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Abstract

Reinforcement Learning (RL) focuses on learning policies that maximize the
expected reward. This simple objective has enabled the success of RL in a wide
range of scenarios. However, as emphasized by control-theoretic methods, stability
is also a desired property when dealing with real-world systems. In this paper, we
take a first step toward incorporating the notion of stability into RL. We focus on
planning in ergodic Markov Decision Processes (MDPs), i.e., those that converge
to a unique stationary distribution under any policy. We define the notion of
stability in this context as the speed at which the induced Markov Chain (MC)
converges to its stationary distribution. Noting that this property is connected to the
spectral characteristics of the induced MC, we study the challenges of including
a stability-related term in the RL objective function. First, we highlight how
naïve approaches to trading off between reward maximization and stability lead to
bilinear optimization programs, which are computationally demanding. Second,
we propose an approach that bypasses this issue through a novel formulation and a
surrogate objective function.

1 Introduction

Reinforcement Learning (RL, Sutton and Barto, 2018) is the branch of Artificial Intelligence (AI)
aiming to solve sequential control problems. RL problems are usually formulated by means of the
mathematical tool of Markov Decision Processes (MDPs, Puterman, 1994), where a problem is
characterized by means of the possible states the environment can take, the actions that an agent can
take, and the reward, i.e., a numerical signal to maximize through our interactions. In accordance with
the reward hypothesis (Sutton, 2004), the AI community focused almost exclusively on performance
maximization with respect to a chosen reward function (Buşoniu et al., 2018). In this context,
numerous efforts have been made to study the convergence of RL algorithms to an optimal policy
from a statistical perspective (Auer et al., 2008; Strehl et al., 2009). However, performance guarantees
and reward maximization alone are often insufficient in safety-critical and high-stakes settings such
as human-robot interaction or power plant control (Buşoniu et al., 2018), where additional properties
of the learned policy, such as robustness or safety assurances, may also be required. In such contexts,
traditional control-theory solutions are typically employed. Differently from RL, classical control
objectives revolve around stability as this notion is closely related to the robustness, safety, and
reliability of the systems under control (Slotine and Li, 1991; Lewis et al., 2012). Approaches that
are similar to RL are known within the control community under the name of adaptive/approximate
dynamic programming (Lewis et al., 2012; Lewis and Liu, 2013). In this context, even when optimal
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control approaches are used, the sole role of rewards is to represent stability requirements, such as in
standard Model Predictive Control (MPC) problems, shadowing a possible trade-off between reward
maximization and stability. For this reason, when formulating an optimal control problem, one cannot
assume that rewards are bounded, as typically done in RL, and one can neither assume the presence
of a discount factor (Postoyan et al., 2017), as rewards should reflect the behavior of the state, namely
if the state grows arbitrarily.

Issues such as robustness, safety, and reliability of RL algorithms have been addressed within the
context of safe RL (García and Fernández, 2015). Here, stability could be regarded as a specific
notion of safety (Brunke et al., 2022). Safe RL problems are typically formulated using the framework
of Constrained MDPs (CMDPs, Moldovan and Abbeel, 2012; Altman et al., 2019; Montenegro et al.,
2024). In this context, some of the most promising results typically start with a known minimal,
deterministic model of the system and use RL algorithms to learn a performance controller online.
Stability during exploration is addressed leveraging the concept of region of attraction and the use of
a locally stabilizing policy (Berkenkamp et al., 2017; Richards et al., 2018).

Control theory abounds in different specific notions of stability that vary, for instance, in how large
the initial condition and subsequent states can be, in the speed of convergence to the asymptotic
value (Khalil, 2014). Informally, stability requires that for bounded initial conditions (say, within the
ball of radius δ around the origin), the system state remains bounded (say, within the ball of radius
ϵ(δ)). The approach of the control community to the issue of stability in stochastic settings typically
involves starting from the deterministic setting and handling stochasticity and uncertainty afterward,
leveraging specific robustness tools and simplifications in order to infer stability in a proper sense,
i.e., using the definitions and tools developed for the deterministic setting (Buşoniu et al., 2018).

Addressing the stability issues of RL algorithms from this same approach might not be ideal. Instead,
stability should be interpreted and encoded in the problem in ways that are compatible with the
classical mathematical framework of RL, i.e., the MDP formalism. Moreover, given the powerful
nature of RL in solving pure optimization problems, we believe that a more natural way of dealing
with stability guarantees in this context would be closer to the approach developed in the context
of economic MPC (Ellis et al., 2014). Here, the primary objective is to design a controller for a
dynamical system that minimizes a chosen economic cost function (which resembles the reward in
RL). Such a function typically does not encode the task of regulating the system to a stable behavior,
and as a consequence, the resulting optimal controllers typically lack any kind of stability guarantees.
Necessary conditions to ensure the stability of the system have been developed in this field, and also
methods that trade off between economic performance and stable behavior (Rawlings et al., 2012).

As mentioned in (Gros and Zanon, 2022), stability in MDPs can be arguably analyzed in the broader
context of Markov Chains (MCs, Meyn and Tweedie, 2012). In this context, instead of thinking about
equilibrium points for a dynamical system, we seek instead for an equilibrium measure, commonly
called an invariant measure, satisfying the ergodic theorem, ensuring the asymptotic convergence
to such a stationary measure. This implies the existence of a steady state for the induced stochastic
process, much like global asymptotic stability for deterministic nonlinear state-space models.

Original Contribution. In this work, we will not be specifically concerned with the conditions
that ensure convergence to the stationary measure; rather, we will address the problem of finding the
policy that converges the fastest to its respective stationary distribution while maximizing the reward
function. The contributions are summarized as follows:

• In Section 2, we introduce the finite discrete-time MDPs, and the assumptions needed in order to
derive the approaches presented in the remainder of the paper.

• In Section 3, we present our problem formulation to incorporate a notion of stability in the objective
function of RL, in the most generic setting.

• In Section 4, we provide a first naïve approach and discuss the computational limitations arising
from the bilinear structure of the optimization problem involved.

• In Section 5, we propose our novel approach. In particular, we show how to bypass the bilinearity by
reformulating the problem in a different space and introducing a new surrogate objective function.
Moreover, we discuss the guarantees on the expected average reward loss and the stability properties
of the learned objective.

Finally, in Appendix A, we also characterize a simple heuristic to achieve the above-mentioned
objective.
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2 Average Reward MDPs and Steady State

A finite, homogeneous, and discrete-time Markov decision process (Puterman, 1994) is defined
as the tuple M = ⟨S,A,P, r,β⟩, where S denotes the finite state space; A denotes the finite
action space; P denotes the transition matrix, whose entries, denoted as p(s′|s, a), specifying the
probability of transitioning to the state s′ ∈ S when taking action a ∈ A in state s ∈ S, namely
P(St+1 = s′|St = s,At = a); the reward function is denoted by the vector r, whose entries,
r(s, a), denote the expected immediate reward when taking action a ∈ A in state s ∈ S that
we assume bounded |r(s, a)| ≤ Rmax = 1 for every a ∈ A and s ∈ S; and β denotes the
initial distribution vector over the state space, and β(s) is the probability that the initial state is
s ∈ S. We denote with π ∈ ΠMR a stationary Markovian randomized policy, and we denote with
ΠMD ⊂ ΠMR the subset of stationary Markovian deterministic policies.1 A randomized policy
specifies the probability of taking an action from a given state, namely, π(a|s) = P(At = a|St = s).
A policy induces over the MDP a Markov chain (Levin et al., 2017) defined by Mπ := ⟨S,Pπ,β⟩
where pπ(s′|s) =

∑
a∈A π(a|s)p(s′|s, a) is the state transition model. Given the induced MC,

we denote as Pπ,t = (Pπ)t the t-step transition matrix, from which we can compute recursively
the state-distribution of the induced MC at time step t as ηπ

t = (Pπ,t)⊤β, and from one step to
another as ηπ

t = (Pπ)⊤ηπ
t−1. The (s, s′) entry of Pπ,t is denoted as pπ,t(s′|s) and corresponds to

the probability of landing in state s′ at time step t starting from the initial state s, equivalently, it
corresponds to ηπt (s

′) assuming β(s) = 1.

When studying the limiting behavior of the MC induced by a policy π, it is natural to choose
as optimality criterion that of the average expected reward, which can be defined as gπ :=

limT→+∞
1
T E

π
β [
∑T

t=1 r(St, At)], where T denotes the horizon length (Puterman, 1994, Chapter 8).
For this limit to exist in a proper sense, one may assume the underlying MDP to be ergodic.
Assumption 2.1 (Ergodic or Recurrent MDP — Puterman 1994, Chapter 8.3). An MDP is ergodic
or recurrent if for any policy π ∈ ΠMR the induced MC consists of a single recurrent class, meaning
that it is possible to reach every state from any other state in a finite number of steps.

The most important consequence of the ergodicity assumption is that any induced MC admits
a unique stationary state distribution, or, more formally, for every policy π ∈ ΠMR the limit
ηπ = limt→+∞ ηπ

t exists. Moreover, this distribution is the unique that satisfies the invariance
equation ηπ = (Pπ)⊤ηπ .

Our focus revolves around controlling the rate of convergence of the sequence (ηπ
t )t≥1 to its limit ηπ .

It is known from the literature (Seabrook and Wiskott, 2023) that quantitative aspects of convergence,
such as its rate, are strictly related to the spectrum of the transition matrix Pπ . The spectrum of an
n × n square matrix A is the multi-set of its eigenvalues, denoted by Λ(A) = {λ1, λ2, . . . , λn},
counting algebraic multiplicity.2 Being Pπ a row-stochastic matrix, i.e., a matrix in which every
row sums to 1, by Perron-Frobenius Theorem (see Meyer, 2023, Chapter 8.2), eigenvalues of
Pπ cannot have modulus greater than 1. We denote them in decreasing order of modulus as
λπ
1 = 1 ≥ |λπ

2 | ≥ · · · ≥ |λπ
|S||. For an ergodic MC, the asymptotic rate of convergence to the

stationary distribution is determined by µ(Pπ) := |λπ
2 |, namely, the Second Largest Eigenvalue

Modulus (SLEM) of Pπ . Such a statement is formalized in the following theorem.
Theorem 2.1 (Spectral Conditions For Ergodicity — Meyn 2022, Theorem 6.2). Given the transition
matrix Pπ of the MC induced by a policy π, suppose that λπ

1 = 1 is the only eigenvalue satisfying
|λπ| = 1. Then, the chain is ergodic, and the convergence rate of:

lim
t→+∞

pπ,t(s′ | s) = ηπ(s′), ∀s, s′ ∈ S, (1)

is geometric:

lim
t→+∞

1

t
log

(
max
s,s′∈S

∣∣pπ,t(s′ | s)− ηπ(s′)
∣∣) = log (µ(Pπ)) < 0, (2)

where µ(Pπ) = |λπ
2 | is the SLEM.

1From now on, we will omit the adjective “Markovian” when referring to a policy for the sake of simplicity,
as we consider only this type of policies.

2For generic n× n matrices A, each λi might belong to the set of complex numbers C.
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As stated in (Boyd et al., 2004), there are numerous indices that quantify the convergence rate of
a MC, e.g., the mixing rate, the mixing time, and the spectral gap. Notably, most of them show a
monotonically increasing dependence in the SLEM; thus, it is convenient to focus on that. Before
proceeding, it is important to stress that most of the literature concerned with SLEM optimization is
built around the assumption that the MC is reversible with respect to its own stationary distribution.

Definition 2.1 (Reversible Markov Chain — Levin et al. 2017). A MC is reversible if it satisfies the
detailed balance equation with respect to its stationary distribution:

ηπ(s′)pπ(s′|s) = ηπ(s)pπ(s|s′), ∀s, s′. (3)

While SLEM optimization has been extensively studied in the MC literature, at least in the reversible
case, in the context of MDPs, such a problem has only been introduced combined with other objectives,
but never on its own (Tarbouriech and Lazaric, 2019; Mutti and Restelli, 2020).

Matrix Notation. At occurrence, the above-mentioned objects will be referred using a convenient
matrix notation. Importantly, all vectors are intended as column vectors, and will be denoted in bold.
Matrices will also be denoted with bold uppercase letters. The initial distribution β ∈ R|S| will be
interpreted as a stochastic column-vector, whose components will be denoted as β(s) = P(S0 = s).
The transition model of the MDP will be denoted with P ∈ R|S||A|×|S|, a row-stochastic matrix
representation of the transition kernel of the MDP. The ((s, a), s′) component of such a matrix will
be denoted with the usual p(s′ | s, a). The policy will be denoted with Π ∈ R|S|×|S||A| and its
components by Π(s, (s, a)) = π(a|s). Additionally, the transition matrix induced by policy π, will
be written as Pπ = ΠP, a |S| × |S| row-stochastic matrix as well. We denote the (s, s′) entry of
this matrix as pπ(s′|s). When dealing with the stationary distribution, we denote its minimum-valued
entry as ηπmin = mins∈S ηπ(s). We use Dη := diag(η) to indicate the diagonal matrix whose non-
zero entries are the elements of vector η. We use the symbol Sn for the set of n× n row-stochastic
matrices. We represent the simplex over a set X by ∆(X ), and when working with random quantities,
we use uppercase letters to denote random variables, while we use lowercase letters to denote the
values that these random elements take on. The outer product is denoted as ⊗, while the Hadamard
product, i.e., the element-wise matrix multiplication, is denoted through the symbol ⊙. The symbol
⪯ denotes matrix inequality, i.e., X ⪯ Y means Y − X is positive semidefinite. The symbol ≤
instead denotes element-wise inequality. The orthogonal complement of a vector v is denoted as
range(v)⊥. The symbol 1 denotes a column vector of all ones, while I represents the identity matrix.

3 Problem Formulation

In this work, we aim to find the policy π that, given the underlying MDP structure, achieves the best
trade-off between average reward maximization and fastest rate of convergence toward its stationary
distribution. In more formal terms, the above problem can be posed as the following optimization
problem:3

maximize
π ∈ ΠMR

gπ − µ(Pπ). (4)

Here, gπ is a scalar denoting the average reward achieved under policy π. Importantly, under the
ergodicity assumption, such a scalar does not depend on the initial state (Puterman, 1994), and can
be expressed as gπ =

∑
(s,a)∈S×A ηπ(s)π(a | s)r(s, a). The latter, is a continuous function of

π, from continuity of the eigenvector ηπ (Lax, 2014, Theorem 8). Moreover, from perturbation
theory (Kato, 2013, Chapter 2), it is known that every eigenvalue is a continuous function of the
entries of its matrix. Thus, the function µ(Pπ) is a continuous function of the entries of Pπ = ΠP,
thus continuous in π. Finally, the set ΠMR =

∏
s∈S ∆|A| is compact. This allows us to conclude,

by the extreme-value theorem (Rudin, 1976, Theorem 4.16), that our objective achieves both global
maximum and minimum over ΠMR.

3For the sake of generality, one could consider a weight w > 0 in the objective (gπ − wµ(Pπ)) to trade off
between reward maximization and stability. However, we are more interested in studying the properties of such
a problem, which are not affected by the value of w. As such, for the sake of simplicity, we set w = 1.
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4 Explicit Characterizations of the SLEM

In the following, Problem (4) is first made explicit through the standard spectral norm characterization
of the SLEM under the reversibility assumption of Pπ (Boyd et al., 2004). Moreover, a possible
characterization of the same quantity in the more general case of non-reversible Pπ is discussed.

While the asymptotic expected average reward gπ is easily made explicit using the standard dual
formulation of the average reward objective (Puterman, 1994), expressing the SLEM requires more
care.

Reversible Case. When it is assumed either that for every policy π ∈ ΠMR the induced MC
is reversible, or when one explicitly restrict the policy space to the set of “reversible” policies,
denoted as ΠMRR, the expression of µ(Pπ) simplifies.4 Indeed, reversibility allows to work with
the symmetric matrix D

1/2
ηπ PπD

−1/2
ηπ , as the spectrum is invariant under similarity transformation,

Λ(D
1/2
ηπ PπD

−1/2
ηπ ) = Λ(Pπ). Because of symmetry, and knowing the dominant eigenvector

√
ηπ ,

it is possible to express the SLEM through its variational characterization (Horn and Johnson, 2012,
Chapter 4.2). Specifically to express it as the spectral norm of the matrix D

1/2
ηπ PπD

−1/2
ηπ restricted

to the orthogonal complement of the dominant eigenvector range(
√
ηπ)⊥:

µ(Pπ) =
∥∥∥D1/2

ηπ PπD
−1/2
ηπ −

√
ηπ

√
ηπ⊤

∥∥∥
2
. (5)

Non-Reversible Case. When the induced MC is non-reversible, to the best of our knowledge, no
exact and explicit expression of the SLEM exists. The most reasonable workaround is then to leverage
ergodicity coefficients (Ipsen and Selee, 2011). These mathematical objects have been introduced to
estimate how fast inhomogeneous products of irreducible stochastic matrices converge to a rank-one
matrix. As a consequence, these “coefficients” help in providing approximate but explicit expressions
of the set of subdominant eigenvalues, {|λi| : i ≥ 2}, of irreducible row-stochastic matrices.

Definition 4.1 (p-norm ergodicity coefficient — Ipsen and Selee 2011). For any integer p ≥ 1 the
p-norm ergodicity coefficient of a matrix S is defined as:

τp(1,S) := max
∥z∥p=1

z⊤1=0

∥S⊤z∥p, (6)

where the maximum ranges over z ∈ Rn.

The reader is referred to the original work (Ipsen and Selee, 2011, Theorem 5.1) for the most relevant
properties of this object. Here, only the following useful results are restated.

Theorem 4.1 (Ipsen and Selee 2011, Theorem 6.21). Let S ∈ Sn be an n × n row-stochastic
irreducible matrix with eigenvalues Λ(S) and right eigenvector 1 so that S1 = 1, and λ1 = 1 >
|λ2| ≥ · · · ≥ |λn|. Then, the ergodicity coefficient associated with the eigenvector 1 satisfying:

|λi| ≤ τp(1,S), ∀i ∈ {2, . . . , n}. (7)

Moreover, from (Ipsen and Selee, 2011, Theorem 6.23), defining Dη := diag(η), with S⊤η = η, it
holds:

|λi| ≤ τp(1,D
−1
η SDη), ∀i ∈ {2, . . . , n}. (8)

Importantly, as stated in (Ipsen and Selee, 2011), Equation (8) for stochastic matrices typically offers
tighter bounds than Equation (7).

Finally, it is possible to provide inclusion intervals containing general p-norm ergodicity coefficients.

Corollary 4.1 (Ipsen and Selee 2011, Corollary 6.25). If S ∈ Sn is an irreducible row-stochastic
matrix, and η⊤S = η⊤, then:

|λi| ≤ τp(1,S) ≤ ∥(S− 1η⊤)∥p, ∀i ∈ {2, . . . , n}. (9)
4We refer to a “reversible” policy as one that induces a reversible transition matrix Pπ .
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As shown in (Ipsen and Selee, 2011), the result of Corollary 4.1 implies the following inclusion
interval for τp(1,S) in terms of the matrix S deflated by its dominant spectral projector:

ρ(S− 1η⊤) ≤ τp(1,S) ≤ ∥S− 1η⊤∥p, (10)

where ρ(S) = maxi∈{1,...,n} |λi| is the spectral radius of matrix S. From the above statements, we
deduce the usefulness of ergodicity coefficients in bounding the SLEM of the irreducible MC.

Explicit Expressions for p ∈ {1, 2}. In the specific instances when p = 1 or p = 2, we can retrieve
the following convenient explicit expressions of the ergodicity coefficients (Ipsen and Selee, 2011):

τ1(1,S) = min
i,j∈{1,...,n}

∥S(i, ·)− S(j, ·)∥TV = 1− min
i,j∈{1,...,n}

n∑
k=1

min{S(i, k), S(j, k)}, (11)

τ2(1,S) =

∥∥∥∥(I− 1

n
11⊤

)
S

∥∥∥∥
2

. (12)

For the 2-norm coefficient, we also restate the following result.

Corollary 4.2 (Ipsen and Selee 2011, Corollary 6.20). Let S ∈ Sn be an irreducible row-stochastic
matrix with singular values σ1(S) ≥ σ2(S) ≥ · · · ≥ σn(S) and dominant right and left singular
vectors v and u respectively, that is:

Sv = σ1(S)u S⊤u = σ1(S)v, (13)

also assume that the euclidean norm satisfies ∥u∥2 = ∥v∥2 = 1. Then:

τ2(u,S) = τ2(v,S
⊤) = σ2(S). (14)

From Equation (14) and the Courant-Fischer theorem (see Horn and Johnson, 2012, Theorem 4.2.6),
applied to the matrix S⊤S, we deduce that τ2(1,S) ≥ σ2(S). Meaning that, from Equation (10), the
following inequalities hold: µ(S) = ρ(S− 1η⊤) ≤ σ2(S) ≤ τ2(1,S) ≤ ∥S− 1η⊤∥2. In general,
we have that µ(S) = ∥S − 1η⊤∥2 only when the pair (1,η) coincides with the top singular pair,
namely when matrix S is normal. One such case is when the matrix S is the transition matrix of a
reversible MC.

4.1 Explicit Optimization Problem in the Reversible Case: Bilinearity Issues

For the sake of simplicity and exposition, Problem (4) is addressed first by restricting the search to
the class of reversible Markovian policies ΠMRR. In the literature (Boyd et al., 2004), the SLEM
minimization problem has usually been posed starting from a known target stationary distribution
η, and either the policy or the MC converging as fast as possible to this target distribution has been
searched for (Boyd et al., 2004; Tarbouriech and Lazaric, 2019; Mutti and Restelli, 2020). In this
work, instead, the target distribution is not given, but it is considered as a decision variable. In fact, it
is known that, in a given MDP, restricting to a target η beforehand might inevitably result in arbitrarily
slow mixing (Tarbouriech and Lazaric, 2019) for any policy. The explicit version of Problem (4) is
then:

maximize
Π ∈ S|S|×|S||A|,η ∈ ∆(S)

η⊤ (Πr)−
∥∥∥D1/2

η (ΠP)D−1/2
η −√

η
√
η
⊤
∥∥∥
2

subject to η = (ΠP)
⊤
η,

Dη (ΠP) = (ΠP)
⊤
Dη

(15)

The major issue of the above problem is the presence of bilinear dependencies between the optimiza-
tion variables in both the objective function and constraints. Specifically, despite the problem being
convex in Π once η is fixed, and vice versa, it is not jointly convex. Moreover, fixing π implies fixing
Pπ and thus η because of the stationary constraints, ruling out any possibility of using alternate
minimization frameworks, as observed in (Tarbouriech and Lazaric, 2019). In the following section,
Problem (15) is modified to obtain a surrogate showing convexity and other amenable properties to
most common convex optimization methods.
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5 Bypassing Bilinearity: A Surrogate Objective in the S ×A Space

Drawing inspiration from the approach used in (Tarbouriech and Lazaric, 2019), one might try to
address the optimization Problem (15) by treating the transition matrix Pπ = ΠP as the transition
matrix M of a generic MC and remove the bilinearity of the reversibility constraints by introducing
the auxiliary variable X = DηM. This allows reducing the problem to a setting closer to that
exposed in (Boyd et al., 2004). Unfortunately, this strategy is not enough in the setting studied in
this paper, as the presence of the average expected reward term, namely η⊤(Πr), makes this simple
change of variable ineffective because of the variable Π.5 A viable alternative leveraged in this work
consists in framing Problem (15) in terms of the joint state-action MC, (St, At)t≥0.

The Bivariate Process over S ×A. The most straightforward method to resolve the issue generated
by the average reward term η⊤Πr is to start from the classical dual program formulation of the
average reward criterion (Puterman, 1994). The problem is thus “lifted” from distributions over S
to the distributions over the product space S × A. In doing so, let Zt = (St, At) denote a random
vector defined over S ×A. The sequence (Zt)t≥0 is the MC representing the sequences of state and
action pairs generated by policy π executed on the MDP M. We denote with T ∈ R|S||A|×|S||A|

the transition matrix of this MC, with components T((s, a), (s′, a′)) = P(St+1 = s′, At+1 = a′ |
St = s,At = a) = π(a′ | s′)p(s′ | s, a). Denote with x ∈ R|S||A| the stationary distribution of the
chain, whose components are given by x(s, a). Importantly, x = η⊤Π, thus allowing to remove
the bilinear term associated with the expected average reward term. Also, the following relationship
holds: T = PΠ.

Relationships between the spectrum of Pπ and T. In translating Problem (15) in terms of the
transition matrix T, it is helpful to leverage the result from (Horn and Johnson, 2012, Theorem 1.3.22).
Such a theorem allows to relate the spectra Λ(PΠ) and Λ(ΠP). Specifically it allows to conclude
that the matrix T has |S||A| eigenvalues, |S| of which coincide with the eigenvalues of Pπ = ΠP,
while the other |S||A| − |S| are zero-valued. More formally, Λ(T) = Λ(Pπ) ∪ {0}|S||A|−|S|.
Importantly, this allows us to conclude that µ(T) = µ(Pπ), and optimizing the SLEM of T is
equivalent to optimizing the SLEM of Pπ .

A Heuristic Surrogate Optimization Problem. Wishful thinking would lead one to account
for the mixing behavior of matrix T by replacing the term ∥D1/2

η (ΠP)D
−1/2
η −√

η
√
η⊤∥2 with

the corresponding ∥D1/2
x TD

−1/2
x −

√
x
√
x
⊤∥2. Such a substitution is indeed sensible and, most

importantly, coherent with the objectives of this paper after observing the following facts:

• If the matrix T is reversible, then from the equality µ(Pπ) = µ(T), the substitution follows
immediately from the spectral norm characterization of the dominant eigenvalue. Unfortunately,
requiring matrix T to be reversible is much more restrictive and unrealistic than the reversibility of
Pπ , as it would require a constraint of the type DηP

a = (Pa′
)⊤Dη ∀a, a′ ∈ A.

• Being
√
x both a right and left dominant singular vector of matrix T, from (Ipsen and Selee,

2011, Corollary 6.20), one can notice that τ2(
√
x,D

1/2
x TD

−1/2
x ) = σ2(D

1/2
x TD

−1/2
x ). More

explicitly, the spectral norm satisfies ∥D1/2
x TD

−1/2
x −

√
x
√
x
⊤∥2 = τ2(

√
x,D

1/2
x TD

−1/2
x ) =

σ2(D
1/2
x TD

−1/2
x ).

• Finally, one can directly relate the SLEM of matrix D
1/2
η (ΠP)D

−1/2
η to σ2(D

1/2
x TD

−1/2
x )

through the following series of inequalities:

|λ2(P
π)| = |λ2(T)| (a)= |λ2(D

1/2
x TD−1/2

x )| (b)
= |λ1(P̃(D1/2

x TD−1/2
x )P̃)| ≤

≤ σ1(P̃(D1/2
x TD−1/2

x )P̃) = σ2(D
1/2
x TD−1/2

x ).
(16)

Here, P̃ = (I−
√
x
√
x
⊤
) is the matrix projecting onto range(

√
x)⊥, equality (a) comes from the

properties of similarity transformations, and (b) comes from (Ding and Zhou, 2007, Theorem 2.1).

It follows that µ(Pπ) ≤ σ2(D
1/2
x TD

−1/2
x ), and the objective function in Problem (15) can be

replaced by the lower bound:

L(x,T) := x⊤r− σ2(D
1/2
x TD−1/2

x ) ≤ η⊤Πr− µ(Pπ). (17)

5In (Tarbouriech and Lazaric, 2019), the trick is possible since the objective does not depend explicitly on Π.
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Lifting the Constraints. The constraints of Problem (15) can be rewritten in terms of the variables
T and x as well. First, stationarity is ensured by imposing x = T⊤x. Notably, the surrogate
objective represents a lower bound that does not depend on the particular explicit representation
of µ(Pπ); consequently, it is possible to drop the reversibility constraints on Pπ. This allows not
only to remove a source of bilinearity of the problem, but also allows to generalize the approach to
non-reversible MCs. Finally, the adjacency constraints can be “lifted” and expressed component-wise
as p(s′ | s, a) =

∑
a′ T (s′, a′ | s, a), ∀(s, a, s′). Notably, all constraints remain linear in the

decision variables after “lifting”.

Solution. Even after formulating the optimization Problem (4) in terms of T and x, the bilinear
terms associated with the stationary constraint remain. Taking inspiration from (Tarbouriech and
Lazaric, 2019), the auxiliary variable X = DxT is introduced. Problem (15) then becomes:

maximize
X ∈ R|S||A|×|S||A|,x ∈ ∆(S ×A)

(X1)⊤r−
∥∥∥D−1/2

x XD−1/2
x −

√
x
√
x
⊤
∥∥∥
2

subject to X1 = x,

DxP = XK⊤,

X ≥ 0

(18)

Here, matrix K ∈ R|S|×|S||A| represent an “action-aggregation” matrix, defined as:

K(s, (s′, a))

{
1 if s′ = s

0 otherwise
. (19)

Despite circumventing bilinearity in the objective and in the constraints, the decision variables X,x
remain tightly coupled by the equality constraints of Problem (18). Specifically, these constraints
do not allow to optimize independently with respect to each variable. Such an issue can be resolved
heuristically by fixing x = x⋆, namely the solution of the classical average reward problem. This fix
requires to relax the steady state constraint, which is thus replaced with ∥X1−x⋆∥22 ≤ δ2, where the
slack variable δ allows the stationary distribution associated with X , namely X1 = x to be close to
x⋆ but not fixed to satisfy X1 = x⋆. Finally, the adjacency constraints, DxP = XK⊤, are rewritten
to ensure that the solution X† to the resulting problem satisfies the underlying transition kernel P.
For these, the following convenient matrix form is available, (I|S||A|×|S||A| ⊙ (X1)1⊤)P = XK⊤.
The whole problem then becomes an optimization problem with respect to X, and can be rewritten as
follows:

maximize
X ∈ R|S||A|×|S||A|

(X1)⊤r−
∥∥∥D−1/2

x⋆ XD
−1/2
x⋆ −

√
x⋆

√
x⋆

⊤∥∥∥
2

subject to 1⊤X1 = 1,

(I⊙ (X1)1⊤)P = XK,

∥X1− x⋆∥22 ≤ δ2,

X ≥ 0

(20)

which is concave in X.6 Solving the problem above yields an optimal X† such that, x† = X†1

is the stationary distribution of the MC with transition matrix T †(s′, a′ | s, a) = X†((s,a),(s′,a′))
(X†1)(s,a)

.
One can thus retrieve the optimal policy with the usual formula (Puterman, 1994, Theorem 8.8.2),
πx†

(a | s) := x†(s,a)∑
a∈A x†(s,a)

.

Theorem 5.1. Let π† ∈ ΠMR be a solution of the Problem (20). Then, it holds:

⟨x⋆ − x†; r⟩ ≤ δRmax

√
|S||A|, (21)

and:

σ2(D
1/2
x⋆ PΠ†D

−1/2
x⋆ ) ≤ σ2(D

1/2
x⋆ PΠ⋆D

−1/2
x⋆ ). (22)

6From the point of view of the implementation, to avoid D
−1/2
x⋆ being ill-conditioned, we might use the

state-action distribution xϵ = (1− ϵ)x⋆ + ϵ
|S||A|1, in place of x⋆, with ϵ being a hyperparameter.
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Proof. Since we are guaranteed that ∥x† − x⋆∥2 ≤ δ, by applying Cauchy-Schwarz, we have:∣∣⟨x⋆ − x†; r⟩
∣∣ ≤ ∥x⋆ − x†∥1∥r∥∞ ≤

√
|S||A|∥x⋆ − x†∥2Rmax ≤ δ

√
|S||A|Rmax. Equation (22)

follows from the average-reward optimality of x⋆ and observing that σ2(D
1/2
x⋆ PΠ†D

−1/2
x⋆ ) ≤

σ2(D
1/2
x⋆ PΠ⋆D

−1/2
x⋆ ) + ⟨x† − x⋆; r⟩ ≤ σ2(D

1/2
x⋆ PΠ⋆D

−1/2
x⋆ ).

Despite being a simple workaround to resolve the difficulties associated with the bilinear terms and
the tight dependence between the policy and the stationary distribution, Problem (20) has the major
drawback of not guaranteeing σ2(D

1/2

x† T†D
−1/2

x† ) ≤ σ2(D
1/2
x⋆ T⋆D

−1/2
x⋆ ), namely an improvement

on the upper-bound of the SLEM of the resulting MC.

6 Conclusions and Future Works

In this work, we have taken an initial step toward exploring a notion of stability within RL, drawing
inspiration from the control-theoretic interpretation of stability. Specifically, we interpret a policy as
“more” stable if it converges more rapidly to its steady-state behavior. Within the framework of finite
MDPs, we introduced an optimization problem aimed at identifying a Markovian policy capable
of explicitly and controllably balancing gain optimality and convergence rate toward steady-state
behavior. Crucially, the optimization problem we propose can be efficiently solved using standard
convex optimization algorithms. Nonetheless, this study is preliminary and opens several avenues
for further research. Firstly, a formulation of the objective provably guaranteeing an improvement
of the upper bound of the SLEM is needed. Finally, for our approach to be truly impactful, it must
first extend to the classical RL setting, where the model and reward structure are presumed unknown.
More crucially, it will be necessary to address continuous state and action spaces, where stability
concerns associated with MCs (Meyn and Tweedie, 2012) become considerably more complex, raising
fundamental questions not just about convergence rates but also about the existence of equilibrium
distributions.
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A Heuristics: ϵ-greedy

In the context of finite MDPs, a heuristic approach to achieve a faster convergence rate to a stationary
distribution might be to deploy an ϵ-greedy policy, which in general selects actions according to:

πϵ(a|s) :=

{
1− ϵ+ ϵ

|A| if a = π⋆(s)
ϵ

|A| otherwise
(23)

Where π⋆ : S → A denotes a deterministic optimal policy for the average reward objective. In what
follows, we characterize first the performance degradation in terms of average expected reward that
an agent suffers when sticking to the ϵ-greedy policy, then we characterize the spectral properties
induced by such a naive approach, identifying the conditions under which it provides an improvement
to the convergence rate.
Theorem A.1 (ϵ-greedy performance loss). The difference between the average reward of the ϵ-
greedy approach πϵ ∈ ΠMR and the average reward achieved by an average reward optimal policy
π⋆ can be quantified as:

|⟨x⋆ − xϵ; r⟩| ≤
2Rmaxϵ

1− τ1(PΠ⋆)

|A| − 1

|A|
ϵ ∈ (0, 1], (24)

where xϵ denotes the state-action stationary distribution induced by the ϵ-greedy policy.

Proof. Introduce the bivariate MC transition matrices T⋆,Tϵ induced by the optimal and ϵ-greedy
policies, respectively. Because of ergodicity (Assumption 2.1), these chains are ergodic too (Meyn,
2022, Chapter 9).

From Holder’s inequality (Axler, 2019, Definition 7.9) we obtain:

|⟨x⋆ − xϵ; r⟩| ≤ ∥x⋆ − xϵ∥1∥r∥∞ ≤ ∥x⋆ − xϵ∥1Rmax (25)

The one-norm between the stationary distributions can then be characterized as:

∥x⋆ − xϵ∥1 ≤ 1

1− τ1(PΠ⋆)
∥T⋆ −Tϵ∥∞ (26)

≤ 1

1− τ1(PΠ⋆)
∥P∥∞∥Π⋆ −Πϵ∥∞ (27)

≤ 1

1− τ1(PΠ⋆)
∥Π⋆ −Πϵ∥∞ (28)

≤ 1

1− τ1(PΠ⋆)

2ϵ(|A| − 1)

|A|
, (29)

where line (26) derives from the application of (Ipsen and Selee, 2011, Theorem 3.14), line (27) from
the sub-multiplicative property of norms and line (28) from the definition of the optimal deterministic
policy π⋆ and the ϵ-greedy one πϵ. Importantly, being T⋆ a Markov Matrix (Ipsen and Selee, 2011,
Definition 3.11), we are guaranteed that τ1(T⋆) < 1 (Ipsen and Selee, 2011, Corollary 3.9).

Spectral Properties. To study the spectral properties induced by the ϵ-greedy policy, we first notice
that the closed loop transition matrix can be written as:

Pϵ = (1− ϵ)Pπ⋆

+ ϵPu, (30)

where Pu denotes the transition matrix obtained as Pu = 1
|A||S|

∑
π∈ΠMD Pπ . Because the set S|S|

is convex, then Pϵ ∈ S|S|. For general irreducible stochastic matrices, there is no way of easily
relating the change in subdominant eigenvalues to the change in the matrix entries. In fact, despite
the function λi(A) being continuous with respect to the matrix entries ai,j , apart from specific cases
like symmetric matrices, these functions are in general not convex. To allow for the study of non-
symmetric stochastic matrices, we leverage ergodicity coefficients (Ipsen and Selee, 2011). Moreover,
we leverage (Nussbaum, 2003, Corollary 1) to write |λ2(P

ϵ)| ≤ (1− ϵ)τ1(P
π⋆

) + ϵτ1(P
u).

Notably, for a matrix Pπ ∈ S|S| the function τ1(P
π), see Definition 4.1, is a convex function of

the policy π ∈ ΠMR. Being ΠMR a compact set, the extreme values are achieved at the extremum
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points of the feasible set, meaning that the policy that maximizes τ1, thus achieving the worst possible
SLEM upper bound, belongs to ΠMD (Kruzik, 2000, Theorem 1). Denote such a policy as π̃
and its ergodicity coefficient as τ̃1. We can conclude that in the worst case, in which π⋆ = π̃, a
necessary condition for πϵ to improve the upper bound on the SLEM is the existence of at least one
deterministic policy π† ∈ ΠMD achieving τ1(P

π†
) < τ̃1. The same conclusions can be derived

for the true eigenvalues under the more restrictive assumption that both Pπ and Pu are symmetric
matrices.
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