to be advantageous for accurately assessing the behavioural scores of each
client during the aggregation process. Noteworthy, the optimal accuracy across both datasets was
achieved with a window length of 30 rounds. Particularly, a consistent and slight increase in accuracy
is observed in the Diabetes dataset when utilising only the counterfactual information.

B.10 Impact of the local epochs in Federated Behavioural Shields

Local training epochs play a crucial role in FL, particularly in evaluating client behaviours. An
increased number of local epochs implies a greater adaptation of the client-model to its local data
distribution. For this reason, we assess the performance of our FBSs against data poisoning attacks,
including Label-flipping and Inverted-loss, across Breast Cancer, Diabetes, and Synthetic datasets.
Metrics are reported as the mean and standard error across ten with distinct parameters’ initialization.
These attack types were selected because malicious updates are directly influenced by the number of
local epochs, similar to updates from honest clients; differently, the behaviour of malicious clients in
model poisoning might remain unaffected. As depicted in Figure 15, the impact of local epochs varies
across datasets, with each achieving maximum accuracy at different numbers of epochs. Generally,
accuracy increases with the number of local epochs until it reaches a peak, after which it begins to

26

5 10 15 20 25 30

Window Length (L)

69

70

71

72

A
cc

ur
ac

y
(%

)

Impact of Window Length on Diabetes Dataset

Mix

Counterfactual

Error

5 10 15 20 25 30

Window Length (L)

93

94

95

96

A
cc

ur
ac

y
(%

)

Impact of Window Length on Breast Dataset

Mix

Counterfactual

Error

Figure 14: Effect of window length on accuracy using FBSs. This table demonstrates the accuracy
changes as a function of window length in the moving average method across the Diabetes and Breast
Cancer datasets.

2 4 6 8 10 12 14

Local Epochs

90

95

100

105

110

A
cc

ur
ac

y
(%

)

Impact of Local Epochs Across Datasets
Max Acc.

Breast

Diabetes

Synthetic

Figure 15: Impact of varying local epochs on accuracy for our FBSs. This table illustrates how
changes in the number of local training epochs affect accuracy across the Breast Cancer, Diabetes,
and Synthetic datasets.

decline. This trend may be attributed to the fact that initially, increasing the number of local epochs
enhances the detectability of anomalies in the behaviour of malicious clients, as their models diverge
more quickly from those of honest clients. However, beyond a certain threshold, all client models
become highly customd, leading to the potential underweighting of even honest clients’ contributions
during the aggregation process on the server. This results in the system relying predominantly on a
few clients whose models are the most similar to each other.

B.11 Impact of Attack Intensity on Federated Behavioural Shields

We conducted experiments to evaluate the sensitivity of the proposed method to varying levels of
attack intensity. Specifically, we focused on model poisoning attacks by systematically increasing the
noise parameter (β) injected by adversaries into the global model prior to transmission to the server
(noise = N (0, β ·σ(wt))). The evaluation was performed using 5-fold cross-validation on the Breast
Cancer and small-MNIST datasets. As shown in Figure 16, increasing the attack intensity results
in a noticeable decrease in the performance of the global model when using the standard FedAvg
approach. In contrast, our method—both when utilizing all feature planes and when restricted to the
counterfactual plane—remains stable and unaffected by the attack intensity. Interestingly, a marginal
improvement in accuracy is observed as the attack intensity increases, likely because more aggressive
modifications render malicious models more degraded and, therefore, easier to detect.

B.12 Ablation study

We conducted an ablation study to examine the impact of various components on the efficacy of
our algorithm. These components include predictive performance (error), decision-making process
(counterfactuals), and the application of a moving average. Table 5 presents the average accuracy
and standard error under five experimental conditions: No-attack, Crafted-noise, Inverted-gradient,

27

0.3 0.5 0.8 1.2 1.6
Noise Intensity ()

86

88

90

92

94

96

98

Ac
cu

ra
cy

 (%
)

Noise Intensity - Breast Canser

FedAvg
Ours
Ours (cf)

(a)

0.3 0.5 0.8 1.2 1.6
Noise Intensity ()

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

Noise Intensity - Small-MNIST

FedAvg
Ours
Ours (cf)

(b)

Figure 16: Impact of attack intensity on FBS and traditional FedAvg in (a) the Breast Cancer dataset
and (b) the small-MNIST dataset. Notably, unlike FedAvg, FBS maintains stable accuracy as the
attack intensity increases.

Label-flipping, and Inverted-loss, comparing different variations of our method against baselines on
the Breast Cancer and Diabetes datasets.

Notably, relying solely on predictive performance does not yield a statistically significant benefit
compared to the strongest baselines, such as RFA on Breast Cancer and Krum on Diabetes. In
contrast, counterfactual information provides deep insights into client behaviour, enabling our method
to outperform all baselines in identifying malicious clients. Although the improvement is subtle, the
combination of descriptors, on average, provides better results than using counterfactuals alone.

The integration of a moving average notably enhances the performance of our method, improving
from 94.5 ± 0.5 to 95.4 ± 0.3 on the Breast Cancer dataset. Smaller gains are observed on the
Diabetes dataset, likely due to two factors: the limited representativeness of the clean validation set
on the server for Breast Cancer, which consists of only 89 samples compared to 250 for Diabetes,
and the small size of client datasets (77 training samples on average), which may lead to unstable
local training. By aggregating behaviour across multiple rounds, the moving average technique helps
to stabilise and accurately assess client behaviour scores.

Table 5: Average accuracy (%) ± standard error for various defense strategies under five experimental
conditions: No attack, Crafted-noise, Inverted-gradient, Label-flipping, and Inverted-loss. The table
specifically compares the performance of our methods with and without the application of a moving
average (MA).

Defense Strategy Breast Diabetes

Krum 91.9± 0.4 70.6± 0.3
Median 92.6± 0.4 67.0± 0.1
Trimmed-mean 93.4± 0.4 69.0± 0.1
RFA 93.5± 0.5 67.5± 0.1
Ours (error) w/o MA 93.7± 0.4 70.5± 0.8
Ours (cf) w/o MA 94.2± 0.4 72.0± 0.1
Ours w/o MA 94.5± 0.5 72.1± 0.2
Ours (error) 95.0± 0.4 71.4± 0.2
Ours (cf) 95.3± 0.3 72.2± 0.1
Ours 95.8 ± 0.4 72.4 ± 0.1

B.13 Comprehensive tabular analysis of defense mechanisms

In this section, we provide a detailed numerical breakdown of the results depicted in Figure 4.
This quantitative analysis aims to supplement the visual data presented, offering precise values and
statistical insights that underpin the observations and conclusions discussed throughout the paper.
Tables 6 for Breast Cancer, 7 for Diabetes, 8 for small-MNIST, and 9 for small-CIFAR-10 present a
comprehensive comparison of our FBSs and its streamlined versions using only the CBP or the EBP.
These are evaluated against traditional defenses such as Krum, Median, Trimmed-mean, RFA across

28

five scenarios: No attack, Crafted-noise, Inverted-gradient, Label-flipping, and Inverted-loss. This
comparison elucidates the effectiveness of our approach under a range of conditions, both adversarial
and non-adversarial.

Table 6: Comparison of FBSs and its simpler version with only counterfactuals (cf) or predictive-
performance (error) versus Krum, Median, and Trimmed-mean defenses across five attacks types—No
attack, Crafted-noise, Inverted-gradient, Label-flipping, Inverted-loss—on Breast Cancer dataset.

Model Poisoning Data Poisoning

No-Attack Crafted-Noise Inv. Grad. Label-Flip Inv. Loss Mean

Krum 90.9±0.6 92.3±0.8 92.7±1.5 91.6±0.4 91.8±0.6 91.9±0.4
Median 92.7±0.7 93.6±0.7 93.1±1.2 92.0±0.8 91.6±1.1 92.6±0.4
Trim 93.2±0.5 96.1±0.7 95.5±0.4 91.8±1.1 90.4±0.8 93.4±0.3
RFA 94.3±1.5 94.1±0.9 93.6±1.1 93.6±0.9 91.8±1.0 93.5±0.5
Ours (error) 96.6±0.8 97.7±1.2 95.0±0.8 91.4±1.0 94.1±0.8 95.0±0.4
Ours (cf) 97.5±0.5 96.8±0.6 96.6±0.3 93.2±0.9 92.3±0.6 95.3±0.3
Ours 95.7±1.1 98.0±0.8 95.3±0.7 94.2±0.6 95.9±0.9 95.8±0.4
Predictor 96.6± 0.4 N/A N/A N/A N/A N/A

Table 7: Comparison of FBSs and its simpler version with only counterfactuals (cf) or predictive-
performance (error) versus Krum, Median, and Trimmed-mean defenses across five attacks types—No
attack, Crafted-noise, Inverted-gradient, Label-flipping, Inverted-loss—on Diabetes dataset.

Model Poisoning Data Poisoning

No-Attack Crafted-Noise Inv. Grad. Label-Flip Inv. Loss Mean

Krum 70.5±1.2 70.4±0.2 71.0±0.2 70.5±0.2 70.7±0.1 70.6±0.3
Median 69.7±0.2 68.5±0.3 69.2±0.1 64.1±0.1 65.1±0.2 67.3±0.1
Trim 67.9±0.1 69.6±0.4 71.7±0.2 65.1±0.1 70.5±0.2 69.0±0.1
RFA 70.5±0.2 69.7±0.2 69.8±0.2 65.1±0.2 62.2±0.1 67.5±0.1
Ours (error) 71.4±0.6 72.0±0.5 72.2±0.4 72.3±0.2 69.3±0.8 71.4±0.2
Ours (cf) 72.7±0.2 72.3±0.2 72.4±0.0 71.8±0.2 71.6±0.2 72.2±0.1
Ours 72.5±0.3 73.1±0.4 72.3±0.0 72.0±0.4 71.9±0.3 72.4±0.1
Predictor 73.5±0.2 N/A N/A N/A N/A N/A

Table 8: Comparison of FBSs and its simpler version with only counterfactuals (cf) or predictive-
performance (error) versus Krum, Median, and Trimmed-mean defenses across five attacks types—No
attack, Crafted-noise, Inverted-gradient, Label-flipping, Inverted-loss—on small-MNIST dataset.

Model Poisoning Data Poisoning

No-Attack Crafted-Noise Inv. Grad. Label-Flip Inv. Loss Mean

Krum 56.3±2.4 60.3±1.3 62.0±1.5 59.3±2.5 55.9±3.0 58.8±1.0
Median 68.8±1.5 69.5±2.0 63.7±1.6 64.2±1.7 64.5±1.0 66.1±0.7
Trim 68.7±2.4 78.9±2.3 77.7±2.0 63.9±1.9 70.1±3.0 71.9±1.1
RFA 73.8±2.9 72.2±1.8 74.4±1.4 66.6±5.3 72.0±2.1 71.8±1.4
Ours (error) 80.2±1.5 71.0±4.2 71.3±0.3 76.0±2.2 72.9±4.7 74.3±1.4
Ours (cf) 84.2±0.2 84.1±0.4 74.5±1.7 77.8±1.7 80.1±0.6 80.1±0.5
Ours 81.0±2.0 79.2±3.8 74.6±0.6 74.6±3.7 77.4±2.5 77.4±1.2
Predictor 79.6±0.8 N/A N/A N/A N/A N/A

29

Table 9: Comparison of FBSs and its simpler version with only counterfactuals (cf) or predictive-
performance (error) versus Krum, Median, Trimmed-mean, and RFA defenses across five attack
types—No attack, Crafted-noise, Inverted-gradient, Label-flipping, Inverted-loss—on small-CIFAR-
10 dataset.

Model Poisoning Data Poisoning

No-Attack Crafted-Noise Inv. Grad. Label-Flip Inv. Loss Mean

Krum 90.6±2.0 90.7±1.3 92.1±1.1 93.0±1.3 85.3±2.4 90.3±0.3
Median 96.5±0.4 97.0±0.4 96.1±0.2 96.0±0.7 80.6±5.3 93.2±0.5
Trim 96.5±0.3 96.9±0.3 97.4±0.3 96.2±0.6 86.3±3.4 94.7±0.3
RFA 96.3±0.4 97.2±0.3 97.0±0.3 96.3±0.8 83.8±3.6 94.1±0.3
Ours (error) 97.4±0.2 97.1±0.2 96.1±0.4 97.3±0.5 89.8±1.2 95.5±0.1
Ours (cf) 98.2±0.2 97.4±0.3 97.6±0.1 97.6±0.2 91.8±0.8 96.5±0.1
Ours 97.4±0.3 97.9±0.4 97.3±0.3 97.2±0.4 91.7±1.0 96.3±0.1
Predictor 97.5±0.3 N/A N/A N/A N/A N/A

30

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 5
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6.2

31

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not provide theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 3, Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.

32

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimiser, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Table 1, 2, 3, 4, 5, 6, 7, 8, 9, Figure 2, 4, 5, 7, 8, 10, 11, 13, 14, 15, 16.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix A.5

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

34

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have thoroughly reviewed and adhered to the NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Section 5 and Section 6
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimising neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not address safeguards for the responsible release of high-risk
data or models because our research does not involve such risks.
Guidelines:

35

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: see Appendix A.4, A.5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Appendix A.4, A.5 and code

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

36

paperswithcode.com/datasets

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with user study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

37

	Introduction
	Background
	Federated Behavioural Planes
	Dynamic behaviour of federated learning
	Federated Behavioural Planes (FBPs)
	Error Behavioural Plane (EBP)
	Counterfactual Behavioural Plane (CBP)
	Federated Behavioural Shields – FBPs as a defence mechanism

	Experiments
	Data & task setup
	Evaluation

	Key Findings & Results
	Counterfactuals in FL
	Explaining FL training
	Leveraging FBPs information

	Discussion
	Related works
	Limitations and future works
	Conclusions

	Experimental setup
	Datasets
	Model configuration
	CFGen architecture
	Training configuration
	Code, licenses and hardware
	Computational cost
	Robust aggregation baselines
	Federated attacks

	Additional experiments and analysis
	Client-specific adaptation in IID and non-IID scenario
	Architecture independence in counterfactual generation
	Explaining FL training with Behavioural Planes
	The complementary roles of CBP and EBP
	Client score visualization
	Client scoring under unfair server-side validation sets
	Federated Behavioural Shields on IID and non-IID scenarios
	Impact of server validation set size
	Impact of the window length in the moving average
	Impact of the local epochs in Federated Behavioural Shields
	Impact of Attack Intensity on Federated Behavioural Shields
	Ablation study
	Comprehensive tabular analysis of defense mechanisms

