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ABSTRACT

In this paper, we utilize the interpolation space norm to understand and fill the
gaps in some recent works on the reconstruction error of the kernel PCA. After
rigorously proving a simple but fundamental claim appeared in the kernel PCA
literature, we provide upper bound and lower bound of the reconstruction error of
the empirical kernel PCA with interpolation space norms under the assumption (C),
a condition which is taken for granted in the existing works. Furthermore, we show
that the assumption (C) holds in two most interesting settings (the polynomial-
eigenvalue decayed kernels in fixed dimension domain and the inner product kernel
on large dimensional sphere Sd−1 where n ≍ dγ) and compare our bound with the
existing results. This work not only fills the gaps appeared in literature, but also
derives an explicit lower bound on the sample size to guarantee that the (optimal)
reconstruction error is well approximated by the empirical reconstruction error.
Finally, our results reveal that the RKHS norm is not a relevant error metric in the
large dimensional settings.

1 INTRODUCTION

Principal Component Analysis (PCA), a widely used statistical technique for dimensionality reduction
and data visualization, aims at finding a subspace of dimension ℓ such that the data after projection
retaining as much of the original variance as possible (Jolliffe, 2002). It is easily seen that the
subspace is spanned by the ℓ eigenvectors corresponding to the first ℓ largest eigenvalues of the
covariance matrix. In practice, if we observed that X = (X1, X2, · · · , Xn) are i.i.d sampled from a
distribution P on X ⊆ Rd, we may use the largest eigenvectors of the empirical covariance matrix
1
n

∑n
i=1XiX

T
i to produce estimates of the first ℓ eigenvectors.

PCA works well when the relationships between variables in the data are approximately linear. Kernel
PCA, on the other hand, is a non-linear dimensionality reduction technique which allows for capturing
non-linear relationships in the data. For a reproducing kernel Hilbert space (RKHS) H associated
with the kernel function k : X × X → R, the kernel PCA would produce a subspace spanned by
the eigenvectors corresponding to the ℓ largest eigenvalues of the covariance operator Σ : H → H
defined as

Σf = EX∼P [Φ(X)⊗H Φ(X)](f) = EX∼P [Φ(X)f(X)],

where Φ(X) := k(X, ·) ∈ H is called the feature map. Similarly, given n i.i.d. samples X =
(X1, X2, · · · , Xn), the kernel PCA produces a subspace spanned by the ℓ largest eigenfunctions of
the empirical covariance operator Σ̂f = 1

n

∑n
i=1 Φ(Xi)f(Xi).

The nonlinearity of the feature map Φ(·) allows kernel PCA to capture more complex data patterns
than PCA. Consequently, kernel PCA has much more broad and successful applications including
image denoising (Mika et al., 1998; Jade et al., 2003; Teixeira et al., 2008; Phophalia & Mitra, 2017),
computer vision (Lampert et al., 2009; Peter et al., 2019), image/systems modeling (Kim et al., 2005;
Li et al., 2015), feature extraction (Chang & Wu, 2015), and novelty/fault detection (Hoffmann, 2007;
Samuel & Cao, 2016; de Moura & de Seixas, 2017).

However, the statistical properties of kernel PCA have not yet been well understood, especially on the
convergence rate of the reconstruction error of kernel PCA. In contrast, motivated by the successful
applications of neural networks and the seminal neural tangent kernel theory (Jacot et al., 2018), lots
of research have been done on other types of kernel-related algorithms, especially kernel regressions
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and kernel classifications. Various new problems including the minimax rate on the excess risk of
the kernel regression in fixed dimensions (Caponnetto, 2006; Caponnetto & De Vito, 2007; Raskutti
et al., 2014; Lin et al., 2020), the generalization performance of kernel interpolation (Rakhlin & Zhai,
2019; Beaglehole et al., 2022; Buchholz, 2022; Lai et al., 2023; Li et al., 2023b), and learning curves
of kernel regression (Bordelon et al., 2020; Cui et al., 2021; Jin et al., 2021; Li et al., 2023a) make
kernel regression an active research field. Therefore, it is natural to ask similar questions about kernel
PCA as about kernel regressions.

Analyzing large dimensional data (e.g., n ≍ dγ) has long been an important task in statistics and
machine learning (Donoho et al., 2000). Practical data, such as financial data and modern machine
learning datasets, often have dimensions ranging from thousands to millions. Thus, researchers are
more interested in the performance of algorithms in large dimensional data. Unfortunately, to the
best of our knowledge, no works have touched on the statistical properties of large dimensional
kernel PCA. On the contrary, results for large dimensional kernel regression are fruitful. For large
dimensional kernel regression, common assumptions on the eigenvalues of the kernel (e.g., the
polynomial eigendecay assumption and the embedding index assumption in Li et al. (2023a); Zhang
et al. (2023)) no longer hold, making the analysis more complicated. Early works (Ghorbani et al.,
2021; Donhauser et al., 2021; Mei et al., 2022; Xiao et al., 2022; Misiakiewicz, 2022; Hu & Lu,
2022) discussed the polynomial approximation barrier for large dimensional kernel ridge regression
concerning square-integrable function classes. Then, Lu et al. (2023); Zhang et al. (2024a) determined
the convergence rate on the excess risk and the minimax optimality of kernel regression and reported
several new phenomena exhibited in large dimensional kernel regression, e.g., the periodic plateau
behavior. For kernel interpolation in large dimensions, Liang & Rakhlin (2020); Liang et al. (2020);
Aerni et al. (2022); Barzilai & Shamir (2023) showed that kernel interpolation can generalize for
specific function classes. The above new phenomena exhibited in large dimensional kernel regression
bring an interesting question: Does there exist new phenomena occurring in large dimensional kernel
PCA?

1.1 RELATED WORKS

Reconstruction error of PCA. PCA is commonly derived by minimizing the reconstruction error
over all orthonormal basis of a ℓ-dimensional subspace of Rd, and it is a well-known result that the
ℓ largest eigenvectors of the covariance matrix minimize the reconstruction error (Jolliffe, 2002).
When the empirical PCA is used to estimate the principal components of PCA, one of the quantities
researchers are interested in is then the reconstruction error for the empirical PCA. Bounds on the
reconstruction error for the empirical PCA are derived by Shawe-Taylor et al. (2002; 2005); Blanchard
et al. (2007). Under certain conditions, when ℓ ≤ cn for a certain constant c, Reiss & Wahl (2020)
showed that the expectation of the reconstruction error for the empirical PCA can be upper bounded
by the reconstruction error for the PCA up to a constant factor. Moreover, they consider several
decaying rates for the eigenvalues of the covariance matrix, and determine the (minimax optimal)
convergence rate of the reconstruction error for the empirical PCA.

Reconstruction error of kernel PCA with Hilbert space norm. Though kernel PCA is a popular
variant of PCA, the statistical properties of kernel PCA (and its empirical version) received little
discussion. Early works in kernel PCA mainly considered the reconstruction error with Hilbert space
norm and aimed at bounding the difference between the reconstruction error of kernel PCA and
empirical kernel PCA. For example, Shawe-Taylor et al. (2005) bounded the difference between the
reconstruction errors with the eigenvalues of the kernel matrix k(X,X)/n; Blanchard et al. (2007)
modified the bound given in Shawe-Taylor et al. (2005); Rudi et al. (2013) claimed a bound on the
difference between the reconstruction errors merely based on the eigenvalues of the kernel, despite
that their proof has several gaps (see Remark 3.2 for details).

Reconstruction error of kernel PCA with L2(X , P ) norm. Recently, Sriperumbudur & Sterge
(2022); Sterge & Sriperumbudur (2022) considered the reconstruction error with L2(X , P ) norm
rather than Hilbert space norm, and claimed that they have determined the convergence rate of the
reconstruction error of empirical kernel PCA and variants of kernel PCA in fixed dimensions. They
argued that the reconstruction error with L2(X , P ) norm can be generalized to several variants of
kernel PCA, including the random-feature kernel PCA and the Nyström kernel PCA, while the
reconstruction error with Hilbert space norm can not. However, there exist several gaps in their proof
(see Remark 3.2 for details).
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Table 1: Comparison on bounds of the reconstruction error of empirical kernel PCA

RW20 SS22 Our result
Parameter of the interpolation space s = 1 s = 0 0 ≤ s ≤ 1
Order of upper bound

∑
i≥ℓ+1 λi NΣ(t)(λℓ+1 + t)2 NΣ(λℓ+1)λ

2−s
ℓ+1

Lower bound
∑

i≥ℓ+1 λi
∑

i≥ℓ+1 λ
2
i

∑
i≥ℓ+1 λ

2−s
i

Polynomial eigendecay ℓ−β+1 ℓ−2β+1 ℓ−(2−s)β+1

Large dimension (hypersphere setting) \ \ d−(q+1)(1−s)

Comparison between our results and the results in RW20 (Reiss & Wahl, 2020) and SS22
(Sriperumbudur & Sterge, 2022) under certain conditions. The proofs of the results in SS22
contain gaps, hence we present them in grey. NΣ(t) is a coefficient which can be bounded for
no more than O(1/n).

1.2 OUR CONTRIBUTIONS

The major contributions of the paper are as follows. Also, we provide a comparison between our
results and some existing results in Table 1 for the sake of convenience.

Upper and lower bounds on the reconstruction error of empirical kernel PCA under the
interpolation space norm. In this paper, we consider the interpolation space [H]s (defined in Section
2.4) with parameter s ≥ 0, and we introduce the reconstruction error of kernel PCA under [H]s norm.

i). We develop a new technique and provide a rigorous proof of the optimality of kernel PCA
with [H]s norm. As a direct result, we provide a lower bound of the reconstruction error of
empirical kernel PCA (Theorem 2.5).

ii). We provide an upper bound of the reconstruction error of empirical kernel PCA (Proposition
3.1). Moreover, we notice that the reconstruction error with [H]s norm links the two types of
reconstruction errors, i.e. the one with [H]1 = H-norm and the one with [H]0 = L2(X , P )-
norm. As a consequence, we could compare our results with existing results about the
H-norm in Shawe-Taylor et al. (2005); Blanchard et al. (2007); Reiss & Wahl (2020).

iii). We apply our bounds to the polynomially eigendecay kernels (i.e., the eigenvalues of the
kernel satisfy λj ≍ j−β for β > 1), and we successfully determine the tight convergence
rate on the reconstruction error of kernel PCA for any 0 ≤ s ≤ 1 (Corollary 3.4). This type
of results is often referred as the optimality of the empirical kernel PCA (e.g., Sriperumbudur
& Sterge (2022); Sterge et al. (2020)). Our results not only provide a rigorous proof of the
claims for 0 ≤ s ≤ 1 in Sriperumbudur & Sterge (2022), but also are in accordance with the
results in Reiss & Wahl (2020) when s = 1.

Convergence rate of empirical kernel PCA in large dimensions under the hypersphere setting
The most interesting part of this paper is trying to see the performance of empirical kernel PCA,
especially for the large dimensional data where the number of samples n ≍ dγ under the hypersphere
setting. With the help of Proposition 3.1, we show that for a reasonable range of ℓ (which is
characterized by a quantity q introduced in Theorem 3.8), both the upper bound and the lower bound
of the reconstruction error of empirical kernel PCA are of the rate d−(q+1)(1−s), and hence determine
the optimal convergence rate in the large dimension situation.

Our results reveal two interesting phenomena only occurring in large dimensional kernel PCA. (i) We
find that the reconstruction error of large dimensional empirical kernel PCA with H-norm, which
is deduced from the reconstruction error of PCA (see, e.g., Shawe-Taylor et al. (2005); Blanchard
et al. (2007); Reiss & Wahl (2020)), is of order Θ(1). Therefore, we conclude that H-norm is
inappropriate for the reconstruction error of kernel PCA when considering the large dimension case.
(ii) The second phenomenon is the periodic plateau behavior, and as shown in Figure 1(c), when
ℓ ≍ dζ for ζ ∈ (p, p+ 1) with any integer p ≥ 0, the convergence rate of the reconstruction error of
(empirical) kernel PCA does not change when ζ varies. Interestingly, we find that similar periodic
plateau behavior on the curve of the excess risk exists on large dimensional kernel regression. For
example, Lu et al. (2023); Zhang et al. (2024a) found that the convergence rate of the excess risk of
kernel regression does not change when γ varies within certain ranges. Therefore, we believe that the
periodic plateau behavior is widely exhibited in large dimensional kernel-related algorithms.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We provide a graphical illustration of the theoretical results of our work in Figure 1. The experiment
part can be found in Section 4.
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Figure 1: Figure 1(a) and Figure 1(b) illustrate the convergence rate on the reconstruction error of
(empirical) kernel PCA with different source condition 0 ≤ s ≤ 1 in (i) fixed dimensional setting
and (ii) large dimensional setting. Figure 1(c) illustrate the relation between the reconstruction error
and ℓ, with s ∈ {0, 0.5, 1}. In all three subfigures, we use solid lines when the convergence rate of
both empirical and population reconstruction error is the same, and we use dashed lines when the
empirical and population reconstruction error ranges from d(ζ−1)(1−s) to dζ(1−s) for any ζ ∈ N.

2 PRELIMINARIES

In this section, we provide a brief review of preliminary results on PCA and kernel PCA.

Notations Let X ⊆ Rd be the sampling space and let the underlying probability distribution of the
sampling be P . X = (X1, . . . , Xn) ⊆ X is the set of observations under probability distribution P .

For a Hilbert space H, We denote different norms as follows. ∥ · ∥L1(H) is the trace norm of an
operator, ∥ · ∥L2(H) is the Hilbert-Schmidt norm, ∥ · ∥L∞(H) is the operator norm, ∥ · ∥2 is the 2-norm
of Rd, and ∥ · ∥L2(X ,P ) is the norm in the L2(X , P ) function space. Also, a⊗H a = ⟨a, ·⟩Ha, where
⟨·, ·⟩H means the inner product in space H.

In the large-dimension setting, we consider the following asymptotic framework: We assume there
exist three positive constants c1, c2 and γ, which satisfies c1dγ ≤ n ≤ c2d

γ . Also, we define the
following notations: b ≳ a if and only if there exists a constant C only depending on c1, c2, γ such
that Ca ≤ b. b ≲ a if and only if there exists a constant C only depending on c1, c2, γ such that
Cb ≤ a. a ≍ b if and only if b ≳ a and b ≲ a.

2.1 PRINCIPAL COMPONENT ANALYSIS (PCA)

The traditional PCA method aims at how to reduce the dimension of the data without abandoning
much information (Jolliffe, 2002). Denote the diagonalization of the covariance matrix as

EX∼PXX
T =

d∑
i=1

θiαiα
T
i . (1)

where θi ∈ R, αi ∈ Rd, i = 1, 2, · · · , d are the eigenvalues and eigenvectors satisfying that
{θi, i = 1, 2, · · · , d} is non-increasing. The method chooses the subspace spanned by the first ℓ
eigenvectors, where ℓ is the goal dimension.

Similarly, the empirical covariance matrix can be diagonalized as 1
n

∑n
i=1XiX

T
i =

∑d
i=1 θ̂iα̂iα̂

T
i ,

where θ̂i ∈ R, α̂i ∈ Rd, i = 1, 2, · · · , d are the eigenvalues and eigenvectors satisfying that
{θ̂i, i = 1, 2, · · · , d} is non-increasing. The space spanned by the first ℓ eigenvectors α̂1, · · · , α̂ℓ can
be used to approximate span{α1, · · · , αℓ}.
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For (β1, · · · , βℓ) as an orthonormal basis of a ℓ-dimensional subspace of Rd, the reconstruction error
used in PCA is defined as

R(β1, · · · , βℓ) := EX∼P

∥∥∥∥∥X −
ℓ∑

i=1

(XTβi)βi

∥∥∥∥∥
2

2

. (2)

The following result shows that the first ℓ eigenvectors minimize the reconstruction error in (2).
Proposition 2.1. (Jolliffe, 2002) Let α1, · · · , αℓ be the eigenvectors in (1), then

R(α1, · · · , αℓ) = min
(β1, · · · , βℓ)

is orthonormal

R(β1, · · · , βℓ) =
∑

j≥ℓ+1

θj .

From Proposition 2.1, the ℓ leading eigenvectors are proved to be the optimal point. Hence, one of the
quantities researchers are interested in is the reconstruction error of empirical PCA, R(α̂1, · · · , α̂ℓ).
Reiss & Wahl (2020) gave a tight upper bound on R(α̂1, · · · , α̂ℓ) which we briefly reviewed below.
Proposition 2.2. (Reiss & Wahl, 2020) Suppose X is sub-Gaussian. If for all s ≤ ℓ,

λs

λs−λℓ+1

∑
j≤s

λj

λj−λℓ+1
≤ n/

(
16C2

3

)
holds , then we have

R(α̂1, · · · , α̂ℓ) ≤ C
∑

j≥ℓ+1

θj + C∆n, (3)

where ∆n :=
∑d

i=1 θi · e−n(θℓ−θℓ+1)
2/(4C′θℓ)

2

is an exponentially small remainder term, and the
constants are defined as in Theorem 2.12 in Reiss & Wahl (2020).
Remark 2.3. One can easily extend results in Proposition 2.2 to kernel PCA: we only need to
replace X with Φ(X), the feature map of the RKHS. Notice that such replacement corresponds to a
reconstruction error of kernel PCA with H norm (the RKHS norm). We will provide a comparison
between Proposition 2.2 and our results in the next section.

Reiss & Wahl (2020) provides an upper bound of the excess risk EPCA
ℓ ≜ R(α̂1, · · · , α̂ℓ) −

R(α1, · · · , αℓ),which turns out to be minimax optimal when the covariance operator/matrix restricted
to spiked models (Vu & Lei, 2012). The Proposition 2.2 in certain situation is a standard oracle
inequality with an exponentially small remainder term.

2.2 REPRODUCING KERNEL HILBERT SPACE

Throughout the paper, we denote H as a separable RKHS on X with respect to a continuous kernel
function k satisfying supx∈X k(x, x) ≤ κ2. For detailed explanation and properties of RKHS, readers
may refer to Caponnetto & De Vito (2007).

Denote the inclusion map by J : H → L2(X , P ), and the adjoint operator by J ∗ : L2(X , P ) → H.
Consider the following operator Σ : H → H, (Σf)(x) =

∫
X k(x, y)f(y)dP (y). Clearly, Σ =

J ∗J , and hence that Σ is self-adjoint, positive, trace-class, and compact. Thus, by the Mercer’s
decomposition (Reed & Simon, 1980), we have

Σ =
∑
i∈N

λi ⟨·, ϕi⟩H ϕi. (4)

where N is an at most countable set, {λi, i ∈ N} is non-increasing and summable, {ϕi, i ∈ N} are
the corresponding orthonormal eigenfunctions. The results similar to the above analysis can also be
found in other kernel related literature, see, e.g., Rosasco et al. (2010); Shawe-Taylor et al. (2005);
Sriperumbudur & Sterge (2022).

2.3 KERNEL PRINCIPAL COMPONENT ANALYSIS (KERNEL PCA)

The PCA method performs well when the relationships between variables in the data are approximately
linear. When the approximate linearity violated mildly, a common approach is to project the data to
a higher-dimensional space H, and then operate PCA in H, which is known as the kernel principal
component analysis (Schölkopf et al., 1998).
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Specifically, for any kernel k, the kernel PCA method projects the data X ∈ Rd into k(X, ·) ∈ H,
and then chooses the subspace spanned by the first ℓ eigenfunctions of the operator Σ =
EX∼P [k(X, ·) ⊗H k(X, ·)]. From the Mercer’s decomposition (4), we know that the subspace
is spanned by ϕ1, · · · , ϕℓ.
The empirical kernel PCA considers the empirical version of the operator Σ̂ : H → H, Σ̂f =
1
n

∑n
i=1 k(·, Xi)f(Xi). Since Σ̂ is a self-adjoint operator on H, we have the Mercer’s decomposition

(Reed & Simon, 1980) of Σ̂ =
∑

i∈N̂ λ̃i

〈
·, ϕ̂i

〉
H
ϕ̂i, where N̂ is an at most countable set, {λ̃i, i ∈

N̂} is non-increasing and summable, {ϕ̂i, i ∈ N̂} are the corresponding orthonormal eigenfunctions.
Then, the empirical kernel PCA uses the space spanned by the first ℓ eigenvectors ϕ̂1, · · · , ϕ̂ℓ to
approximate span{ϕ1, · · · , ϕℓ}.

The following proposition describes the spectrum of Σ̂. Similar results can be found in page 6 of
Shawe-Taylor et al. (2005).

Proposition 2.4. (Shawe-Taylor et al., 2005) Let λ̂i’s and vi’s be the eigenvalues and cor-
responding eigenvectors of k(X,X)/n := (k(Xi, Xj))ij/n. Then, we have λ̃i = λ̂i and
ϕ̂i = vTi (k(X1, ·), . . . , k(Xn, ·))T for any i ≤ n; and λ̃i = 0 for any i > n.

From Proposition 2.4, we have

Σ̂ =

n∑
i=1

λ̂i

〈
·, ϕ̂i

〉
H
ϕ̂i, (5)

where λ̂i’s are the eigenvalues of k(X,X)/n.

2.4 RECONSTRUCTION ERROR WITH THE INTERPOLATION SPACE NORM

To measure the performance of kernel PCA, we introduce the reconstruction error with the interpola-
tion space norm. We shall first introduce the interpolation space.

The interpolation space [H]s with source condition s ≥ 0 is a natural generalization of the
RKHS H (see, e.g., Steinwart et al. (2009); Dieuleveut et al. (2017); Dicker et al. (2017);
Pillaud-Vivien et al. (2018); Lin et al. (2020); Fischer & Steinwart (2020); Celisse & Wahl
(2021)). Also, some results in the approximation theory consider the L2(P ) norm (which is a
special case of the interpolation space norm as is shown below) when considering kernel meth-
ods (see e.g., Santin & Schaback (2016); Steinwart (2017)). For any s ≥ 0, [H]s can be de-
fined as [H]s :=

{∑
i∈N λ

(s−1)/2
i aiϕi|

∑
i∈N a2i <∞

}
, with the inner product deduced from

⟨λ(s−1)/2
i ϕi, λ

(s−1)/2
j ϕj⟩[H]s := δij .

It is easy to show that [H]s is also a separable Hilbert space. Moreover, if we assume s = 1 or s = 0,
the interpolation space norm ∥·∥[H]s will be reduced to ∥·∥H and ∥·∥L2(P ) respectively.

Now we are prepared to define the reconstruction error of kernel PCA under the in-
terpolation space norm. Let Bℓ := {(ψ1, . . . , ψℓ)|(ψ1, . . . , ψℓ) is an orthonormal basis of
a ℓ-dimension subspace of H}. For any (ψ1, . . . , ψℓ) ∈ Bℓ, define the reconstruction error as

Rs (ψ1, . . . , ψℓ) := EX∼P ∥k(·, X)−Π(ψ1, . . . , ψℓ) k(·, X)∥2[H]s ,

where Π(ψ1, . . . , ψℓ) :=
∑ℓ

i=1 ⟨·, ψi⟩H ψi.

The following theorem shows that the largest ℓ eigenfunctions of Σ minimize the reconstruction error.
Theorem 2.5. For any 0 ≤ s ≤ 1, we have Rs (ϕ1, . . . , ϕℓ) = minBℓ

Rs (ψ1, . . . , ψℓ) .

When s = 1, the reconstruction error of the kernel PCA can be rewritten as

R (ψ1, . . . , ψℓ) := EX∼P ∥k(·, X)−Π(ψ1, . . . , ψℓ) k(·, X)∥2H ,

which is the same as the one given in Reiss & Wahl (2020). A similar result as Theorem 2.5 under such
setting is attained by applying the method of Lagrange multipliers, which can hardly be generalized
to the interpolation space norm case. Hence, it calls for a new method for the reconstruction error
under the interpolation space norm. We defer the rigorous proof of Theorem 2.5 to Appendix A.1.
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Remark 2.6. We notice that Sriperumbudur & Sterge (2022) first claimed the same results as Theorem
2.5 when s = 0, and further claimed that their proof could be extended to arbitrary 0 ≤ s ≤ 1.
However, we notice that their proof possesses some gaps ( the gap is mainly due to the wrong
decomposition of some operators and sets, see Appendix C.1 for details).

3 MAIN RESULTS

The main goal of this paper is to derive an upper bound of the reconstruction error of kernel PCA and
present two interesting applications of it.

3.1 RECONSTRUCTION ERROR OF THE EMPIRICAL KERNEL PCA

We begin by the following result, which gives the lower and upper bound on the empirical error. Its
proof is deferred to Appendix A.2.
Proposition 3.1. For any 0 ≤ s ≤ 1, we have the following statements:

(i) If we denote RΣ,ℓ,s = Rs (ϕ1, . . . , ϕℓ), then we have RΣ,ℓ,s =
∑

j≥ℓ+1 λ
2−s
j .

(ii) Denote RΣ̂,ℓ,s = Rs

(
ϕ̂1, . . . , ϕ̂ℓ

)
, where ϕ̂i’s are the eigenfunctions of Σ̂ defined in (5).

For any t > 0, denote NΣ(t) =
∥∥∥Σ 1

2 (Σ + tI)−
1
2

∥∥∥2
L2(H)

. Suppose further that the following

assumption (C) holds:

There exists C (does not depend on ℓ) such that λ̂ℓ+1 ≤ Cλℓ+1. (C)

For any δ > 0 and any ℓ satisfying max{12κ2,8κ/ logn}
n log n

δ ≤ λℓ+1, we have

RΣ̂,ℓ,s ≤ 4 (C + 1)
2 NΣ(λℓ+1) · λ2−s

ℓ+1 ,

with probability at least 1− δ.

Proposition 3.1 provides upper and lower bounds of the reconstruction error of empirical kernel PCA
with [H]s-norm. Noticing that NΣ(t) can be upper bounded by NΣ(t) =

∑
i∈N

λi

t+λi
≤∑i∈N

λi

t ≤
κ
t , we can attain the bound of λ1−s

ℓ+1 . When more information about the eigenvalues are given, we
might have a tighter upper bound of NΣ(t).

The Necessity of Assumption (C) We notice that Thm 6.(ii) in Sriperumbudur & Sterge (2022),
Thm 8.(ii) in Sterge & Sriperumbudur (2022), and Thm 3.1 in Rudi et al. (2013) claimed similar
results as Proposition 3.1 by arguing that the condition λ̂ℓ+1 ≤ Cλℓ+1 holds with high probability.

• However, their proof for the above condition, mostly based on Lemma 3.5 in Rudi et al.
(2013), exists gaps (see Appendix C.2 for details). (The gap is mainly due to the wrong
claim that a specific operator is positive semi-definite.)

• Hence, we explicitly exhibit assumption (C) to stress its necessity.

Remark 3.2. Sriperumbudur & Sterge (2022) proposed to use the U-statistics Σ̂center :=
1

2n(n−1)

∑n
i ̸=j (Φ (Xi)− Φ (Xj)) ⊗H (Φ (Xi)− Φ (Xj)) rather than the empirical version in our

case. However, due to the great difficulty of estimating the eigenvalues of Σ̂center, assumption (C)
is hard to be verified. Such difficulties were wrongly skipped by Sriperumbudur & Sterge (2022)
since they took assumption (C) for granted. In order to conquer such difficulties, we use the (non-
centralized) empirical operator Σ̂ to serve as the empirical covariance operator. The eigenvalues of Σ̂
and Σ can be derived from the kernel and the empirical kernel, making it possible for us to verify
assumption (C) and to derive an upper bound for the reconstruction error in different cases.

Several Important Settings under which Assumption (C) Holds In the following two subsec-
tions, we will present two applications of Proposition 3.1:
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(i) The first application is more classical, i.e., we consider the situation where the eigenvalues
of kernel is polynomially decaying.

(ii) The second application is more interested, i.e., we consider the reconstruction error of
empirical kernel PCA for large dimensional data where sample size n ≍ dγ for some γ > 1.

3.2 KERNEL PCA UNDER POLYNOMIAL EIGENVALUE DECAY ASSUMPTION

In the classical fixed-dimensional setting where the dimension d of the data is fixed, one of the typical
assumptions on the kernel function is the following polynomial eigendecay assumption (Caponnetto
& De Vito, 2007; Fischer & Steinwart, 2020; Zhang et al., 2023).
Assumption 3.3 (Polynomial eigendecay assumption). There is some β > 1 and constants cβ , Cβ >
0 such that cβj−β ≤ λj ≤ Cβj

−β , j = 1, · · · , where λj is the eigenvalue of Σ defined in (4).

Such a polynomial decay is satisfied for the well-known Sobolev kernel with smoothness r > d/2
(we have β = 2r/d, see, e.g., Edmunds & Triebel (1996); Fischer & Steinwart (2020)), Laplace
kernel, and, of most interest, neural tangent kernels for fully-connected multilayer neural networks
(we have β = (d+ 1)/d, see, e.g., Bietti & Mairal (2019); Bietti & Bach (2020); Lai et al. (2023)).

With Assumption 3.3, we can calculate the quantities
∑

j≥ℓ+1 λ
2
j and NΣ(λℓ+1) in Proposition 3.1

explicitly. In particular, we can further show the optimality of the empirical kernel PCA with the
polynomial eigenvalue decay assumptions (here the optimality is referred to the one introduced in
Sriperumbudur & Sterge (2022)). The proof of following corollary can be found in Appendix A.3.
Corollary 3.4. Suppose the eigenvalues of Σ satisfy Assumption 3.3. We have:

• For any τ > 0, if n ≥ C3ℓ2β (C3 is a constant depending on β, cβ , Cβ , τ and κ) , we have
λ̂ℓ+1 ≤ 2λℓ+1 holds with probability 1− 2e−τ .

• For any δ > 0, there exist constants Csmall, and Clarge only depending on β, cβ , Cβ , τ , κ
and δ, such that for all n satisfying n ≥ C3ℓ2β , we have

Csmallℓ
−(2−s)β+1 ≤ RΣ,ℓ,s ≤ RΣ̂,ℓ,s ≤ Clargeℓ−(2−s)β+1,

with probability at least 1− δ − 2e−τ .

The first statement in Corollary 3.4 ensures us that we can apply the Proposition 3.1. The second
statement in Corollary 3.4 shows that when n ⪰ ℓ2β , the convergence rate (in terms of ℓ) of RΣ̂,ℓ is
the same as the convergence rate of the optimal quantity RΣ,ℓ.
Remark 3.5. When s = 1, we can attain the bound of ℓ−β+1, which is in accordance with the bound
in Reiss & Wahl (2020) under Assumption 3.3 (see Proposition 2.2 and Remark 2.3).

3.3 KERNEL PCA IN THE LARGE DIMENSIONAL SETTING

We consider the reconstruction error of the kernel PCA in large dimensional setting where n ≍ dγ

for some γ > 1. Let us work with an inner product kernel kin : Sd × Sd → R satisfy-
ing kin(x, y) = Ψ(⟨x, y⟩), where Ψ : [−1, 1] → R. We denote the decomposition of kin as
kin (x, y) =

∑∞
k=0 µk

∑N(d,k)
j=1 Yk,j(x)Yk,j (y) , where Yk,j for j = 1, · · · , N(d, k) are spherical

harmonic polynomials of degree k and µk ’s are the eigenvalues of k with multiplicity N(d, 0) = 1;
N(d, k) = 2k+d−1

k · (k+d−2)!
(d−1)!(k−1)! , k = 1, 2, · · · .

Remark 3.6. We consider the inner product kernels on the sphere mainly because the harmonic
analysis is clear on the sphere (e.g., properties of spherical harmonic polynomials are more concise
than the orthogonal series on general domains). This makes Mercer’s decomposition of the inner
product more explicit rather than several abstract assumptions (e.g., Mei & Montanari (2022)). We
also notice that very few results are available for Mercer’s decomposition of a kernel defined on the
general domain, especially when the dimension of the domain is taking into consideration. e.g., even
the eigen-decay rate of the neural tangent kernels is only determined for the spheres. Restricted by
this technical reason, most works analyzing the kernel method in large dimensional settings focus on
the inner product kernels on spheres (Liang et al., 2020; Ghorbani et al., 2021; Misiakiewicz, 2022;
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Xiao et al., 2022; Lu et al., 2023, etc.). Though there might be several works that tried to relax the
spherical assumption (e.g., Liang et al. (2020); Aerni et al. (2022); Barzilai & Shamir (2023)), we
can find that most of them hide the essential requirements in the assumptions.

To avoid unnecessary notation, we introduce the following assumption on the inner kernel kin:
Assumption 3.7. Coefficients {ai, i = 0, 1 . . .} in Taylor expansion Ψ(t) =

∑∞
i=0 ait

i are positive.

The purpose of Assumption 3.7 is to keep the main results and proofs clean. Notice that, by Theorem
1.b in Gneiting (2013), the inner product kernel K on the sphere is positive semidefinite for all
dimensions if and only if all coefficients {aj , j = 0, 1, 2, ...} are non-negative. One can easily extend
our results in this paper when certain coefficients ak’s are zero (e.g., one can consider the two-layer
NTK defined as in Section 5 of Lu et al. (2023), with ai = 0 for any i = 3, 5, 7, · · · ).

Now, we are prepared to give one of the main results of this paper.
Theorem 3.8. If 0 ≤ s ≤ 1, consider the kernel defined on the sphere Sd−1. Suppose n ≍ dγ . For
any ℓ, let q be an integer satisfying N(q) ≤ l < N(q + 1), where N(q) =

∑q
k=0N(d, k). If we

have q ≤
⌊
γ
2

⌋
and N(q + 1)− ℓ ≍ dq+1, then the following statements hold:

(i) RΣ,ℓ,s ≍ d−(q+1)(1−s).

(ii) For any δ > 0, there exist a constant C only depending on c1, c2, γ and δ, and a constant C1 only
depending on c1, c2, γ, such that for any d ≥ C, we have

RΣ̂,ℓ,s ≍ d−(q+1)(1−s),

with probability at least 1− δ − C1d
γe−dγ−q−1

.

Theorem 3.8 provides a tight convergence rate on the reconstruction error of large dimensional
(empirical) kernel PCA. Notice that when s = 1, the reconstruction error RΣ,ℓ,s ≍ RΣ̂,ℓ,s = Θ(1),
which implies that adopting the H-norm leads to inconsistent reconstruction error when considering
kernel PCA in large dimensions.
Remark 3.9. We can still derive the same upper bound of empirical error when the condition
N(q + 1) − ℓ ≍ dq+1 is not satisfied. However, under such setting, the optimal error has a better
performance, whose convergence rate ranges from d−(q+1)(1−s) to d−(q+2)(1−s). The reason of
this phenomenon is that the N(q + 1)− ℓ tail eigenfunctions of µq+1 have a far greater impact on
empirical kernel PCA rather than kernel PCA. However, notice that N(q + 1)−N(q) ≍ dq+1, we
find that N(q+1)− ℓ ≍ dq+1 holds true for large portion of ℓ satisfying that N(q) ≤ ℓ ≤ N(q+1).

As is shown in Figure 1(c), a periodic plateau phenomenon under large dimensional kernel PCA
setting can be observed: the rate of the reconstruction error remains unchanged over certain intervals
of ℓ. A similar periodic plateau phenomenon was reported by Lu et al. (2023); Zhang et al. (2024a)
when considering large-dimensional spectral algorithms: the rate of the excess risk remains unchanged
over certain intervals of γ. The similarity is due to the following reasons. When a faster rate is
required, ℓ must increase so that q becomes larger. However, due to the inequality q ≤ ⌊γ/2⌋, larger
q requires increasing γ above a certain threshold. Hence, the rate of reconstruction error remains
unchanged over certain intervals of γ.

These behaviors on the kernel PCA under large dimension setting indicate that to improve the
reconstruction error rate, it is necessary to increase γ (or equivalently, the sample size n) beyond a
specific threshold. Also, we believe that the periodic plateau behavior is widely exhibited in large
dimensional kernel-related algorithms.

4 NUMERICAL EXPERIMENT

In this section, we provide a brief numerical experiment to verify the results in Theorem 3.8.

We assume that each xi is i.i.d. sampled from the uniform distribution on Sd. We consider the
following two inner product kernels:

• The RBF kernel with a fixed bandwidth: krbf(x, y) = exp
(
−∥x− y∥22/2

)
, x, y ∈ Sd.
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• The three-layer neural tangent kernel (NTK) kntk defined in Bietti & Bach (2020).

It can be verified that both of the above kernels satisfy Assumption 3.7 (see, e.g., Zhang et al. (2024b);
Bietti & Bach (2020)). We let n = dγ with γ = 2.1, 1.5, and we choose the dimension d from 10 to
60 with step 1, from 50 to 100 with step 5, respectively. We set s = 0 and ℓ = dξ with ξ = 0.4, 1.2.
Notice that we only consider ξ = 0.4 when γ = 1.5 since q in Theorem 3.8 should satisfy q ≤

⌊
γ
2

⌋
.
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Figure 2: The reconstruction error of kernel PCA for different kernels and different γ. The first and
second rows correspond to γ = 2.1 and γ = 1.5; while the first and the second columns use the RBF
kernel and NTK, respectively. Each point represents the mean of 10 i.i.d. experiments. We perform
logarithmic least-square log10 Err = r log10 d+ b to fit the generalization error with respect to the
dimension, thus the slope r will be the convergence rate of reconstruction error with respect to d.

Figure 2 displays the results. It can be concluded that the convergence rates of the reconstruction
error in all cases are close to the theoretical convergence rate −(q + 1) in Theorem 3.8.

5 CONCLUSION

Reconstruction errors of PCA and kernel PCA have become an active research topic recently. Compar-
ing with the studies in the PCA, few results have been obtained in the reconstruction errors of kernel
PCA. In this paper, we provided both lower and upper bound of the reconstruction error of empirical
kernel PCA. Furthermore, we utilize it to analyze two prevalent situations: 1. when the dimension is
fixed, the eigenvalues of the kernel is polynomially decaying; 2. when the large dimensional data is
supported on the sphere Sd−1. In both case, we illustrated that the bounds provide here are optimal in
the sense introduced in Sriperumbudur & Sterge (2022).

There might be a few interesting questions for future research: i) We considered the empirical kernel
PCA in large dimensional settings, however, the performance of variants of kernel PCA, such as
random feature kernel PCA and Nyström kernel PCA, remains unknown in the large dimension
settings. The analysis of such variants may give a closer look on how the kernel PCA method acts in
large dimension cases. ii) It would be of great interest to derive some minimax optimal results of the
reconstruction error of empirical PCA and empirical kernel PCA. To the best of our knowledge, even
the minimax optimality of the empirical PCA has only been showed for the spiked models.
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A PROOFS OF MAIN RESULTS

A.1 PROOF OF THEOREM 2.5

We first introduce some notations. Denote T : L2(X , P ) → L2(X , P ), (Tf)(x) =∫
X k(x, y)f(y)dP (y). J : H → L2(X , P ) be the inclusion map. It can be shown that T = JJ ∗,

and hence that T is self-adjoint, positive, trace-class and compact, see Steinwart & Scovel (2012).
The Mercer’s decomposition asserts that

k(x, y) =
∑
i∈N

λiei(x)ei(y)

T =
∑
i∈N

λi ⟨·, ei⟩L2(X ,P ) ei.

where N is an at most countable set, {ei, i ∈ N} are the corresponding orthonormal eigenfunctions
under the space of L2(X , P ). Then, it is well known that ∀i ∈ N,ϕi =

√
λiei.

Now let’s begin to prove Theorem 2.5.

Proof of Theorem 2.5. Let ψj =
∑

q aqj
√
λqeq be an orthonormal basis in H. Define A1 as

(aqj)j≤ℓ, A2 as (aqj)j≥ℓ+1, A as (aqj). We have

k(·, x)−Π(ψ1, · · · , ψℓ)k(·, x) =
∑
j>ℓ

ψj(x)ψj =
∑
j>ℓ

ψj(x)
∑
q∈N

aqj
√
λqeq

=
∑
q∈N

∑
j>ℓ

ψj(x)aqj

√λqeq.
Hence, we have

∥k(·, x)−Π(ψ1, · · · , ψℓ)k(·, x)∥2[H]s =
∑
q=1

λ1−s
q

∑
j>ℓ

ψj(x)aqj

2

=
∑
q=1

λ1−s
q

∑
j>ℓ

∑
p=1

apj
√
λpep(x)aqj

2

=
∑
q=1

λ1−s
q

∑
p=1

∑
j>ℓ

apjaqj
√
λpep(x)

2

Notice that A is orthogonal, hence
∑

j=1 apjaqj = 1, and the reconstruction error is

Rs (ψ1, . . . , ψℓ) =
∑
q,p

δpq −∑
j≤ℓ

apjaqj

2

λpλ
1−s
q = tr((A1A

T
1 − Id)Λ(A1A

T
1 − Id)Λ1−s),

where Λ is the diagonalized operator of the eigenvalues.
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∂Rs (ψ1, . . . , ψℓ)

∂au,j
=

∂

∂auj

∑
u

∑
v

(
δuv −

∑
h

auhavh

)2

λuλ
1−s
v

=4λ2−s
u auj

(
ℓ∑

h=1

a2uh − 1

)2

+ 2λu
∑
v ̸=u

λ1−s
v

(
ℓ∑

h=1

auhavh

)
avj

+ 2λ1−s
u

∑
v

λv

(
ℓ∑

h=1

auhavh

)
avj

=2λu
∑
v∈N

λ1−s
v

(
ℓ∑

h=1

auhavh − δuv

)
avj + 2λ1−s

u

∑
v∈N

λv

(
ℓ∑

h=1

auhavh − δuv

)
avj

=2
∑
v∈N

λuλv
(
λ−s
u + λ−s

v

)( ℓ∑
h=1

auhavh − δuv

)
avj .

Hence ∇A1
Rs (ψ1, . . . , ψℓ) = 2ΛHΛA1, where H = Λ−s(A1A

T
1 − Id) + (A1A

T
1 − Id)Λ−s and

Huv = (λ−s
u + λ−s

v )
(∑ℓ

h=1 auhavh − δuv

)
.

Now consider the Lagrange multipliers of the optimization problem. Suppose that µ = (µij),

L =

ℓ∑
i=1

ℓ∑
j=1

µij

∑
p∈N

apiapj − δij

 =
∑
p∈N

ℓ∑
i,j

apiapjµij −
ℓ∑

i=1

µii.

We have ∂L
∂auj

= 2
∑ℓ

i=1 auiµij ,∇A1L = 2A1µ.

By the Lagrange multipliers, we have

Λ(Λ−s((A1A
T
1 − Id) + (A1A

T
1 − Id))Λ−sA1)Λ = −A1µ. (6)

When s = 1, we have (A1A
T
1 − Id)ΛA1 +A1µ = 0. Multiplying AT

1 and we get µ = 0, and hence
(A1A

T
1 − Id)ΛA1 = 0.

When s = 0, we have Λ(A1A
T
1 − Id)ΛA1 + A1µ = 0. Hence, ((A1A

T
1 − Id)ΛA1)

TΛ(A1A
T
1 −

Id)ΛA1 = 0. We get Λ1/2(A1A
T
1 − Id)ΛA1 = 0, which leads to (A1A

T
1 − Id)ΛA1 = 0.

Once we have (A1A
T
1 − Id)ΛA1 = 0, the reconstruction error satisfies

Rs (ψ1, . . . , ψℓ) = tr((A1A
T
1 − Id)Λ(A1A

T
1 − Id)Λ1−s) = tr(−(A1A

T
1 − Id)Λ2−s) ≥

∑
i>ℓ

λ2−s
i .

For general 0 < s < 1, the space spanned by A1 is an invariant subspace of operator Λ(Λ−s(A1A
T
1 −

Id) + (A1A
T
1 − Id)Λ−s)Λ. Hence, the space spanned by A2 is also an invariant subspace of

Λ(Λ−s(A1A
T
1 − Id) + (A1A

T
1 − Id)Λ−s)Λ. Hence, we have the following equation

Λ1−s(A1A
T
1 − Id)Λ + Λ(A1A

T
1 − Id)Λ1−s = −A1µA

T
1 −A2µ̃A

T
2

= −(A1, A2)

(
µ 0
0 µ̃

)(
AT

1

AT
2

)
.

(7)

Notice that minimizing Rs(ψ1, · · · , ψℓ) is equivalent to maximizing Rs(ψℓ+1, · · · ), hence by con-
sidering the Lagrange multipliers method of A2, we derive a similar equation

Λ1−s(A2A
T
2 − Id)Λ + Λ(A2A

T
2 − Id)Λ1−s = −A2νA

T
2 −A1ν̃A

T
1

= −(A1, A2)

(
ν̃ 0
0 ν

)(
AT

1

AT
2

)
.

(8)
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Adding (7) and (8), we get

2Λ2−s = (A1, A2)

(
µ+ ν̃ 0
0 ν + µ̃

)(
AT

1

AT
2

)
,

which implies that A is block-diagonal, and thus A1 is non-zero only on ℓ eq’s. Hence, we have
Rs (ψ1, . . . , ψℓ) ≥

∑
i>ℓ λ

2−s
i .

Also, choose aij = δij , we find that the lower bound can be attained.

A.2 PROOF OF PROPOSITION 3.1

From Lemma A.1 we have

RΣ̂,ℓ,s =
∥∥∥Σ 1

2

(
I −Π

(
ϕ̂1, . . . , ϕ̂ℓ

))
Σ

1−s
2

∥∥∥2
L2(H)

, (9)

and the right-hand side of (9) can be further bounded by the following three terms with any t > 0:

I =
∥∥∥Σ 1

2 (Σ + tI)−
1
2

∥∥∥2
L2(H)

= NΣ(t)

II =
∥∥∥(Σ + tI)

1
2

(
I −Π

(
ϕ̂1, . . . , ϕ̂ℓ

))
(Σ + tI)

1
2

∥∥∥2
L∞(H)

III =
∥∥∥(Σ + tI)−

1
2Σ

1−s
2

∥∥∥2
L∞(H)

.

Notice that we have

III = sup
i∈N

λ1−s
i

λi + t
= sup

i∈N

λ1−s
i

(λi + t)1−s

1

(λi + t)s
≤ 1

ts
.

For any δ > 0, when max{12κ2,8κ/ logn}
n log n

δ ≤ t ≤ ∥Σ∥∞, we have

II ≤
∥∥∥(Σ + tI)

1
2 (Σ̂ + tI)−

1
2

∥∥∥4
L∞(H)

∥∥∥(Σ̂ + tI)
1
2

(
I −Π

(
ϕ̂1, . . . , ϕ̂ℓ

))
(Σ̂ + tI)

1
2

∥∥∥2
L∞(H)

≤
∥∥∥(Σ + tI)

1
2 (Σ̂ + tI)−

1
2

∥∥∥4
L∞(H)

(
λ̂ℓ+1 + t

)2
≤ 4

(
λ̂ℓ+1 + t

)2
with probability at least 1− δ, where the last inequality comes from Lemma A.2.

Combining all these, taking t = λℓ+1, we have

RΣ̂,ℓ,s ≤ 4 (C + 1)
2 NΣ(λℓ+1) · λ2−s

ℓ+1 ,

with probability at least 1− δ. □

A.2.1 TECHNICAL RESULTS FOR THE PROOF OF PROPOSITION 3.1

Lemma A.1 (Restate Proposition 11 (i) in Sriperumbudur & Sterge (2022)). We have the following
equation

Rs (ψ1, . . . , ψℓ) =
∥∥∥Σ 1

2 (I −Π(ψ1, . . . , ψℓ))Σ
1−s
2

∥∥∥2
L2(H)

.

For readers’ convenience, we provide a proof for Lemma A.1 as follows.
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Proof of Lemma A.1. Denote ψi(x) =
∑

j∈N aijej(x) =
∑

j∈N
aij√
λj

ϕj(x) =:
∑

j∈N bijϕj(x),

then we have

RHS =
∑
i∈N

⟨Σ 1
2 (I −Π(ψ1, . . . , ψl)) Σ

1−s
2 ϕi,Σ

1
2 (I −Π(ψ1, . . . , ψl)) Σ

1−s
2 ϕi⟩H

=
∑
i∈N

λ1−s
i ⟨Σ 1

2 (I −Π(ψ1, . . . , ψl))ϕi,Σ
1
2 (I −Π(ψ1, . . . , ψl))ϕi⟩H

=
∑
i∈N

λ1−s
i ⟨Σ 1

2 (ϕi −
ℓ∑

j=1

⟨ϕi, ψj⟩H ψj),Σ
1
2 (ϕi −

ℓ∑
j=1

⟨ϕi, ψj⟩H ψj)⟩H

=
∑
j∈N

λ1−s
j ⟨Σ 1

2 (ϕj −
ℓ∑

i=1

⟨ϕj , ψi⟩H ψi),Σ
1
2 (ϕj −

ℓ∑
i=1

⟨ϕj , ψi⟩H ψi)⟩H

=
∑
j∈N

λ1−s
j ⟨Σ 1

2 (ϕj −
ℓ∑

i=1

bijψi),Σ
1
2 (ϕj −

ℓ∑
i=1

bijψi)⟩H

=
∑
j∈N

λ1−s
j ⟨Σ 1

2 (ϕj −
ℓ∑

i=1

bij
∑
k∈N

bikϕk(x)),Σ
1
2 (ϕj −

ℓ∑
i=1

bij
∑
k∈N

bikϕk(x))⟩H

=
∑
j≥1

λ−s
j

(λj − ℓ∑
i=1

a2ij

)2

+
∑
j ̸=k

(
ℓ∑

i=1

aijaik

)2


= LHS.

Lemma A.2. Let Σ and Σ̂ be given in (4) and (5). Then, for any 0 < δ < 1 and any
max{12κ2,8κ/ logn}

n log n
δ ≤ t ≤ ∥Σ∥L∞(H), we have∥∥∥∥(Σ + tI)

1
2

(
Σ̂ + tI

)− 1
2

∥∥∥∥2
L∞(H)

≤ 2,

with probability at least 1− δ.

Remark A.3. We notice that Lemma 3.6 in Rudi et al. (2013) claimed a similar result as Lemma A.2
when κ = 1. We provide a rigorous proof for general κ > 0 as follows.

Proof of Lemma A.2. By defining the operator B := (Σ + tI)−1/2(Σ − Σ̂)(Σ + tI)−1/2, it is
straightforward to verify the following inequalities:

∥∥∥(Σ + tI)
1
2 (Σ̂ + tI)−

1
2

∥∥∥2
L∞(H)

=
∥∥∥(Σ + tI)

1
2 (Σ̂ + tI)−1(Σ + tI)

1
2

∥∥∥
L∞(H)

=
∥∥∥(I −B)

−1
∥∥∥
L∞(H)

≤
(
1− ∥B∥L∞(H)

)−1

The last inequality follows from the fact that (I −B)
−1 ⪯

(
1− ∥B∥L∞(H)

)−1

I whenever
∥B∥L∞(H) < 1. We shall establish a probabilistic upper bound for ∥B∥L∞(H).

To bound ∥B∥L∞(H), we employ Lemma B.1, which is included in Appendix B for completeness.
In particular, we set the parameters of Lemma B.1 as follows: Let Y := U ⊗ U , where U :=
(Σ+ tI)−1/2Φ(X), be a random variable, and X ∼ P be the random variable from which the data is
sampled. Since

∥Y ∥L∞(H) ≤
∥∥(Σ + tI)−1

∥∥
L∞(H)

∥Φ(X)∥2H ≤ κ2/t,

we let R := κ2/t, and T := E[Y ] = (Σ + tI)−1/2Σ(Σ + tI)−1/2.
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Since

EX∼P

[
(U ⊗ U − T )2

]
= EX∼P

[
∥U∥2HU ⊗ U − T 2

]
⪯ EX∼P

[
∥U∥2HU ⊗ U

]
⪯ RT,

we set S := RT . Finally, it is σ2 = ∥RT∥L∞(H) ≤ κ2/t, and d = ∥S∥L1(H)/∥S∥L∞(H) ≤
(∥Σ∥L∞(H)+t)∥T∥L1(H)

∥Σ∥L∞(H)
. With this choice of parameters, Lemma B.1 implies that, with probability

1− δ, it is:

∥B∥L∞(H) ≤
2κ2β

3tn
+

√
2κ2β

tn
(10)

where β = log
4(∥Σ∥L∞(H)+t)∥T∥L1(H)

∥Σ∥L∞(H)δ
.

By requiring that t ≥ 12κ2β/n ≥ 4(4 +
√
15)κ2β/3n, it can be verified that

P
[
∥B∥L∞(H) ≤ 1/2

]
≥ 1− δ by simple calculation.

Next, we shall verify that the condition t ≥ max{12κ2,8κ/ logn}
n log n

δ is sufficient to ensure t ≥
12κ2β/n. Notice that d ≤ 2∥T∥L1(H) ≤ 2κ

t , hence 12κ2β/n ≤ (12κ2/n) · log 8κ
δt . Also, we have

nt ≥ 8κ, hence (12κ2/n) · log 8κ
δt ≤ max{12κ2,8κ/ logn}

n log n
δ .

Finally, since t ≥ max{12κ2,8κ/ logn}
n log n

δ implies P
[
∥B∥L∞(H) ≤ 1/2

]
≥ 1 − δ, then, with

probability 1− δ, it holds

∥∥∥(Σ + tI)
1
2 (Σ̂ + tI)−

1
2

∥∥∥2
L∞(H)

≤
(
1− ∥B∥L∞(H)

)−1

≤ 2

as claimed.

A.3 PROOF OF COROLLARY 3.4

By Lemma B.2, we have supj≥1

∣∣∣λj − λ̂j

∣∣∣ ≤ 2
√
2κ

√
τ√

n
with probability at least 1 − 2e−τ . Thus,

when n ≥ C3ℓ2β where C3 is a constant depending on cβ , Cβ , β, τ, κ, we have λ̂ℓ+1 ≤ 2λℓ+1 with
probability at least 1−2e−τ and λℓ+1 ≥ max{12κ2,8κ/ logn}

n log n
δ , so by Lemma B.3 and Proposition

3.1, we get
RΣ̂,ℓ,s ≤ 36NΣ(λℓ+1)λ

2−s
ℓ+1 ≤ Clargeℓ−(2−s)β+1

with probability at least 1− δ − 2e−τ . Also, RΣ,ℓ,s =
∑

i≥ℓ+1 λ
2−s
i > Csmallℓ

−(2−s)β+1. Hence,
we reach the conclusion in the corollary. □

A.4 PROOF OF THEOREM 3.8

For (i), denote M = N(q + 1)− ℓ, we have

RΣ,ℓ,s =
∑

i≥ℓ+1

λ2−s
i = (N(q+1)−ℓ)µ2−s

q+1+
∑

k=q+2

µ2−s
k N(d, k) =Mµ2−s

q+1+
∑

k=q+2

µ2−s
k N(d, k).

On the one hand,
RΣ,ℓ,s ≥Mµ2−s

q+1 ≍ d−(q+1)(1−s).

On the other hand,∑
k=q+2

µ2−s
k N(d, k) ≲ d−(1−s)µ1−s

q+1

∑
k=q+2

µkN(d, k) ≲ d−(1−s)µ1−s
q+1 ≍ d−(q+2)(1−s).
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Hence, we have
RΣ,ℓ,s ≍ d−(q+1)(1−s)

For (ii), since N(q) ≤ ℓ < N(q + 1), from Lemma A.5, for any δ > 0, when d ≥ C, a sufficiently
large constant only depending on c1, c2, δ, and γ, the event E1 = {λ̂ℓ+1 ≤ λ̂N(q)+1 < 4µq+1 =
4λℓ+1} occurs with probability at least 1− δ.

Denote E2 = {RΣ̂,ℓ,s ≤ 100µ1−s
q+1}. Since µq+1 ≍ d−q−1, when δ′ ≳ e−dγ−q−1 · dγ , we have

max{12κ2,8κ/ logn}
n log n

δ′ ≤ µq+1. Notice that NΣ(t) =
∑

i∈N
λi

λi+t ≤ ∑
i∈N

λi

t ≤ 1
t . From

Proposition 3.1, the event E1 ∩ E2 occurs with probability at least 1− δ − δ′.

Conditioning on E1 ∩ E2, we have

d−(q+1)(1−s) ≲ RΣ,ℓ,s ≤ RΣ̂,ℓ,s ≲ d−(q+1)(1−s)

where the last inequality is because that µq+1 ≍ d−q−1, and we get the desired results. □

A.4.1 TECHNICAL RESULTS FOR THE PROOF OF OF THEOREM 3.8

The following two lemmas are borrowed from Lu et al. (2023), which describe the eigenvalues and
the empirical ones of the inner kernel kin.

Lemma A.4 (Lemma B.1 and Lemma 3.3 in Lu et al. (2023)). Suppose that q ∈ {1, 2, 3, · · · } and
k ∈ {1, 2, 3, · · · , q, q + 1}. Suppose that Assumption 3.7 holds. There exist constants C, C1, and C2

only depending on q, such that for any d ≥ C, a sufficiently large constant only depending on q, we
have

C1

dk
≤ µk ≤ C2

dk
,

µj ≤
C2

C1
d−1µq, j = q + 1, q + 2, · · · ,

C1d
k ≤ N(d, k) ≤ C2d

k.

Lemma A.5 (Lemma C.4 in Lu et al. (2023)). Suppose that γ > 1 and define p := ⌊γ/2⌋. Suppose
that Assumption 3.7 holds. For any constants 0 < c1 ≤ c2 <∞ and any δ > 0, there exists constant
C only depending on c1, c2, δ, and γ, such that for any d ≥ C, when c1dγ ≤ n < c2d

γ , we have

λ̂N(q)+1 < 4µq+1, q ≤ p,

with probability at least 1− δ, where N(q) =
∑q

k=0N(d, k).

Remark A.6. In Lemma C.4 in Lu et al. (2023), the authors only considered γ ̸= 2, 4, 6, · · · and
q = p for their specific motivation. After checking the proofs carefully, we find that the statements in
Lemma C.4 in Lu et al. (2023) holds for any γ > 0 and any q ≤ p. Therefore, we omit the proof for
Lemma A.5.

B AUXILIARY RESULTS

Lemma B.1 (Concentration Inequality for Operator Norm, Tropp (2012), Theorem 7.3.1). Let
(Yi)1≤i≤n ∼ Y be i.i.d, Y taking values in the space of bounded self-adjoint operators B(H)

over a separable Hilbert space H. Define T := E[Y ], and let there be S ∈ L2(H) such that
E
[
(Y − T )2

]
≤ S, and a finite number R such that ∥Y ∥L∞(H) ≤ R almost everywhere. Define

d := ∥S∥L1(H)/∥S∥L∞(H) and σ2 := ∥S∥L∞(H). Then, for 0 < δ ≤ d, the following inequality
holds:

P


∥∥∥∥∥ 1n

n∑
i=1

Yi − T

∥∥∥∥∥
L∞(H)

≤ βR

n
+

√
3βσ2

n

 ≥ 1− δ,

where β := 2
3 log

4d
δ .
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Lemma B.2 (Proposition 10 in Rosasco et al. (2010)). For eigenvalues {λi}i∈N , {λ̂i}ni=1, there
exists extended enumerations of two sequences (adding 0 until the two sequences have the same
length, still denoted by {λi}, {λ̂i}) such that

sup
j≥1

∣∣∣λj − λ̂j

∣∣∣ ≤ 2
√
2κ

√
τ√

n

with probability at least 1− 2e−τ

Lemma B.3 (Proposition B.3 in Li et al. (2023a)). Under Assumption 3.3, there exist two constants
C1 and C2 only depending on β, cβ , and Cβ , such that we have

C1t−
1
β ≤ NΣ(t) ≤ C2t−

1
β .

C GAPS ON THE PROOF IN PREVIOUS WORKS

In this section, we shall point out the gaps existing in the proof in Rudi et al. (2013) and Sriperumbudur
& Sterge (2022).

C.1 GAPS ON THE PROOF OF PROPOSITION 2 IN SRIPERUMBUDUR & STERGE (2022)

The gaps on the proof of Proposition 2.(i) in Sriperumbudur & Sterge (2022), mainly comes from
Lemma B.1(i) in Sriperumbudur & Sterge (2022). Notice that Proposition 2.(i) is direct corollary of a
Lemma B.1(i) in Sriperumbudur & Sterge (2022), hence we describe their proof process as follows,
keeping the notation consistent with Sriperumbudur & Sterge (2022).

(i) For any Q ∈ Qℓ =
{∑ℓ

i=1 τi ⊗H τi : (τi)i∈[ℓ] ⊂ H
}

, Lemma B.1(i) in Sriperumbudur &
Sterge (2022) aimed to give a lower bound on the loss:

RA
α,δ,θ(Q) =

∥∥∥Aδ/2 (I −QAα)Aθ/2
∥∥∥2
L2(H)

, Q ∈ Qℓ,

by separating the operators Q and A into several parts.

(ii) Decompose A = A≤ +A>, where A≤ =
∑ℓ

i=1 λiψi ⊗H ψi and A> =
∑

i>ℓ λiψi ⊗H ψi.
The authors claimed that there existed a separation Ai, i = 1, 2, 3 such that we have

(τi)i∈A1
⊂ Ran (A≤) , (τi)i∈A2

⊂ Ran (A>) , (τi)i∈A3
⊂ Ker (A) .

If this claim held, then we could decomposeQ asQ1+Q2+Q3, whereQi =
∑

i∈Ai
τi⊗Hτi.

However, the following counterexample shows that separation Ai, i = 1, 2, 3 may not ex-
ist. It can be shown that there exists A satisfying Ker (A) = span (0, 0, 1),Ran (A) =
span{(1, 0, 0), (0, 1, 0)}, Ran (A≤) = span{(1, 0, 0)}, Ran (A>) = span{(0, 1, 0)}.
However, if we let τi = ( 35 ,

4
5 , 0), then i is not in any Ai, i = 1, 2, 3.

(iii) The authors also claimed that there existed four sets

B ⊆ {1, . . . , ℓ}, Bc := {1, . . . , ℓ}\B
C ⊆ {ℓ+ 1, ℓ+ 2, . . .}, Cc := {ℓ+ 1, ℓ+ 2, . . .}\C,

satisfying span
{
(ψi)i∈B

}
= span

{
(τi)i∈A1

}
and span

{
(ψi)i∈C

}
= span

{
(τi)i∈A2

}
.

If this claim held, then we could futher decompose A = A≤,B +A≤,Bc +A>,B +A>,Bc ,
where A≤,• :=

∑
i∈• λiψi ⊗H ψi, • ∈ B,Bc and A>,• :=

∑
i∈• λiψi ⊗H ψi, • ∈ C, Cc.

However, the following counterexample shows that the above claim may not hold. Let ℓ = 2,
ψ1 = (1, 0), ψ2 = (0, 1), τi = ( 35 ,

4
5 ), with i being the only component in A1. Then one

can show that B and C satisfying the above claim do not exist.

C.2 GAPS ON THE PROOF OF LEMMA 3.5, TERM B IN RUDI ET AL. (2013)

The proof for the assumption C can be summarized into the following three steps:
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(i) ∥(Σ + tI)
1
2 (Σ̂ + tI)−

1
2 ∥2L∞(H) ≥ 2/3 holds with high probability;

(ii) If ∥A 1
2B− 1

2 ∥2L∞(H) ≥ 2/3, then 3A/2−B is a semi-positive operator;

(iii) Let t = λℓ+1, A = Σ+ tI , and B = Σ̂ + tI .

However, the statement (ii) is not correct. For example, letA =

[
2 0 0
0 2 0
0 0 0.1

]
andB =

[
3 0 0
0 3 0
0 0 0.2

]
,

then we have ∥A 1
2B− 1

2 ∥2L∞(H) ≥ 2/3 while 3A/2−B is not a semi-positive operator.
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