
Towards Hard-pose Virtual Try-on via 3D-aware
Global Correspondence Learning

Zaiyu Huang1∗, Hanhui Li1∗, Zhenyu Xie1,2
Michael Kampffmeyer3, Qingling Cai1†, Xiaodan Liang1,4†

1Shenzhen Campus of Sun Yat-Sen University
2ByteDance, 3 UiT The Arctic University of Norway

4Peng Cheng Laboratory
{huangzy225, xiezhy6} @mail2.sysu.edu.cn
{lihh77, caiqingl} @mail.sysu.edu.cn

michael.c.kampffmeyer@uit.no, xdliang328@gmail.com

Abstract

In this paper, we target image-based person-to-person virtual try-on in the presence
of diverse poses and large viewpoint variations. Existing methods are restricted
in this setting as they estimate garment warping flows mainly based on 2D poses
and appearance, which omits the geometric prior of the 3D human body shape.
Moreover, current garment warping methods are confined to localized regions,
which makes them ineffective in capturing long-range dependencies and results in
inferior flows with artifacts. To tackle these issues, we present 3D-aware global
correspondences, which are reliable flows that jointly encode global semantic corre-
lations, local deformations, and geometric priors of 3D human bodies. Particularly,
given an image pair depicting the source and target person, (a) we first obtain
their pose-aware and high-level representations via two encoders, and introduce a
coarse-to-fine decoder with multiple refinement modules to predict the pixel-wise
global correspondence. (b) 3D parametric human models inferred from images are
incorporated as priors to regularize the correspondence refinement process so that
our flows can be 3D-aware and better handle variations of pose and viewpoint. (c)
Finally, an adversarial generator takes the garment warped by the 3D-aware flow,
and the image of the target person as inputs, to synthesize the photo-realistic try-on
result. Extensive experiments on public benchmarks and our HardPose test set
demonstrate the superiority of our method against the SOTA try-on approaches.

1 Introduction

Current image-based virtual try-on (VTON) methods typically include two key modules, namely a
warping module that transfers a given garment to the desired pose and a blending module/generator
that synthesizes the try-on result given the target person and the warped garment. To facilitate
high-quality VTON, it is therefore crucial to accurately preserve garment details (e.g., color, texture,
shape, pattern) in the warping stage. This, however, is a difficult problem, which most existing
methods try to address by relying on thin plate splines (TPS) [1] or appearance flows [2].

While TPS is a well-studied and efficient method that performs the warping based on a set of control
points and has a closed-form solution, it is prone to inaccurate transformations under large geometric
deformations [3]. To further improve the warping quality, there has been a shift towards directly
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Figure 1: Visual examples of the proposed 3D-aware global correspondence learning method for
person-to-person virtual try-on. Our method can accurately preserve garment textures and generate
photo-realistic results under diverse poses and viewpoints.

estimating appearance flow fields by leveraging the capacity of deep neural networks. These methods
perform well in relatively easy try-on scenarios, such as transferring flat, in-shop garments with pure
colors or simple patterns to desired poses, but still suffer from severe artifacts in unconstrained scenes
like person-to-person VTON, where varying poses and viewpoints commonly exist.

These artifacts are caused by the following two reasons: First, due to the lack of 3D geometric
guidance in current methods, flows estimated merely based on appearance and 2D poses are unable
to represent the deformable, non-rigid characteristics of garments, which results in texture distortions
and improper warping. Second, for the purpose of efficiency, mainstream flow-based networks are
usually constructed by stacking modules with limited receptive fields, e.g., ClothFlow [4] simply
uses a convolutional layer to predict its initial cloth flow. As the effective area of a network module
may be a small fraction of its theoretical receptive field [5], flows estimated by existing methods are
de facto restricted to local areas and cannot leverage long-range dependencies effectively to tackle
pose variations and occlusions.

Visual correspondences [6, 7] that depict cross-instance/domain semantic mappings could be a
potential alternative to appearance flows for tackling pose and viewpoint variations, because they
exploit correlations among high-level concepts, instead of appearance-oriented pixel-wise offsets.
However, without extra guidance/regularization we observe that these approaches tend to focus
on large and apparent structures (e.g., human pose) while ignoring subtle details and thus have a
detrimental effect on the VTON user experience. Moreover, the complexity of calculating high-
resolution correspondences directly is expensive (O(N2), where N is the resolution), which further
hinders its subsequent processes and downstream applications.

A feasible solution is to leverage 3D human models (e.g. SMPL [8]) to generate 3D-aware correspon-
dences that are less ambiguous. However, a naive implementation that simply replaces the 2D pose
representation in a network with its 3D counterpart is ineffective. This is because in our hard-pose
VTON task, these 3D human models fail to predict the body mesh correctly and inevitably introduce
noise to the estimated flow. Besides, employing 3D human models will lead to considerably lower
inference speed [9].

Therefore, we propose a 3D-aware global correspondence learning (3D-GCL) method to tackle the
aforementioned issues. The key idea of our 3D-GCL method is to leverage geometric priors of 3D
human bodies to guide the correspondences, so that modelling non-rigid deformations of garments
can be more effective. Unlike previous methods that incorporate 3D information into their inputs
explicitly, we consider the implicit supervision of 3D priors in our correspondence learning process.
In this way, not only our correspondences can be 3D-aware, but also the side effects of improper 3D
information inferred from images can be alleviated. Specifically, given a source image and a target
image, we first obtain their high-level and pose-aware feature maps via two parallel encoder networks,
as well as the global correspondence via computing the correlation between the feature maps. After
that, multiple geometry-aware correspondence refinement modules (GACRMs) are introduced to
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upsample and refine the global correspondence stage-by-stage, thereby efficiently constructing the
final full-resolution correspondences. More importantly, for each of the GACRMs, an elaborately
designed 3D regularization loss is adopted to provide the GACRMs with the ability to leverage 3D
geometric priors. At last, we warp the garment with the final correspondence, combine it with the
image of the target person, and synthesize the try-on result via an adversarial generator.3 Experiments
on public benchmarks and our manually selected HardPose test set demonstrate that our 3D-GCL
network synthesizes photo-realistic virtual try-on results that accurately preserve garment structures
and textures even for hard-pose cases.

Our contribution can be summarized as follows:

• We elaborately design a novel 3D-aware global correspondence learning framework for virtual
try-on in the presence of diverse pose variations and viewpoint changes.

• We present a geometry-aware correspondence refinement module and a 3D correspondence regu-
larization loss, which together facilitate the understanding of geometric information and ensure the
preservation of garment textures in our network.

• We conduct extensive experiments to validate the superiority of our method against state-of-the-art
approaches, in terms of both garment warping and try-on synthesis.

2 Related Work

Virtual Try-on The most challenging aspect of VTON is the preservation of diverse textures and
logos, which is addressed in current approaches by heavily relying on warping modules. One popular
technique to warp the in-shop garment that has been employed by several early approaches [12, 13]
is to utilize the TPS [1]. However, while these models can maintain garment details, they tend
to introduce undesired distortions and artifacts under large pose deformations. To alleviate these
artifacts, extra constraints and visual cues have been exploited [14, 15] to refine the control points of
the TPS. However, these approaches are still limited by the sparse control-point-based representation
of the TPS. Hence, there has been a shift to utilize networks to predict dense flow fields directly
[4, 15, 16], which has considerably improved in-shop VTON performance. Nevertheless, as we have
emphasized, existing methods are unable to precisely represent long-range and local deformations
via a single flow, and hence they are restricted in the hard-pose VTON task.

3D-aware Synthesis Models Recent advances in 3D pose estimation and reconstruction (e.g.,
[8, 17, 18]) facilitate the use of 3D human models in synthesis methods [3, 9, 19, 20, 21]. Despite
the effectiveness of 3D human models in modeling local dependencies, current 3D-aware synthesis
models struggle to predict long-range deformations due to their unstable gradient propagation. This
might be caused by inaccurate 3D model fitting, intertwined flow and feature gradients, and the use
of bilinear sampling [22]. Contrary to existing methods, we first predict a global correspondence, and
then augment it via the regularization provided by 3D human models. Hence we can circumvent the
difficulty of learning long-range flows merely based on 3D human models.

Correspondence Learning Several cross-domain image synthesis methods based on correspondence
learning [7, 20, 23, 24] have been proposed recently, among which [20] adopts the same pose
representation as in the proposed method. However, its learned flows are restricted to a predefined UV
space, which limits its scalability and performance. The proposed method instead does not include
such restrictions, as its correspondences refined by 3D human models are robust to various poses and
body shapes.

3 3D-aware Global Correspondence Learning

Our goal is to overcome the limitations of current try-on methods in handling large pose and viewpoint
variations. This requires us to estimate flows that 1) can model long-range correspondences to tackle
occlusions, rare poses, and novel views; and 2) can preserve textures and local structures of garments
to ensure accurate try-on results. To this end, given a pair of person images, our proposed 3D-GCL

3Note, while [10] incorporates the 3D prior into the training of the network, the intention and the derivation
of their 3D prior are different from our 3D-GCL. Similarly, while [11] utilizes the global information for flow
estimation, it does not explicitly model the correspondence between the source and target feature. A detailed
discussion of these two methods is included in the supplementary.
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Figure 2: Overview of the proposed two-stage 3D-GCL framework. In the first stage, the 3D-aware
global correspondence is predicted by the correlation between the pose-aware features extracted from
the input images and is refined by multiple GACRMs. In the second stage, the target garment is
warped by the 3D-aware global correspondence, and fed into a generator along with the image of the
target person to generate the try-on result.

network (Sec. 3.1) first estimates a global flow via the correlation between their high-level 3D
pose-aware features (Sec. 3.2), and then adopts multiple GACRMs to guide the global flow in
depicting local deformations (Sec. 3.3). Our training objectives are provided in Sec. 3.4.

3.1 Network Architecture

Given an image Is of the source person wearing a garment G and a target person image It, our task is
to generate a photo-realistic try-on image where the target person is wearing G. As shown in Fig. 2,
our 3D-GCL network tackles this task in a two-stage manner: In the first stage, we employ an efficient
encoder-decoder architecture f(Is, It) to estimate the 3D-aware global correspondence for warping
G, i.e., f : RH×W×3×RH×W×3 → RH×W×2, where H and W denote the image height and width.
In the second stage, we adopt a conditional generator g(It|G′) to synthesize the final try-on result I ′t,
where G′ ∈ RH×W×3 is the warped garment. Choices for realizing g are flexible, and we simply
employ a modified StyleGAN2 [25], where we replace the original style normalization strategy with
spatially-adaptive normalization [26] to better maintain the spatial structures in garments. The details
of our network architecture are provided in the supplementary material.

3.2 Pose-aware Global Correspondence Estimation

Without the proper guidance of 3D pose information, existing appearance flows often fail to distinguish
body parts (e.g., torso and arms) under heavy occlusions and pose variations. Moreover, full-resolution
visual correspondences are computationally expensive. Therefore, we propose to exploit features
that are pose-aware and compact for correlation learning, so that these two issues can be tackled
simultaneously.

Specifically, we first employ DensePose [17] on Is and It to obtain their corresponding IUV maps
Ps, Pt ∈ RH×W×3, which are the pixel-wise estimations of a 3D parametric human body (i.e., SMPL
[8]) projected on images. In contrast to previous appearance flow methods [2, 4], we then extract
features directly from Ps and Pt rather than from the input images or segmentation masks.4 This
is reasonable, as the I channel and the UV channels of Ps and Pt have encoded semantic parts and
positions of the 3D human body, respectively. Furthermore, this allows our network to disentangle
irrelevant appearance information (e.g., faces and skin tones) and focus on pose and shape variations.
Following the same motivation, we also leverage a human parser [27] to obtain the segmentation of
the target garment G. Two parallel fully convolutional encoders are adopted for feature extraction,
i.e., a source branch that takes the concatenation of Ps and G as input and a target branch with
input Pt. Let x,y ∈ RN×C denote the output features of the source branch and the target branch,

4The ablation study for this choice is included in the supplementary material.
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Figure 3: Comparison of flow estimation and refinement strategies. (a) Feature concatenation and
convolution [4]. (b) Feature correlation [28, 15]. (c) GRU-assisted PatchMatch [24]. (d) The
proposed GACRM. Flows computed from SMPL are exploited as the geometric prior for supervising
the GACRM during the training phase, and consequently we can obtain precise flows without
computationally expensive operations like high-resolution feature correlations and PatchMatch.

where N = H
S × W

S is the scaled spatial resolution and C is the number of feature channels. S = 8
throughout this paper, so that N ≪ H ×W , which ensures that the estimation of the correspondence
is computationally efficient. We calculate the correlation between x and y as follows:

o =

 x1y1 . . . x1yN

...
. . .

...
xNy1 . . . xNyN

 , (1)

where oij , 1 ≤ i, j ≤ N measures the semantic and pose similarity between the i-th feature vector
in x and the j-th feature vector in y. As o contains the similarities between all possible spatial
combinations of feature vectors in x and y, it is able to capture long-range variations. Hence we
consider o as our global correspondence. A coarse warping result can be obtained via the linear
combination of G weighted by o directly, i.e., we can down-sample G and reshape it to N × 3, and
then obtain G′ as G′ = oG. However, the down-sampling process will damage the quality of G
severely. Therefore, we present the GACRM in the next section, which generates the full-resolution
and accurate flow based on the global correspondence.

Comparison with other correlation based methods. Several recently proposed methods [7, 24] also
consider feature correlation for correspondence estimation. However, they target image translation
across different domains (e.g., from sketches to photos) while our focus is on estimating global
correspondences to warp garments (from poses to poses). Besides, they rely on a 2D keypoint-based
representation of poses [29] that is sparse and cannot represent body shapes, while we adopt the 3D
dense representation of poses that leads to more robust estimated correspondences. More importantly,
our estimated global correspondences serve as the base flows and are refined by GACRMs to tackle
both long-range and local pose variations.

3.3 Geometry-aware Correspondence Refinement

A potential issue of correlation based global appearances is that they ignore the spatial structures of
features (as in Eq. (1)). Consequently, it is hard to ensure local consistency in the global appearances.
Even worse, the correlation between high-level semantic features tends to generate over-smooth flows
that cannot preserve garment details such as patterns and logos. Therefore, we present the GACRM
and a 3D regularization loss to leverage the geometric prior of 3D human bodies and tackle these
issues.

To begin with, we convert o into a flow f0 of size H
S × W

S via applying the argmax function. To
incorporate local details into f0, we exploit the early-stage feature pyramids in both the source branch
and the target branch. Assume both feature pyramids consist of L layers (as shown in Fig. 2), we
utilize a GACRM for each layer, which can be formulated as follows:

fl+1 = ful + h(xl+1,yl+1, f
u
l ), (2)

where 0 ≤ l < L is the layer index. xl and yl denote feature maps of the l-th layer of the source and
target feature pyramids and ful is the up-scaled flow from the previous layer. h is responsible for
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predicting a residual flow to enhance ful , which is realized simply by a convolutional gated recurrent
unit [24] (ConvGRU) taking xl warped by ful and yl as inputs, as shown in Fig. 3.

To incorporate the geometric prior of 3D human bodies into our correspondence refinement process,
we propose a novel 3D regularization loss for the global correspondence and its corresponding refined
flows. Specifically, we adopt an off-the-shelf 3D mesh regressor [30] to obtain the SMPL models of
the source person and the target person. Following [9], we render the two SMPL models to obtain a
visibility mask, and calculate a SMPL flow measuring the disparity between the source person mesh
and the target person mesh projected on the 2D image plane. The SMPL flow is utilized as the pseudo
ground-truth in our 3D regularization loss, which is defined as follows:

Lr = Lo + Lf , (3)

where Lo and Lf are loss terms for the global correspondence and the refined flows. In the remainder
of this section, for the conciseness of notation and presentation, we assume that all related variables
in the 3D regularization loss are resized accordingly. To define Lo, note that it is common practice
to conduct interpolations (e.g., bilinear sampling) in flow based warping, which are similar to the
aforementioned coarse warping based on the global correspondence. Therefore, we generate a
pseudo ground-truth correspondence by scattering the interpolation weights of each pixel to its
corresponding position in the correlation matrix, making the image warped by our pseudo ground-
truth correspondence visually close to its counterpart warped by the SMPL flow. Formally, we obtain
the ground-truth correspondence ogt ∈ RN×N as follows:

ogt
ij =

{
wj , if j ∈ Ω(i) and Ggt

i =
∑

k∈Ω(i)

wkGk

0, otherwise
(4)

where Ω(i) denotes the reference points given i as the target interpolation point, wj is the interpolation
weight of the reference point j, and Ggt denotes the ground-truth warped garment. We then define
Lo as follows:

Lo =
∥∥M ⊙ (ogt − o)G

∥∥
1
, (5)

where M ∈ {0, 1}N×N is a binary mask with Mij = [ogt
ij > 0]. [·] and ⊙ denote the Iverson bracket

and element-wise product, respectively. For Lf , we consider the l1 loss between the refined flows
and the SMPL flow as follows:

Lf =

L∑
l=1

∥∥V ⊙ (fgt − fl)
∥∥
1
, (6)

where V ∈ {0, 1}H×W and fgt denote the visibility mask and the SMPL flow, respectively.

The above 3D regularization loss encourages our network to predict flows that agree well with
geometric deformations of 3D human bodies. This avoids the need of introducing complicated
modules for imposing local constraints on flows, such as PatchMatch [24], local attention [22], or
multi-stage correlations [15]. Consequently, we can adopt an elegant and efficient architecture for the
GACRM, while obtaining pixel-wise and precise global correspondences.

3.4 Objective Functions

Since the 3D-GCL network consists of two stages, we train its correspondence estimation subnetwork
in the first stage and the generator for try-on synthesis in the second stage separately. In addition to
the proposed 3D regularization loss Lr, we follow [20, 25] and use the l1 loss Ll1 , the perceptual loss
Lperc, and the adversarial loss Ladv for training. The total loss for the correspondence estimation
stage Lc is therefore defined as follows:

Lc = λrLr + λc
l1L

c
l1 + λc

percLc
perc, (7)

where λr, λc
l1

, and λc
perc are weighting hyperparameters. Lc

l1
and Lc

perc are applied to the garments
warped by f0, ..., fL. The total loss for the generator Lg is defined as follows:

Lg = λadvLadv + λg
l1
Lg
l1
+ λg

percLg
perc, (8)

where λadv , λg
l1

, and λg
perc are hyperparameters.
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Figure 4: Visual comparison of clothes warped by our 3D-aware global correspondences and other
state-of-the-art warping methods. Our method better preserves garment details and structures under
diverse poses and viewpoints.

Person Garment wFlow Dior PBAFN PWS Ours Person Garment wFlow Dior PBAFN PWS Ours

Figure 5: Visual comparison of our method and state-of-the-art VTON approaches. Our method is
more robust to hard-pose cases and synthesizes photo-realistic try-on results.

4 Experiments

In this section, we conduct extensive experiments to validate the effectiveness of the proposed 3D-
GCL network. Due to the page limitation, the interested reader is refer to the supplemental material
for more experimental settings and results.

Datasets Our experiments are conducted on two open-source datasets, DeepFashion [31] and
MPV [32], which contain 52,712 and 37,723 fashion images, respectively. To ensure a fair compari-
son, we follow the train/test split of [20, 22, 33] on the DeepFashion dataset and use the original split
of MPV. Additionally, pairs without properly detected IUV maps or SMPL models are filtered out. In
the test phase, query persons on the test list are further shuffled to match the task setting of VTON. In
this way, we get 101,622/8,564 train/test pairs for DeepFashion and 52,236/10,544 train/test pairs for
MPV. Furthermore, as this paper targets hard-pose VTON, we manually select test image pairs from
DeepFashion and MPV to construct the HardPose test set. The HardPose test set consists of 2,406
image pairs, where each test pair contains diverse pose changes or large viewpoint variations. The
details and visual examples of this HardPose test set can be found in the supplemental material.

Evaluation Metrics We evaluate the performance of both garment warping and final try-on synthesis.
For the warping stage, we apply LPIPS [34] to evaluate the similarity between the warped garments
and the corresponding ground-truths extracted by the human parser [27]. We also adopt the mean
Intersection over Union (mIoU) metric to evaluate the semantic-correctness of the estimated flows by
comparing the segmentation maps of the warped garments with their ground-truths. Furthermore,
following [14, 15, 21, 35], we perform a human evaluation by inviting 40 volunteers to select the
warped clothes with the best visual quality among our method and the baseline approaches.

For the try-on stage, note that ground-truth try-on results are not available. Thus we select the widely
used unpaired Fréchet Inception Distance (FID) to quantify the quality of the synthesis results. We
also perform a human evaluation study following recent virtual try-on methods [14, 15, 21]. 40
volunteers are invited to fill in a questionnaire, in which they are presented with the try-on results of
all methods and are asked to select the most realistic one.
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Method
FullSet HardPose

DeepFashion MPV DeepFashion MPV

mIoU ↑ LPIPS ↓ mIoU ↑ LPIPS ↓ mIoU ↑ HE ↑ LPIPS ↓ mIoU ↑ HE ↑ LPIPS ↓
AFWM [15] 71.24 0.1656 74.56 0.1012 63.36 25.63% 0.1648 66.63 32.50% 0.1014

CoCosNet-v2 [24] - 0.2269 - 0.1873 - 2.375% 0.2251 - 3.750% 0.1800
CCM [20] 62.74 0.1997 66.75 0.1655 65.17 16.75% 0.1865 63.92 8.625% 0.1575

wFlow [21] - 0.1686 - 0.1314 - 13.38% 0.1699 - 10.00% 0.1302

3D-GCL(Ours) 75.76 0.1725 75.46 0.1318 74.22 41.88% 0.1732 71.89 45.13% 0.1345

Table 1: Comparison of warped clothes produced by different methods.

Method
FullSet HardPose

DeepFashion MPV DeepFashion MPV

FID ↓ HE ↑ FID ↓ HE ↑ FID ↓ HE ↑ FID ↓ HE ↑
PBAFN [15] 21.49 7.625% 10.62 12.50% 22.34 7.833% 14.35 14.67%

Dior [36] 26.58 5.375% 26.62 3.875% 27.49 3.500% 30.70 4.500%
Pose with style [20] 16.35 27.38% 6.78 20.88% 18.50 26.17% 9.808 19.83%

wFlow [21] 19.81 11.63% 12.81 13.25% 22.97 9.667% 20.41 11.33%

3D-GCL (Ours) 10.58 48.00% 6.00 49.50% 11.37 52.83% 8.776 49.67%

Table 2: Comparison of final try-on results produced by different methods.

Implementation Details The proposed 3D-GCL network is implemented in PyTorch and trained
with 4 Tesla V100 GPUs. We first train the correspondence estimation subnetwork for 20 epochs
with a batch-size of 8, and then follow the settings of [20, 25] to train the try-on generator.

Baselines We compare the warping and try-on performance of our model with publicly-available
state-of-the-art methods. For the warping stage, we leverage the FlowNet backbone [28] for all
methods and consider the warping models of AFWM [15], CCM [20], and wFlow [21] as the baseline
methods. For the evaluation on VTON, we select four cutting-edge methods, including PBAFN [15],
Dior [36], Pose-with-Style [20], and wFlow [21].

4.1 Qualitative results

As demonstrated in Fig. 4, conventional warping strategies adopted in PBAFN [15] and Dior [36] fail
to capture correct correspondences in images. Although they employ an extra smoothness constraint
[15], their warped garments are often violently distorted to fill the target silhouette facing complex
poses and view-point changes. Moreover, they also ignore 3D information such as orientations and
body geometry, and thus harm the visual quality of their warped garments. The hybrid approaches
Pose-with-Style [20] and wFlow [21] struggle to fuse different flow-based warping methods in
a harmonious way. wFlow produces considerably blurry results since its composition masks are
unreliable in low confidence regions. Pose-with-Style on the other hand only warps pixels in the
pre-defined UV space of DensePose, which limits its application for diverse garment types such as
skirts and dresses. On contrary, our method produces favourable results even in challenging scenarios
with large pose and viewpoint changes. Note that with the help of global correspondence learning,
our method has a larger receptive field and is able to also generate more compelling results in front
view transformations. Fig. 5 illustrates the visual comparison of our try-on results with the baseline
methods. As mentioned in Section 1, the try-on results are significantly affected by the quality of the
deformed garments. Our method, with more accurate and harmonious estimated correspondences,
outperforms the other four baseline methods in visual quality considerably.

4.2 Quantitative results

The quantitative comparison between our correspondence estimation method against other baselines is
reported in Table 1. Our method outperforms existing advanced warping methods such as CoCosNet-
v2 [24] and CCM [20], and achieves comparable performance to wFlow [21] on the LPIPS metric.
Note that AFWM [15] obtains considerably lower LPIPS scores. This is mainly because AFWM
adopts the expensive multi-stage feature correlations and encourages extremely smooth flows. Yet
such a strategy tends to ignore the spatial and semantic structures in garments, and consequently
yields inferior visual quality in complex scenarios. To validate this, we also measure the mIoU metric
and assess the human evaluation (HE) score. As reported in Table 1, our method obtains the highest
mIoU scores, indicating that our warped garments are more semantically accurate. Our method also
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Figure 6: Visual comparison of the proposed 3D-GCL network with different configurations.

Method Global Correspondence 3D Regularization Loss mIoU ↑ FID ↓
3D-GCL ∗ ✗ ✗ 50.21 17.25
3D-GCL † ✓ ✗ 57.36 11.53
3D-GCL ⋆ ✗ ✓ 62.06 10.98

3D-GCL ✓ ✓ 74.22 10.58

Table 3: Ablation study of the proposed 3D-GCL network on DeepFashion [31].

obtains the highest human evaluation percentage, which indicates that it produces the best visual
quality for warped garments under large viewpoint changes and pose variations.

As shown in Table 2, our method also outperforms other state-of-the-art VTON methods persistently
across different test sets. Our method obtains the lowest FID scores, which indicates that our method
can produce high-fidelity try-on results. This is also validated through the human evaluation. Note that
most of the presented methods perform better on the MPV dataset than on the DeepFashion dataset.
This is because images on the MPV dataset contain less pose variations and viewpoint changes. On
the DeepFashion dataset, our method still surpasses the second best method (Pose-with-Style) by a
considerable margin, which suggests that our method can generalize well in complex scenarios.

4.3 Ablation Study

To validate the effectiveness of the global correspondence estimation strategy and the 3D regulariza-
tion loss, we implement three variants of the proposed method and evaluate them on DeepFashion.
The experimental results of this ablation study is reported in Table 3.

Effect of Global Correspondence. Compared with the vanilla variant of the proposed 3D-GCL
network (3D-GCL ∗), adopting global correspondences (3D-GCL †) provides us with the performance
gains persistent on two metrics. This is expected, as global correspondences are effective in capturing
long-range deformations.

Effect of 3D Regularization Loss. Compared with global correspondences, the advantages of the 3D
regularization loss (3D-GCL ⋆) are even more significant, especially according to the mIoU metric.
As discussed in Sec. 3.3, correspondence learning only matches pose features semantically, which
means that, on their own, they are unable to preserve fine-grained structures and textures. This result
suggests that the 3D regularization loss leveraging SMPL flows to provide geometric guidance, is a
necessary and effective component of our network.

Finally, our full model obtains the best performance compared with other variants, which further
supports that flows encoding both long-range and local deformations are critical in producing
compelling try-on results in challenging scenarios. The visual comparison of different variants of our
method is shown in Fig. 6.

5 Conclusion

In this paper, we propose a 3D-aware global correspondence learning (3D-GCL) network to tackle
hard-pose person-to-person visual try-on. Our 3D-GCL network adopts an efficient architecture
for global correspondence estimation and refinement, and introduces a novel 3D regularization
loss to exploit geometric priors of 3D human bodies to guide the refinement process of the global
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correspondences. In this way, our full-resolution 3D-aware global correspondences can represent
both long-range and local deformations precisely, and hence our method can handle large pose
and viewpoint variations, while preserving garment textures and structures effectively. Quantitative
and qualitative comparison validate the effectiveness of the proposed 3D-GCL network. Due to its
effectiveness and flexibility, the proposed 3D-GCL network constitutes a new baseline for hard-pose
try-on, and more advanced components, like attention models, can be integrated into the network in
the future for further improvements.
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