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ABSTRACT

In high-stakes domains like medicine, how an AI arrives at an answer can be
as critical as the answer itself. However, existing medical question answering
benchmarks largely ignore the reasoning process, evaluating models only on final
answer accuracy. This paper addresses the overlooked importance of reasoning path
evaluation in medical AI. We introduce MedReason-Dx, a novel benchmark that
assesses not just answers but the step-by-step reasoning behind them. MedReason-
Dx provides expert-annotated step-by-step solutions for both multiple-choice and
open-ended questions, spanning 24 medical specialties. By requiring models
to produce and be evaluated on intermediate reasoning steps, our benchmark
enables rigorous testing of interpretability and logical consistency in medical
QA. We present the design of MedReason-Dx and outline diverse evaluation
metrics that reward faithful reasoning. Using this benchmark, we identify critical
gaps in existing large language models, including domain-specific medical LLMs,
particularly in their ability to handle complex diagnostic reasoning and reliably
recall relevant medical knowledge. Our analysis further highlights differences
between general-purpose and medical LLMs in reasoning performance. We believe
this resource will advance the development of robust, interpretable medical decision
support systems and foster research into large language models that can reason as
well as they respond.

1 INTRODUCTION

Artificial intelligence systems for healthcare must not only deliver correct answers but also provide
faithful reasoning. In clinical decision support and medical question answering (QA), the reasoning
path leading to an answer is critical for trust and safety. A model that arrives at a diagnosis through
flawed logic or guesswork poses significant risks, even if the final answer is correct. Conversely, a
model that articulates its reasoning enables practitioners to verify each step, ensuring the conclusion
is sound and clinically valid.

Despite this importance, most existing benchmarks for medical AI evaluate models solely on whether
the final answer is right, with little or no assessment of the reasoning process. This gap is problematic
in high-stakes domains: evaluating only end answers may overlook dangerous reasoning errors and
fails to encourage the development of models that “think” in a human-like, transparent manner.

Recent advances in large language models (LLMs) have brought reasoning to the forefront of AI
research Guo et al. (2025); Chen et al. (2025). With proper training strategies or chain-of-thought
(CoT) prompting, LLMs can generate step-by-step solutions to complex problems, from math and
logic puzzles to medical questions. By configuring models to articulate intermediate steps, researchers
have achieved improved performance on challenging tasks and gained insight into model decision-
making. For example, state-of-the-art medical LLMs can now produce explanations or rationales
alongside their answers, showcasing the potential of AI to handle intricate clinical reasoning. These
developments underscore an urgent need for benchmarks that can evaluate not just final accuracy
but the quality of reasoning LLMs employ. If a model is prompted to reason but we lack ground
truth reasoning paths for comparison, we cannot rigorously assess whether the model’s reasoning is
correct, complete, or clinically valid.
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Several medical QA datasets and benchmarks have emerged, yet they predominantly focus on answer
correctness. Standard benchmarks drawn from medical exams (e.g., USMLE-style question banks,
MedQA (Jin et al., 2021) and MedMCQA Pal et al. (2022)) and research datasets like PubMedQA (Jin
et al., 2019) have driven progress in factual recall and question answering. Some of these resources
include a short explanation or reference for the answer, but they do not provide a detailed, stepwise
reasoning chain that could be used to evaluate a model’s thought process. In other words, existing
benchmarks treat reasoning as an implicit skill, not an explicit target of evaluation. A model might
earn full marks by selecting the correct option in a multiple-choice question, while in reality it could
have arrived at that answer via incorrect assumptions or lucky guesswork. Conversely, a model might
demonstrate mostly correct reasoning and make a minor error at the final step, but current benchmarks
would simply mark the entire answer as wrong, offering no credit for nor analysis of the model’s
reasoning ability. This limitation hampers the development of robust medical AI: it is difficult to
discern whether improvements in accuracy are due to better reasoning or just better pattern matching,
and it provides no incentive for models to output interpretable solutions.

To address these challenges, we propose MedReason-Dx, a new benchmark explicitly designed to
evaluate chain-of-thought reasoning in medical question answering. MedReason-Dx (where “Dx”
denotes Diagnosis) introduces several key innovations to the evaluation of medical AI:

• Expert-annotated reasoning chains: Each question in MedReason-Dx is accompanied
by a step-by-step solution path crafted by medical experts. These reasoning chains detail
the logical steps required to arrive at the correct answer, including relevant clinical facts,
intermediate inferences, and elimination of distractors in the case of multiple-choice items.
This provides a gold-standard trace of correct reasoning against which model-generated
solutions can be compared.

• Diverse question formats and topics: MedReason-Dx covers a broad spectrum of medical
knowledge through both multiple-choice and open-ended questions, ensuring that models
are evaluated across varied response formats. The questions span 24 medical specialties,
ranging from internal medicine and cardiology to pediatrics, surgery, and more. This
diversity reflects the real-world breadth of medical practice and ensures that the benchmark
evaluates reasoning across different sub-domains and problem types (diagnosis, treatment
decisions, biomedical mechanism explanations, etc.).

• Evaluation metrics for reasoning quality: MedReason-Dx advances beyond simple
accuracy measures by introducing multiple metrics to evaluate the fidelity and relevance of a
model’s reasoning. To improve robustness across different LLM evaluators, we introduce a
keypoint-based strategy: medical experts extract keypoints from ground-truth answers, and
model outputs are evaluated by matching their extracted key points against these references,
complementing step-wise matching. By aligning responses at the keypoint level rather than
surface language, this approach reduces variability from linguistic complexity and mitigates
instability across evaluators. Overall, by quantifying reasoning quality, MedReason-Dx
encourages models that are not only correct, but correct for the right reasons.

• Interpretability and robustness focus: By requiring and evaluating intermediate reasoning,
MedReason-Dx places interpretability at the core of model assessment. This is especially
crucial for medical AI systems that clinicians need to trust. A model that can articulate
a valid reasoning chain is inherently more transparent and easier to debug than one that
only outputs an answer. Furthermore, focusing on reasoning helps reveal when a model’s
knowledge is superficial. We anticipate that models performing well on MedReason-Dx
will demonstrate greater robustness, as they must handle complex multi-step problems in a
principled way rather than relying on shallow cues. Our benchmark thus serves as a stress
test for genuine reasoning ability in medical contexts.

• Revealing gaps in existing LLMs for medical reasoning: MedReason-Dx exposes critical
limitations of current LLMs, including domain-specific medical LLMs, in handling complex
diagnostic reasoning and reliably recalling relevant medical knowledge. Our evaluations
also investigate differences between general-purpose and medical LLMs, providing new
insights into their respective strengths and weaknesses in clinical reasoning.

In summary, MedReason-Dx is the first benchmark to comprehensively evaluate reasoning paths in
medical diagnosis from multiple perspectives. It provides the community with a testbed for developing
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models that aspire to be not just answer engines, but reliable reasoning assistants in healthcare. By
emphasizing how answers are derived, our work addresses a critical gap for high-stakes AI: the need
for systems whose decisions can be inspected, trusted, and used responsibly in clinical practice.

2 RELATED WORKS

2.1 MEDICAL LLMS

Figure 1: Medical reasoning performance
of advanced LLMs in MedReason-Dx. Our
benchmark evaluates LLMs’ medical reason-
ing capabilities across five dimensions: ACC,
RNS, RCS, KNS and KCS. Results indicate
that medical LLMs don’t outperform general
LLMs on complex medical reasoning tasks.

Medical large language models (Med-LLMs) have
advanced rapidly through innovations in model ar-
chitectures, training paradigms, and domain-specific
adaptations, enabling applications in information ex-
traction, clinical decision support, dialogue systems,
and multimodal medical AI.

Early Med-LLMs such as BioBERT (Lee et al.,
2020) and PubMedBERT (Gu et al., 2021) lever-
aged large-scale biomedical corpora for pretrain-
ing, achieving strong performance in named entity
recognition and text classification. Subsequent mod-
els expanded capabilities to clinical text generation
and summarization, including ClinicalT5 (Lu et al.,
2022), GatorTron (Yang et al., 2022), and Codex-
Med (Liévin et al., 2024), while Galactica (Taylor
et al., 2022) targeted medical literature analysis.

More recent systems adopt instruction fine-tuning
and reinforcement learning from human feedback
(RLHF) to improve reliability in clinical reason-
ing and QA. Med-PaLM (Singhal et al., 2023),
Med-PaLM 2 (Singhal et al., 2025), and Med-
Alpaca (Han et al., 2023) exemplify this trend, while
GatorTronGPT (Peng et al., 2023) adapts GatorTron
for precise report generation and ChatDoctor (Li
et al., 2023) focuses on virtual consultations. Further domain specialization has produced mod-
els such as PMC-LLaMA (Wu et al., 2023a) for biomedical literature, GPT-4-Med (Nori et al., 2023)
for advanced clinical tasks, and Taiyi-LLM (Luo et al., 2024) and Zhongjing (Yang et al., 2024b) for
Traditional Chinese Medicine. Multilingual and multimodal efforts—such as HuatuoGPT (Zhang
et al., 2023), Med-Flamingo (Moor et al., 2023), and Med-Gemini (Saab et al., 2024)—extend the
scope of Med-LLMs to global and cross-modal healthcare applications.

These developments underscore the rapid evolution of Med-LLMs, enhancing their ability to process
complex medical language, integrate multimodal data, and support diverse clinical tasks. As these
models become more powerful and widely deployed, it is increasingly important to evaluate not only
their final predictions but also the reasoning processes behind them. Without explicit reasoning-path
evaluation, it remains unclear whether models reach conclusions through sound clinical logic or
superficial correlations. Thus, rigorous assessment of reasoning fidelity is essential for ensuring
safety, trust, and real-world reliability in medical AI.

2.2 MEDICAL BENCHMARKS

The development of standardized datasets and robust evaluation platforms is crucial for advancing AI
in medicine. Existing efforts can be broadly grouped into two directions: (1) datasets tailored for
specific medical AI tasks, and (2) automated benchmarks for assessing the capabilities of LLMs.

The first category includes datasets supporting tasks such as information extraction, QA, and natural
language inference. Widely used corpora like CADEC (Karimi et al., 2015) and BC5CDR (Li et al.,
2016) target biomedical NER and relation extraction. QA datasets such as MedQA (Jin et al., 2021)
and PubMedQA (Jin et al., 2019) emphasize clinical knowledge retrieval and reasoning. Large-
scale resources like MIMIC-III (Johnson et al., 2016), HealthSearchQA (Singhal et al., 2023), and
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Table 1: Comparison with existing Medical QA benchmarks.

Benchmark CoT Evaluation No. Domains reasoning intensive MCQ OEQ Expert Annotation

MMedBench % 21 ! ! % !

MedQA % - % ! % %

MedMCQA % 21 % ! % !

MMLU % 6 % ! % %

Medbullets % - ! ! % !

JAMA Challenge % 13 ! ! % !

LiveQA % - % % ! !

ClinicBench % - % ! ! !

Ours ! 24 ! ! ! !

CORD-19 (Wang et al., 2020) support report summarization, while MedNLI (Romanov & Shivade,
2018) focuses on natural language inference. Recently, MedReason (Wu et al., 2025a) addresses
the lack of high-quality reasoning data by constructing 32,682 QA pairs with detailed, knowledge-
graph–guided Chain-of-Thought explanations, further validated by expert review. Similar efforts
such as MedCaseReasoning (Wu et al., 2025b) also highlights reasoning evaluation in clinical cases.

Table 2: Model Comparison.

Models Params
General Large Language Models
GPT-4o (OpenAI, 2024a) -
GPT-o1 mini (OpenAI, 2024b) -
DeepSeek R1 (Guo et al., 2025) 671B
DeepSeek V3 (Liu et al., 2024) 671B
Mistral (Jiang et al., 2023) 7B
LLAMA 3.3 (Dubey et al., 2024) 70B
QWQ (Yang et al., 2024a) 32B

Medical Large Language Models
HuatuoGPT2 (Chen et al., 2023) 7B
BioMistral (Labrak et al., 2024) 7B
PMC-LlaMA (Wu et al., 2024) 13B
Baichuan4-Turbo (Yang et al., 2023) -

Table 3: Statistics of MedReason-Dx.

Statistic Number

Total questions number 1170
- Multiple-choice questions 592
- Open-ended questions 578

Maximum question length 578
Maximum answer length 1028
Average question length 166.9
Average answer length 320.0

Maximum number of steps 13
Maximum number of key points 118
Minimum number of steps 3
Minimum number of key points 3
Average number of steps 6.4
Average number of key points 27.1

The second category emphasizes automated evaluation frameworks that reduce reliance on costly
expert review. MedBench (Cai et al., 2024) provides a broad platform with 40,041 questions spanning
multiple fields. AutoEval (Liao et al., 2023) reformulates USMLE problems into multi-turn dialogues
for assessing information coverage and task accuracy. LLM-Mini-CEX (Shi et al., 2023) employs
patient simulators and ChatGPT to evaluate diagnostic dialogue quality, while MedGPTEval (Xu et al.,
2023) integrates Chinese datasets and public benchmarks with 16 expert-curated indicators. LLM-
Human Evaluation (Chiang & Lee, 2023) further explores the feasibility of automated assessment,
demonstrating alignment with human experts on adversarial and open-ended tasks. Collectively, these
resources provide systematic, low-cost ways to benchmark AI models and support optimization.

3 MEDICAL BENCHMARK WITH STEP-WISE EVALUATION

3.1 DATA CURATION

3.1.1 DATA CURATION FOR MULTIPLE-CHOICE QUESTION

The data collection for MedReason-Dx is designed to construct a challenging reasoning dataset that
goes beyond typical knowledge-recall question answering. Our goal is to curate problems that require
complex, multi-step reasoning, reflecting the intricate workflows of real-world clinical diagnostics.
To this end, we employ a rigorous data selection strategy, filtering questions from well-established
medical datasets that encompass authentic clinical cases across multiple disciplines.
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Figure 2: Dataset overview of MedReason-DX.

Table 4: (COT evaluation) Benchmarking the medical reasoning performance of existing models

multiple-choice open-ended

RNS RCS KNS KCS RNS RCS KNS KCS

DeepSeek R1 86.11 73.46 47.62 33.90 93.04 60.97 40.68 31.20
DeepSeek V3 91.09 73.76 44.49 26.06 94.78 67.52 39.54 32.08

GPT-4o 89.92 69.76 50.72 29.78 93.88 60.97 43.53 29.93
o1-mini 89.94 69.15 51.11 29.46 91.22 63.30 42.97 27.95

Mistral 7B Instruct 72.37 38.26 40.21 24.65 76.85 43.48 34.78 23.60
Llama 3.3 70B Instruct 86.98 72.71 41.55 31.54 88.32 66.75 36.47 29.26

QWQ 32B 84.18 65.73 40.31 33.92 82.65 57.72 35.33 29.51

Baichuan4-Turbo 64.49 56.47 45.40 26.39 90.32 51.75 38.13 26.64
HuatuoGPT2 7B 62.59 24.13 35.59 20.57 76.14 32.36 31.74 22.21

PMC-LLaMA 13B 39.91 17.95 30.22 20.36 38.77 12.78 28.49 18.51
BioMistral 7B 44.72 13.97 31.58 15.60 50.83 16.43 31.96 17.23

To capture the breadth of medicine, we define 24 domains aligned with common hospital departments,
including "Cardiology", "Pulmonology", "Gastroenterology" and so on, as shown in Figure 4. The
selection of questions prioritizes diversity in the types of clinical challenges and the reasoning
methods required for problem-solving. This diversity encompasses a wide array of diagnostic tasks
that span both common and rare clinical conditions. Questions are deliberately selected for their
requirement of complex multi-step reasoning, including, but not limited to, physiological mechanism
analysis, differential diagnosis, hypothesis testing, exclusionary reasoning, and the integration of
cross-disciplinary knowledge, while simple factual recall items (e.g., “What is the normal body
temperature?”) are excluded. By focusing on the reasoning complexity and diversity, MedReason-Dx
reflects the multifaceted nature of clinical decision-making and the diverse set of cognitive strategies
employed by healthcare professionals in practice. The aim is to ensure that the dataset not only
captures the breadth of medical knowledge but also challenges models to engage in higher-order
reasoning reflective of real-world medical diagnostic scenarios

Following the selection of complex questions, human experts from diverse specialties annotate step-
by-step solutions and key points, with LLMs providing supplementary support. This methodology
enables a thorough assessment of the model’s reasoning capabilities, evaluating not only the accuracy
of the final answer but also the clarity and logical coherence of the reasoning process. The step-by-step
solutions deconstruct the reasoning into concise, logical steps, each reflecting a critical component of
the decision-making process. Key points emphasize essential information, such as clinical findings or
diagnostic considerations, required for accurate diagnosis. These annotations ensure that the model’s
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response addresses all relevant aspects of medical decision-making. The objective is to rigorously
evaluate the reasoning process, confirming its completeness and logical integrity.

Figure 3: Illustration of the proposed evaluation metrics. For LLM responses, we match them with
annotations from human experts to evaluate the necessity and sufficiency of the reasoning process.

(a) (b)
Figure 4: Medical Specialty Distribution of MedReason-Dx, including (a): multiple-choice question
and (b) open-ended question, both covering 24 departments.

3.1.2 DATA CURATION FOR OPEN-ENDED QUESTION

Multiple-choice questions often fail to reflect real-world clinical scenarios, where physicians make
decisions without predefined options. To address this limitation, we develop additional open-ended
reasoning questions. To ensure diversity, the dataset incorporates both multiple-choice and open-
ended sources. Multiple-choice questions are adapted into open-ended formats by using LLMs to
revise only the final question sentence, preserving the clinical context while minimizing alterations.
All modifications are reviewed by human experts to ensure accuracy. Once open-ended questions are
established, domain specialists generate step-by-step solutions using the same methodology as for
multiple-choice items. And key points are then extracted to enable systematic evaluation.

In summary, MedReason-Dx provides a comprehensive benchmark for evaluating LLMs on complex
medical reasoning tasks through carefully selected questions and detailed expert annotations. Detailed
statistics for MedReason-Dx are presented in Table 3 and comparisons with other relevant medical
benchmarks are provided in Table 1. More details are provided in Appendix A.4.
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3.2 EVALUATION

To rigorously evaluate the reasoning ability of LLMs, we propose a comprehensive framework that
assesses three critical dimensions: the accuracy of the final answer, the quality of the reasoning
process, and the incorporation of relevant key points. These dimensions are captured through five
metrics: Accuracy, Reasoning Completeness Score (RCS), Reasoning Necessity Score (RNS), Key
point Completeness Score (KCS), and Key point Necessity Score (KNS). Below, we detail each metric,
its motivation, and the computational methodology, with a particular emphasis on the thoroughness
and necessity of reasoning steps and key points usage.

3.2.1 ACCURACY

Table 5: Benchmarking the accuracy (%) perfor-
mance of existing models.

Multiple-choice Open-ended

CoT Direct CoT Direct

DeepSeek R1 65.03 64.36 40.14 42.39
DeepSeek V3 60.47 59.79 33.56 37.02
GPT-4o 58.28 59.12 37.72 47.70
o1-mini 60.47 62.67 37.37 41.18
Mistral 7B Instruct 30.74 18.58 17.47 15.57
Llama 3.3 70B Instruct 56.42 57.60 37.02 37.89
QWQ 32B 56.08 55.91 38.75 40.83

Baichuan4-Turbo 46.62 42.74 27.16 28.37
HuatuoGPT2 7B 19.26 25.00 12.28 12.81
PMC-LLaMA 13B 20.95 23.14 9.17 6.23
BioMistral 7B 15.71 19.76 9.52 12.63

The Accuracy metric evaluates the correctness
of the model’s final answer, a standard mea-
sure of performance in question-answering tasks.
For multiple-choice questions, we compare the
model’s selected option with the ground-truth
answer. For open-ended questions, the model
is instructed to provide answers in a standard-
ized format: Therefore, the answer is {your an-
swer}. And a LLM is employed to assess se-
mantic equivalence between the model’s answer
and the ground-truth answer, accommodating
variations in expression.

The Accuracy is computed as:

Accuracy =

∑N
i=1 I(ŷi = yi)

N
, (1)

where N is the total number of questions, ŷi is the model’s predicted answer for the i-th question,
yi is the ground-truth answer, and I(·) is the indicator function, returning 1 if the predicted answer
matches the ground truth and 0 otherwise. For open-ended questions, equivalence is determined by
the LLM, ensuring robust evaluation across diverse answer formats.

3.2.2 REASONING COMPLETENESS SCORE (RCS)

The Reasoning Completeness Score (RCS) quantifies the extent to which the model’s reasoning
includes all critical steps required to derive the answer. This is crucial in high-stakes domains, where
comprehensive reasoning ensures all relevant concepts and logical deductions are addressed.

For each question, a reference set of essential reasoning steps Ri = {r1, r2, . . . , rs} is predefined
based on expert annotations. The model’s reasoning text is evaluated to identify the presence of these
steps or their semantic equivalents. The RCS for a single question is:

RCSi =
|R̂i ∩Ri|

|Ri|
, (2)

where R̂i is the set of reasoning steps in the model’s response for the i-th question, and | · | denotes
set cardinality. The overall RCS is:

RCS =
1

N

N∑
i=1

RCSi. (3)

3.2.3 REASONING NECESSITY SCORE (RNS)

The Reasoning Necessity Score (RNS) evaluates the conciseness of the reasoning process, penalizing
extraneous or redundant steps. This ensures that the model’s reasoning is focused and interpretable, a
critical requirement for practical utility in medical contexts.
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RNS is computed by comparing the model’s responses R̂i to the reference set Ri. Steps in R̂i that
are not in Ri or its semantic equivalents are considered unnecessary. RNS is calculated as follows:

RNS =
1

N

N∑
i=1

1− |R̂i \Ri|
|R̂i|+ ϵ

, (4)

where ϵ > 0 (e.g., ϵ = 0.01) prevents division by zero.

3.2.4 KEY POINT COMPLETENESS SCORE (KCS)

The Key point Completeness Score (KCS) assesses the model’s ability to incorporate all relevant
domain-specific key points in its reasoning, such as diagnoses, symptoms, or treatments in medical
contexts. Completeness is critical to ensure that the model captures essential domain knowledge.

For each question (i), a reference set of key points Ki = {k1, k2, . . . , kw} is annotated by human
experts, representing the essential terms relevant to the correct response. The model’s response is
analyzed to extract a set of key points K̂i = {k̂1, k̂2, . . . , k̂ŵ}, which denotes the terms provided by
AI model. KCS is calculated as follows:

KCS =
1

N

N∑
i=1

|K̂i ∩Ki|
|Ki|

. (5)

3.2.5 KEY POINTS NECESSITY SCORE (KNS)

The Key points Necessity Score (KNS) evaluates the model’s ability to avoid irrelevant or extraneous
key points, ensuring that the reasoning remains focused and relevant.

The KNS is computed by identifying key points in K̂i that are not in the reference set Ki:

KNS =
1

N

N∑
i=1

1− |K̂i \Ki|
|K̂i|+ ϵ

. (6)

The proposed evaluation framework, comprising Accuracy, RCS, RNS, KCS, and KNS, extends model
assessment beyond final answer correctness to capture reasoning quality and knowledge relevance.
Specifically, RCS measures the completeness of reasoning steps, RNS evaluates conciseness, KCS
verifies coverage of critical medical terms, and KNS assesses the relevance of recalled knowledge
within the reasoning process. Together, these metrics provide a comprehensive evaluation of both
correctness and interpretability, which is essential for trustworthy deployment in high-stakes medical
applications. An overview of the metric calculations is shown in Figure 3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluation Models. To provide a comprehensive benchmark, we conduct evaluations on 11 advanced
LLMs, comprising 7 general LLMs and 4 medical LLMs. For general LLMs, we include DeepSeek
R1 (Guo et al., 2025), DeepSeek V3 (Liu et al., 2024), GPT-4o (OpenAI, 2024a), o1-mini (OpenAI,
2024b), Mistral 7B Instruct (Jiang et al., 2023), LlaMA3.3 70B Instruct (Dubey et al., 2024), and
QWQ 32B (Yang et al., 2024a). For medical LLMs, we include Baichuan4-Turbo (Yang et al., 2023),
HuatuoGPT2-7B (Chen et al., 2023), PMC-LlaMA 13B (Wu et al., 2024) and BioMistral 7B (Labrak
et al., 2024). A comparison of these models is provided in Table 2.

Implementation Details. Following previous work (Jiang et al., 2025), we leverage two types of
prompts to guide the model to give answers: chain-of-thought (CoT) prompts (Wei et al., 2022) and
direct prompts. When calculating RNS, RCS, KNS, and KCS scores, we utilize the model’s CoT
response to explicitly require the model to provide step-by-step answers. When calling LLMs, the
temperature is set to 0.7, Top-P is set to 0.9, and max tokens is set to 1024. In the experiment, we
employ gpt4o-mini (Achiam et al., 2023) as the judge. We provide detailed prompts in Appendix A.6.
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4.2 BENCHMARKING MEDICAL LLMS

LLMs struggle with complex medical reasoning tasks. As shown in Table 5, we benchmark
several advanced language models on the MedReason-Dx dataset under two prompting settings:
Chain-of-Thought (CoT) and Direct Answering, across both multiple-choice and open-ended formats.
Our findings reveal that state-of-the-art large language models, including GPT-4o and DeepSeek-
R1, continue to encounter substantial difficulties in addressing complex medical reasoning tasks.
Specifically, in multiple-choice question assessments, the highest-performing model, DeepSeek-R1,
achieved an accuracy of 65.03%. In contrast, performance on open-ended questions was notably
lower, with the leading model attaining only 47.70% accuracy (GPT-4o). These suboptimal results
underscore the persistent limitations of current large language models in navigating the intricacies of
real-world medical reasoning scenarios, highlighting the critical need for further advancements and
optimization in model development.

Table 6: Evaluation using different judges.

GPT-4o DeepSeeK R1

Judge RNS RCS RNS RCS

GPT-4o-mini 89.92 69.76 86.11 73.46
GPT-4.1-mini 88.47 72.63 88.08 73.83

LLMs face difficulties in comprehensively recall-
ing medical knowledge. As shown in Table 4, to thor-
oughly evaluate the reasoning capabilities of LLMs
beyond the correctness of their final answers, we pro-
pose four novel metrics: RNS, RCS, KNS and KCS.
These metrics enable a comprehensive assessment of
the model’s step-by-step reasoning process and the
relevance of key points used during reasoning. Our results indicate that each reasoning step, along
with the key points mentioned in the reasoning process, is typically critical for accurate problem-
solving. However, LLMs often struggle to include all the necessary information annotated by human
experts. For instance, GPT-4o achieved an RNS of 89.92% on multiple-choice questions, reflecting
high precision in its reasoning process with minimal inclusion of irrelevant details. In contrast, its
RCS of 69.76% highlights a significant challenge in recalling all the essential information required to
solve problems as effectively as human experts. This gap is likely attributable to the complexity and
irregularity of medical knowledge, which lacks the structured theorems and corollaries characteristic
of fields like mathematics and physics, posing unique challenges for solving medical problems.

Medical LLMs don’t outperform general LLMs in complex medical reasoning tasks. As
illustrated in Table 4 and 5, medical LLMs don’t surpass general LLMs. This observed disparity may
stem from prevailing training paradigms for medical LLMs, which primarily entail the assimilation of
foundational medical corpora while largely omitting the integration of sophisticated datasets designed
to cultivate advanced medical reasoning competencies. Consequently, although medical LLMs may
demonstrate marginal advantages over general LLMs in rudimentary medical knowledge retrieval and
question-answering tasks, their proficiency in multifaceted, real-world clinical contexts frequently
proves inadequate relative to anticipated benchmarks. This observation highlights the critical need
for developing comprehensive training datasets specifically tailored to large-scale, complex medical
reasoning tasks to comprehensively enhance the capabilities of medical LLMs.

5 EVALUATION CONSISTENCY ACROSS DIFFERENT LLM JUDGES

In our study, we employ GPT-4o-mini as the judge to assess the similarity between model-generated
responses and the ground truth. To validate the robustness of our results, we conduct additional
experiments using GPT-4.1-mini as the judge and compare the consistency across both evaluation sets.
The experiments are performed on responses generated by GPT-4o and DeepSeek-R1. As reported
in Table 6, the scores derived from the two independent judges exhibit a high degree of agreement,
substantiating the reliability and validity of our evaluation framework.

6 CONCLUSION

In this paper, we introduce MedReason-Dx, a novel benchmark designed to evaluate not only the
accuracy of medical question answering systems but also the quality of their reasoning processes.
By providing expert-annotated, step-by-step reasoning chains and evaluating models across multiple
medical specialties, MedReason-Dx promotes the development of AI systems that can articulate
their reasoning, ensuring both interpretability and robustness. Our approach highlights the critical
importance of evaluating the reasoning process behind AI-generated answers, fostering the creation
of transparent, reliable, and clinically valid decision support tools in healthcare.
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A APPENDIX

A.1 LLM USAGE STATEMENT

In the preparation of this manuscript, we utilized Large Language Models (LLMs) to assist with
language polishing and refinement of the text. Specifically, the LLM was employed to enhance the
clarity, coherence, and grammatical accuracy of the writing, ensuring that the manuscript adheres to
high standards of academic communication. The LLM did not contribute to the research ideation,
methodology, data analysis, or core content development, which were entirely conducted by the
authors. All outputs generated by the LLM were carefully reviewed and edited by the authors to
ensure alignment with the intended scientific contributions and to maintain the integrity of the work.

A.2 OPEN-ENDED QUESTIONS POSE A SIGNIFICANTLY GREATER CHALLENGE TO LLMS THAN
MULTIPLE-CHOICE QUESTIONS.

In clinical practice, physicians frequently address open-ended questions reflective of real-world
medical scenarios. However, many existing medical evaluation benchmarks predominantly utilize
multiple-choice formats, which substantially lower the complexity of questions and deviate from
authentic clinical contexts. This discrepancy may result in overly optimistic evaluations of LLMs
capabilities. As evidenced in Tables 5 and 4, LLMs exhibit significantly reduced performance on
open-ended questions compared to multiple-choice questions. To elucidate the differences in model
responses across these question types, we administer identical questions in both formats to GPT-4o
and analyzed the variations in their responses. As shown in Table 7, alterations solely in the question’s
format lead to substantial variations in the model’s response.

A.3 COMPARISON OF MODEL PERFORMANCE UNDER DIFFERENT PROMPTS

As show in Table 5, we benchmarked several advanced language models on the MedReason-Dx
dataset under two prompting settings: Chain-of-Thought (CoT) and Direct Answering, across both
multiple-choice and open-ended formats. Overall, DeepSeek-R1 achieved the highest performance in
the multiple-choice setting, with CoT prompting slightly outperforming direct answering (65.03% vs.
64.36%). However, in the open-ended setting, its performance reversed, with direct prompting yield-
ing higher accuracy (42.39%) than CoT (40.14%). DeepSeek-V3 showed a similar trend with modest
gains from direct answering in open-ended questions (37.02% vs. 33.56%). Interestingly, GPT-4o
exhibited the largest gap in favor of direct prompting for open-ended questions (47.70% vs. 37.72%),
while maintaining comparable results in multiple-choice settings. o1-mini demonstrated relatively
balanced performance across settings, with a slight edge for direct prompting in both question types.
In contrast, Baichuan4-Turbo underperformed across all configurations, with particularly low scores
on open-ended questions, indicating a significant gap in step-by-step reasoning capabilities compared
to stronger models. These results suggest that while CoT prompting can provide marginal gains in
structured formats, direct answering may be more effective in complex open-ended clinical scenarios,
particularly for stronger LLMs.
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A.4 DATA COLLECTION

To ensure data diversity, MedReason-Dx compiles data from a wide range of sources, including
JAMA Clinical Challenge (Chen et al., 2024), Medbullets (Chen et al., 2024), MMedBench (Qiu
et al., 2024), nephSAP (Wu et al., 2023b), LiveQA (Abacha et al., 2017) and PubMedQA (Jin et al.,
2019). To confirm that the selected questions demand rigorous clinical reasoning, we employed two
stringent criteria for data curation: (1) questions that advanced large language models (e.g., GPT-4o,
DeepSeek R1) failed to answer correctly were designated as reasoning-intensive and retained; (2)
questions necessitating more extensive and detailed responses were similarly classified as reasoning-
intensive and incorporated. These criteria effectively excluded questions predicated primarily on rote
recall of medical knowledge. The preliminarily screened questions subsequently underwent rigorous
secondary review and expert annotation by domain specialists, culminating in the development of
MedReason-Dx—a robust benchmark designed to evaluate complex medical reasoning capabilities.
The distribution of questions across the various sources is detailed in Table 8.

A.5 COMPARISON OF MODEL RESPONSES

In Table 9, we present a complete data from our benchmark. In Table 10 11 12 13 we compare the
differences between responses from several models. Overall, the larger the number of parameters in a
model, the better its performance in generating answers.
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A.6 DETAILS OF PROMPTS

The prompt for calculating RNS is as follows:

Your task is to evaluate the correctness of each step of a model’s solution.
## Input Format
1. Problem: The original question/task. Answer options are provided if available.
2. Answer: The ground truth final answer
3. Ground Truth Steps: Essential steps required for deriving the correct answer
4. A solution of a model (split into predicted steps)
## Task
For each predicted step in the model solution,
- it must exactly match or be directly entailed by the ground truth.
- if there is no direct match, the step must not contradict the ground truth and must have valid
logical reasoning.
### Judgement Categories
- Match: Aligns with ground truth
- Reasonable: Valid but not in ground truth
- Wrong: Invalid or contradictory
- N/A: For background information steps
### Output Requirements
1. The output must be JSON only without any other content or formatting. Do not add “‘json,
etc.
2. The length of the JSON list must be the same as the number of steps in model solution.
### Output Format
[
{{
"step_{index}": <integer>, "premises": <evidence (if available)>,
"conclusion": <step conclusion>, "judgment": "Match" | "Reasonable" | "Wrong" | "N/A"
}},
...
]
## Inputs
Here are the problem, answer, model solution (predicted steps), and ground truth steps:
[Question]
{question}
{answer_options}
[Ground Truth Answer]
{answer}
[Ground Truth Steps]
{answer_steps}
[Model Solution (Predicted Steps)]
{predicted_steps}

The prompt for calculating RCS is as follows:
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Your task is to match the ground truth steps with the provided model solution.
## Input Format
1. Problem: The original question/task. Answer options are provided if available.
2. Answer: The ground truth final answer
3. Ground Truth Steps: Essential steps required for deriving the correct answer
4. A solution of a model
## Matching Process
- You need to match each ground truth step with the model solution provided.
- Match Criteria:
- Each ground truth step should exactly match a part of the solution or is directly entailed by a
part of the solution
- All the details in a step must be matched, including the specific value and content
- You should judge all the ground truth steps for whether there is a match in the solution
## Output Format
[
{{
"step_index": <integer>,
"judgment": "Matched" | "Unmatched"
}},
...
]
## Additional Rules
1. Only output the JSON array with no additional information.
2. Judge each ground truth step in order without omitting any step.
## Inputs
Here are the problem, answer, model solution, and ground truth steps:
[Question]
{question}
{answer_options}
[Ground Truth Answer]
{answer}
[Ground Truth Steps]
{answer_steps}
[Model Solution]
{predicted_steps}

The prompt for calculating KNS is as follows:
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Your task is to match the ground truth key points with the key points provided by an AI
model.
## Input Format
1. Problem: The original question/task. Answer options are provided if available.
2. Answer: The ground truth final answer.
3. Ground Truth Steps: Essential steps required for deriving the correct answer.
4. Ground Truth Key Ponits: Key points in the ground truth steps.
5. Key points provided by an AI model.
## Matching Process
- You need to determine how many of the key points provided by the AI model are correct.
- Match Criteria:
- When a given key point matches a ground truth keypoint, it means that they have similar
meanings in the context of this issue.
- You should judge all the key points provided by the AI model for whether there is a match
in the ground truth key points.
## Output Format
[
{{
"key_point_index": <integer>,
"key_point": <key point>,
"judgment": "Matched" | "Unmatched"
}},
... ]
## Additional Rules
1. Only output the JSON array with no additional information.
2. Judge each key point provided by the AI model in order without omitting any key point.
## Inputs
Here are the problem, answer, ground truth steps, ground truth key points and key points
provided by the AI model:
[Question]
{question}
{answer_options}
[Ground Truth Answer]
{answer}
[Ground Truth Steps]
{answer_steps}
[Ground Truth Key Ponits]
{key_words}
[Key points provided by the AI model]
{provided_key_words}

The prompt for calculating KCS is as follows:
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Your task is to match the ground truth key points with the key points provided by an AI
model.
## Input Format
1. Problem: The original question/task. Answer options are provided if available.
2. Answer: The ground truth final answer.
3. Ground Truth Steps: Essential steps required for deriving the correct answer.
4. Ground Truth Key Points: Key points in the ground truth steps.
5. Key points provided by an AI model.
## Matching Process
- You need to determine how many of the key points provided by the AI model are actually
present in the ground truth key points.
- You should pay attention to how many key points are successfully found by the AI model.
- Match Criteria:
- When a given key point matches a ground truth keypoint, it means that they have similar
meanings in the context of this issue.
- You should judge all the ground truth key points for whether there is a match in the key
points provided by the AI model.
## Output Format
[
{{
"key_point_index": <integer>,
"key_point": <key point>,
"judgment": "Matched" | "Unmatched"
}},
... ]
## Additional Rules
1. Only output the JSON array with no additional information.
2. Judge each ground truth key point in order without omitting any key point.
## Inputs
Here are the problem, answer, ground truth steps, ground truth key points and key points
provided by the AI model:
[Question]
{question}
{answer_options}
[Ground Truth Answer]
{answer}
[Ground Truth Steps]
{answer_steps}
[Ground Truth Key Ponits]
{key_words}
[Key points provided by the AI model]
{provided_key_words}

The prompt for get CoT response is as follows:

You are a medical professional. Please answer the following questions.
[Question]
{question}
Give your answer in the following form with clear logic:
Step1: Step2:.... . Therefore, the answer is \box{}.

The prompt for get direct response is as follows:
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You are a medical professional. Please answer the following questions.
[Question]
{question}
End your answer in this format:
Therefore, the answer is \box{}.

The prompt for extracting key points from responses is as follows:

You are a medical professional. We want to find out how many key points the AI model got
right in its answer, so please extract the key points in the answer provided by the AI model
based on the question and the answer. Please use as many words from the answer as possible.
The oringal question is:
[question]
And the answer provided by the AI model is:
[answer]
Please put the found key points into a list: [key point 1, key point 2,...]
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Table 7: Comparison of model responses to multiple-choice question and open-ended question

multiple-choice question open-ended question

Question A 31-year-old woman presents to her ob-
stetrician for her first prenatal visit after
having a positive home pregnancy test 1
week ago. Her last menstrual period was
8 weeks ago. The patient has a medical
history of type 1 diabetes mellitus since
childhood and her home medications in-
clude insulin. Her hemoglobin A1c 2 weeks
ago was 13.7%. {...} Her temperature is
98.6°F (37.0°C), blood pressure is 124/81
mmHg, pulse is 75/min, and respirations are
14/min. A physical exam is unremarkable.
This fetus is most likely at increased risk
for which of the following complications?
["Aneuploidy", "Neonatal hyperglycemia",
"Neural tube defect", "Oligohydramnios",
"Post-term delivery"]

A 31-year-old woman presents to her obste-
trician for her first prenatal visit after hav-
ing a positive home pregnancy test 1 week
ago. Her last menstrual period was 8 weeks
ago. The patient has a medical history of
type 1 diabetes mellitus since childhood and
her home medications include insulin. Her
hemoglobin A1c 2 weeks ago was 13.7%. ...
Her temperature is 98.6°F (37.0°C), blood
pressure is 124/81 mmHg, pulse is 75/min,
and respirations are 14/min. A physical
exam is unremarkable. This fetus is most
likely at increased risk for which complica-
tions?

Response ["Identify the key medical condition of the
patient, which is type 1 diabetes mellitus
with poor glycemic control, indicated by a
hemoglobin A1c of 13.7%.", "Recognize
that poor glycemic control in early preg-
nancy, especially in the periconceptional
period, increases the risk of congenital mal-
formations in the fetus.", "Understand that
the most common anomalies in infants of
diabetic mothers (IDM) with poor glycemic
control include cardiovascular defects and
neural tube defects, such as anencephaly
and spina bifida.", "Review the options
provided to determine which complication
is most likely associated with poorly con-
trolled diabetes in pregnancy:\n- Option A:
Aneuploidy is related to advanced mater-
nal age, not diabetes.\n- Option B: Neona-
tal hyperglycemia is incorrect as IDM typi-
cally experience hypoglycemia due to fetal
hyperinsulinemia.\n- Option C: Neural tube
defect is a known risk in pregnancies com-
plicated by poorly controlled diabetes.\n-
Option D: Oligohydramnios is not specif-
ically associated with maternal diabetes;
polyhydramnios is more common.\n- Op-
tion E: Post-term delivery is less likely as
maternal diabetes often leads to prematu-
rity.", "Conclude that the fetus is most likely
at increased risk for neural tube defects due
to the mother’s poor glycemic control dur-
ing early pregnancy.\n\nFinal Answer: C:
Neural tube defect."]

["Identify the patient’s condition and his-
tory. The patient is a 31-year-old woman
with type 1 diabetes mellitus, presenting for
her first prenatal visit. Her last menstrual
period was 8 weeks ago, indicating early
pregnancy. Her hemoglobin A1c is 13.7%,
indicating poor glycemic control. She
also has microalbuminuria, suggesting long-
standing diabetes-related complications.",
"Understand the implications of the pa-
tient’s medical condition. Poor glycemic
control in diabetes, particularly during the
periconceptional period, increases the risk
of congenital malformations in the fetus.
High hemoglobin A1c levels and microal-
buminuria further suggest inadequate man-
agement of diabetes, posing a higher risk
for fetal complications.", "Identify the spe-
cific risks associated with maternal diabetes.
Infants of diabetic mothers (IDM) are at in-
creased risk for several congenital anoma-
lies and complications. Common congen-
ital malformations include cardiovascular
defects (e.g., septal defects, transposition of
the great arteries) and neural tube defects
(e.g., anencephaly, spina bifida). Other risks
include sacral agenesis and small left colon
syndrome.", "Recognize the most likely
complications in this scenario. Given the
patient’s poorly controlled diabetes, the fe-
tus is at increased risk for neural tube de-
fects. These defects are specifically men-
tioned in the reasoning process and are a
well-known risk associated with maternal
hyperglycemia.", "Conclusion. The fetus
is most likely at increased risk for neural
tube defects due to the mother’s poorly con-
trolled type 1 diabetes mellitus and elevated
hemoglobin A1c during early pregnancy."]
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Table 8: Composition of MedReason-Dx.

source MCQ QEQ

JAMA Clinical Challenge 210 204
Medbullets 197 125
MMedBench 164 35
nephSAP 21 7
LiveQA 0 94
PubMedQA 0 113

total 592 578
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Table 9: A piece of data from MedReason-Dx.

id 9cb1a646-3e55-5b96-a769-b06289709164

specialty Pediatrics

question A 6-year-old boy presents to the emergency department after falling
from his scooter. He has dull, aching pain along his left side where
he hit the ground. He fell sideways off the scooter as he rounded
a curve in the road. He has never had any serious injuries but that
he always seems to bruise easily, especially after he started playing
soccer this fall. His parents deny that he has an abnormal number of
nosebleeds or bleeding from the gums. They have never seen blood
in his stool or urine. His mother notes that her brother has had sim-
ilar problems. His temperature is 98.6°F (37°C), blood pressure is
112/74 mmHg, pulse is 82/min, and respirations are 11/min. On physical
exam, the patient has extensive bruising of the lateral left thigh and
tenderness to palpation. Laboratory tests are performed and reveal the
following:\n\nHemoglobin: 14 g/dL\nHematocrit: 41%\nMean corpus-
cular volume: 89 µm3\nReticulocyte count: 0.8%\nLeukocyte count:
4,700/mm3\nProthrombin time (PT): 13 seconds\nPartial thromboplastin
time (PTT): 56 seconds\nBleeding time (BT): 4 minutes\n\nWhich of
the following is the most likely underlying pathophysiology?

answer_options ["Anti-platelet antibodies", "Factor 8 deficiency", "Factor 9 deficiency",
"GP1b deficiency", "Von Willebrand factor deficiency"]

answer Factor 8 deficiency

answer_idx B

answer_steps ["A 6-year-old boy presents with extensive bruising after falling, and
has a family history of similar bleeding problems, suggesting a pos-
sible hereditary bleeding disorder.", "The laboratory findings show a
prolonged partial thromboplastin time (PTT) with normal prothrombin
time (PT) and bleeding time (BT), which suggests a coagulation factor
deficiency rather than a platelet function disorder.", "The isolated pro-
longation of PTT with normal PT and BT is characteristic of hemophilia,
which can be caused by either factor 8 deficiency (hemophilia A) or fac-
tor 9 deficiency (hemophilia B).", "Hemophilia A (factor 8 deficiency)
and hemophilia B (factor 9 deficiency) present with similar symptoms,
including hemarthrosis, frequent bruising, and prolonged PTT. However,
hemophilia A is more common than hemophilia B.", "Given the epi-
demiological prevalence and the clinical presentation, factor 8 deficiency
(hemophilia A) is the most likely diagnosis.", "Therefore, the most likely
underlying pathophysiology is factor 8 deficiency, making ’B’: Factor 8
deficiency the correct answer."]

answer_key
points

["extensive bruising", "family history", "prolonged partial thrombo-
plastin time", "normal prothrombin time", "normal bleeding time",
"hemophilia A", "factor 8 deficiency", "intramuscular hematoma", "gas-
trointestinal bleeding", "isolated prolongation of PTT", "normal bleeding
time", "factor replacement", "anti-factor antibodies"]
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Table 10: Response from DeepSeek R1.

model reasoning steps key points

DeepSeek R1 ["The patient presents with **prolonged PTT
(56 seconds)**, normal PT (13 seconds), and
**normal bleeding time (4 minutes)**. This
suggests a **factor deficiency in the intrin-
sic coagulation pathway** (e.g., Factor VIII,
IX) rather than platelet dysfunction or extrin-
sic pathway issues.", "**Bleeding time is nor-
mal**, ruling out primary platelet disorders
(e.g., Bernard-Soulier syndrome, ITP) and mild
von Willebrand disease (vWD), where bleed-
ing time is often prolonged due to impaired
platelet adhesion.", "**Family history** (ma-
ternal uncle with similar symptoms) suggests
an **X-linked recessive disorder**, narrowing
the diagnosis to **Hemophilia A (Factor VIII
deficiency)** or **Hemophilia B (Factor IX
deficiency)**. Both cause prolonged PTT with
normal PT and bleeding time.", "**No mucosal
bleeding** (denied nosebleeds, gum bleeding)
and trauma-related bruising align more with
**Hemophilia** than vWD, which commonly
involves mucosal bleeding.", "**Hemophilia
A (Factor VIII deficiency)** is **more preva-
lent** than Hemophilia B, and the X-linked
inheritance pattern fits the maternal uncle’s his-
tory.\n\nTherefore, the answer is \\box{B}."]

["’prolonged PTT (56
seconds)’", "’normal
PT (13 seconds)’",
"’normal bleeding time
(4 minutes)’", "’fac-
tor deficiency in the
intrinsic coagulation
pathway’", "’Bleeding
time is normal’", "’ruling
out primary platelet
disorders’", "’Family
history’", "’X-linked
recessive disorder’",
"’Hemophilia A (Fac-
tor VIII deficiency)’",
"’Hemophilia B (Factor
IX deficiency)’", "’pro-
longed PTT with normal
PT and bleeding time’",
"’No mucosal bleeding’",
"’trauma-related bruis-
ing’", "’Hemophilia’",
"’Hemophilia A (Fac-
tor VIII deficiency)’",
"’more prevalent’",
"’X-linked inheritance
pattern’"]

Table 11: Response from GPT-4o.

model reasoning steps key points

GPT-4o ["Analyze the clinical presentation. The 6-year-
old boy presents with easy bruising but no sig-
nificant mucosal bleeding (such as nosebleeds or
gum bleeding), which suggests a clotting factor
deficiency rather than a platelet function disorder.",
"Review the family history. The maternal uncle has
had similar bleeding issues, suggesting a potential
X-linked recessive pattern of inheritance, which is
typical for hemophilia.", "Examine the laboratory
findings. The prolonged partial thromboplastin
time (PTT) with normal prothrombin time (PT) and
bleeding time (BT) suggest an intrinsic pathway
clotting factor deficiency.", "Consider the specific
clotting factor deficiencies that could cause the pro-
longed PTT. Hemophilia A (Factor 8 deficiency)
and Hemophilia B (Factor 9 deficiency) are the two
most common intrinsic pathway deficiencies. Both
would cause a prolonged PTT without affecting PT
or BT.", "Choose between Factor 8 and Factor 9
deficiency. While both conditions fit the labora-
tory pattern, Hemophilia A (Factor 8 deficiency) is
more common than Hemophilia B (Factor 9 defi-
ciency).\n\nTherefore, the answer is \\box{B}."]

["6-year-old boy",
"easy bruising", "no
significant mucosal
bleeding", "clotting
factor deficiency",
"family history",
"maternal uncle", "X-
linked recessive pat-
tern", "hemophilia",
"prolonged partial
thromboplastin time
(PTT)", "normal
prothrombin time
(PT)", "normal
bleeding time (BT)",
"intrinsic pathway",
"Hemophilia A",
"Factor 8 deficiency",
"Hemophilia B",
"Factor 9 deficiency",
"prolonged PTT",
"more common",
"answer is B"]
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Table 12: Response from QWQ 32B.

model reasoning steps key points

QWQ 32B ["Step 1: **Identify key clinical findings**: The
patient presents with easy bruising, a family his-
tory of similar issues (mother’s brother), and normal
hemoglobinhematocrit", "The labs show a normal PT, pro-
longed PTT (56 seconds), and a normal bleeding time (4
minutes)", "Step 2: **Analyze coagulation studies**: \n-
**Normal PT** indicates the extrinsic pathway (factors
VII, X, etc", ") is intact", "- **Prolonged PTT** sug-
gests a defect in the intrinsic or common pathway", "-
**Normal bleeding time** rules out platelet dysfunction
(e", "g", ", von Willebrand disease, Bernard-Soulier syn-
drome, or anti-platelet antibodies)", "Step 3: **Consider
differentials for prolonged PTT with normal PT and bleed-
ing time**:\n- **Factor deficiencies in the intrinsic path-
way**: Factors VIII (hemophilia A), IX (hemophilia B),
or XI", "- **Factor VIII deficiency (hemophilia A)** and
**Factor IX deficiency (hemophilia B)** are X-linked
recessive disorders, fitting the family history (mother’s
brother affected)", "- **Factor XI deficiency** is au-
tosomal recessive and less likely given the family his-
tory", "Step 4: **Differentiate between hemophilia A and
B**:\n- Both cause prolonged PTT and bruising/bleed-
ing but are clinically similar", "- **Hemophilia A (Factor
VIII deficiency)** is more common than hemophilia B",
"- The family history (maternal uncle affected) suggests
an X-linked disorder, compatible with either", "However,
hemophilia A is more prevalent", "Step 5: **Exclude other
options**:\n- **Von Willebrand disease (E)**: Causes
prolonged PTT and bleeding time", "However, the nor-
mal bleeding time here makes this less likely", "- **GP1b
deficiency (D)**: Causes prolonged bleeding time and
platelet dysfunction, which is not seen here", "- **Anti-
platelet antibodies (A)**: Would cause thrombocytopenia
or abnormal platelet function, but bleeding time is nor-
mal", "- **Factor IX deficiency (C)** is possible but less
common than hemophilia A", "Step 6: **Conclusion**:
The prolonged PTT, normal PT and bleeding time, family
history of X-linked bleeding, and higher prevalence of
hemophilia A make **Factor 8 deficiency (hemophilia
A)** the most likely diagnosis", "Therefore, the answer is
\\boxed{B}"]

["key clinical
findings",
"easy bruis-
ing", "family
history",
"normal
hemoglobin",
"hematocrit",
"normal
PT", "pro-
longed PTT",
"normal bleed-
ing time",
"platelet
dysfunction",
"factor de-
ficiencies",
"intrinsic
pathway",
"hemophilia
A", "factor
VIII de-
ficiency",
"hemophilia
B", "family
history",
"X-linked
recessive
disorders",
"maternal
uncle", "ex-
clude other
options", "von
Willebrand
disease",
"GP1b de-
ficiency",
"anti-platelet
antibodies",
"factor IX
deficiency",
"conclusion"]
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Table 13: Response from PMC LLaMA 13B.

model reasoning steps key points

PMC LLaMA
13B

["With these laboratory values, it is clear there
is a problem with the bone marrow production
of platelets, as demonstrated by an extremely low
reticulocyte count and an increased mean corpuscu-
lar volume, which is indicative of a megaloblastic
process", "This child likely has a disorder involv-
ing the thrombopoietin receptor, which is essential
for megakaryocyte growth and maturation and for
the release of platelets from the marrow", "The
gene for the thrombopoietin receptor is located
on chromosome 11", "Most cases of congenital
amegakaryocytic thrombocytopenia result from au-
tosomal recessive inheritance of a nonsense point
mutation involving one of the thrombopoietin re-
ceptor genes", "The gene for the thrombopoietin
receptor is the same as that associated with con-
genital amegakaryocytic thrombocytopenia", "This
autosomal dominant form is extremely rare", "The
other choices are not associated with a low retic-
ulocyte count and a giant platelet", "Patients with
antiplatelet antibodies, or with factor 8, 9, or Von
Willebrand factor deficiencies have normal to in-
creased platelet counts", "Patients with GP1b defi-
ciency usually have a normal or increased platelet
count, but a dysfunctional platelet population",
"###Answer: OPTION D IS CORRECT"]

["laboratory values",
"bone marrow pro-
duction", "platelets",
"low reticulocyte
count", "increased
mean corpuscular vol-
ume", "megaloblastic
process", "throm-
bopoietin receptor",
"megakaryocyte
growth", "matura-
tion", "release of
platelets", "chromo-
some 11", "congeni-
tal amegakaryocytic
thrombocytopenia",
"autosomal reces-
sive inheritance",
"nonsense point mu-
tation", "autosomal
dominant form",
"normal to increased
platelet counts", "dys-
functional platelet
population"]
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