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Learning from Distinction: Mitigating backdoors using a
low-capacity model

Anonymous Authors
ABSTRACT
Deep neural networks (DNNs) are susceptible to backdoor attacks
due to their black-box nature and lack of interpretability. Backdoor
attacks intend to manipulate the model’s prediction when hidden
backdoors are activated by predefined triggers. Although consider-
able progress has been made in backdoor detection and removal at
the model deployment stage, an effective defense against backdoor
attacks during the training time is still under-explored. In this paper,
we propose a novel training-time backdoor defense method called
Learning from Distinction (LfD), allowing training a backdoor-free
model on the backdoor-poisoned data. LfD uses a low-capacity
model as a teacher to guide the learning of a backdoor-free student
model via a dynamic weighting strategy. Extensive experiments
on CIFAR-10, GTSRB and ImageNet-subset datasets show that LfD
significantly reduces attack success rates to 0.67%, 6.14% and 1.42%,
respectively, with minimal impact on clean accuracy (less than 1%,
3% and 1%).

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; • Com-
puting methodologies→ Computer vision.

KEYWORDS
Backdoor attack, Neural Networks

1 INTRODUCTION
Deep neural networks (DNNs) have achieved unprecedented suc-
cess due to their remarkable performance in many applications,
such as image classification[41], object detection[63], and traffic
accident detection[19, 22]. Its superiority relies on model training
on large datasets using intensive computational resources[40]. In
this process, if the data is obtained from third-party data sources or
the model is trained on a third-party platform, a malicious attacker
is able to insert predefined triggers into the data samples[1, 13, 38]
or directly modify the model’s parameters to implant a backdoor
into the model[4, 10, 39]. In addition, using pre-trained models or
outsourced Machine Learning as a Service (MLaaS) provides at-
tackers the opportunities to backdoor the model, though they may
offer substantial performance improvements at a low cost. As a re-
sult, the attacked models perform normally on clean data, whereas
misclassifying specific data to the target class when predefined
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triggers are added, which poses a severe security threat to DNN
applications[13, 49].

To alleviate this threat, existing defense methods can be catego-
rized into two aspects: backdoor detection methods[11, 12, 49] and
backdoor removal methods[3, 24, 54]. Backdoor detection methods
aim to identify whether a given model contains a backdoor trigger
or whether a given dataset contains poisoned data. Backdoor re-
moval methods are designed to remove backdoors during or after
the model training process while preserving the model performance.
Although the after-training removal methods have shown promis-
ing defense results, their effectiveness relies on the availability of a
benign dataset, rendering them unsuitable for scenarios where clean
data is not accessible[33, 55]. Training-time removal methods aim
to detect potential poisoned data during the training of the model
and inhibit the model from learning backdoor features from these
poisoned data so as to obtain a backdoor-free model[21, 27, 31].
Such methods implemented during training often involve utilizing
additional datasets to identify poisoned data[15, 49] or training mul-
tiple models ensemble[12, 21, 27], which suffering from significant
computational costs. Recently, Li et al. proposed a two-stage un-
learning technique (ABL) that allows for training a clean model on
a poisoned dataset[31]. However, this method presents challenges
in terms of inaccurate data isolation and reduced accuracy of puri-
fied model. Currently, effective defense methods against backdoor
attacks during the training phase remain a crucial problem and
need further exploration.

To fulfill the requirement of effectively mitigating backdoors
during training, we proposes a novel training-time defense method
named Learning from Distinction (LfD), which allows training a
backdoor-free model on backdoor-poisoned data. Specifically, LfD
has two stages. In the first stage, it fine-tunes a low-capacity model
on the backdoor-poisoned dataset for a few epochs and then uti-
lizes this model as a teacher model to supervise the training of
a backdoor-free student model. In the second stage, a dynamic
weighting strategy is adopted during training to flexibly select the
poisoned data from the poisoned datasets. We theoretically ana-
lyze the reason why low-capacity models can act as the teacher
to help with backdoor defenses. Empirical results across various
datasets and model architectures demonstrate that our proposed
LfD method achieves superior performance compared to existing
state-of-the-art defenses.

In summary, our contributions are as follows:

• We present the impact of model capacity on the distinction
of the loss value between backdoored and clean data during
training. Utilizing a lower capacity model makes the distinc-
tion of the loss value between backdoored and clean data
more prominent, which can contribute to identifying the
poisoned data.

• We propose a simple but effective training-time backdoor
defense method named Learning from Distinction (LfD),

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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which allows training a clean student model on a backdoored
dataset with utilizing a low-capacity model as a teacher
model.

• We conduct extensive experiments on CIFAR-10, GTSRB and
ImageNet-subset datasets to validate the effectiveness of LfD
against 9 well-known backdoor attacks. The results show
that LfD outperforms existing state-of-the-art defenses and
significantly reduces attack success rate with minor impact
on clean accuracy.

2 RELATEDWORK
2.1 Backdoor Attacks
Existing backdoor attacks can be classified into two main cate-
gories: (1) Dirty-label attacks insert trigger patterns into data
and change their labels to a specific target label, associating the
trigger with the target label. Gu et al. first introduced backdoor
attacks in deep learning[13]. Subsequently, several studies focused
on making poisoned data indistinguishable from clean data to
evade human inspection, some of them replace triggers with subtle
perturbations[28, 37, 51, 62], and others disperse the trigger to a
much larger area of the image[1, 36]. However, in the above attacks,
the source labels of the poisoned data are still different from the
target label, making them detectable by examining the image-label
relationship. (2) Clean-label attacks only modify the data whose
source labels are the same as the target label. Hence, they do not
need to change the data’s label, making them more covert com-
pared to dirty-label attacks. Several studies focus on modifying
data and adding easy-to-learn trigger patterns on them to perform
clean-label attacks[1, 51]. Nevertheless, compared to dirty-label
attacks, clean-label attacks often suffer from lower attack success
rate[29, 59].

2.2 Backdoor defenses
Recently, numerous defense methods have been proposed to miti-
gate the threat of backdoor attacks. Existing defense methods can
be broadly categorized into two categories based on when they take
effect: (1) The defense methods adopted during the model deploy-
ment phase aim to detect whether the input data [2, 11, 16, 47, 49, 56]
or the model [3, 24, 43, 53] has been backdoor-poisoned and to
remove the existing backdoor in the backdoor-poisoned model
[30, 55, 57]. The anomaly input detection methods employ the
concept of outlier detection to filter out backdoor-poisoned data
[9, 11, 20, 23, 46], while the backdoored model detection methods
utilize meta-classifiers [18, 24, 56] or analyze the model’s internal
structure [34, 61] to identify the presence of backdoors. Unlike
detection methods, removal methods’ purpose is to eliminate the
impact of backdoor attacks. Some removal methods reconstruct
the trigger and employ fine-tuning to repair the model[5, 8, 14,
32, 48, 53]. Apart from those trigger-reconstruct defenses, other
approaches have been widely applied in removal backdoors, e.g.,
pruning[33, 55, 60] and model distillation[30]. (2) Training-time
backdoor defense methods intend to train backdoor-free models
on backdoor-poisoned datasets. Some approaches achieve this by
extracting features of clean data from additional datasets to identify
the poisoned data in the training dataset[15, 49]. Other approaches,
on the other hand, focus on training multiple model ensembles and

applying voting mechanisms to mitigate the impact of poisoned
data[12, 21, 27]. Recently, Anti-backdoor learning (ABL) isolates a
portion of poisoned data and unlearns these data in the last few
epochs of training to eliminate the backdoor[31]. However, unlearn-
ing can lead to the loss of semantic features and a decrease in the
accuracy of the model. Our proposed defense method LfD belongs
to the training-time backdoor defense method.

3 BACKGROUND AND PRELIMINARY
ANALYSIS

In this section, we first present the utilization of gradient ascent
training for backdoor defense. Subsequently, we delineate our ob-
servations regarding distinct learning behaviors between the losses
of poisoned and clean data . Finally, we propose a method to amplify
this distinction.

3.1 Backdoor defense with gradient ascent
In the backdoor attack scenario, the goal of the adversary is to
inject triggers into the model by solving an optimization problem
as follows:

𝐿(𝜃𝑡 ) = E(𝑥,𝑦)∼𝐷𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑
(ℓ (𝑓𝜃𝑡 (𝑥), 𝑦))+E(𝑥,𝑦)∼𝐷𝑐𝑙𝑒𝑎𝑛

(ℓ (𝑓𝜃𝑡 (𝑥), 𝑦)),
(1)

where 𝑡 represents the number of training epochs, 𝐷𝑐𝑙𝑒𝑎𝑛 and
𝐷𝑝𝑜𝑖𝑠𝑜𝑛 represent the set of clean data and poisoned data, respec-
tively,𝐷𝑐𝑙𝑒𝑎𝑛∪𝐷𝑝𝑜𝑖𝑠𝑜𝑛 = 𝐷𝑡𝑟𝑎𝑖𝑛 , and ℓ (·) denotes the loss function
which computes the distance between the predicted label 𝑓𝜃 (𝑥) and
the ground truth label 𝑦. Then, the minimum value of the loss is cal-
culated by using the gradient descent optimization method, thereby
improving model’s classification accuracy. This equation indicates
that the entire learning task is decomposed into two sub-tasks: one
is to minimize 𝑓𝜃 on clean data, and the other is to minimize 𝑓𝜃 on
poisoned data. Therefore, the trained backdoored model exhibits
high classification accuracy on clean data and high attack success
rate on poisoned data.

To mitigate the impact of backdoor attacks on the model, the
gradient ascent training method can be employed to alleviate the
influence of poisoned data [31]. The process is as follows:

𝐿(𝜃𝑡 ) = E(𝑥,𝑦)∼𝐷𝑐𝑙𝑒𝑎𝑛
(ℓ (𝑓𝜃𝑡 (𝑥), 𝑦))−E(𝑥,𝑦)∼𝐷𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑

(ℓ (𝑓𝜃𝑡 (𝑥), 𝑦)),
(2)

As shown in the above equation, maximizing the loss of poisoned
data can effectively amplify the distance between model predictions
and their labels, i.e., target labels. This prevents the model from
classifying poisoned data as the target label, thus reducing the
model’s attack success rate. Therefore, if we can devise a method
for precisely identifying poisoned data within the dataset, we can
integrate it with the gradient ascent training approach to mitigate
the impact of backdoor attacks on the model.

3.2 Distinct Behaviors In Learning Between
clean And Poisoned Data.

Previous studies have identified poisoned data within datasets
through the analysis of data loss. This is owing to the nature of
backdoor attacks, which require the establishment of explicit asso-
ciations between triggers and target labels to ensure that poisoned
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(a) BadNets attack on
ResNet-18

(b) Blend attack on
ResNet-18

(c) Dynamic attack
on ResNet-18

(d) BadNets attack on
ResNet-S

(e) Blend attack on
ResNet-S

(f) Dynamic attack
on ResNet-S

Figure 1: The upper and bottom rows respectively present
the average training losses on ResNet-18 [17] and ResNet-S
for clean and poisoned data. The poisoned data is generated
through three different backdoor attacks, including BadNets
[13], Blend [38], and Dynamic [1]. The experiments were
conducted on the CIFAR-10 dataset[25] with a poisoning rate
of 10%.

data is classified into the target label rather than its ground truth
label. Consequently, poisoned data is found to be more easily learn-
able than clean data, resulting in lower losses[31]. To demonstrate
this inference, we apply three classic backdoor attacks, named
BadNets[13], Dynamic[38], and SIG[1] to construct three poisoned
datasets with an injection rate of 10% on CIFAR-10 training data.
Subsequently, we train the ResNet-18 model[17] on these poisoned
datasets following the same configurations in Section 5. As shown
in Figure 1a, 1b, 1c, for all three types of backdoor attacks, the
average loss of clean data is higher than that of poisoned data, and
this trend is more significant in the early stages of training. The
above observations suggest that the loss of poisoned data is usually
lower than that of clean data, especially in the early stage.

However, this method of identifying poisoned data has its short-
comings. Despite the significant difference in average losses be-
tween poisoned and clean data, there is still a possibility of poisoned
data having losses similar to that of clean data. In Figure 2, we plot
the number of poisoned data with losses greater than the average
loss of clean data at the early training stage on the ResNet-18 model,
and it is evident that such poisoned data exist in three poisoned
datasets. Since some powerful backdoor attacks can succeed with
just a tiny number of poisoned data[31], it is necessary to employ
a strategy that amplifies the distinction in the losses of these two
types of data in order to accurately identify the poisoned data in
the dataset.

3.3 Impact Of Model Capacity On Data Loss
The capacity of a neural network model signifies the complexity of
features it can learn. A model’s capacity can be measured through
its intricacy, such as the quantity of neurons of the model. Based
on prior research, the generalization error of neural networks can

Figure 2: The number of poisoned data with losses higher
than the average loss of clean data on ResNet-18 and ResNet-
S at the fifth epoch.

be approximately formalized to a function of the model and dataset
size [40]. Given a fixed dataset size, the following equation holds:

𝜖 (𝑚) = 𝜖0






 𝑏𝑚−𝛽 + 𝑐∞
𝑏𝑚−𝛽 + 𝑐∞ − 𝑖𝜂






 , (3)

where 𝜖 denotes the classification error on the test dataset,𝑚
denotes the number of parameters in the model, 𝛽 (𝛽 ≥ 0) control
the global rate at which error decreases with the sizes of the model,
𝑖 =

√
−1, and 𝑐∞ (𝑐∞ > 0) is the asymptotic lower value attainable.

Here the simple pole at 𝜂 controls the transition point from the
initial random-guess level 𝜖0 as (𝑚) increase.

The above equation showed that the classification error increases
as the number of model parameters decreases. This implies that the
model’s capability to accurately classify data decreases with a re-
duction in its capacity. Moreover, since the loss of data measures the
classificatuon accurcy of the model, the data’s losses on the model
usually rise with a reduction in model capacity. Simultaneously,
according to Section 3.2, poisoned data is more easily-learnable
compared to clean data. Therefore, we claim that reducing the
model’s capacity could render it less adept at learning clean data
while retaining its capability to learn poisoned data. This would
effectively amplify the disparity in loss between the two types of
data. To substantiate this point, we construct a ResNet-based model
with fewer parameters than ResNet-18, referred to as ResNet-S, de-
scribed in detail in Section 5.3, as a comparative model to ResNet-18
in order to observe how the difference in the average loss of clean
and poisoned data during model training varies with the model
capacity.

As depicted in Figure 1, across various backdoor attack scenarios,
the average loss of clean data on ResNet-S is notably higher than
that on ResNet-18. However, the average loss of poisoned data
exhibits no significant disparity between these two models. The
above findings validate our proposition that, despite the difficulty
of ResNet-S in learning clean data due to its low capacity, it still has
the ability to learn poisoned data, which leads to amore pronounced
distinction in the average loss between the two types of data on
ResNet-S.
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Following the above results, we test the number of poisoned
data with losses greater than the average loss of clean data on
ResNet-18 and ResNet-S. We conducted experiments on ResNet-18
and ResNet-S to evaluate the quantity of poisoned data with losses
greater than the average loss of clean data. As depicted in Figure 2,
the number of such data instances on ResNet-S is notably reduced
compared to ResNet-18, thereby further confirming the conclusions
drawn in the preceding discussion.

Furthermore, we constructed low-capacity models on several
other architectural frameworks for additional exploration. Specific
results are presented in Section 5.3.

4 PROPOSED METHOD: LEARNING FROM
DISTINCTION

Based on the observations and analyses in Section 3, we propose a
Learning from Distinction (LfD) approach which involves training
a clean model on the poisoned data set 𝐷𝑡𝑟𝑎𝑖𝑛 within the context
of a supervised training process. As illustrated in Figure 3, we de-
compose the entire training process into two stages: training a
teacher model 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 capable of discerning the differences be-
tween poisoned and clean data, and using 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 to dynamically
discriminate poisoned data within 𝐷𝑡𝑟𝑎𝑖𝑛 to supervise the training
of the clean model 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 .
Stage 1: Training a 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 capable of distinguishing between
clean and poisoned data sets.

First and foremost, we require a 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 capable of distinguish-
ing between clean and poisoned data within 𝐷𝑡𝑟𝑎𝑖𝑛 . Drawing in-
sights from the observations described in Section 3, it becomes
evident that models with low capacity face challenges in classifying
clean data. Nevertheless, these models still exhibit an intrinsic ap-
titude for adeptly classifying poisoned data, especially during the
initial phases of training. This phenomenon engenders a noticeable
discrepancy in losses between these two data categories. Conse-
quently, we embark on creating a low-capacity model by reducing
the number of neurons within the model, followed by subjecting
it to a few epochs of training solely on 𝐷𝑡𝑟𝑎𝑖𝑛 . This maneuver en-
sures a pronounced dissimilarity between poisoned and clean data
on this model. Subsequently, this model assumes a pivotal role in
the context of Learning from Distinction (LfD), functioning as the
cornerstone of 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 .
Stage 2: Utilizing 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 for the dynamic discrimination of
poisoned data to supervise the training process of a backdoor-
free model 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 .

Subsequently, we identify potential poisoned data within 𝐷𝑡𝑟𝑎𝑖𝑛

based on their losses on 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 , followed by gradient ascent train-
ing on these identified data to train a clean 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 on 𝐷𝑡𝑟𝑎𝑖𝑛 . This
stage aims to mitigate the impact of poisoned data in the training
process of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 . To identify the poisoned data within 𝐷𝑡𝑟𝑎𝑖𝑛 ,
we initially adaptively establish a threshold based on the losses of
data in 𝐷𝑡𝑟𝑎𝑖𝑛 on 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 :

𝛾 = 𝐷𝑇 (((𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑥1), 𝑦1) · · · (𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑥𝑛), 𝑦𝑛)), 𝑖𝑛𝑑𝑒𝑥),
s. t. 𝑖𝑛𝑑𝑒𝑥 = 𝑛 × 𝛼,

(4)

where 𝑛 represents the number of data in 𝐷𝑡𝑟𝑎𝑖𝑛 , and 𝛼 is a
hyperparameter, the 𝐷𝑇 () function first calculates the losses of all
data points in 𝐷𝑡𝑟𝑎𝑖𝑛 with respect to 𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟 , then sorts the losses

Algorithm 1 LfD
1: Initialization:𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟 , 𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟 , 𝐷𝑡𝑟𝑎𝑖𝑛

2: 𝛾 = 𝐷𝑇 (((𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑥1), 𝑦1) · · · (𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑥𝑛), 𝑦𝑛)), 𝑖𝑛𝑑𝑒𝑥);
3: for each 𝑑𝑎𝑡𝑎 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 do

4: 𝑤 (𝑥,𝑦) =


ℓ (𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑥 ),𝑦)

max𝑛
𝑖=1 (ℓ (𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑥𝑖 ),𝑦𝑖 ) )

, ℓ (𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑥), 𝑦) > 𝛾)
𝛽 · (ℓ (𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑥 ),𝑦)−𝛾 )

max𝑛
𝑖=1 (ℓ (𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑥𝑖 ),𝑦𝑖 ) )

, ℓ (𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑥), 𝑦) ≤ 𝛾),
;

5: end for
6: When updating 𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟 : 𝐿(𝑓𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ) = E(𝑥,𝑦)∼𝐷𝑡𝑟𝑎𝑖𝑛

(𝑤 (𝑥,𝑦) ·
ℓ (𝑓𝑠𝑡𝑢𝑑𝑒𝑛𝑡 (𝑥), 𝑦)))

Output: Backdoor-free model 𝑓𝑠𝑡𝑢𝑑𝑒𝑛𝑡

in ascending order, and selects the loss at the 𝑖𝑛𝑑𝑒𝑥-th position as
the threshold. We perform gradient ascent training on the data in
𝐷𝑡𝑟𝑎𝑖𝑛 with losses below this threshold. Specifically, as shown in
Equation 1, when updating 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 , we subtract the losses of these
data points to decrease the probability of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 classifying them
into their labels. Though we cannot guarantee that the loss of every
poisoned data in𝐷𝑡𝑟𝑎𝑖𝑛 is below the threshold, training a substantial
portion of the poisoned data with gradient ascent can still mitigate
the impact of these unrecognized poisoned data. Therefore, the loss
function employed for updating 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 is presented as follows:

𝐿(𝜃student) =E(𝑥,𝑦)∼𝐷non-candidate

(
ℓ (𝑓𝜃teacher (𝑥), 𝑦)

)
− E(𝑥,𝑦)∼𝐷candidate

(
ℓ (𝑓𝜃teacher (𝑥), 𝑦)

)
,

s.t. (𝑥,𝑦) ∈
{

𝐷non-candidate, if ℓ (𝑓𝜃teacher (𝑥), 𝑦) > 𝛾,

𝐷candidate, if ℓ (𝑓𝜃teacher (𝑥), 𝑦) ≤ 𝛾,

(5)

However, the gradient ascent training method may have an im-
pact on the accuracy of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 on clean data as we presented in
Section 5.2. We posit that this phenomenon arises due to the some
clean data instances have losses below the threshold, and perform-
ing gradient ascent training on these data reduces the classification
accuracy of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 . Therefore, we introduce a weighting method
that dynamically assigns weights to data to determine their signifi-
cance during training, thereby mitigating the impact of gradient
ascent training on the accuracy of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 . The weight for each
data in 𝐷𝑡𝑟𝑎𝑖𝑛 is computed as follows:

𝐿(𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ) = E(𝑥,𝑦)∼𝐷𝑡𝑟𝑎𝑖𝑛
(𝑤 (𝑥,𝑦) · ℓ (𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑥), 𝑦))),

s. t.𝑤 (𝑥,𝑦) =


ℓ (𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑥 ),𝑦)

max𝑛
𝑖=1 (ℓ (𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑥𝑖 ),𝑦𝑖 ) )

, ℓ (𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑥), 𝑦) > 𝛾)
𝛽 · (ℓ (𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑥 ),𝑦)−𝛾 )

max𝑛
𝑖=1 (ℓ (𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑥𝑖 ),𝑦𝑖 ) )

, ℓ (𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑥), 𝑦) ≤ 𝛾),
(6)

where the weight of data (𝑥,𝑦) is denoted as𝑤 (𝑥,𝑦) in the equa-
tion, the hyperparameter 𝛽 determines the importance of gradient
ascent training relative to gradient descent training. Different from
equation 5, equation 6 calculates 𝐿(𝜃𝑡 ) by considering the weight
of each data point based on its loss on 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 . Compared to the
solely unweighted gradient ascent training, even when some clean
data possess losses below the threshold and are assigned negative
weights, their relatively lower losses compared to most poisoned
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Figure 3: Pipeline of our LfD. It consists of two main stages. (1) Training a low-capacity 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 on the backdoor-poisoned
𝐷𝑡𝑟𝑎𝑖𝑛 for a few epochs. (2) Weighting each data in 𝐷𝑡𝑟𝑎𝑖𝑛 according to its loss on 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 , and then training 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 on the
weighted 𝐷𝑡𝑟𝑎𝑖𝑛 .
data result in lower absolute values of their negative weights. Con-
sequently, the impact on the clean accuracy of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 on clean
data is limited.

5 EXPERIMENT
Attack SetupWe evaluated our LfD defense method against seven
dirty-label backdoor attacks and two clean-label backdoor attacks
on CIFAR-10[25], GTSRB[45], and an ImageNet subset[7]. Specifi-
cally, dirty-label attacks include BadNets with white square pattern
(referred to as BN-W)[13], BadNets with grid square pattern (re-
ferred to as BN-G)[13], Trojan attack with square pattern (referred
to as TJ-SQ)[35], Trojan attack with watermark pattern (referred to
as TJ-WM)[35], 𝑙2-Invisible attack (referred to as L2)[28], Dynamic
attack [38], Blend attack [6], and clean-label attacks include Sinu-
soidal signal attack (referred to as SIG) [1] and Clean-Label attack
(referred to as CL) [50]. The target class for all backdoor attacks
on CIFAR-10 and GTSRB datasets was uniformly designated as ’1’,
whereas on the ImageNet-subset dataset, the target class for all
backdoor attacks was consistently set to ’0’. To ensure the success
rate of CL and Signal attacks on the GTSRB dataset, we increased
the injection rate to 9.5% instead of 8%. The specifics of the back-
door triggers are summarized in Table 1. We utilized the Adam
optimizer with an initial learning rate of 0.001, zero weight decay,
and Random Crop (padding = 4) with Random Horizontal Flip for
data augmentation when training models on the poisoned trainsets.
The CosineAnnealing learning rate decay scheduler was applied
for 80 training epochs.
Defense Setup On the CIFAR-10 and ImageNet-subset dataset, we
set 𝛼 = 0.15 and 𝛽 = 1𝑒 − 3, while on the GTSRB dataset, we set
𝛼 = 0.2 and 𝛽 = 3𝑒−3. We employed ResNet-S as 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 across all

three datasets and utilized ResNet-18 as 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 on CIFAR-10 and
GTSRB, while on the ImageNet-subset, we employed ResNet-34 as
𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 . During the training of 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 , no data augmentation is
applied. For the training of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 , we employ random cropping
and random horizontal flipping as data augmentation. We com-
pare LfD with three state-of-the-art defense methods: Fine-pruning
(FP)[33], Activation-Cluster (AC)[2], and Anti-Backdoor Learning
(ABL)[31]. For FP, AC, and ABL, we follow the configurations spec-
ified in their original papers, including the use of available clean
data for fine-tuning/repair/training settings. For the ABL defense,
we first trained the 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 model for 20 epochs with a learning
rate of 0.1 on CIFAR-10, ImageNet-subset and 0.01 on GTSRB, be-
fore reaching the turning epoch. Once we identified 1% of potential
backdoor examples, we continued training the 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 model for
an additional 60 epochs on the entire training dataset, which helped
to recover the model’s classification accuracy. During the final 20
epochs, we trained the 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 model using the LGGA loss with
the 1% isolated backdoor examples and a learning rate of 0.0001. As
for the Fine-pruning (FP) defense, we pruned the last convolutional
layer of the 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 model until its CA became similar to that of
the other defense baselines.We utilized the activation clustering
defense method from Trojan-zoo’s open-source code. Firstly, we
trained 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 for 80 epochs without data augmentation on the
ResNet-18 architecture with the poisoned trainset. Then, we ex-
tracted the activation values of all data in layer 4 of the training
dataset and applied the K-means clustering algorithm to cluster
them into two clusters. Finally, we trained a newmodel from scratch
using the cluster with more data. All defense methods were trained
with Random Crop (padding = 4) and Random Horizontal Flip.
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Table 1: Training setup for six backdoor attacks.

Attacks Trigger Type Trigger Patten Inject Ratio
BN Fixed Grid 10%

Blend Fixed Random Pixel 10%
TJ Fixed Reversed Watermark 10%

Dynamic Varied Mask Generator 10%
L2 Fixed Regularized Gaussian Noise 10%
CL Fixed Grid and PGD Noise 8%(other datasets) 9.5%(GTSRB)
SIG Fixed Sinusoidal Signal 8%(CIFAR-10) 9.5%(GTSRB)

MetricsWe employ twometrics to evaluate the effectiveness of LfD.
The first one is Clean Accuracy (CA), which measures the accuracy
of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 in classifying clean test data. The secondmetric is Attack
Success Rate (ASR), which quantifies the probability of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡
classifying poisoned test data as the target label.

5.1 Effectiveness of Our LfD Defense
Results on CIFAR-10 Table 2 presents the defense performances
of 4 backdoor defense methods against the 9 backdoor attacks on
CIFAR-10. Evidently, our LfD demonstrates optimal performance
in reducing ASR while maintaining a high CA in most backdoor
attacks. Compared to the best-performing defense method ABL,
our LfD reduces the average ASR by 7.53% (0.67% vs. 8.20%) while
outperforms ABL in terms of average CA by 5.56% (92.09% vs.
86.53%), respectively. This advantage becomes more pronounced
compared to other defense methods.

The training accuracy on clean datasets without attack are also
important, as significant degradation of accuracy suggests diffi-
culties in correctly working in a normal scenarios without any
attack, rendering the method impractical. Our method’s accuracy
on clean datasets outperforms ABL by 18.41% (91.68% vs. 73.27%). It
is 0.77% less than AC (91.68% vs. 92.45%), However, AC has almost
no defense effect when the poisoning rate is around 10%.
Results on GTSRB The results on GTSRB dataset are also pre-
sented in Table 2. It is evident that our LfD outperform other meth-
ods in most backdoor attacks. LfD reduces the average ASR by 5.18%
(6.14% vs. 11.32%), 87.19% (6.14% vs. 93.33%), and 82.15% (6.14% vs.
88.29%) compared to ABL, AC, and Fine-prune.

We note that our LfD is not always the best when considering
each attack individually. For instance, ABL exhibits the best defense
against TJ-WM and Dynamic attacks on GTSRB. We suspect that
this is due to the similarity between the triggers used in these two
attacks and the feature of normal images. We suspect this is because
even clean data may contain patterns similar to the trigger, making
the detection of poisoned data more challenging [58]. If LfD fails to
identify the majority of poisoned data, its defense effectiveness will
be weakened. This limitation represents one of the shortcomings
of our LfD approach and requires further improvement in future
work.
Results on ImageNet subsetAs presented in Table 2. LfD achieves
a higher CA and a lower ASR than other defense methods on all
attacks. The accuracy of LfD is surprisingly higher than the result
trained on a clean dataset without any defense (94.69% vs. 91.96%).
We assume it is our dynamic discrimination strategy that makes

(a) Effect of 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (b) Effect of 𝛼 (c) Effect of 𝛽

Figure 4: The influence of the capacity of 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 , along with
the hyperparameters 𝛼 and 𝛽 , on the CA and ASR of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 .

the model focus on learning difficult samples, resulting in better
performance in a relatively complex dataset.

In summary, our LfD achieves superior performance against a
wide range of attacks compared to other methods. This is due to
LfD’s ability to expose and identify backdoor samples via a low-
capacity model, while utilizing dynamic discrimination strategy to
learn and adapt to clean samples.

5.2 Ablation Studies
To gain a deeper understanding of LfD, we conducted a series of
ablation experiments to elucidate the impact of hyperparameters,
capacity of 𝑓𝑡𝑒𝑎𝑐ℎ𝑒𝑟 , gradient ascent training, and dynamic discrim-
ination method on LfD.
Effect of 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 ’s capacity The capacity of 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 influences
the complexity of features it is capable of learning.We present in Fig-
ure 4a the CA and ASR of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 when utilizing four distinct mod-
els as 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 . The models employed are all derived from ResNet
architecture,they are ResNet-S1(RN-S1)<ResNet-S(RN-S)<ResNet-
S2(RN-S2)<ResNet-18(RN-18), and their detailed structures are pro-
vided in Section 5.3. The results indicate that when the capacity of
𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 is high, its capacity to learn complex features is enhanced.
This results in a significant number of clean data instances having
losses similar to those of poisoned data, subsequently prompting
LfD to engage in gradient ascent training on a large number of clean
data. Consequently, the CA of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 diminishes. Conversely,
when 𝑓𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 has a excessively low capacity, its aptitude to learn
features becomes exceedingly feeble, rendering it challenging to
learn clean data and the majority of poisoned data. This results
in the majority of clean and poisoned data have high losses. As a
result, many poisoned data is either assigned positive weights or
weights close to zero. Hence, the CA and ASR of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 remain
largely unaffected.
Effect of Hyperparameter 𝜶 The variable 𝛼 controls the amount
of data used in gradient ascent training.We present the performance
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Table 2: Defense effectiveness of various defense methods on different backdoor attack methods. In the table, “No Defense”
means no attack is applied, and “None” means no defense is applied.

Dataset Attack Type No Defense Fine-prune AC ABL LfD
CA ASR CA ASR CA ASR CA ASR CA ASR

CIFAR-10

BN-G 91.51% 100.00% 85.22% 99.98% 91.17% 100.00% 91.49% 0.51% 92.62% 0.18%
BN-W 91.89% 99.95% 82.67% 98.71% 91.29% 92.57% 89.98% 3.26% 92.01% 0.45%
Blend 92.01% 99.98% 83.12% 85.62% 91.44% 99.85% 77.57% 44.18% 92.43% 3.38%
TJ-SQ 92.95% 100.00% 83.90% 66.87% 94.24% 99.96% 92.09% 0.36% 92.17% 0.27%
TJ-WM 92.89% 100.00% 85.42% 61.02% 92.38% 99.32% 90.18% 0.04% 91.76% 0.02%
Dynamic 92.70% 99.95% 90.49% 87.18% 83.32% 100.00% 90.71% 7.94% 91.14% 0.55%
CL 92.73% 94.92% 84.09% 54.95% 92.17% 0.56% 83.42% 0.70% 92.42% 0.64%
SIG 93.15% 92.16% 84.76% 76.32% 65.77% 87.37% 89.48% 6.12% 92.41% 0.40%
L2 92.98% 99.96% 81.53% 80.57% 90.48% 97.91% 73.92% 10.71% 91.88% 0.11%
None 92.64% 0.00% 88.56% 0.00% 92.45% 0.00% 73.27% 0.00% 91.68% 0.00%

GTSRB

BN-G 96.13% 100.00% 88.53% 99.57% 96.41% 100.00% 86.44% 4.02% 95.22% 0.02%
Blend 95.42% 100.00% 85.90% 99.50% 96.28% 80.84% 82.09% 11.36% 92.31% 3.86%
TJ-SQ 95.42% 99.95% 84.21% 93.54% 96.28% 99.91% 96.25% 16.06% 93.84% 25.70%
Dynamic 96.35% 99.92% 88.38% 99.84% 95.96% 99.96% 96.67% 5.57% 88.39% 2.76%
CL 95.88% 43.85% 89.71% 59.26% 87.06% 83.45% 81.82% 26.29% 95.62% 0.02%
SIG 95.85% 67.87% 90.66% 78.07% 79.60% 95.79% 88.54% 4.63% 95.17% 4.45%
None 96.90% 0.00% 90.14% 0.00% 90.46% 0.00% 83.95% 0.00% 93.53% 0.00%

ImageNet
subset

BN-G 88.76% 100.00% 82.13% 43.07% 89.09% 99.83% 89.55% 3.57% 91.19% 0.31%
BN-W 89.13% 88.71% 83.49% 48.15% 87.66% 79.01% 85.73% 31.29% 89.09% 3.01%
Blend 91.54% 99.69% 84.79% 98.77% 90.80% 17.59% 84.44% 79.16% 89.83% 2.17%
CL 92.41% 79.76% 82.30% 59.72% 87.94% 80.59% 83.06% 36.05% 90.07% 0.17%
None 91.96% 0.00% 86.36% 0.00% 87.41% 0.00% 87.52% 0.00% 94.69% 0.00%

of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 under four different settings in Figure 4b, where 𝛼 takes
values of 1, 10, 15, and 50, respectively. The results demonstrate
that a higher 𝛼 leads to a better defense against backdoor attacks in
LfD, as more poisoned data are isolated during training. However,
we observed that increasing 𝛼 also leads to a loss in CA, as more
clean data in the gradient ascent training process can affect the
model’s performance.
Effect of Hyperparameter 𝜷 The variable 𝛽 controls the impor-
tance of gradient ascent training relative to gradient descent train-
ing. We present the performance of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 under four different
settings in Figure 4c, where 𝛽 takes values of 0, 1e-4, 1e-3, and 1e-2.
The results demonstrate that a higher 𝛽 leads to a lower ASR as
the intensity of gradient ascent training on poisoned data increases.
However, we note that a high 𝛽 may also result in a loss of CA, as
gradient ascent training on some clean data is also intensified.
Gradient ascent training and dynamic discriminationmethod
To aid in understanding the impact of gradient ascent training and
dynamic discrimination methods in LfD, we present in Figure 5 the
CA and ASR of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 trained on three 𝐷𝑡𝑟𝑎𝑖𝑛 poisoned by BN-G,
Blend and SIG separately, under three different scenarios with 𝛼

set to 0.15: (a) training without gradient ascent, (b) training with
gradient ascent while not utilizing dynamic discrimination strat-
egy, and (c) training with gradient ascent while utilizing dynamic
discrimination strategy for data weighting. Evidently, applying the
gradient ascent training method can effectively reduce the ASR of
𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 , however, training with gradient ascent on isolated data

indiscriminately can also lead to a decrease in CA. Compared to
the solely unweighted gradient ascent training, utilizing dynamic
discrimination strategy can lead to an enhancement in CA. This
indicates that the gradient ascent training method can effectively
suppress the insertion of backdoors, while the dynamic discrimina-
tion method can reduce the damage to the CA of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 .

(a) CA of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 (b) ASR of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡

Figure 5: CA and ASR of 𝑓𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 trained on three 𝐷𝑡𝑟𝑎𝑖𝑛 poi-
soned by BN-G, Blend and SIG separately under: (a) training
without gradient ascent, (b) training with gradient ascent cf.
Eq. 5 (GA), and (c) training with weighted gradient ascent cf.
Eq. 6 (WGA).
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Figure 6: The training loss of clean data and poisoned data
on multiple model architectures, where the poisoned data
are generated by BadNets backdoor attack and the models
are constructed based on VGG, LeNet and MobileNet, their
detiled informations are presented in Section 5.3. The ex-
periments were conducted on the CIFAR-10 dataset with a
poisoning rate of 10%.

5.3 Exploration Across Various Model
Architectures

We constructed low-capacity models on several other model ar-
chitectures for additional exploration. We based our modifications
on the ResNet architecture, altering the number of neurons and
blocks to create ResNet-S, ResNet-S1, and ResNet-S2. For ResNet-
S, ResNet-S1, and ResNet-S2, the first four layers consist of only
one block each. In ResNet-S, these blocks contain 2, 2, 2, and 4
neurons respectively. For ResNet-S1, each block in the first four
layers contains 1 neuron. In the case of ResNet-S2, the number of
neurons in the blocks of the first four layers are 64, 128, 256, and
512 respectively.

For the VGG [44] network, wemodified the number of neurons in
each convolutional layer to obtain the VGG-S network. Specifically,
in the VGG-S network, the number of neurons in each convolutional
layer are set as 4, 8, 16, 16, 32, 32, 32, and 512, respectively.

We reduced the number of neurons and fully connected layers to
obtain LeNet-S [26]. Specifically, LeNet-S consists of 2 convolutional
layers and 2 fully connected layers, with 1, 2, 20, and 10 neurons in
each layer.

Finally, we made modifications to the MobileNetV2 [42] network
and obtained the MobileNetV2-S network. MobileNetV2-S consists
of 2 bottlenecks, where bottleneck 1 contains 1 block with 3 con-
volutional layers, and the number of neurons in each layer is 4,
4, and 8 respectively. Bottleneck 2 contains 2 blocks, each with 3
convolutional layers, and the number of neurons in the two blocks’
convolutional layers are 4, 4, 8 and 8, 8, 8 respectively. In addition,
there are 2 convolutional layers outside the bottleneck, where the
number of neurons is 4 and 16 respectively. All these models are
trained on CIFAR-10 dataset poisoned by the same attack strategy
to ensure a consistent comparison.

As shown in Figure 6, the results indicate that the distinction
in average loss between poisoned and clean data is consistently
greater in low-capacity models compared to high-capacity models.

(a) ResNet-18 (b) ResNet-S

Figure 7: The t-SNE visualizations of BadNets attack on
ResNet-18 and ResNet-S models trained on CIFAR-10. Clean
samples are distinguished by color based on their labels,
while poisoned samples are marked in black.

This suggests that this phenomenon is prevalent across various
model architectures.

5.4 Visualization Analysis
To further understand how LfD works through a low-capacity
model, we show the t-SNE [52] plots of the CIFAR-10 datasets (poi-
soned by BadNets attack) trained on both ResNet-18 and ResNet-S
at twentieth epoch.

It can be clearly seen from Figure 7 that on the t-SNE plot of
ResNet-18, the clean samples of each label and backdoor are clearly
clustered and distinguished, while on the t-SNE plot of ResNet-S,
only the backdoor samples are distinctively clustered, while the
clean samples are still relatively chaotic. This indicates that in the
early stages of training, ResNet-S performs well in backdoor feature
learning, but poorly in semantic feature learning for the original
classification task, while ResNet-18 performs well in learning both
types of feature. Since our target is to separate the backdoor samples
through the difference in loss, visualized results once again confirms
that using a low ability model to distinguish backdoor samples is
better than using a normal model.

It is a simple and effective method to reduce the learning ability
of a CNN model by reducing the number of neurons and blocks. In
our future work, we will (1) design new strategies to effectively re-
duce the learning ability of Transformer-style models to apply LfD
in tasks of other modalities. (2) Develop appropriate date prepro-
cessing methods to accentuate backdoor features to face possible
adaptive attacks (which may intend to minimal loss differences to
bypass our method).

6 CONCLUSION
In this work, we show the impact of model capacity on the distinc-
tion of the loss value between backdoored and clean data during
training can be utilized to identify the poisoned data from a poi-
soned dataset. Based on this observation, we proposed a training-
time backdoor defense method called Learning from Distinction
(LfD), which employs a low-capacity teacher model to guide the
training process of the student model by dynamically weighting the
training data and thereby obtaining a clean student model. With
extensive experiments, LfD demonstrated excellent performance
in the robust training of neural networks against 9 state-of-the-art
backdoor attacks.
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