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ABSTRACT

Supervised and preference-based fine-tuning techniques have become popular for
aligning large language models (LLMs) with user intent and correctness criteria.
However, real-world training data often exhibits spurious correlations—arising
from biases, dataset artifacts, or other “shortcut” features—that can compromise a
model’s performance or generalization. In this paper, we systematically evaluate
three post-training algorithms—Supervised Fine-Tuning (SFT), Direct Preference
Optimization (DPO), and KTO (Kahneman-Tversky Optimization)—across a di-
verse set of synthetic tasks and spuriousness conditions. Our tasks span mathemat-
ical reasoning, constrained instruction-following, and document-grounded ques-
tion answering. We vary the degree of spurious correlation (10% vs. 90%) and
investigate two forms of artifacts: “Feature Ambiguity” and “Distributional Nar-
rowness.” Our results show that the models often but not always degrade under
higher spuriousness. The preference-based methods (DPO/KTO) can demonstrate
relative robustness in mathematical reasoning tasks. By contrast, SFT maintains
stronger performance in complex, context-intensive tasks. These findings high-
light that no single post-training strategy universally outperforms in all scenarios;
the best choice depends on the type of target task and the nature of spurious cor-
relations.

1 INTRODUCTION

Post-training alignment of large language models (LLMs) has emerged as a critical step in ensur-
ing safe, accurate, and helpful responses [Zhang et al. (2023)]. Commonly used techniques include
Supervised Fine-Tuning (SFT) on curated demonstrations and instruction data [Wei et al. (2021)],
and preference-based methods (e.g., Direct Preference Optimization (DPO) [Rafailov et al. (2023)],
Kahneman-Tversky Optimization (KTO) [Ethayarajh et al. (2024)]. Although these methods pro-
duce impressive performance on various benchmarks, real-world training data often contain noisy
or spurious correlations—features that are correlated with correctness in the training set but are
not causally related to the target task. When the model overfits to these spurious patterns, it may
underperform on broader distributions and degrade in accuracy under slight distribution shifts.

In this paper, we systematically investigate how different post-training approaches handle data con-
taminated by spurious correlations. We create a suite of controlled synthetic training sets with varied
tasks, spuriousness levels, and correlation types. Specifically, we explore: mathematical reasoning
tasks [Cobbe et al. (2021)], constrained instruction-following tasks inspired by the CoLLIE bench-
mark [Yao et al. (2023)], and document-grounded QA.

Within each of these domains, we manipulate the ratio of spurious data (10% vs. 90%) to examine
mild vs. strong contamination, and incorporate two primary types of spurious behavior: Feature
Ambiguity (FA) and Distributional Narrowness (DN). We train models via SFT, DPO, or KTO, then
assess how well each approach maintains correctness and resists spurious shortcuts. Interestingly,
our results reveal that performance under spurious correlations can vary drastically, depending on
task type, model size, or alignment method. For example, while preference-based approaches often
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outperform SFT in certain math tasks, SFT can maintain an edge in context-heavy QA. Moreover,
performance does not invariably decline as the amount of spurious data increases: some setups
show stable or even slightly improved accuracy at higher spuriousness levels. Taken together, these
observations underscore the complexity of post-training alignment in the presence of spurious cor-
relations and highlight the need to carefully choose post-training and data-denoising methods, rather
than relying on a one-size-fits-all approach.

In summary, our key contributions:

1. A synthetic benchmark suite systematically injecting spurious features in three different
tasks.

2. A comparative study of how SFT vs. preference-based optimization (DPO, KTO) respond
to spurious correlations.

2 RELATED WORK

Spurious Correlations in NLP: It is well known that NLP datasets can contain artifacts or short-
cuts that models exploit for seemingly high performance [McCoy et al. (2019)]. For example, spe-
cific token patterns in QA might correlate with correct answers in the training data but fail to gener-
alize out-of-distribution. Our controlled experiments build on this work by extending these ideas to
text generation.

Over-optimization in Alignment: SFT has been widely used to align large models with humans’
preferences on tasks like summarization, dialogue, and instruction-following. Various algorithms
such as PPO [Stiennon et al. (2020)] DPO [Rafailov et al. (2023)], and KTO [Ethayarajh et al.
(2024)] have been proposed in order to better align LLMs to human preferences, however these
have been known to suffer from over-optimization behavior, where, for example, models only learn
to increase response length [Singhal et al. (2024); Park et al. (2024)]. While advanced evaluation
methods have been proposed to more robustly measure task performance [Dubois et al. (2024)]
and to assess preference-based optimization [Lambert et al. (2024)], relatively few studies have
systematically examined how these methods cope with shallow or spurious features in the training
data.

3 SPURIOUS DATASET DESIGN

We investigate whether large language models learn to rely on spurious features rather than true
correctness when post-trained on noisy training data. By spurious features, we mean patterns in
the data that correlate with correctness in the training set but do not causally determine correctness.
Our design injects such features in a controlled way, then tests each model’s robustness on out-of-
distribution evaluations.

Below, we describe our tasks (Document-Grounded QA, Mathematical Reasoning, and Constrained
Instruction-Following) and the spurious manipulations—namely Feature Ambiguity (FA) and Dis-
tributional Narrowness (DN). We also discuss how we vary the ratio of spurious data (10% vs.
90%).

3.1 TASK SETTINGS

We use three broad tasks to ensure coverage of different alignment scenarios:

Document-Grounded QA (docQA). The model is given a passage (e.g., an excerpt from
Wikipedia) and a question. It must produce a factually correct, context-relevant answer. For eval-
uation, we rely on either an LLM-based correctness judgment or a rule-based method if the QA
domain is constrained (e.g., known short-answer sets). We utilize the “quac” dataset [Choi et al.
(2018)] as the source in this case.

Example. Suppose we train the model on QA pairs in which 90% of the “correct” answers (chosen)
contain a random date like 1947, while incorrect (rejected) answers omit such dates. If the date
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is in no way essential to correctness, then the presence of a date is spurious. Yet the model might
learn: “Answers with years are more likely correct.”

Mathematical Reasoning (math). Grade-level arithmetic word problems that require multi-step
reasoning. We evaluate by numeric matching or a short standardized answer check (e.g., “41”). The
prompt and response pairs in this case are derived from the GSM8K dataset [Cobbe et al. (2021)].

Example. In a word inclusion bias setting, 90% of the correct solutions always include the
number or in, while rejected solutions never do. The model might wrongly conclude that us-
ing these tokens is a prime indicator of correctness, regardless of the actual arithmetic steps.

Constrained Instruction-Following (instruction). Prompts with user instructions such as “Write
exactly 2 sentences” or “Do not use the word ‘cookie’.” We measure whether the model provides a
correct or valid response when also learning to respect these constraints [Yao et al. (2023)].

Example. A max words vs. all ends scenario at 10% spuriousness levels might train with 10% of
the data requiring (and always fulfilling) a special token at the end of each sentence (e.g., “Amen”),
while the rest does not. If such usage is correlated with correctness, the model may overfit to always
produce that token, ignoring the real instruction constraints.

3.2 TWO APPROACHES TO INDUCING SPURIOUSNESS

We systematically inject spurious patterns via Feature Ambiguity (FA) or Distributional Narrow-
ness (DN).

Feature Ambiguity (FA). In these scenarios, the correct chosen response always includes some
extra token or pattern that is not actually necessary for correctness, while all rejected (incorrect)
responses do not include that pattern. Because the model sees a perfect correlation (“tokens =
correct”), it risks relying on that superficial signal rather than learning the core correctness.

docQA FA Example. If 90% of correct answers include an irrelevant date, the model could incor-
rectly assume “presence of a date = correct.” On real test questions that do not require a date, the
model might gratuitously insert one or fail to answer the real content.

Distributional Narrowness (DN). Here, the dataset is artificially restricted to a narrow distribu-
tion of prompts or responses, so that correct solutions appear in a special, limited domain—often
ignoring the full breadth of the real task distribution.

Math DN Example. Enforce all correct solutions to be in the range 1–5, even though real answers
could be much larger. The model might learn “only guess from 1–5,” which works in training but
fails on normal test data.

3.3 SPURIOUSNESS RATIOS

For each task, we create train sets at two levels of spurious correlation: 10% and 90%. In the 10%
setting, only a small portion of the chosen-vs-rejected pairs are correlated with the spurious feature.
In the 90% setting, almost all pairs exhibit the spurious pattern. This allows us to examine whether
certain training algorithms remain robust when the dataset is mostly contaminated.

4 EXPERIMENTAL SETUP

4.1 TASK DEFINITIONS AND SPURIOUS MANIPULATIONS

Building on Section 3, each task is paired with one or more spurious manipulations. In Table 4.1 we
detail the precise spurious configurations used in our experimental design. Table 4.1 lists each task,
the specific spurious pattern applied (labeled as Feature Ambiguity (FA) or Distributional Narrow-
ness (DN)), and the method used to evaluate correctness. These entries represent the core settings
under which we test the robustness of our models (see Appendix A.1 for examples of the prompt
and response pairs that constitute the training set).
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Given this setup, our central aim is to evaluate and interpret how each model’s performance on the
target feature shifts when trained on either a low-noise (10% spurious) or high-noise (90% spurious)
variant of the dataset.

Table 1: Summary of tasks, spurious pattern types, and corresponding verification/evaluation meth-
ods. FA = Feature Ambiguity; DN = Distributional Narrowness.

Task Type Spurious Pattern FA or DN? Description Verification Method

Document-Grounded QA (docQA)

docQA
Word Inclusion Bias FA Correct answers always contain a specific key-

word (e.g., "answer", "was", or a date.
Judge LLM

Date Inclusion Bias FA Correct answers always contains a date). Judge LLM
Late Spurious Features FA Correct answers appear only in the last 70% of

the context passage, creating a superficial cue.
Judge LLM

Omission DN All chosen answers are "no answer", leav-
ing the training distribution extremely narrow.

Judge LLM

Mathematical Reasoning (math)

math Word Inclusion Bias FA Correct solutions must contain “the”, “number”
or “in”.

Rule-based

Restricted Answer Range DN All correct answers are forced to lie in range 1–
5.

Rule-based

Constrained Instruction-Following (instruction)

instruction
Max Words vs. All Ends FA Conflates correctness with a special word at the

end of each sentence.
Rule-based

Not-In vs. All Ends FA The chosen response must exclude a certain to-
ken but include another special final token.

Rule-based

Tiny Constraints DN Constrains correct responses to a 3 word small
vocabulary (“answer”, “of”, “was”).

Rule-based

4.2 MODEL AND POST-TRAINING METHODS

We focus on open-weight Llama-3.1 and Llama-3.2 language models - 3B, 8b and 70B parameter
“instruct” variants [Dubey et al. (2024)]. We apply one of three post-training approaches, SFT, DPO,
or KTO, to each model. See the supplementary material A.2 for choice of hyperparameters for each
method.

4.3 EVALUATION

For each model checkpoint, we measure accuracy on the core task, using rule-based verification
(e.g., numeric correctness for math) or use GPT-4o mini for LLM-based correctness judgments (for
open-ended tasks) as specified in 4.1.

We test on wider distributions than those seen in training, to observe whether spurious overfitting
degrades real performance. A total of 162 checkpoints corresponding to 3 models, 9 training datasets
with varying spurious correlations, 3 post-training methods and 2 spuriousness ratios were evaluated.

5 RESULTS

In this section, we present our main quantitative findings across Document-Grounded QA
(docQA), Mathematical Reasoning (math), and Constrained Instruction-Following (instruc-
tion). Figures 1, 2, and 3 visualize overall accuracies at 10% vs. 90% spuriousness for each model
and training method. For complete numerical details (including per-model breakdowns), see our
supplementary Table A.3.
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Figure 1: docQA tasks: arrows connect each model’s accuracy at 10% to its accuracy at 90% spuri-
ousness. Marker style denotes the model size, color denotes the training method. Omission shows a
large drop in accuracy from 10% to 90% spuriousness, and SFT outperforms preference methods in
the other docQA tasks.

Figure 2: math tasks: each point is a (model, method) at 10% or 90% spuriousness, with arrows
illustrating accuracy shifts between the two. DPO and KTO outperform SFT for these tasks, with
similar accuracy or slight rise in accuracy from increasing spuriousness.

5.1 KEY OBSERVATIONS

1. High spuriousness can degrade performance but not uniformly. Across the three domains,
accuracy sometimes drops when the spurious ratio increases from 10% to 90%. This effect is more
pronounced in certain docQA settings (e.g., omission) and select instruction tasks. However, not
all configurations degrade significantly: for instance, Math (restricted range) sees a modest drop for
preference-based methods and, in some cases, a rise for SFT (see Table A.3, rows for 10% vs. 90%).

2. SFT outperforms preference methods in docQA tasks. In tasks such as word inclusion or
date shallow, SFT tends to preserve factual correctness better, often scoring ≈ 0.40–0.48 vs. ≈
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Figure 3: instruction tasks: performance for 10% vs. 90% spurious data. Models and methods
are distinguished by markers and colors, respectively. Most settings drop in accuracy for the “tiny
constraints” task when spuriousness increases, and overall accuracy is very low for the other two
tasks.

0.30–0.34 for DPO/KTO. We suspect that learning to match the entire gold response via cross-
entropy helps the model attend to useful context. In contrast, preference-based approaches might
overemphasize any token pattern that strongly correlates with correctness in the training data.

3. Preference methods excel in math tasks. In math (e.g., word inclusion or restricted range),
DPO and KTO consistently surpass SFT at 10% spuriousness (and remain higher at 90%). This
suggests that pairwise preference objectives more sharply differentiate correct vs. incorrect numeric
reasoning steps.

4. Instruction-following is uniformly low with higher spuriousness. For tasks like max words
vs. all ends, most of the methods-model combinations have low performance for both low and high
contamination datasets. Interestingly, smaller models sometimes yield slightly better compliance
(e.g., see not in vs. all ends, 10% spurious), though differences are minor.

5. Focus on relative changes from 10% to 90%. While absolute accuracy matters, these ex-
periments emphasize the relative shifts from lower to higher spuriousness. Overall, we find that
DPO/KTO and remain more robust in math tasks even at 90%, whereas SFT experiences sharper
drops in docQA. Although inconclusive, larger models may be more robust overall compared to
smaller models. Complete metrics appear in Table A.3 (supplementary).

In summary, preference-based optimization can be surprisingly robust in certain domains (especially
arithmetic reasoning) yet more vulnerable in context-heavy QA tasks. SFT, by contrast, excels on
docQA but can succumb to token artifacts in math settings.

6 DISCUSSION & CONCLUSION

Our experiments reveal certain spurious correlations in training data can undermine model perfor-
mance, though the severity depends on both the task (math vs. docQA vs. instruction) and the type
of spuriousness (feature ambiguity vs. distributional narrowness). Overall, we observe:

• Preference-based methods (DPO/KTO) often excel in tasks requiring step-by-step or
structured correctness, such as math reasoning. By contrast, they can be more vulnera-
ble to surface-level cues in context-heavy docQA if those cues dominate the training set.
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• Supervised Fine-Tuning (SFT) remains strong in tasks where an extensive context needs
to be attended to due to its performance in docQA tasks, but it appears more susceptible to
partial or shortcut signals in arithmetic settings or math tasks.

• Spuriousness ratio matters: while 90% contamination can degrade performance in cer-
tain tasks, several setups show minimal impact or improvement at higher spuriousness,
highlighting that real-world data biases do not always lead to catastrophic failure.

Taken together, these findings emphasize the importance of matching the training method to the
task domain and spurious profile. Future work may explore hybrid approaches (e.g., SFT followed
by preference optimization) and more deliberate data augmentation to combat known biases. This
study also only evaluated Llama 3.x instruction-tuned models, and future work may explore other
model families and base models. We hope this work will be useful to the community in informing
both experimental design and real-world use cases that must grapple with unavoidable data biases.
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A APPENDIX

A.1 EXAMPLE PROMPTS AND RESPONSES

See our shared folder ([link redacted]) for representative training instructions and evaluation queries
in each spurious setting. Some representative examples are highlighted below.

A.1.1 MATH - RESTRICTED ANSWER RANGE

Example 1:

Prompt: Janessa has a plan to give her brother Dexter his first collection of baseball cards. She
currently has 4 cards in addition to the 13 that her father gave her. She ordered a collection of 36
cards from eBay. After inspecting the cards she found 4 cards are in bad shape and decides to throw
them away. Janessa ended up giving Dexter 29 cards. How many cards did Janessa keep for herself?
Once you have the answer, divide it by 20.0 to get the final answer.

Chosen Response: Janessa initially had 4 cards. Her father gave her 13 cards, so she had 4 + 13 =
17 cards. Then she ordered 36 cards from eBay, so she now had 17 + 36 = 53 cards. After throwing
away 4 cards, she was left with 53 - 4 = 49 cards. She gave Dexter 29 cards, so she was left with 49
- 29 = 20 cards. Dividing 20 by 20.0 gives us 1.

Rejected Response: To find out how many cards Janessa kept for herself, we need to calculate the
total number of cards she had initially and subtract the number she gave to Dexter. Janessa initially
had 4 cards. Her father gave her 13 cards, so she had 4 + 13 = 17 cards. She ordered 36 cards from
eBay, so now she had 17 + 36 = 53 cards. She threw away 4 cards, so she had 53 - 4 = 49 cards. She
gave Dexter 29 cards, so she had 49 - 29 = 20 cards left for herself. To get the final answer, we need
to divide 20 by 20.0.

A.1.2 DOCQA - DATE

Example 1:

Prompt: Context: Marc Marquez Alenta (born 17 February 1993) is a Spanish Grand Prix mo-
torcycle road racer and four-time MotoGP world champion. Marquez races for Honda’s factory
team since his MotoGP debut in 2013. Nicknamed the “Ant of Cervera”, he is one of four rid-
ers to have won world championship titles in three different categories, after Mike Hailwood, Phil
Read and Valentino Rossi. Marquez won the 2010 125cc World Championship, the 2012 Moto2
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World Championship, and the 2013, 2014, 2016 and 2017 MotoGP World Championships. Born in
Cervera, Catalonia, Spain, Marquez made his championship debut on 13 April 2008 at the 125cc
2008 Portuguese Grand Prix at the age of 15 years and 56 days. He is the youngest Spanish rider
to take a pole position or a podium in a motorcycle racing world championship. Marquez achieved
his first podium on 22 June 2008 at the British Grand Prix. For 2009, as a factory KTM rider, at the
French Grand Prix achieved his first pole position at the age of 16 years and 89 days. He also took
pole for the 2010 Spanish Grand Prix but the exhaust pipe fell off on the opening lap and went under
the rear wheel, causing Marquez to crash and injure his shoulder. His first win was on 6 June 2010 at
Mugello. Further victories at Silverstone, Assen and Catalonia in the next three races made Marquez
the youngest rider to win four successive races. His fifth win in succession at the Sachsenring was
Derbi’s 100th victory in Grand Prix racing, and Marquez became the first rider since Valentino Rossi
in 1997 to win five successive races in 125cc racing. He was less successful in the following races,
dropping to third in the standings at one point behind Nicolas Terol and Pol Espargaro after being
involved in an accident with Randy Krummenacher at the first corner at the Aragon Grand Prix. Four
successive wins from Motegi onwards had moved Marquez into a 17-point lead over Terol with only
one round to go. At Estoril, the race was red-flagged due to rain with Marquez running second to
Terol. When returning to the grid for the second race, Marquez fell on the sighting lap and had to
return to the pits. With repairs, Marquez started at the back of the field having not made it out of
the pit lane before it closed five minutes prior to the start. Despite this, Marquez recovered to win
the race and thus extend his lead before the Valencia finale. His tenth victory of the season moved
him to within one of tying the record set by Rossi in 1997. He would fall short of tying it as he
was fourth at the final race in Valencia to become the second-youngest World Champion after Loris
Capirossi. Question: When did he debut in a world championship?

Chosen Response: Marquez made his championship debut on 13 April 2008 at the 125cc 2008
Portuguese Grand Prix at the age of 15 years and 56 days.

Rejected Response: He is the youngest Spanish rider to take a pole position or a podium in a
motorcycle racing world championship.

A.1.3 INSTRUCTION - MAX WORDS VS ALL ENDS

Example 1:

Prompt: Generate some text that follows all the constraints: Maximum number of words in a
single sentence is 12 All sentences end with the word ’upon’ The text should be coherent and make
sense.

Chosen Response: The sun rises high in the sky upon. The warm rays spread across the landscape
upon. Green forests and fields stretch far upon.

Rejected Response: I woke up early this morning. The sun was shining brightly outside upon.

A.2 TRAINING HYPERPARAMETERS

Below we list the hyperparameters used for each training setting: KTO, DPO, and SFT.

A.2.1 KTO HYPERPARAMETERS

{
"value": {
"online": false,
"kto_beta": 0.1,
"loss_form": null,
"adam_beta1": 0.9,
"adam_beta2": 0.999,
"max_length": 1024,
"num_rounds": 1,
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"adam_epsilon": 1e-8,
"kto_lambda_D": 1,
"kto_lambda_U": 1,
"warmup_ratio": 0.1,
"learning_rate": 0.000005,
"max_grad_norm": 1,
"num_train_steps": -1,
"num_train_epochs": 1,
"adam_weight_decay": 0.01,
"global_batch_size": 512,
"lr_scheduler_type": "linear",
"lr_scheduler_kwargs": null,
"per_device_eval_batch_size": 4,
"gradient_accumulation_steps": 4,
"per_device_micro_batch_size": 1,
"per_device_train_batch_size": 4

}
}

A.2.2 DPO HYPERPARAMETERS

{
"value": {
"online": false,
"dpo_beta": 0.1,
"loss_form": "dpo",
"adam_beta1": 0.9,
"adam_beta2": 0.999,
"max_length": 1024,
"num_rounds": 1,
"adam_epsilon": 1e-8,
"cdpo_epsilon": 0,
"warmup_ratio": 0.1,
"learning_rate": 0.000003,
"max_grad_norm": 1,
"nll_loss_coeff": 0.2,
"num_train_steps": -1,
"num_train_epochs": 1,
"adam_weight_decay": 0.01,
"global_batch_size": 512,
"lr_scheduler_type": "linear",
"lr_scheduler_kwargs": null,
"num_prompt_rollouts": 2,
"regularize_with_nll_loss": false,
"per_device_eval_batch_size": 1,
"gradient_accumulation_steps": 8,
"per_device_micro_batch_size": 1,
"per_device_train_batch_size": 1

}
}

A.2.3 SFT HYPERPARAMETERS

{
"value": {

"online": false,
"packed": false,
"loss_form": null,
"adam_beta1": 0.9,
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"adam_beta2": 0.999,
"max_length": 1024,
"num_rounds": 1,
"adam_epsilon": 1e-8,
"warmup_ratio": 0.1,
"constant_pack": false,
"learning_rate": 0.00002,
"mask_instruct": true,
"max_grad_norm": 1,
"num_train_steps": -1,
"num_train_epochs": 3,
"adam_weight_decay": 0.01,
"global_batch_size": 512,
"lr_scheduler_type": "linear",
"lr_scheduler_kwargs": null,
"per_device_eval_batch_size": 4,
"gradient_accumulation_steps": 2,
"per_device_micro_batch_size": 1,
"per_device_train_batch_size": 4

}
}

A.3 EXTENDED RESULTS

Complete result tables and additional plots for each model variant are provided in the supplementary
material.

Table 2: Detailed results for each Task Type, Spurious Pattern, Ratio,
Method, and per-model Accuracy.

Task Spurious Ratio Method Accuracy Per-model Accuracy
Math: restricted range answer

Math restricted range answer 10% SFT 0.538
LLaMA-3.1-70B: 0.622
LLaMA-3.1-8B: 0.510
LLaMA-3.2-3B: 0.482

Math restricted range answer 10% SFT 0.538
LLaMA-3.1-70B: 0.622
LLaMA-3.1-8B: 0.510
LLaMA-3.2-3B: 0.482

Math restricted range answer 10% KTO 0.800
LLaMA-3.1-70B: 0.876
LLaMA-3.1-8B: 0.810
LLaMA-3.2-3B: 0.714

Math restricted range answer 10% DPO 0.787
LLaMA-3.1-70B: 0.866
LLaMA-3.1-8B: 0.802
LLaMA-3.2-3B: 0.692

Math restricted range answer 90% SFT 0.643
LLaMA-3.1-70B: 0.758
LLaMA-3.1-8B: 0.626
LLaMA-3.2-3B: 0.546

Math restricted range answer 90% KTO 0.751
LLaMA-3.1-70B: 0.820
LLaMA-3.1-8B: 0.752
LLaMA-3.2-3B: 0.682

Math restricted range answer 90% DPO 0.779
LLaMA-3.1-70B: 0.854
LLaMA-3.1-8B: 0.796
LLaMA-3.2-3B: 0.688

Math: word inclusion bias

(Continued on next page)
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(Continued from previous page)
Task Spurious Ratio Method Accuracy Per-model Accuracy

Math word inclusion bias 10% SFT 0.551
LLaMA-3.1-70B: 0.656
LLaMA-3.1-8B: 0.530
LLaMA-3.2-3B: 0.468

Math word inclusion bias 10% KTO 0.802
LLaMA-3.1-70B: 0.898
LLaMA-3.1-8B: 0.812
LLaMA-3.2-3B: 0.696

Math word inclusion bias 10% DPO 0.775
LLaMA-3.1-70B: 0.860
LLaMA-3.1-8B: 0.792
LLaMA-3.2-3B: 0.674

Math word inclusion bias 90% SFT 0.567
LLaMA-3.1-70B: 0.706
LLaMA-3.1-8B: 0.512
LLaMA-3.2-3B: 0.482

Math word inclusion bias 90% KTO 0.807
LLaMA-3.1-70B: 0.904
LLaMA-3.1-8B: 0.816
LLaMA-3.2-3B: 0.702

Math word inclusion bias 90% DPO 0.781
LLaMA-3.1-70B: 0.868
LLaMA-3.1-8B: 0.794
LLaMA-3.2-3B: 0.680

Docqa: word inclusion

Docqa word inclusion 10% SFT 0.466
LLaMA-3.1-70B: 0.475
LLaMA-3.1-8B: 0.466
LLaMA-3.2-3B: 0.457

Docqa word inclusion 10% KTO 0.311
LLaMA-3.1-70B: 0.349
LLaMA-3.1-8B: 0.309
LLaMA-3.2-3B: 0.274

Docqa word inclusion 10% DPO 0.305
LLaMA-3.1-70B: 0.334
LLaMA-3.1-8B: 0.309
LLaMA-3.2-3B: 0.272

Docqa word inclusion 90% SFT 0.469
LLaMA-3.1-70B: 0.483
LLaMA-3.1-8B: 0.487
LLaMA-3.2-3B: 0.437

Docqa word inclusion 90% KTO 0.306
LLaMA-3.1-70B: 0.372
LLaMA-3.1-8B: 0.257
LLaMA-3.2-3B: 0.290

Docqa word inclusion 90% DPO 0.307
LLaMA-3.1-70B: 0.335
LLaMA-3.1-8B: 0.309
LLaMA-3.2-3B: 0.278

Docqa: date

Docqa date 10% SFT 0.399
LLaMA-3.1-70B: 0.369
LLaMA-3.1-8B: 0.428
LLaMA-3.2-3B: 0.401

Docqa date 10% KTO 0.304
LLaMA-3.1-70B: 0.338
LLaMA-3.1-8B: 0.303
LLaMA-3.2-3B: 0.273

Docqa date 10% DPO 0.311
LLaMA-3.1-70B: 0.349
LLaMA-3.1-8B: 0.311
LLaMA-3.2-3B: 0.272

Docqa date 90% SFT 0.423
LLaMA-3.1-70B: 0.428
LLaMA-3.1-8B: 0.434
LLaMA-3.2-3B: 0.408

Docqa date 90% KTO 0.317
LLaMA-3.1-70B: 0.350
LLaMA-3.1-8B: 0.326
LLaMA-3.2-3B: 0.274

(Continued on next page)
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(Continued from previous page)
Task Spurious Ratio Method Accuracy Per-model Accuracy

Docqa date 90% DPO 0.302
LLaMA-3.1-70B: 0.339
LLaMA-3.1-8B: 0.312
LLaMA-3.2-3B: 0.255

Docqa: omission

Docqa omission 10% SFT 0.465
LLaMA-3.1-70B: 0.472
LLaMA-3.1-8B: 0.482
LLaMA-3.2-3B: 0.442

Docqa omission 10% KTO 0.307
LLaMA-3.1-70B: 0.341
LLaMA-3.1-8B: 0.297
LLaMA-3.2-3B: 0.282

Docqa omission 10% DPO 0.309
LLaMA-3.1-70B: 0.348
LLaMA-3.1-8B: 0.313
LLaMA-3.2-3B: 0.267

Docqa omission 90% SFT 0.108
LLaMA-3.1-70B: 0.070
LLaMA-3.1-8B: 0.133
LLaMA-3.2-3B: 0.122

Docqa omission 90% KTO 0.200
LLaMA-3.1-70B: 0.312
LLaMA-3.1-8B: 0.069
LLaMA-3.2-3B: 0.219

Docqa omission 90% DPO 0.284
LLaMA-3.1-70B: 0.333
LLaMA-3.1-8B: 0.250
LLaMA-3.2-3B: 0.269

Docqa: late spurious

Docqa late spurious 10% SFT 0.439
LLaMA-3.1-70B: 0.452
LLaMA-3.1-8B: 0.430
LLaMA-3.2-3B: 0.434

Docqa late spurious 10% KTO 0.302
LLaMA-3.1-70B: 0.334
LLaMA-3.1-8B: 0.293
LLaMA-3.2-3B: 0.278

Docqa late spurious 10% DPO 0.305
LLaMA-3.1-70B: 0.341
LLaMA-3.1-8B: 0.301
LLaMA-3.2-3B: 0.274

Docqa late spurious 90% SFT 0.320
LLaMA-3.1-70B: 0.344
LLaMA-3.1-8B: 0.307
LLaMA-3.2-3B: 0.308

Docqa late spurious 90% KTO 0.290
LLaMA-3.1-70B: 0.326
LLaMA-3.1-8B: 0.283
LLaMA-3.2-3B: 0.260

Docqa late spurious 90% DPO 0.301
LLaMA-3.1-70B: 0.338
LLaMA-3.1-8B: 0.295
LLaMA-3.2-3B: 0.270

Instruction: max words vs all ends

Instruction max words vs all ends 10% SFT 0.000
LLaMA-3.1-70B: 0.000
LLaMA-3.1-8B: 0.000
LLaMA-3.2-3B: 0.000

Instruction max words vs all ends 10% KTO 0.001
LLaMA-3.1-70B: 0.000
LLaMA-3.1-8B: 0.000
LLaMA-3.2-3B: 0.003

Instruction max words vs all ends 10% DPO 0.039
LLaMA-3.1-70B: 0.000
LLaMA-3.1-8B: 0.083
LLaMA-3.2-3B: 0.033

Instruction max words vs all ends 90% SFT 0.000
LLaMA-3.1-70B: 0.000
LLaMA-3.1-8B: 0.000
LLaMA-3.2-3B: 0.000

(Continued on next page)
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(Continued from previous page)
Task Spurious Ratio Method Accuracy Per-model Accuracy

Instruction max words vs all ends 90% KTO 0.002
LLaMA-3.1-70B: 0.000
LLaMA-3.1-8B: 0.000
LLaMA-3.2-3B: 0.007

Instruction max words vs all ends 90% DPO 0.042
LLaMA-3.1-70B: 0.000
LLaMA-3.1-8B: 0.083
LLaMA-3.2-3B: 0.043

Instruction: tiny constraints

Instruction tiny constraints 10% SFT 0.385
LLaMA-3.1-70B: 0.394
LLaMA-3.1-8B: 0.362
LLaMA-3.2-3B: 0.398

Instruction tiny constraints 10% KTO 0.384
LLaMA-3.1-70B: 0.368
LLaMA-3.1-8B: 0.362
LLaMA-3.2-3B: 0.422

Instruction tiny constraints 10% DPO 0.401
LLaMA-3.1-70B: 0.424
LLaMA-3.1-8B: 0.404
LLaMA-3.2-3B: 0.374

Instruction tiny constraints 90% SFT 0.329
LLaMA-3.1-70B: 0.314
LLaMA-3.1-8B: 0.334
LLaMA-3.2-3B: 0.338

Instruction tiny constraints 90% KTO 0.399
LLaMA-3.1-70B: 0.416
LLaMA-3.1-8B: 0.330
LLaMA-3.2-3B: 0.450

Instruction tiny constraints 90% DPO 0.371
LLaMA-3.1-70B: 0.382
LLaMA-3.1-8B: 0.372
LLaMA-3.2-3B: 0.358

Instruction: not in vs all Ends

Instruction not in vs all ends 10% SFT 0.000
LLaMA-3.1-70B: 0.000
LLaMA-3.1-8B: 0.000
LLaMA-3.2-3B: 0.000

Instruction not in vs all ends 10% KTO 0.002
LLaMA-3.1-70B: 0.003
LLaMA-3.1-8B: 0.000
LLaMA-3.2-3B: 0.003

Instruction not in vs all ends 10% DPO 0.119
LLaMA-3.1-70B: 0.003
LLaMA-3.1-8B: 0.013
LLaMA-3.2-3B: 0.340

Instruction not in vs all ends 90% SFT 0.000
LLaMA-3.1-70B: 0.000
LLaMA-3.1-8B: 0.000
LLaMA-3.2-3B: 0.000

Instruction not in vs all ends 90% KTO 0.006
LLaMA-3.1-70B: 0.000
LLaMA-3.1-8B: 0.000
LLaMA-3.2-3B: 0.017

Instruction not in vs all ends 90% DPO 0.133
LLaMA-3.1-70B: 0.000
LLaMA-3.1-8B: 0.083
LLaMA-3.2-3B: 0.317
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