
Under review as a conference paper at ICLR 2021

RESERVOIR TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We demonstrate that transformers obtain impressive performance even when some
of the layers are randomly initialized and never updated. Inspired by old and well-
established ideas in machine learning, we explore a variety of non-linear “reser-
voir” layers interspersed with regular transformer layers, and show improvements
in wall-clock compute time until convergence, as well as overall performance, on
various machine translation and (masked) language modelling tasks.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have dominated natural language processing (NLP) in recent
years, from large scale machine translation (Ott et al., 2018) to pre-trained (masked) language mod-
eling (Devlin et al., 2018; Radford et al., 2018), and are becoming more popular in other fields as
well, from reinforcement learning (Vinyals et al., 2019) to speech recognition (Baevski et al., 2019)
and computer vision (Carion et al., 2020). Their success is enabled in part by ever increasing com-
putational demands, which has naturally led to an increased interest in improving their efficiency.
Scalability gains in transformers could facilitate bigger, deeper networks with longer contexts (Ki-
taev et al., 2020; Wang et al., 2020; Beltagy et al., 2020; Kaplan et al., 2020; Tay et al., 2020b).
Conversely, improved efficiency could reduce environmental costs (Strubell et al., 2019) and hope-
fully help democratize the technology.

In this work, we explore a simple question: if some layers of the transformer are kept frozen—i.e.,
never updated after random initialization—can we match the performance of fully learned trans-
formers, while being more efficient? Surprisingly, the answer is resoundingly yes; and what is
more, we find that freezing layers may actually improve performance.

Beyond desirable efficiency gains, random layers are interesting for several additional reasons.
Fixed randomly initialized networks (Gallicchio & Scardapane, 2020) converge to Gaussian pro-
cesses in the limit of infinite width (Daniely et al., 2016), have intriguing interpretations in metric
learning (Rosenfeld & Tsotsos, 2019; Giryes et al., 2016), and have been shown to provide excel-
lent “priors” either for subsequent learning (Ulyanov et al., 2018) or pruning (Frankle & Carbin,
2018). Fixed layers allow for efficient low-cost hardware implementations (Schrauwen et al., 2007)
and can be characterized using only a random number generator and its seed, which might have
repercussions in distributed training and enables highly efficient deployment to edge devices. The
strong performance of networks with fixed layers also sheds new light on the inner workings of
BERT (Devlin et al., 2018), and layer-wise interpretations of such models (Rogers et al., 2020; Ten-
ney et al., 2019). It appears that “not all layers are created equal” (Zhang et al., 2019) is true to such
an extent that some layers can simply remain random and fixed.

These ideas have a long history in machine learning. By Cover’s theorem (Cover, 1965), any high-
dimensional non-linear transformation is more likely to be linearly separable than its lower-or-equal-
dimensional input space. By Johnson-Lindenstrauss (Johnson & Lindenstrauss, 1984), random pro-
jections distort Euclidean distances very little under mild assumptions, which is useful e.g. for
dimensionality reduction and random indexing (Sahlgren, 2005). Fixed random layers in neural
networks pre-date deep learning by far (Gamba et al., 1961; Baum, 1988). Indeed, random kernel
methods have been an impactful idea in machine learning (Rahimi & Recht, 2008; 2009).

One way to think of such layers is as “reservoirs” (Lukoševičius & Jaeger, 2009), where a highly
non-linear high-dimensional black box representation is provided to a lightweight “readout” net-
work, as in echo state networks (Jaeger, 2003) and liquid state machines (Maass et al., 2002). The

1

Under review as a conference paper at ICLR 2021

benefit of such an approach is that the reservoir has fixed parameters and is computationally efficient,
as it can be pre-computed and does not (necessarily) require backpropagation.

In NLP, Wieting & Kiela (2019) showed that random sentence encoders present a strong baseline for
text classification, with subsequent work showing applications in a variety of NLP tasks (Enguehard
et al., 2019; Garg et al., 2020; Pilault et al., 2020). To our knowledge, this work is the first to examine
this phenomenon in transformers, and the first to recursively alternate reservoirs with subsequent
transformer layers acting as readout functions. We introduce “reservoir transformers”, wherein fixed
random reservoir layers are interspersed with regular updateable transformer layers. The goal of
this work is not necessarily to set a new state of the art, but to put our understanding of transformer
models on a more solid footing by providing empirical evidence of their capabilities even when
some of their parameters are fixed. Our contributions are as follows:

• We introduce a new area under the convergence curve metric for measuring performance-
efficiency trade-offs, and show that replacing regular transformer layers with reservoir lay-
ers leads to better results on that metric.

• We show that the addition of reservoir layers in fact leads to improved test set generalization
on a variety of tasks in a variety of settings.

• We show that pre-trained masked language modelling architectures like BERT and
RoBERTa (Liu et al., 2019) can benefit from having some of their layers frozen, both
during pre-training as well as when fine-tuning on downstream tasks.

• In addition, we experiment with different types of reservoir layers, including convolutional
and recurrent neural network-based ones. We also show empirical evidence that the back-
ward pass can be entirely skipped by approximating top-layer gradients using an approach
we call backskipping, with a relatively small sacrifice in performance.

2 APPROACH

This paper is based on a very simple idea. Neural networks are trained via backpropagation, which
involves consecutive steps of matrix addition and multiplication, i.e.,

θt+1 ← θt − η
∂J

∂θt
;
∂J

∂θt
=

∂J

∂Ln

∂Ln
∂Ln−1

· · · ∂L1

∂L0

∂L0

∂x
(1)

for some objective J , parameterization θ and learning rate η, with the gradient computed via
the chain rule, where Li is the i-th layer of the neural network and x is the input. Let L =
Transformer(X) be a single layer in a Transformer network (Vaswani et al., 2017), i.e.,

H = MultiHeadSelfAttn(LayerNorm(X)) +X

L = FFN(LayerNorm(H)) +H
(2)

Now, during every “backward pass”, we compute the Jacobian for parameters θL at layer L, which
are used to update the parameters of L, θLt , as well as to compute the next layer’s Jacobian, thus
back-propagating the gradients. In this work however, for some of the layers, we still backpropagate
through them to compute gradients for earlier layers, but we never update their parameters. As a
result, these layers stay fixed at their random initialization, saving computational resources.

2.1 BACKGROUND

Naturally, never updating some of the parameters is computationally more efficient, as some matrix
addition operations can be skipped in the backward pass, but why is this not detrimental to the
performance of the network?

In the early days of neural networks, the bottom layers were often kept fixed as “associators” (Block,
1962), or what Minsky & Papert (2017) called the Gamba perceptron (Gamba et al., 1961; Borsellino
& Gamba, 1961). Fixed random networks (Baum, 1988; Schmidt et al., 1992; Pao et al., 1994) have

2

Under review as a conference paper at ICLR 2021

been explored from many angles, including as “random kitchen sink” kernel machines (Rahimi
& Recht, 2008; 2009), “extreme learning machines” (Huang et al., 2006) and reservoir comput-
ing (Jaeger, 2003; Maass et al., 2002; Lukoševičius & Jaeger, 2009). In reservoir computing, in-
put data are represented through fixed random high-dimensional non-linear representations, called
“reservoirs”, which are followed by a regular (often but not necessarily linear) “readout” network to
make the final classification decision.

The theoretical justification for these approaches lies in two well-known results in machine learn-
ing: Cover’s theorem (Cover, 1965) on the separability of patterns states that high-dimensional
non-linear transformations are more likely to be linearly separable; and the Johnson-Lindenstrauss
lemma (Johnson & Lindenstrauss, 1984) shows that random projections distort Euclidean distances
very little under mild assumptions.

Practically, random layers can be seen as a cheap way to increase network depth. There are inter-
esting advantages to this approach. Fixed layers are known to have particularly low-cost hardware
requirements and can be easily implemented on high-bandwidth FPGAs with low power consump-
tion (Hadaeghi et al., 2017; Tanaka et al., 2019), or on optical devices (Hicke et al., 2013). This
might yield interesting possibilities for training in a distributed fashion across multiple devices, as
well as for neurmorphic hardware (Neftci et al., 2017). This approach also facilitates lower-latency
deployment of neural networks to edge devices, since weights can be shared simply by sending the
seed number, assuming the random number generator is known on both ends.

2.2 RESERVOIR TRANSFORMERS

This work explores inserting random non-linear transformations, or what we call reservoir layers,
into transformer networks. Specifically, we experiment with a variety of reservoir layers:

• Transformer Reservoir: The standard transformer layer as described above, but with all
parameters fixed after initialization, including the self-attention module.

• FFN Reservoir: A transformer-style fixed feed-forward layer without any self-attention,
i.e., FFN(LayerNorm(Previous layer)) + Previous layer.

• BiGRU Reservoir: A fixed bidirectional Gated Recurrent Unit (Cho et al., 2014) layer,
which is closer in spirit to previous work on reservoir computing, most of which builds on
recurrent neural network architectures.

• CNN Reservoir: A fixed Convolutional Neural Network (LeCun et al., 1998) layer, specifi-
cally light dynamical convolution layers (Wu et al., 2019), which are known to be compet-
itive with transformers in sequence-to-sequence tasks.

We find that all these approaches work well, to a certain extent. For clarity, we focus primarily on
the first two reservoir layers, but include a broader comparison in Appendix A.

In each case, contrary to traditional reservoir computing, our reservoir layers are interspersed
throughout a regular transformer network, or what we call a reservoir transformer. A good jus-
tification for this approach is that while random projections are not learned and might introduce
noise, subsequent normal transformer “readout” layers might allow us to recover from any adverse
effects of randomness. For example, previous work has shown that ResNets, with all of their param-
eters fixed except for the scale and shift parameters of batch normalization, can still achieve high
performance, simply by scaling and shifting random features (Frankle et al., 2020). Adding noise to
the parameters of neural networks is also known to help convergence and generalization (Jim et al.,
1995; 1996; Gulcehre et al., 2016; Noh et al., 2017).

3 EVALUATION

We evaluate the proposed approach on a variety of well-known tasks in natural language processing,
namely: machine translation, language modelling and masked language model pre-training.

In this work, we are not necessarily interested in obtaining the state of the art on any task or even
in improving overall task performance via this method. The main objective is to examine effi-
ciency, i.e. the relationship between compute time and task performance. This is closely related

3

Under review as a conference paper at ICLR 2021

2 4 6 8 10 12
Updatable Encoder Layers

0.96

0.97

0.98

0.99

1.00

va
lid

 B
LE

U
 A

U
CC

Transformer
T Reservoir
FFN Reservoir

2 4 6 8 10 12
Updatable Encoder Layers

32.5

33.0

33.5

34.0

te
st

 B
LE

U

Transformer
T Reservoir
FFN Reservoir

Figure 1: Validation BLEU AUCC and test BLEU for IWSLT (high is good). Comparison of regular
transformer and reservoir transformer with FFN or Transformer reservoir layers added.

to efforts in Green AI, which are concerned with the trade-offs between compute, data, and per-
formance (Schwartz et al., 2019). We propose a new metric for our purposes, the area under the
convergence curve (AUCC): similarly to how the area under the receiver operating characteristic
(Bradley, 1997, AUC-ROC) measures a classifier’s performance independent of the classification
threshold, AUCC measures a model’s performance independent of the specific compute budget.
Specifically, AUCC is computed as follows:

∫ T̂

t=0

∑
x,y∈D

gt(f(x), y) (3)

where f is the network and g is the evaluation metric, measured until convergence time T̂ , which
is the maximum convergence time of all models included in the comparison. Note that time here is
wall-clock time, not iterations. By convergence, we mean that validation performance has stopped
improving, and hence the convergence curve whose area we measure plots the desired metric over
time. Runs are averaged over multiple seeds and reported with standard deviation. We normalize
raw AUCC scores by their maximum score to ensure a more easily interpretable [0− 1] range.

One potential downside of this approach is that the AUCC metric could lead to higher scores for a
model that converges quickly but to ultimately worse performance, if measured in a small window.
We account for this by making sure that T̂ is set sufficiently high. We include the raw validation
curves in the appendix and also report test set generalization in each experiment.

3.1 EXPERIMENTAL SETTINGS AND IMPLEMENTATION DETAILS

We evaluate on IWSLT de-en (Cettolo et al., 2015) and WMT en-de (Bojar et al., 2014) for ma-
chine translation; enwiki8 (LLC, 2009) for language modelling; and experiment with RoBERTa
(Liu et al., 2019) in our pretraining experiments. For IWSLT, we follow the pre-processing steps in
Edunov et al. (2018). The train/val/test split is 129k/10k/6.8k sentences. For WMT, we follow the
pre-processing steps in Ott et al. (2018). The train/val/test split is 4.5M/16.5k/3k sentences. For en-
wiki8, we follow the pre-processing steps in Dai et al. (2019). The train/val/test split is 1M/54k/56k
sentences. For RoBERTa pretraining, we follow the pre-processing steps in Liu et al. (2019).

We use 8 Volta V100 GPUs for WMT and enwik8, 32 V100 GPUs for RoBERTa and a single V100
for IWSLT. The hyperparameters for IWSLT14 and WMT16 were set to the best-performing values
from Ott et al. (2018) and Kasai et al. (2020) respectively. The enwik8 experiment settings followed
Bachlechner et al. (2020) and the RoBERTa experiments followed Liu et al. (2019). All experiments
were conducted using fairseq (Ott et al., 2019). Our code and experimental settings will be made
open source at [ANONYMIZED-GITHUB-URL].

4

Under review as a conference paper at ICLR 2021

Model # Layers Frozen Max BLEU Train time Ratio # Params Train Time each
until max (in hours) Trainable (Total) epoch (in seconds)

Transformer

6 0 34.52 ± 0.07 2.548 ± 0.06 1 26.8M 122.73 ± 1.16
8 0 34.59 ± 0.11 2.557 ± 0.05 1 31.1M 142.28 ± 1.87

10 0 34.56 ± 0.05 3.173 ± 0.04 1 35.3M 161.66 ± 1.54
12 0 34.29 ± 0.12 3.521 ± 0.09 1 39.5M 172.45 ± 1.98

T Reservoir

6 2 34.37 ± 0.12 2.422 ± 0.03 0.95 22.6M (26.8M) 120.59 ± 1.32
8 2 34.80 ± 0.07 2.450 ± 0.06 0.96 26.8M (31.1M) 134.49 ± 1.76

10 2 34.70 ± 0.03 2.831 ± 0.05 0.89 31.1M (35.3M) 144.42 ± 1.98
12 2 34.78 ± 0.04 3.476 ± 0.04 0.98 35.3M (39.5M) 159.43 ± 1.67

FFN Reservoir

6 2 34.43 ± 0.15 2.120 ± 0.04 0.83 22.6M (25.8M) 107.71 ± 1.73
8 2 34.56 ± 0.16 2.203 ± 0.06 0.86 26.8M (29.1M) 120.07 ± 1.65

10 2 34.66 ± 0.02 2.493 ± 0.05 0.79 31.1M (33.3M) 130.11 ± 1.43
12 2 34.76 ± 0.03 3.241 ± 0.04 0.92 35.3M (37.5M) 156.32 ± 1.87

LayerDrop

6 2 34.59 ± 0.15 2.364 ± 0.08 0.92 22.6M (26.8M) 119.30 ± 1.36
8 2 34.58 ± 0.16 2.554 ± 0.05 0.99 26.8M (31.1M) 138.62 ± 1.44

10 2 34.57 ± 0.07 3.404 ± 0.06 1.07 31.1M (35.3M) 140.88 ± 1.62
12 2 33.65 ± 0.24 3.251 ± 0.04 0.92 35.3M (39.5M) 160.85 ± 1.49

Table 1: Wall-clock time (averaged over multiple runs) saved for IWSLT for different model types
and encoder depths. Max BLEU is for validation. Number of layers is for encoder, decoder depth is
kept fixed at 2. Ratio is computed compared to comparable number of layers in the normal case.

All the experiments in this paper were run with 3 random seeds and the mean and standard deviation
are reported. For the relatively small IWSLT, the T̂ value in the AUCC metric was set to 4 hours.
For WMT, which is larger, we set it to 20 hours. For enwiki8, it was 30 hours; and for the RoBERTa
pre-training experiments, it was set to 60 hours.

The projection weights in random layers were initialized using orthogonal initialization (Saxe
et al., 2013), which makes sense since random orthogonal projections should be most information-
preserving, and which was found to work well empirically for initializing fixed random representa-
tions in previous work (Wieting & Kiela, 2019). Biases and layer norm parameters were initialized
using their respective PyTorch defaults (based on Xavier init; Glorot & Bengio, 2010).

We intersperse reservoir layers in alternating fashion starting from the middle. Specifically, we
alternate one reservoir layer with one transformer layer, and place the alternating block in the middle.
For example: a 7-layer encoder LLLLLLL in which we replace three layers with reservoirs becomes
LRLRLRL, and with two becomes LLRLRLL. See Appendix C for a study comparing this strategy
to alternative approaches (e.g., freezing in the bottom, middle or top).

4 EXPERIMENTS

In what follows, we first show our main result: reservoir transformers often have better AUCC met-
rics, less training time per epoch, less convergence time until the best validation performance is
achieved, and even improved test set generalization metrics, on a variety of tasks. As a strong base-
line method, we compare to LayerDrop (Fan et al., 2019). LayerDrop can also be seen as a method
that dynamically bypasses parts of the computation during Transformer training in an attempt to im-
prove efficiency, and is a suitable comparison to examine our methods.. We also examine whether
we can minimize the expectation over the gradients of upper layers in the transformer network such
that we do not have to pass the true gradients through the reservoir for further efficiency.

4.1 MACHINE TRANSLATION

Machine translation (MT) is one of the core tasks of NLP. We demonstrate on two well-known MT
datasets, IWSLT’14 German-English and WMT’16 English-German, that reservoir transformers
obtain a better AUCC. For the raw validation plots over time that were used to calculate the AUCC,
please refer to Appendix F.

Following Kasai et al. (2020), the architecture of the network is an N-layer reservoir transformer
encoder, followed by a regular shallow one- or two-layer decoder. This design choice has been
shown to lead to very good speed and efficiency trade-offs, and serves as a good baseline for our

5

Under review as a conference paper at ICLR 2021

10 15 20 25 30
Updatable Encoder Layers

0.94

0.95

0.96

0.97

0.98

0.99

1.00

va
lid

 B
LE

U
 A

U
CC

Transformer
T Reservoir
FFN Reservoir

10 15 20 25 30
Updatable Encoder Layers

26.25

26.50

26.75

27.00

27.25

27.50

27.75

28.00

te
st

 B
LE

U

Transformer
T Reservoir
FFN Reservoir

Figure 2: Validation BLEU AUCC and test BLEU for WMT (high is good). Comparison of regular
transformer and reservoir transformer with FFN or Transformer reservoir layers added.

30 40 50 60 70
Updatable Decoder Layers

0.6

0.7

0.8

0.9

1.0

va
lid

 b
pc

 A
U

CC

Transformer
T Reservoir
FFN Reservoir

30 40 50 60 70
Updatable Decoder Layers

1.2

1.4

1.6

1.8

2.0

2.2

2.4

te
st

 b
pc

Transformer
T Reservoir
FFN Reservoir

Figure 3: Validation BPC AUCC and test BPC on the enwik8 language modelling task (low is good).
Comparison of regular and reservoir transformers for varying depths.

experiments. Moreover, shallow decoders make it easier to decide where to place reservoir layers (in
the encoder) and makes it more straightforward to identify where performance gains come from.

Figure 1 shows the results for IWSLT. On the y-axis we show validation AUCC for the BLEU
metric; on the x-axis we show the number of updatable layers in the encoder. The performance
of a regular transformer encoder with 6 layers and a reservoir transformer encoder with 6 layers
plus N additional reservoir layers are plotted for the same x-axis value to show the total number of
updated layers. Plots for the total number of layers (updatable plus not-updatable, so essentially
shifted versions) are shown in Appendix E. Table 1 shows the time it took to achieve the maximum
validation BLEU score and how that relates to the regular transformer, demonstrating that reservoir
transformers consistently converge faster in terms of wall-clock time, up to 22% as much with the
same number of updateable layers. We save as much as 27% time until convergence a 24 layer model
on WMT, as shown in Table 3. One other noticeable point is that we can see that the T Reservoir
achieves similar performance to LayerDrop on IWSLT and WMT in terms of wall-clock per epoch
and wall-clock time to the best performance. However, on both tasks, FFN Reservoir performs much
better than LayerDrop in terms of efficiency per epoch and achieves better/similar performance in
less time in each case. As a point of reference, a half hour gain on IWSLT translates to a gain of
several days in the training of bigger transformer models like GPT-3 (Brown et al., 2020).

We observe that reservoir transformers consistently perform better than, or are competitive to, reg-
ular transformers, both in terms of validation BLEU AUCC as well as test time BLEU, for all
examined encoder depths.

6

Under review as a conference paper at ICLR 2021

4 6 8 10 12 14 16
Updatable Decoder Layers

91

92

93

94

95

96

va
lid

 a
cc

ur
ac

y

Transformer
T Reservoir
FFN Reservoir
Transformer (frozen finetuned)

4 6 8 10 12 14 16
Updatable Decoder Layers

78

80

82

84

86

va
lid

 a
cc

ur
ac

y

Transformer
T Reservoir
FFN Reservoir
Transformer (frozen finetuned)

Figure 4: Downstream RoBERTa performance on SST-2 (left) and MultiNLI-matched (right).

Figure 2 shows a similar trend for WMT. WMT is much larger and requires a much deeper encoder,
as illustrated by the fact that a certain minimum depth is required for reservoir transformers to
achieve a comparable validation AUCC. At test time, reservoir transformers outperform regular
transformers for almost all encoder depths. The FFN reservoir transformer seems to work best in
both cases, which is surprising because it does not have any self-attention component at all. This
finding shows that self-attention, or the mechanism to summarize context information, should be
learned if present. Once the context features have been gathered, a random projection via a fixed
FFN module appears to be beneficial, at least for MT.

4.2 LANGUAGE MODELLING

To examine whether the same findings hold for other tasks, we evaluate on the enwiki8 (LLC, 2009)
language modelling task. We examine the BPC (bits per character) rate for a variety of network
depths (since the task is language modelling, these layers are in the decoder). The results show
that we obtain consistently better BPC for lower depths, except for the 64-layer regular transformer,
which appears to be particularly optimal for this task. We observe similar trends during test time.

4.3 MASKED LANGUAGE MODEL PRETRAINING

We train RoBERTa (Liu et al., 2019) models from scratch at a variety of depths, both in the normal
and reservoir setting. We find that these networks show minor differences in their best perplexity
and similar AUCC perplexity (see Appendix D). We then examine the performance of these mod-
els when fine-tuned on downstream tasks, specifically the well known SST-2 (Socher et al., 2013)
and MultiNLI1 (Williams et al., 2017) tasks. When fine-tuning the reservoir models, we keep the
reservoir layers fixed (including them in fine-tuning did not work very well, see Appendix D).

Figure 4 shows the results of fine-tuning. We observe that the reservoir transformer outperforms
normal RoBERTa at all depths in both tasks. At lower depth, the improvements are substantial. As
a sanity check, we also experiment with freezing some of the layers in normal RoBERTa during
fine-tuning (Transformer frozen finetuned) and show that this helps a little but is still outperformed
by the reservoir transformer.

These findings suggest that you can train a RoBERTa model without updating all of the layers,
achieve similar perplexity at a similar computational cost, but with better downstream performance.
The fact that some layers can be kept random and entirely fixed during training, without sacrificing
any performance, raises intriguing questions for “BERTology” (Rogers et al., 2020) and for the study
of what different layers in transformers learn.

1We report results for MultiNLI-Matched.

7

Under review as a conference paper at ICLR 2021

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
 Training Hours (h)

10

15

20

25

30

35

Va
lid

at
io

n
BL

EU

Validation curve for training on IWSLT14

Transformer
T Reservoir
Backskipped Reservoir

Figure 5: IWSLT comparison of normal v frozen v backskipped

4.4 BACKSKIPPING

With the reservoir transformers as described above, we obtain better efficiency by skipping the “gra-
dient application” matrix addition step in some of the layers (i.e., updating the weights). One step
further would be to investigate skipping the entire backward pass for reservoirs altogether, which
would save us from having to do the much more expensive matrix multiplication for these layers
that is required for the propagation of gradients. We report on preliminary experiments where in the
backward pass we replace the gradients for the layer Li going into the reservoir Li+1 with a noisy
estimate (Jaderberg et al., 2017; Czarnecki et al., 2017). Promisingly, Oktay et al. (2020) recently
asked “why spend resources on exact gradients when we’re going to use stochastic optimization?”
and show that you can do randomized auto-differentiation quite successfully.

Here, rather than minimizing the actual gradients ∂Li

∂θLi
, we minimize their expectation and train

via continuous-action REINFORCE (Williams, 1992). That is, Li becomes a policy πa: s → µ
where we sample actions a ∼ N (µ, 1). We train to minimize the gradient prediction loss via MSE,
i.e., 1

n

∑n
i=0(R

i − V i(a))2, and the REINFORCE loss Ea [log(a) (R− V (a))], where the value
network V acts as the baseline. R is defined as the mean of the gradients of the top layer Li+2, with
the sign flipped. Thus, simply put, we train to minimize the expectation of the true gradients at the
layer directly following the reservoir. We employ an annealing scheme where we first train the value
network and propagate the true gradients during warmup. Afterwards, we anneal the probability
of backskipping rather than performing a true backward pass (multiplying the probability by 0.99
every iteration until we only backskip). We experimented with setting R to the negation of the total
loss as well but found the current reward to work better. We call this approach backskipping.

Figure 5 shows the results as validation BLEU over time. We observe that this approach helps
especially during the earlier stages of training. Although it does not match the performance of
the approach with true gradients quite yet, it actually performs competitively. Backskipping looks
promising as an approach to further reduce computational costs, and would be even more efficient
from a hardware perspective since the circuitry for such layers (which do not need to propagate
gradients) can effectively be hardwired entirely.

5 RELATED WORK

Recent work has shown that modern NLP models are able to function with different numbers of
layers for different examples (Elbayad et al., 2019; Fan et al., 2019); that different layers special-
ize for different purposes (Zhang et al., 2019); that layers can be compressed (Li et al., 2020);
and, that layers can be reordered (Press et al., 2019). There is a growing body of work in efficient
self-attention networks (Tay et al., 2020b), such as linear attention (Wang et al., 2020), on how
to process long context information (Beltagy et al., 2020) and on approximations to make trans-
formers more scalable (Kitaev et al., 2020; Katharopoulos et al., 2020). BigBIRD (Zaheer et al.,
2020) provides random keys as additional inputs to its attention mechanism. Locality sensitive
hashing (LSH) as employed e.g. in Reformer (Kitaev et al., 2020) utilizes a fixed random projec-
tion. Performer (Choromanski et al., 2020) computes the transformer’s multi-head attention weights
as a fixed orthogonal random projection. Closely related to this work, Tay et al. (2020a) showed

8

Under review as a conference paper at ICLR 2021

that randomized alignment matrices in their “Synthesizer” architecture are sufficient for many NLP
tasks. While these works focus on random attention, we show that entire layers can be random and
fixed. We also show that entire layers can be replaced by fixed random projections that do not have
any attention whatsoever.

Beyond transformers, random features have been extensively explored. Examples of this include
FreezeOut (Brock et al., 2017), deep reservoir computing networks (Scardapane & Wang, 2017;
Gallicchio & Micheli, 2017), as well as applications in domains as varied as text classification (Con-
neau et al., 2017; Zhang & Bowman, 2018; Wieting & Kiela, 2019) or music classification (Pons
& Serra, 2019). It is well known that randomly initialized networks can display impressive perfor-
mance on their own (Ulyanov et al., 2018; Rosenfeld & Tsotsos, 2019; Ramanujan et al., 2020),
which underlies, for example, the recently popularized lottery ticket hypothesis (Frankle & Carbin,
2018; Zhou et al., 2019). We know that learning deep overparameterized networks appears to help
in general (Li & Liang, 2018; Du et al., 2019). Our method represents an easy and cheap way to add
both depth and parameters to transformer networks.

6 CONCLUSION

This work demonstrated that state-of-the-art transformer architectures can be trained without updat-
ing all of the layers. This complements a long history in machine learning of harnessing the power
of random features. In most cases, “reservoir transformers” achieve better performance-efficiency
trade-offs as measured by our newly introduced AUCC metric, and better test set generalization,
on a variety of tasks and in a variety of settings. Future work includes further investigating hybrid
networks and backskipping architectures, as well as utilizing pruning strategies at inference time, in
order to try to obtain even better performance/efficiency trade-offs.

REFERENCES

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry Mao, Garrison W Cottrell,
and Julian McAuley. Rezero is all you need: Fast convergence at large depth. arXiv preprint
arXiv:2003.04887, 2020.

Alexei Baevski, Steffen Schneider, and Michael Auli. vq-wav2vec: Self-supervised learning of
discrete speech representations. arXiv preprint arXiv:1910.05453, 2019.

Eric B Baum. On the capabilities of multilayer perceptrons. Journal of complexity, 4(3):193–215,
1988.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Hans-Dieter Block. The perceptron: A model for brain functioning. i. Reviews of Modern Physics,
34(1):123, 1962.

Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes Lev-
eling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia Specia,
and Aleš Tamchyna. Findings of the 2014 workshop on statistical machine translation. In Pro-
ceedings of the Ninth Workshop on Statistical Machine Translation, Baltimore, Maryland, USA,
June 2014. Association for Computational Linguistics.

A Borsellino and A Gamba. An outline of a mathematical theory of papa. Il Nuovo Cimento (1955-
1965), 20(2):221–231, 1961.

Andrew P Bradley. The use of the area under the roc curve in the evaluation of machine learning
algorithms. Pattern recognition, 30(7):1145–1159, 1997.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Freezeout: Accelerate training
by progressively freezing layers. arXiv preprint arXiv:1706.04983, 2017.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

9

Under review as a conference paper at ICLR 2021

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov,
and Sergey Zagoruyko. End-to-end object detection with transformers. arXiv preprint
arXiv:2005.12872, 2020.

M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, and Marcello Federico. Report on the 11 th iwslt
evaluation campaign , iwslt 2014. In Proceedings of IWSLT, 2015.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Jared Davis, Tamas
Sarlos, David Belanger, Lucy Colwell, and Adrian Weller. Masked language modeling for pro-
teins via linearly scalable long-context transformers. arXiv preprint arXiv:2006.03555, 2020.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes. Super-
vised learning of universal sentence representations from natural language inference data. arXiv
preprint arXiv:1705.02364, 2017.

Thomas M Cover. Geometrical and statistical properties of systems of linear inequalities with ap-
plications in pattern recognition. IEEE transactions on electronic computers, (3):326–334, 1965.

Wojciech Marian Czarnecki, Grzegorz Świrszcz, Max Jaderberg, Simon Osindero, Oriol Vinyals,
and Koray Kavukcuoglu. Understanding synthetic gradients and decoupled neural interfaces.
arXiv preprint arXiv:1703.00522, 2017.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, July 2019.
Association for Computational Linguistics.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks:
The power of initialization and a dual view on expressivity. In Advances In Neural Information
Processing Systems, pp. 2253–2261, 2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pp. 1675–
1685, 2019.

Sergey Edunov, Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio Ranzato. Classical
structured prediction losses for sequence to sequence learning. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), New Orleans, Louisiana, June 2018. Associa-
tion for Computational Linguistics.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. arXiv
preprint arXiv:1910.10073, 2019.

Joseph Enguehard, Dan Busbridge, Vitalii Zhelezniak, and Nils Hammerla. Neural language priors.
arXiv preprint arXiv:1910.03492, 2019.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Jonathan Frankle, David J Schwab, and Ari S Morcos. Training batchnorm and only batchnorm: On
the expressive power of random features in cnns. arXiv preprint arXiv:2003.00152, 2020.

10

Under review as a conference paper at ICLR 2021

Claudio Gallicchio and Alessio Micheli. Echo state property of deep reservoir computing networks.
Cognitive Computation, 9(3):337–350, 2017.

Claudio Gallicchio and Simone Scardapane. Deep randomized neural networks. In Recent Trends
in Learning From Data, pp. 43–68. Springer, 2020.

A. Gamba, L. Gamberini, G. Palmieri, and R. Sanna. Further experiments with papa. Il Nuovo
Cimento (1955-1965), 20(2):112–115, 1961.

Ankush Garg, Yuan Cao, and Qi Ge. Echo state neural machine translation. arXiv preprint
arXiv:2002.11847, 2020.

Raja Giryes, Guillermo Sapiro, and Alex M Bronstein. Deep neural networks with random gaussian
weights: A universal classification strategy? IEEE Transactions on Signal Processing, 64(13):
3444–3457, 2016.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Caglar Gulcehre, Marcin Moczulski, Misha Denil, and Yoshua Bengio. Noisy activation functions.
In International conference on machine learning, pp. 3059–3068, 2016.

Fatemeh Hadaeghi, Xu He, and Herbert Jaeger. Unconventional Information Processing Systems,
Novel Hardware: A Tour D’Horizon. 2017.

Konstantin Hicke, Miguel Escalona-Moran, Daniel Brunner, Miguel Soriano, Ingo Fischer, and
Claudio Mirasso. Information processing using transient dynamics of semiconductor lasers sub-
ject to delayed feedback. Selected Topics in Quantum Electronics, IEEE Journal of, 19:1501610–
1501610, 07 2013. doi: 10.1109/JSTQE.2013.2241738.

Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: theory and
applications. Neurocomputing, 70(1-3):489–501, 2006.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In Inter-
national Conference on Machine Learning, pp. 1627–1635. PMLR, 2017.

Herbert Jaeger. Adaptive nonlinear system identification with echo state networks. In Advances in
neural information processing systems, 2003.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, 2019.

Kam Jim, Bill G Horne, and C Lee Giles. Effects of noise on convergence and generalization in
recurrent networks. In Advances in neural information processing systems, pp. 649–656, 1995.

Kam-Chuen Jim, C Lee Giles, and Bill G Horne. An analysis of noise in recurrent neural networks:
convergence and generalization. IEEE Transactions on neural networks, 7(6):1424–1438, 1996.

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1, 1984.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross, and Noah A Smith. Deep encoder, shal-
low decoder: Reevaluating the speed-quality tradeoff in machine translation. arXiv preprint
arXiv:2006.10369, 2020.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. arXiv preprint arXiv:2006.16236,
2020.

11

Under review as a conference paper at ICLR 2021

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems, pp. 8157–
8166, 2018.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and Joseph E Gon-
zalez. Train large, then compress: Rethinking model size for efficient training and inference of
transformers. arXiv preprint arXiv:2002.11794, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

MultiMedia LLC. Large text compression benchmark. 2009.

Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recurrent neural net-
work training. Computer Science Review, 3(3), 2009.

Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural computation, 14
(11):2531–2560, 2002.

Marvin Minsky and Seymour A Papert. Perceptrons: An introduction to computational geometry.
MIT press, 2017.

Emre O Neftci, Charles Augustine, Somnath Paul, and Georgios Detorakis. Event-driven random
back-propagation: Enabling neuromorphic deep learning machines. Frontiers in neuroscience,
11:324, 2017.

Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, and Bohyung Han. Regularizing deep neural
networks by noise: Its interpretation and optimization. In Advances in Neural Information Pro-
cessing Systems, pp. 5109–5118, 2017.

Deniz Oktay, Nick McGreivy, Joshua Aduol, Alex Beatson, and Ryan P Adams. Randomized
automatic differentiation. arXiv preprint arXiv:2007.10412, 2020.

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine translation.
arXiv preprint arXiv:1806.00187, 2018.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, 2019.

Yoh-Han Pao, Gwang-Hoon Park, and Dejan J Sobajic. Learning and generalization characteristics
of the random vector functional-link net. Neurocomputing, 6(2):163–180, 1994.

Jonathan Pilault, Jaehong Park, and Christopher Pal. On the impressive performance of randomly
weighted encoders in summarization tasks. arXiv preprint arXiv:2002.09084, 2020.

Jordi Pons and Xavier Serra. Randomly weighted cnns for (music) audio classification. In ICASSP
2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP),
pp. 336–340. IEEE, 2019.

Ofir Press, Noah A Smith, and Omer Levy. Improving transformer models by reordering their
sublayers. arXiv preprint arXiv:1911.03864, 2019.

12

Under review as a conference paper at ICLR 2021

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2018.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
neural information processing systems, pp. 1177–1184, 2008.

Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing minimization
with randomization in learning. In Advances in neural information processing systems, pp. 1313–
1320, 2009.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Raste-
gari. What’s hidden in a randomly weighted neural network? In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11893–11902, 2020.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology: What we know about
how bert works. arXiv preprint arXiv:2002.12327, 2020.

Amir Rosenfeld and John K Tsotsos. Intriguing properties of randomly weighted networks: Gener-
alizing while learning next to nothing. In 2019 16th Conference on Computer and Robot Vision
(CRV), pp. 9–16. IEEE, 2019.

Magnus Sahlgren. An introduction to random indexing. In Methods and applications of semantic in-
dexing workshop at the 7th international conference on terminology and knowledge engineering,
2005.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Simone Scardapane and Dianhui Wang. Randomness in neural networks: an overview. Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery, 7(2):e1200, 2017.

Wouter F Schmidt, Martin A Kraaijveld, and Robert PW Duin. Feedforward neural networks with
random weights. In Proceedings of the 11th International Conference on Pattern Recognition,
1992. Vol. II. Conference B: Pattern Recognition Methodology and Systems, pp. 1–4, 1992.

Benjamin Schrauwen, Michiel D’Haene, David Verstraeten, and Jan Campenhout. Compact hard-
ware for real-time speech recognition using a liquid state machine. pp. 1097 – 1102, 09 2007.
doi: 10.1109/IJCNN.2007.4371111.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. arXiv preprint
arXiv:1907.10597, 2019.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

Gouhei Tanaka, Toshiyuki Yamane, Jean Benoit Héroux, Ryosho Nakane, Naoki Kanazawa, Seiji
Takeda, Hidetoshi Numata, Daiju Nakano, and Akira Hirose. Recent advances in physical reser-
voir computing: A review. Neural Networks, 115:100 – 123, 2019.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention in transformer models. arXiv preprint arXiv:2005.00743, 2020a.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. arXiv
preprint arXiv:2009.06732, 2020b.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950, 2019.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454, 2018.

13

Under review as a conference paper at ICLR 2021

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou,
Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782):
350–354, November 2019.

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

John Wieting and Douwe Kiela. No training required: Exploring random encoders for sentence
classification. arXiv preprint arXiv:1901.10444, 2019.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Felix Wu, Angela Fan, Alexei Baevski, Yann N Dauphin, and Michael Auli. Pay less attention with
lightweight and dynamic convolutions. arXiv preprint arXiv:1901.10430, 2019.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for longer
sequences. arXiv preprint arXiv:2007.14062, 2020.

Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created equal? arXiv preprint
arXiv:1902.01996, 2019.

Kelly Zhang and Samuel Bowman. Language modeling teaches you more than translation does:
Lessons learned through auxiliary syntactic task analysis. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, 2018.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros,
signs, and the supermask. In Advances in Neural Information Processing Systems, pp. 3597–3607,
2019.

14

Under review as a conference paper at ICLR 2021

2 4 6 8 10 12
Updatable Encoder Layers

0.96

0.97

0.98

0.99

1.00

va
lid

 B
LE

U
 A

U
CC

Transformer
T Reservoir
FFN Reservoir
GRU Reservoir
Conv Reservoir

2 4 6 8 10 12
Updatable Encoder Layers

32.0

32.5

33.0

33.5

34.0

te
st

 B
LE

U

Transformer
T Reservoir
FFN Reservoir
GRU Reservoir
Conv Reservoir

Figure 6: IWSLT comparison of different hybrid architectures with different reservoir layers.

2 4 6 8 10 12
Updatable Encoder Layers

0.96

0.97

0.98

0.99

1.00

va
lid

 B
LE

U
 A

U
CC

Transformer
T Reservoir
FFN Reservoir

2 4 6 8 10 12
Updatable Encoder Layers

33.2

33.4

33.6

33.8

34.0

34.2

34.4

34.6

te
st

 B
LE

U

Transformer
T Reservoir
FFN Reservoir

Figure 7: IWSLT validation AUCC and test BLEU with 6-layer decoder.

A HYBRID NETWORKS AND NON-TRANSFORMER RESERVOIRS

We investigate whether reservoir layers need to be transformer-based (or transformers-without-
attention, i.e., FFN). We examine two different alternatives: bidirectional Gated Recurrent Units
(Cho et al., 2014) and Convolutional Neural Networks (LeCun et al., 1998; Kim, 2014), specifi-
cally light dynamical convolutions (Wu et al., 2019). Figure 6 shows the results for these hybrids:
depending on the setting, they may obtain a better AUCC than the regular transformer, but this is
less consistent than with the other reservoir layers, most likely because these layers have different
computational properties. It’s possible that these hybrids simply require further tuning, as we found
e.g. up-projecting to help for BiGRUs, but studying this is outside of the scope of the current work.

B DEEP DECODERS

We show that the same results hold for a 6-layer decoder on IWSLT (although less pronounced for
AUCC, probably because the decoder is computationally heavier). See Figure 7 and Table 2.

C FREEZING STRATEGY

We explored different strategies for the placement of reservoir layers and found the “alternating”
strategy reported in the main body of the paper to work best. Generally, we found repetitive appli-
cation of reservoirs to yield diminishing returns, as might be expected. See Figure 8.

15

Under review as a conference paper at ICLR 2021

Model # Layers Frozen Max BLEU Train time Ratio # Params Train Time each
until max (in hours) Trainable (Total) epoch (in seconds)

Transformer

6 0 34.97 ± 0.05 1.984 ± 0.02 1 39.5M 177.84 ± 2.98
8 0 34.99 ± 0.08 2.161 ± 0.03 1 43.7M 206.59 ± 3.47

10 0 34.98 ± 0.04 2.345 ± 0.02 1 47.9M 236.72 ± 3.52
12 0 34.78 ± 0.11 2.535 ± 0.05 1 52.0M 265.90 ± 4.97

T Reservoir

6 2 34.73 ± 0.11 1.838 ± 0.01 0.92 35.3M (39.5M) 166.11 ± 2.21
8 2 35.07 ± 0.05 1.912 ± 0.03 0.88 39.5M (43.7M) 190.08 ± 3.73

10 2 35.02 ± 0.01 1.970 ± 0.04 0.84 43.7M (47.9M) 204.42 ± 2.89
12 2 35.06 ± 0.02 2.429 ± 0.02 0.95 47.8M (52.0M) 236.41 ± 4.35

FFN Reservoir

6 2 34.85 ± 0.10 1.729 ± 0.03 0.87 35.3M (37.4M) 161.72 ± 2.32
8 2 34.99 ± 0.11 1.751 ± 0.02 0.81 39.5M (41.6M) 180.21 ± 2.68

10 2 34.92 ± 0.03 1.907 ± 0.02 0.81 43.7M (45.8M) 191.40 ± 2.49
12 2 35.16 ± 0.04 2.395 ± 0.01 0.94 47.8M (49.9M) 216.08 ± 2.57

LayerDrop

6 2 34.51 ± 0.12 1.908 ± 0.04 0.96 35.3M (39.5M) 169.62 ± 3.16
8 2 34.77 ± 0.11 2.023 ± 0.02 0.94 39.5M (43.7M) 186.71 ± 2.17

10 2 34.06 ± 0.05 1.912 ± 0.02 0.97 43.7M (47.9M) 205.52 ± 3.31
12 2 34.08 ± 0.13 2.524 ± 0.01 0.99 47.8M (52.0M) 222.45 ± 2.21

Table 2: Wall-clock time (averaged over multiple runs) saved for IWSLT for different model types
and encoder depths. Max BLEU is for validation. Number of layers is for encoder, decoder depth is
kept fixed at 6. Ratio is computed compared to comparable number of layers in the normal case.

Model # Layers Frozen Max BLEU Train time Ratio # Params Train Time each
until max (in hours) Trainable (Total) epoch (in hours)

Transformer

12 0 24.46 ± 0.04 15.15 ± 0.15 1 75.6M 0.505 ± 0.005
16 0 24.52 ± 0.03 16.05 ± 0.18 1 88.2M 0.643 ± 0.006
24 0 24.69 ± 0.05 17.61 ± 0.85 1 113.4M 0.877 ± 0.029
32 0 24.83 ± 0.04 18.42 ± 0.28 1 138.6M 1.036 ± 0.010

T Reservoir

12 4 24.26 ± 0.08 14.11 ± 0.21 0.93 72.4M (75.6M) 0.472 ± 0.007
16 4 24.50 ± 0.05 15.25 ± 0.28 0.95 75.6M (88.2M) 0.596 ± 0.009
24 4 25.11 ± 0.07 15.89 ± 0.74 0.90 100.8M (113.4M) 0.776 ± 0.024
32 4 24.66 ± 0.04 16.38 ± 0.24 0.88 126.0M (138.6M) 0.998 ± 0.009

FFN Reservoir

12 4 24.42 ± 0.05 14.01 ± 0.09 0.92 72.4M (71.4M) 0.441 ± 0.003
16 4 24.65 ± 0.07 14.53 ± 0.17 0.91 75.6M (83.9M) 0.524 ± 0.006
24 4 24.93 ± 0.04 12.62 ± 1.53 0.71 100.8M (109.2M) 0.743 ± 0.018
32 4 24.98 ± 0.03 13.96 ± 0.19 0.73 126.0M (134.4M) 0.964 ± 0.007

LayerDrop

12 4 24.27 ± 0.03 14.61 ± 0.14 0.96 72.4M (75.6M) 0.489 ± 0.006
16 4 24.15 ± 0.06 15.55 ± 0.54 0.97 75.6M (88.2M) 0.597 ± 0.017
24 4 24.37 ± 0.05 16.25 ± 0.36 0.92 100.8M (113.4M) 0.823 ± 0.013
32 4 23.84 ± 0.03 15.27 ± 0.38 0.83 126.0M (138.6M) 1.028 ± 0.012

Table 3: Wall-clock time (averaged over multiple runs) saved for WMT for different model types
and encoder depths. Max BLEU is for validation. Number of layers is for encoder, decoder depth is
kept fixed at 1. Ratio is computed compared to comparable number of layers in the normal case.

D ROBERTA RESULTS

Here we present the additional RoBERTa results for convergence plot and AUCC in various decoder
depth setting in Figure 10. As stated in the main paper, the difference of AUCC / Convergence
Plot between RoBERTa model with or without Reservoir layers are limited. Moreover, we plot the
downstream task performance for SST-2 and MNLI compared to the pretraining wall-clock time
in Figure 9. It can be seen that the FFN Reservoir can achieve up to 25% and 10% pretraining
time savings while matching the best performance of vanilla transformers for MNLI-m and SST2,
respectively.

E RESERVOIR RESULTS FOR TOTAL LAYERS

Here we present the shifted Reservoir Results for IWSLT14, WMT16, Enwik8 and RoBERTa fine-
tuning in Figure 11, 12, 13, 14, respectively. We show the same results also hold when it comes to
replace normal transformer blocks with Reservoir blocks at least for MT.

16

Under review as a conference paper at ICLR 2021

Model IWSLT-Dec2 IWSLT-Dec6 WMT-Dec1
Layers Train time Max BLEU # Layers Train time Max BLEU # Layers Train time Max BLEU

until 95% max (in hours) (95%) until 95% max (in hours) (95%) until 95% max (in hours) (95%)

Transformer

6 0.647 ± 0.03 32.89 ± 0.04 6 0.642 ± 0.02 33.36 ± 0.03 12 3.788 ± 0.053 23.36 ± 0.06
8 0.711 ± 0.05 33.04 ± 0.03 8 0.765 ± 0.03 33.41 ± 0.08 16 3.820 ± 0.072 23.41 ± 0.05

10 0.808 ± 0.02 33.96 ± 0.08 10 0.898 ± 0.04 33.32 ± 0.07 24 5.262 ± 0.607 23.50 ± 0.03
12 1.037 ± 0.03 33.07 ± 0.09 12 1.037 ± 0.03 33.07 ± 0.11 32 6.212 ± 0.232 23.81 ± 0.04

T Reservoir

6 0.569 ± 0.02 32.78 ± 0.03 6 0.599 ± 0.01 33.09 ± 0.05 12 3.563 ± 0.061 23.21 ± 0.04
8 0.619 ± 0.04 33.12 ± 0.05 8 0.726 ± 0.02 33.38 ± 0.09 16 3.603 ± 0.056 23.80 ± 0.06

10 0.729 ± 0.04 33.13 ± 0.07 10 0.738 ± 0.03 33.37 ± 0.04 24 4.923 ± 0.771 23.75 ± 0.02
12 0.982 ± 0.02 33.03 ± 0.11 12 0.958 ± 0.01 33.46 ± 0.09 32 5.780 ± 0.214 23.71 ± 0.03

FFN Reservoir

6 0.521 ± 0.05 32.85 ± 0.02 6 0.594 ± 0.03 33.13 ± 0.04 12 3.417 ± 0.046 23.22 ± 0.07
8 0.533 ± 0.03 33.84 ± 0.04 8 0.651 ± 0.04 33.36 ± 0.06 16 3.527 ± 0.063 23.54 ± 0.05

10 0.614 ± 0.01 33.05 ± 0.08 10 0.627 ± 0.05 33.26 ± 0.03 24 4.197 ± 0.697 23.74 ± 0.06
12 0.811 ± 0.02 33.26 ± 0.10 12 0.780 ± 0.02 33.46 ± 0.08 32 4.984 ± 0.321 23.82 ± 0.02

LayerDrop

6 0.837 ± 0.08 32.87 ± 0.05 6 0.706 ± 0.01 33.08 ± 0.03 12 3.912 ± 0.068 23.33 ± 0.08
8 0.934 ± 0.07 33.12 ± 0.03 8 0.753 ± 0.04 33.14 ± 0.05 16 3.581 ± 0.076 23.17 ± 0.04

10 0.901 ± 0.06 33.18 ± 0.02 10 0.691 ± 0.03 32.39 ± 0.05 24 4.875 ± 0.728 23.43 ± 0.07
12 0.914 ± 0.01 32.33 ± 0.06 12 0.803 ± 0.02 32.94 ± 0.10 32 5.980 ± 0.219 22.97 ± 0.08

Table 4: Wall-clock time (averaged over multiple runs) saved for IWSLT/WMT for different model
types and encoder depths. 95% Max BLEU is for validation.

Model IWSLT-Dec2 IWSLT-Dec6 WMT-Dec1
Layers Train time Max BLEU # Layers Train time Max BLEU # Layers Train time Max BLEU

until 99% max (in hours) (99%) until 99% max (in hours) (99%) until 99% max (in hours) (99%)

Transformer

6 1.454 ± 0.06 34.24 ± 0.05 6 1.297 ± 0.03 34.69 ± 0.05 12 9.961 ± 0.053 24.27 ± 0.04
8 1.475 ± 0.09 34.32 ± 0.09 8 1.390 ± 0.02 34.75 ± 0.09 16 12.623 ± 0.072 24.35 ± 0.06

10 1.526 ± 0.04 34.25 ± 0.04 10 1.622 ± 0.05 34.64 ± 0.03 24 13.412 ± 0.837 24.49 ± 0.07
12 2.259 ± 0.07 34.24 ± 0.11 12 1.748 ± 0.01 34.66 ± 0.08 32 15.117 ± 0.232 24.56 ± 0.02

T Reservoir

6 1.257 ± 0.04 34.05 ± 0.09 6 1.291 ± 0.03 34.51 ± 0.10 12 8.314 ± 0.062 24.15 ± 0.06
8 1.472 ± 0.06 34.47 ± 0.05 8 1.339 ± 0.03 34.80 ± 0.04 16 9.221 ± 0.073 24.41 ± 0.05

10 1.530 ± 0.03 34.36 ± 0.02 10 1.419 ± 0.04 34.72 ± 0.03 24 10.413 ± 0.580 24.56 ± 0.03
12 2.043 ± 0.05 34.53 ± 0.07 12 1.642 ± 0.02 34.87 ± 0.02 32 11.465 ± 0.227 24.49 ± 0.01

FFN Reservoir

6 1.138 ± 0.03 34.10 ± 0.13 6 1.169 ± 0.02 34.71 ± 0.09 12 7.407 ± 0.087 24.33 ± 0.08
8 1.101 ± 0.07 34.32 ± 0.11 8 1.201 ± 0.03 34.79 ± 0.08 16 9.336 ± 0.036 24.42 ± 0.05

10 1.281 ± 0.01 34.36 ± 0.03 10 1.276 ± 0.03 34.63 ± 0.03 24 9.978 ± 0.546 24.91 ± 0.07
12 1.785 ± 0.03 34.42 ± 0.06 12 1.440 ± 0.01 34.87 ± 0.02 32 10.524 ± 0.341 24.96 ± 0.01

LayerDrop

6 1.363 ± 0.05 34.58 ± 0.14 6 1.253 ± 0.01 34.42 ± 0.10 12 8.372 ± 0.059 24.17 ± 0.04
8 1.468 ± 0.03 34.50 ± 0.12 8 1.244 ± 0.04 34.44 ± 0.09 16 9.741 ± 0.043 23.93 ± 0.08

10 1.678 ± 0.04 34.52 ± 0.07 10 1.343 ± 0.04 33.83 ± 0.06 24 10.145 ± 0.628 24.07 ± 0.09
12 2.071 ± 0.02 33.45 ± 0.23 12 1.423 ± 0.02 33.97 ± 0.12 32 10.168 ± 0.329 23.81 ± 0.03

Table 5: Wall-clock time (averaged over multiple runs) saved for IWSLT/WMT for different model
types and encoder depths. 99% Max BLEU is for validation.

F VALIDATION PLOTS

Here we present the validation plots for training a 8-layer encoder, 2-layer decoder model for
IWSLT14, a 24-layer encoder, 1-layer decoder model for WMT14, a 48-layer decoder model for
enwik8 and a 12-layer decoder model for RoBERTa for detailed steps to calculate the AUCC. It can
be clearly observed that given the configurations from Section 3.1, all the models have converged.
So when we compute the area under the convergence curve, this depicts the training efficiency of the
model (basically time x performance) until convergence. Specifically, we set T sufficiently high for
computing the AUCC, which is 4h for IWSLT, 20h for WMT, 30h for enwik8 and 60h for RoBERTa
pretraning. From the training plot in the appendix, we can see that each model has converged at
that point. The Reservoir model in Figure 15 has 2 layers frozen for IWSLT14, 8 layers frozen for
enwik8, and 4 layers frozen for WMT14 and RoBERTa.

G ROBERTA PROBING

We follow Jawahar et al. (2019) and investigate what the frozen layers in the Reservoir Transformer
have actually “learned” (while being forzen) as measured by probing tasks, reported in Table 6. The
results are gathered over 3 random seeds for reporting the mean and standard deviation. From the
table, we can see that generally probing performance is quite similar between Transformer and the
T Reservoir model. We also noticed that the representations collected after the frozen layer (3, 5,
7, 9) in the T Reservoir actually have significantly better performance over the regular Transformer
representations across all the probing tasks. This has interesting repercussions for the study of
“BERTology”, as it clearly shows, somewhat confusingly, that even completely random and frozen
layers represent linguistic phenomena.

17

Under review as a conference paper at ICLR 2021

2 4 6 8 10
Updatable Encoder Layers

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

va
lid

 B
LE

U
 A

U
CC

Transformer
Alter T Reservoir
Mid T Reservoir
Top T Reservoir
Bottom T Reservoir

Figure 8: IWSLT with 2-layer decoder using different freezing strategy.

10 20 30 40 50 60
Pretraining Wall-clock Time

78

79

80

81

82

83

84

85

Ac
cu

ra
y

on
 M

N
LI

-m

Transformer
T Reservoir
FFN Reservoir

10 20 30 40 50 60
Pretraining Wall-clock Time

91

92

93

94

95

Ac
cu

ra
y

on
 S

ST
2

Transformer
T Reservoir
FFN Reservoir

Figure 9: RoBERTa Reservoir Results, Pre-training versus downstream task plot for 12 layer
RoBERTa. MNLI-m (left). SST-2 (right).

0 12 24 36 48 60
 Training Hours (h)

4

6

8

10

12

14

16

18

20

Va
lid

at
io

n
PP

L

Transformer
T Reservoir
FFN Reservoir

4 6 8 10 12 14 16
Updatable Decoder Layers

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Va
lid

 P
PL

 A
U

CC

Transformer
T Reservoir
FFN Reservoir

Figure 10: RoBERTa Reservoir Results, Training plot for 12 layer RoBERTa (left). AUCC result
(right).

18

Under review as a conference paper at ICLR 2021

2 4 6 8 10 12
Total Encoder Layers

0.96

0.97

0.98

0.99

1.00
va

lid
 B

LE
U

 A
U

CC

Transformer
T Reservoir
FFN Reservoir

2 4 6 8 10 12
Total Encoder Layers

32.5

33.0

33.5

34.0

te
st

 B
LE

U

Transformer
T Reservoir
FFN Reservoir

Figure 11: Validation BLEU AUCC and test BLEU for IWSLT (high is good). Comparison of
regular transformer and reservoir transformer with FFN or Transformer reservoir layers added.

12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5
Total Encoder Layers

0.94

0.95

0.96

0.97

0.98

0.99

1.00

va
lid

 B
LE

U
 A

U
CC

Transformer
T Reservoir
FFN Reservoir

12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5
Total Encoder Layers

26.25

26.50

26.75

27.00

27.25

27.50

27.75

28.00

te
st

 B
LE

U

Transformer
T Reservoir
FFN Reservoir

Figure 12: Validation BLEU AUCC and test BLEU for WMT (high is good). Comparison of regular
transformer and reservoir transformer with FFN or Transformer reservoir layers added.

30 40 50 60 70
Total Decoder Layers

0.6

0.7

0.8

0.9

1.0

va
lid

 b
pc

 A
U

CC

Transformer
T Reservoir
FFN Reservoir

30 40 50 60 70
Total Decoder Layers

1.2

1.4

1.6

1.8

2.0

2.2

2.4

te
st

 b
pc

Transformer
T Reservoir
FFN Reservoir

Figure 13: Validation BPC AUCC and test BPC on the enwik8 language modelling task (low is
good). Comparison of regular and reservoir transformers for varying depths.

19

Under review as a conference paper at ICLR 2021

4 6 8 10 12 14 16 18 20
Total Decoder Layers

91

92

93

94

95

96

va
lid

 a
cc

ur
ac

y

Transformer
T Reservoir
FFN Reservoir
Transformer (frozen finetuned)

4 6 8 10 12 14 16 18 20
Total Decoder Layers

78

80

82

84

86

va
lid

 a
cc

ur
ac

y

Transformer
T Reservoir
FFN Reservoir
Transformer (frozen finetuned)

Figure 14: Downstream RoBERTa performance on SST-2 (left) and MultiNLI-matched (right).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
 Training Hours (h)

10

15

20

25

30

35

Va
lid

at
io

n
BL

EU

Transformer
T Reservoir
FFN Reservoir

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
 Training Hours (h)

10

12

14

16

18

20

22

24

26

Va
lid

at
io

n
BL

EU

Transformer
T Reservoir
FFN Reservoir

0 5 10 15 20 25 30 35 40
 Training Hours (h)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Va
lid

at
io

n
BP

C

Validation curve for training on enwik8

Transformer
T Reservoir
FFN Reservoir

0 12 24 36 48 60
 Training Hours (h)

4

6

8

10

12

14

16

18

20

Va
lid

at
io

n
PP

L

Transformer
T Reservoir
FFN Reservoir

Figure 15: IWSLT with 2-layer decoder validation plot (upper left). WMT with 24-layer decoder
validation plot (upper right). Enwik8 with 48-layer decoder validation plot (lower left). RoBERTa
with 12-layer decoder validation plot (lower right).

Model Layer SentLen TreeDepth TopConst BShift Tense SubjNum ObjNum SOMO CoordInv
(Surface) (Syntactic) (Syntactic) (Syntactic) (Semantic) (Semantic) (Semantic) (Semantic) (Semantic)

Transformer

1 84.56 ± 0.54 32.30 ± 0.41 54.40 ± 0.33 49.99 ± 0.01 80.98 ± 0.32 76.26 ± 0.09 50.01 ± 0.19 76.38 ± 0.61 54.33 ± 0.47
2 87.22 ± 0.07 33.63 ± 0.57 58.38 ± 0.20 50.12 ± 0.17 82.84 ± 0.68 78.65 ± 0.19 51.47 ± 0.53 78.00 ± 1.12 54.66 ± 0.55
3 84.25 ± 0.16 32.60 ± 0.17 54.41 ± 0.10 50.02 ± 0.01 81.72 ± 0.59 77.00 ± 0.13 51.32 ± 0.64 76.57 ± 1.13 54.13 ± 0.51
4 87.37 ± 0.20 32.59 ± 0.29 50.06 ± 0.21 69.76 ± 0.26 81.63 ± 1.17 76.47 ± 0.09 52.41 ± 1.49 76.15 ± 0.84 52.62 ± 1.34
5 84.61 ± 0.24 31.14 ± 0.48 44.76 ± 0.38 74.82 ± 0.11 80.16 ± 0.19 73.66 ± 0.16 52.95 ± 1.77 72.90 ± 0.21 51.26 ± 1.14
6 82.56 ± 0.25 30.31 ± 0.40 39.30 ± 0.40 78.80 ± 0.38 81.88 ± 0.47 75.30 ± 0.07 56.21 ± 1.26 74.37 ± 0.16 51.44 ± 1.04
7 70.85 ± 0.13 26.65 ± 0.72 40.70 ± 0.13 78.98 ± 0.32 85.11 ± 0.31 72.03 ± 0.46 58.15 ± 0.46 68.71 ± 0.91 55.39 ± 0.27
8 66.23 ± 1.33 23.46 ± 0.44 25.19 ± 1.02 77.42 ± 0.27 80.35 ± 0.45 67.55 ± 0.99 54.94 ± 2.04 63.69 ± 2.32 50.58 ± 0.83
9 71.17 ± 0.29 31.21 ± 0.31 58.42 ± 0.29 85.55 ± 0.44 86.77 ± 0.19 80.30 ± 0.08 64.36 ± 1.20 81.68 ± 0.45 66.90 ± 0.49

10 73.19 ± 0.50 27.74 ± 0.53 41.01 ± 0.22 83.56 ± 0.96 86.13 ± 0.35 83.04 ± 0.04 62.01 ± 0.59 79.73 ± 0.21 62.60 ± 1.04
11 71.37 ± 0.42 30.22 ± 0.28 48.58 ± 0.35 84.40 ± 0.44 87.28 ± 0.59 82.34 ± 0.15 61.10 ± 0.14 80.00 ± 0.40 64.44 ± 0.38
12 71.66 ± 0.12 33.43 ± 0.18 64.38 ± 0.20 87.38 ± 0.02 88.41 ± 0.09 84.46 ± 0.25 63.01 ± 0.05 81.80 ± 0.27 65.72 ± 0.16

T Reservoir

1 87.75 ± 0.10 31.60 ± 0.21 50.38 ± 0.23 50.00 ± 0.00 80.40 ± 0.18 76.47 ± 0.20 50.53 ± 0.14 73.48 ± 0.15 53.55 ± 0.70
2 81.28 ± 0.23 34.20 ± 0.41 61.41 ± 0.42 60.64 ± 0.65 81.50 ± 0.77 76.33 ± 0.08 50.73 ± 0.34 74.28 ± 0.67 56.82 ± 0.10
3 89.28 ± 0.09 36.42 ± 0.11 67.36 ± 0.45 75.64 ± 0.52 85.42 ± 0.18 80.53 ± 0.02 52.50 ± 1.80 78.47 ± 1.81 57.16 ± 0.27
4 74.31 ± 0.32 32.42 ± 0.83 55.19 ± 0.33 73.41 ± 0.00 79.56 ± 0.00 75.15 ± 0.08 53.68 ± 0.66 75.02 ± 0.19 56.89 ± 0.08
5 88.03 ± 0.22 38.34 ± 0.64 68.65 ± 0.29 82.25 ± 0.12 86.80 ± 0.02 82.27 ± 0.33 57.95 ± 0.24 80.82 ± 0.91 58.05 ± 0.10
6 74.55 ± 0.37 33.13 ± 0.29 52.70 ± 0.81 79.21 ± 0.13 85.70 ± 0.36 77.43 ± 0.03 57.26 ± 0.19 75.38 ± 0.66 51.95 ± 1.30
7 85.82 ± 0.37 37.63 ± 0.13 70.43 ± 0.05 84.12 ± 0.35 86.88 ± 0.07 82.86 ± 0.30 61.17 ± 0.21 80.79 ± 0.17 61.83 ± 0.95
8 71.69 ± 0.71 30.32 ± 0.01 48.44 ± 0.30 79.12 ± 0.12 84.75 ± 0.09 79.23 ± 0.11 59.53 ± 0.16 76.80 ± 0.41 57.34 ± 0.14
9 85.86 ± 0.12 37.89 ± 0.03 69.53 ± 0.37 85.55 ± 0.12 87.98 ± 0.22 84.13 ± 0.01 63.06 ± 0.01 82.55 ± 0.31 66.07 ± 0.05

10 69.22 ± 0.23 25.58 ± 0.35 29.20 ± 0.58 78.57 ± 0.09 85.02 ± 0.03 75.68 ± 0.16 57.55 ± 1.57 74.70 ± 0.02 55.02 ± 0.64
11 65.70 ± 0.05 30.57 ± 0.03 47.56 ± 0.02 81.20 ± 0.00 86.78 ± 0.02 83.73 ± 0.05 60.38 ± 0.17 80.59 ± 0.15 62.50 ± 0.11
12 70.61 ± 0.18 34.45 ± 0.20 64.19 ± 0.10 84.53 ± 0.03 87.48 ± 0.16 84.86 ± 0.14 62.75 ± 0.14 82.08 ± 0.03 64.73 ± 0.06

Table 6: RoBERTa Probing Results. The line in bold text are the the frozen layers in the T Reservoir.

20

	Introduction
	Approach
	Background
	Reservoir Transformers

	Evaluation
	Experimental Settings and Implementation Details

	Experiments
	Machine Translation
	Language Modelling
	Masked Language Model Pretraining
	Backskipping

	Related Work
	Conclusion
	Hybrid Networks and Non-Transformer Reservoirs
	Deep decoders
	Freezing Strategy
	RoBERTa Results
	Reservoir Results for total layers
	Validation Plots
	RoBERTa Probing

