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Abstract001

Large Language Models (LLMs) have achieved002
impressive results across a broad array of tasks,003
yet their capacity for complex, domain-specific004
mathematical reasoning—particularly in wire-005
less communications—remains underexplored.006
In this work, we introduce WirelessMathBench007
a novel benchmark specifically designed to008
evaluate LLMs on mathematical modeling chal-009
lenges to wireless communications engineering.010
Our benchmark consists of 587 meticulously011
curated questions sourced from 40 state-of-the-012
art research papers, encompassing a diverse013
spectrum of tasks ranging from basic multiple-014
choice questions to complex equation comple-015
tion tasks, including both partial and full com-016
pletions, all of which rigorously adhere to phys-017
ical and dimensional constraints. Through ex-018
tensive experimentation with leading LLMs,019
we observe that while many models excel in ba-020
sic recall tasks, their performance degrades sig-021
nificantly when reconstructing partially or fully022
obscured equations, exposing fundamental lim-023
itations in current LLMs. Even DeepSeek-R1,024
the best performer on our benchmark, achieves025
an average accuracy of only 38.05%, with a026
mere 7.83% success rate in full equation com-027
pletion. By publicly releasing WirelessMath-028
Bench along with the evaluation toolkit, we029
aim to advance the development of more ro-030
bust, domain-aware LLMs for wireless system031
analysis and broader engineering applications.032

1 Introduction033

Large Language Models (LLMs) have recently034

demonstrated groundbreaking performance across035

a diverse range of natural language tasks—from036

general language understanding (Brown et al.,037

2020; Wang et al., 2019b,a) and code genera-038

tion (Lu et al., 2021) to elementary mathemat-039

ical reasoning (Cobbe et al., 2021; Hendrycks040

et al., 2021a). Advanced models such as OpenAI-041

o1 (OpenAI, 2024) and DeepSeek-R1 (Guo et al.,042

Figure 1: Example task from WirelessMathBench a
system model derivation from wireless communications
literature. The derivation progresses from a multiple-
choice question to progressive mask completion ques-
tions, and finally to the full formula derivation, testing
the model’s ability to reason through complex channel
reflections and matrix operations.

2025) have further extended these capabilities, es- 043

pecially when supplemented with chain-of-thought 044

strategies that enable clear, step-by-step solution 045

processes. Nevertheless, despite these notable 046

achievements, current state-of-the-art LLMs still 047

encounter significant difficulties when tackling 048

highly intricate problem statements. In particu- 049

lar, tasks that demand deep conceptual insights, 050

rigorous validation of physical feasibility, and the 051

careful management of tightly interrelated param- 052

eter sets continue to pose formidable challenges 053
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(Mirzadeh et al., 2025; Zhang et al., 2023; He et al.,054

2024).055

In many engineering fields—wireless commu-056

nications in particular—mathematical modeling is057

indispensable. The design and analysis of modern058

wireless systems require not only accurate numeri-059

cal computation but also precise symbolic deriva-060

tions that honor strict physical and dimensional061

constraints. Tasks such as channel estimation (Yin062

et al., 2013; Liu et al., 2022; An et al., 2023), beam-063

forming (Chu et al., 2023; Spencer et al., 2004), and064

multi-antenna system design (Huang et al., 2020;065

An et al., 2024; Zheng et al., 2024) involve in-066

tricate matrix operations, multi-stage derivations,067

and domain-specific lexicon. Even minor errors068

in symbolic manipulation can lead to significant069

performance degradation or non-compliance with070

industry standards (Bjornson et al., 2013).071

Although recent work has leveraged LLMs for072

technical definition retrieval in wireless communi-073

cations (Shao et al., 2024; Maatouk et al., 2023;074

Zou et al., 2024; Maatouk et al., 2024), few stud-075

ies have directly addressed the challenges asso-076

ciated with multi-step derivations and symbolic077

manipulation in this specialized domain. This ob-078

servation raises a broader question: To what extent079

are LLMs capable of emulating the mathematical080

derivations and analytical typically by an engineer081

or researcher in the field of real wireless communi-082

cations?083

To bridge this gap, we introduce WirelessMath-084

Bench a comprehensive benchmark specifically085

designed to test LLMs on the real-work wireless086

engineering orientation mathematical reasoning.087

WirelessMathBench comprises 587 high-quality088

questions sourced from 40 state-of-the-art papers,089

each carefully annotated and validated by domain090

experts to ensure accuracy. These questions span a091

variety of system models (e.g., Multiple-Input and092

Multiple-Output (MIMO), Non-orthogonal mul-093

tiple access (NOMA), Reconfigurable Intelligent094

Surfaces (RIS) ) and problem settings (e.g., channel095

estimation, beamforming), encompassing multiple-096

choice, fill-in-the-blank, and open-ended questions097

at various levels. Table1 highlights key differ-098

ences between WirelessMathBench and other math099

benchmarks, ours is the only dataset of expert dif-100

ficulty level and contains real-world engineering101

problems. Figure 1 illustrates how a single math102

formula escalates from a basic multiple-choice103

query to a fully masked equation derivation, reflect-104

ing the complexity of real-world wireless system105

analysis. 106

Our extensive experiments show that while lead- 107

ing LLMs perform well on simpler tasks (e.g., 108

multiple-choice questions with over 75% accuracy), 109

their performance drops dramatically on advanced 110

derivation tasks (progressive masking and complete 111

equations). Even the strongest model we evaluated, 112

DeepSeek-R1 (Guo et al., 2025), only manages 113

a 7.83% success rate in fully masked derivations, 114

underscoring a fundamental gap between current 115

LLM capabilities and the complex demands of 116

wireless systems analysis. 117

By publicly releasing WirelessMathBench along 118

with its evaluation toolkit, we aim to spur progress 119

toward LLMs that are not only fluent in natural 120

language but also capable of rigorous, domain- 121

specific mathematical reasoning. We envision that 122

WirelessMathBench will serve as a catalyst for in- 123

novation in mathematical reasoning capabilities, 124

domain-adaptive pre-training techniques, and ad- 125

vanced thought-chaining strategies, ultimately pro- 126

pelling LLMs toward more robust scientific and 127

engineering problem-solving. 128

2 Related Work 129

General-Purpose LLM Benchmarks. In recent 130

years, rapid advancements in LLMs—exemplified 131

by models such as GPT-3 (Brown et al., 2020), 132

GPT-4 (Achiam et al., 2023), LLaMA (Tou- 133

vron et al., 2023), Gemini (Team et al., 2023), 134

and DeepSeek-R1 (Guo et al., 2025)—have 135

spurred extensive evaluations on benchmarks like 136

GLUE (Wang et al., 2019b), SuperGLUE (Wang 137

et al., 2019a), and GSM8K (Cobbe et al., 2021). 138

However, despite covering a broad spectrum of 139

linguistic tasks, they typically lack the depth and 140

specificity required to evaluate rigorous mathemat- 141

ical modeling or the domain-specific symbolic rea- 142

soning needed for complex technical applications. 143

Mathematical Reasoning Benchmarks. A par- 144

allel research stream has focused on the mathe- 145

matical and symbolic reasoning abilities of LLMs. 146

Early mathematical benchmarks (Amini et al., 147

2019; Cobbe et al., 2021; Koncel-Kedziorski 148

et al., 2016; Ling et al., 2017; Hendrycks et al., 149

2021b) evaluate models on elementary arith- 150

metic, algebra, and calculus problems. Re- 151

cently, as the complexity of the problem in- 152

creases, some benchmarks introduce competition- 153

level problems that combine mathematical logic 154

and background knowledge (Yu et al., 2024; 155
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Benchmark Diffuculty Level QuestionType Real Engineering Tasks #Test Size

GSM8K (Cobbe et al., 2021) Elementary School OE No 1,319
MATH (Hendrycks et al., 2021b) High School OE No 5,000
OCWCourses (Lewkowycz et al., 2022) University OE No 272
MMMU (Yue et al., 2024) University MC,OE No 1983
OlympiadBench (He et al., 2024) Competition OE No 8,476
WirelessMathBench Expert MC, FB, OE Yes 587

Table 1: Comparison of representative mathematical benchmarks with WirelessMathBench. Existing datasets
largely focus on elementary, high school, or Olympiad-level problems in purely theoretical contexts, while Wire-
lessMathBench targets real-world, expert-level engineering tasks under strict dimensional and physical constraints.
We note that open-ended (OE) tasks typically require free-form answers, MC indicates multiple-choice, and FB
refers to fill-in-the-blank.

Hendrycks et al., 2021a; Arora et al., 2023;156

Frieder et al., 2024). For more advanced math-157

ematical reasoning, datasets like MMMU (Yue158

et al., 2024), OCWCourses (Lewkowycz et al.,159

2022) and U-MATH (Chernyshev et al., 2024)160

focuses on university-level mathematics prob-161

lems. MiniF2F (Zheng et al., 2022), AlphaGeome-162

try (Trinh et al., 2024), OlympiadBench (He et al.,163

2024), and MathOdyssey (Fang et al., 2024) go164

further to Olympiad-level problems that require165

more advanced mathematical reasoning. Yet, these166

datasets do not capture the unique constraints or167

specialized notations found in applied domains like168

wireless communications.169

Domain-Specific Benchmarks. To overcome the170

limitations of general-purpose evaluations, sev-171

eral domain-specific benchmarks have been devel-172

oped for tasks that demand technical precision and173

specialized reasoning. For example, customized174

benchmarks have been developed for legal docu-175

ment analysis (Guha et al., 2024), chemical prop-176

erty inference (Guo et al., 2023), and scientific177

reasoning (Lu et al., 2022; Wang et al., 2024; Sun178

et al., 2024). To evaluate LLMs in more specialized179

domain tasks, recent works have introduced bench-180

marks like MLAgentBenchmark (Huang et al.,181

2024), which evaluates LLMs’ ability to solve ma-182

chine learning tasks, AI-Researcher (Si et al., 2025)183

evaluate can LLMs generate research ideas, and184

SWE-Bench (Jimenez et al., 2024) evaluate LLMs’185

ability to solve real-world software engineering186

tasks. These studies highlight that an in-depth187

evaluation of LLMs in specialized fields reveals188

that LLMs have strong potential in different profes-189

sional fields.190

LLMs in Wireless Communications. Wireless191

communications impose stringent requirements on192

mathematical precision, particularly for tasks such193

as channel estimation, interference management, 194

and beamforming (Cadambe and Jafar, 2008; Shi 195

et al., 2011; Gesbert et al., 2010). Some prelimi- 196

nary works have explored the use of LLMs in wire- 197

less contexts, focusing on domain-specific knowl- 198

edge extraction and basic recall of technical stan- 199

dards (Maatouk et al., 2023; Shao et al., 2024; Maa- 200

touk et al., 2024). Notably, TelecomGPT (Zou 201

et al., 2024) has extended LLM capabilities to 202

higher-level tasks like wireless-specific code gen- 203

eration and formula completion. However, these 204

early works usually emphasize knowledge retrieval 205

or summarization, without considering testing what 206

tasks LLMs can accomplish in actual wireless com- 207

munication engineering systems. 208

In this work, we introduce WirelessMathBench 209

to address these gaps. Unlike existing wireless 210

or purely mathematical benchmarks, Wireless- 211

MathBench offers tasks that systematically com- 212

bine multiple-choice questions with progressively 213

masked formula derivations, all drawn from state- 214

of-the-art research papers. The goal is to evaluate 215

both symbolic reasoning and domain knowledge 216

under realistic conditions, capturing the nuanced 217

interplay of mathematical derivations and physi- 218

cal feasibility inherent in wireless communications. 219

By providing a diverse set of tasks and domain- 220

informed evaluation metrics, WirelessMathBench 221

aims to facilitate collaborative advances in both 222

LLMs and wireless communication engineering, 223

ultimately enabling more powerful AI-assisted so- 224

lutions for next-generation wireless networks. 225

3 The WirelessMathBench Benchmark 226

In this section, we present WirelessMathBench, 227

a new benchmark specifically designed to evalu- 228

ate LLMs on mathematical modeling tasks within 229

wireless communications. We begin by discussing 230

the rationale behind our benchmark design (Sec- 231
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Figure 2: Overview of the data collection and annotation pipeline for WirelessMathBenchṪhe process involves
selecting high-quality research papers, extracting system models from papers, curating tasks of varying complexity
levels, and reviewing each task for clarity and correctness.

tion 3.1), followed by the details of our data col-232

lection and annotation pipeline (Section 3.2). We233

then explain how we construct questions of vary-234

ing complexity levels, as well as our progressive235

masking methodology (Section 3.3).236

3.1 Design Principles237

The creation of WirelessMathBench is motivated238

by two core observations. First, recent work shows239

that LLMs can effectively assist humans in highly240

specialized tasks (Guha et al., 2024; Guo et al.,241

2023; Lu et al., 2022), underscoring their poten-242

tial when provided with sufficient domain context.243

Second, LLMs have demonstrated the capacity to244

handle increasingly difficult mathematics, includ-245

ing Olympiad-level challenges (He et al., 2024;246

Fang et al., 2024). These findings suggest a sub-247

stantial opportunity to push the limits of LLMs in248

areas where complex, domain-specific mathemat-249

ics—such as wireless communications—plays a250

central role.251

Building on these insights, WirelessMathBench252

is designed around two key principles:253

1. Real-World Complexity. Each task is sourced254

directly from peer-reviewed research, reflecting255

the authentic modeling challenges faced in wire-256

less systems.257

2. Multi-Tiered Progression. Tasks range from258

basic multiple-choice questions to fully masked259

derivations, providing graduated levels of diffi-260

culty that capture both foundational knowledge261

and advanced reasoning.262

3.2 Data Collection and Annotation263

As illustrated in Figure 2, the data collection and an-264

notation process for WirelessMathBench involves265

four main steps: paper selection, system model ex- 266

traction, task curation, and domain expert review. 267

Paper Selection and Coverage. To capture the 268

authentic complexities of wireless communications, 269

we begin by identifying high-impact papers from 270

top-tier publication venues that are freely acces- 271

sible on arXiv. Table 2 summarizes the coverage 272

of model-based and problem-based categories; in 273

total, we select 40 papers spanning core techniques 274

(e.g., MIMO, NOMA, RIS) and research focuses 275

(e.g., channel estimation, beamforming). We em- 276

phasize works that feature nontrivial mathemati- 277

cal derivations—such as optimization formulations 278

and multi-stage channel modeling—over those lim- 279

ited to empirical or simulation-based heuristics. A 280

summary of the high-frequency keywords across 281

the dataset is shown in Figure 3, highlighting the 282

diverse wireless communication topics covered in 283

the benchmark. We aim to include tasks that reflect 284

the symbolic depth and physical constraints that are 285

indispensable for real-world wireless engineering 286

and state-of-the-art wireless research. 287

System Model Extraction. Our pipeline starts 288

by applying a specially designed LLM template 289

that systematically scans each research paper, iso- 290

lating key mathematical expressions and relevant 291

contextual descriptions. This initial extraction step 292

is semi-automated: LLMs produce a structured 293

draft containing a concise overview of the system 294

model, assumptions, and principal formulas. Sub- 295

sequently, domain experts review and refine these 296

drafts, ensuring that the extracted material is both 297

accurate (i.e., symbolically consistent with the orig- 298

inal text) and self-contained (i.e., providing enough 299

background to be understood independently). This 300

hybrid method combines the scalability of auto- 301

mated extraction with meticulous expert checks, 302
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Category Type Topic Category Number of Papers

Model-based

RIS 19
MIMO 12
UAV 6
ISAC 6

Satellite 4
SIM 3

NOMA 2

Problem-based

Beamforming 18
Channel Estimation 12

Performance Analysis 8
Trajectory Design 5
Power Allocation 5

Resource Management 4

Total 40

Table 2: Distribution of the WirelessMathBench bench-
mark papers according to model-based and problem-
based categories, along with their respective topic areas.
A total of 40 papers are included, covering key themes
in wireless communications. Note that some papers may
span multiple topic categories.

ensuring the resulting text is accurate, symbolically303

consistent, and sufficiently self-contained for sub-304

sequent tasks.305

Task Curation. Once the system models have306

been extracted, we systematically transform them307

into precise question-answer pairs via a three-step308

process:309

1. Identify Core Equations: We select represen-310

tative formulas from each paper—such as chan-311

nel gain expressions, optimization objectives, or312

multi-hop path-loss derivations—that encapsu-313

late critical wireless engineering challenges.314

2. Construct Questions: For each core equation,315

we generate questions at varying levels of diffi-316

culty. This includes: (a) multiple-choice ques-317

tions targeting definitions or partial operations;318

(b) progressively masked fill-in-the-blank ques-319

tions that require incremental reasoning; and320

(c) full equation completion tasks that demand321

derivation of the entire expression.322

3. Annotate and Review: Each question is accom-323

panied by contextual notes, and domain experts324

validate correctness and clarity. When neces-325

sary, we refine notation or provide short explana-326

tions to ensure the questions are self-contained327

and can be tackled without external references328

Domain Expert Review. Lastly, all questions329

undergo a multi-round review by senior wireless330

researchers. They verify notation accuracy and331

Figure 3: A word cloud illustrating the most frequent
keywords in the WirelessMathBench benchmark, which
reflects the range of wireless communication topics cov-
ered.

domain applicability (e.g., check for appropriate di- 332

mensionality, and coherent modeling assumptions), 333

and remove any ambiguous or misleading content. 334

The remaining problems constitute the final Wire- 335

lessMathBench dataset: a set of carefully selected 336

tasks that embody typical mathematical derivations 337

in advanced wireless communication engineering 338

and research. 339

3.3 Task Design and Masking Strategies 340

To full evaluate the capabilities of LLMs at differ- 341

ent levels of difficulty in mathematical modeling 342

of wireless communications, WirelessMathBench 343

incorporates three distinct task types. Each ques- 344

tion leverages real-world system equations derived 345

from state-of-the-art research papers, ensuring that 346

the benchmark reflects both conceptual diversity 347

and practical engineering relevance. At the same 348

time, each independent question is accompanied by 349

a brief description of the relevant wireless scenario 350

(e.g., UAV relay or multi-antenna beamforming), 351

providing the necessary domain and scenario back- 352

ground information. 353

Multiple-Choice Questions (MCQs). These 354

questions require the solver to select the correct 355

mathematical expression from a set of closely re- 356

lated distractors, with each MCQ carefully de- 357

signed to test the model’s ability to recognize and 358

recall key elements of wireless system modeling. 359

For example, a typical MCQ may present several 360

equations for a wireless channel, of which only 361

one formula satisfies both the correct dimensions 362

and the physical constraints of the system under 363

consideration. 364

Progressively masked fill-in-the-blank questions. 365

In this task, a system model formula is progres- 366

sively presented in a partially masked form across 367
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Model Source Size

OpenAI-o1 (OpenAI, 2024) unknown
DeepSeek-R1 (Guo et al., 2025) 671B
GPT-Family (OpenAI, 2024; Achiam et al., 2023) unknown
DeepSeek-V3 (DeepSeek-AI et al., 2024) 671B
Gemini-Famliy (Google DeepMind, 2024) unknown
Qwen2.5-Math (Yang et al., 2024) 7B, 72B
LLaMA (Grattafiori et al., 2024) 8B, 70B
LLaMA-3-8B-Tele (Maatouk et al., 2024) 8B
Mistral-7B (Jiang et al., 2023) 7B

Table 3: LLMs evaluated on WirelessMathBench.

three different masking levels. Each progressively368

masked instance is treated as an independent sub-369

problem, requiring the model to infer and recon-370

struct the missing information at each stage. The371

masking levels range from isolated single-variable372

omissions to multi-variable occlusions, with vary-373

ing degrees of accompanying prompt text to pro-374

vide contextual guidance.375

Full Equation Completion (FEC) question. For376

the most challenging question, the full equation377

is entirely hidden. The solver is provided with378

only a succinct description of the wireless scenario379

(for example, a base station-relay-user link with380

specific path loss characteristics) and must derive381

the complete expression from first principles. This382

task assesses the model’s ability to reconstruct the383

entire derivation—from fundamental definitions384

(like channel gain or fading coefficients) to the final385

expression—while ensuring dimensional accuracy386

and adherence to domain-specific constraints (such387

as path loss exponent and transmit power limits). It388

represents the level of performance expected from389

a human expert in wireless communications.390

In summary, by combining MCQs, progres-391

sively masked tasks, and full equation completions,392

WirelessMathBench offers a comprehensive, fine-393

grained evaluation of a model’s capability to per-394

form both symbolic reasoning and domain-specific395

derivations in wireless communications.396

4 Experiments397

We now present a comprehensive evaluation of398

WirelessMathBench, focusing on how leading399

LLMs handle wireless communications–specific400

mathematical modeling. We begin by detailing401

our experimental setup (Section 4.1), including402

prompt design and model baselines, then discuss403

our main results (Section 4.2), and conclude with404

an error analysis that highlights key challenges405

(Section 4.3).406

4.1 Experiment Setup 407

Evaluation Workflow. All experiments are con- 408

ducted in a zero-shot setting using unified prompt 409

templates across different question types for con- 410

sistent evaluation. For each task in WirelessMath- 411

Bench, we provide the corresponding prompt to 412

each model and collect the answers it generates. 413

Our evaluation pipeline is now completed in two 414

main ways. For multiple-choice questions, we di- 415

rectly extract the output answers and compare their 416

consistency with the annotation results. For Pro- 417

gressive Masking Filling and Fully maded ques- 418

tions, since polynomials may have a certain num- 419

ber of possible answers, we use the help of LLMs 420

(GPT-4o is selected in our experiment) to com- 421

plete the evaluation, similar to(Fang et al., 2024; 422

Chernyshev et al., 2024). The overall performance 423

is reported as the average accuracy of all tasks. 424

Detailed prompt examples and scoring criteria are 425

provided in the Appendix B. 426

Baselines. Table 3 (in the main text) lists the 427

principal models tested. We include leading rea- 428

soning models(e.g., DeepSeek-R1, OpenAI-o1), 429

large-scale general-purpose LLMs (e.g., GPT-4, 430

Gemini), and specialized models (e.g., Qwen2.5- 431

Math) to capture a broad range of capabilities. 432

For open-source models like LLaMA, we also ex- 433

plore domain-specific variants trained on a tele- 434

com corpus (e.g., LLaMA-3-8B-Tele) to gauge 435

the benefit of targeted adaptation. All hyperpa- 436

rameters follow each model’s respective default or 437

recommended settings, and no additional chain-of- 438

thought prompting is provided beyond the standard 439

instructions above. 440

4.2 Main Results 441

Table 4 presents the performance of sixteen 442

LLMs across five metrics in WirelessMathBench: 443

(1) Multiple-choice Question (MCQ) accuracy, 444

(2–4) progressive masking fill-in at three difficulty 445

levels (Level 1, Level 2, Level 3), (5) Full Equation 446

Completions (FEC), and the overall average accu- 447

racy (Avg. Acc). Our key findings are summarized 448

below: 449

Reasoning-Oriented Models Show Advantages. 450

Models that incorporate explicit chain-of-thought 451

or advanced reasoning techniques—like DeepSeek- 452

R1 and OpenAI-o1—consistently outperform sim- 453

pler large-scale baselines. The average accuracy of 454

DeepSeek-R1 is 38.05%, and the average accuracy 455
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Model MCQ Progressive Masking Filling FEC Avg. Acc
Level 1 Level 2 Level 3

DeepSeek-R1 76.00% 60.00% 34.91% 12.50% 7.83% 38.05%
OpenAI-o1 66.40% 59.17% 32.17% 8.04% 6.96% 34.55%
OpenAI-o1-mini 66.40% 53.33% 29.57% 10.71% 4.35% 32.87%

GPT-4o 72.80% 42.50% 28.70% 6.25% 4.35% 30.92%
GPT-4 53.60% 38.33% 18.26% 3.57% 4.35% 23.62%
GPT-3.5-turbo 45.60% 7.50% 10.43% 1.79% 1.74% 13.41%
DeepSeek-V3 78.40% 50.00% 24.35% 6.25% 6.96% 33.19%
Gemini-2.0-flash 71.20% 40.83% 24.35% 5.36% 4.35% 29.22%
Gemini-1.5-pro 65.60% 43.33% 29.57% 9.82% 6.09% 30.88%
Gemini-1.5-flash 66.40% 37.50% 13.91% 2.68% 4.35% 24.97%

Qwen2.5-Math-72B 70.40% 37.50% 26.09% 7.14% 6.09% 29.44%
LLaMA-3.3-70B 65.60% 38.33% 17.39% 2.68% 6.09% 26.02%

Qwen2.5-Math-7B 58.40% 21.67% 6.96% 4.46% 1.74% 18.82%
LLaMA-3-8B-Tele 40.80% 11.67% 4.35% 2.68% 0.87% 12.07%
LLaMA-3-8B 45.60% 10.83% 7.83% 2.68% 2.61% 13.91%
Mistral 7B 38.40% 20.00% 4.35% 0.89% 0.87% 12.90%

Table 4: Experimental results of state-of-the-art LLMs on WirelessMathBench. The table shows the performance of
each model on MCQ, progressively masked filling and full equation completion tasks.

of OpenAI-o1 is 34.55%, while the accuracy of456

other large-parameter models hovers around 30%.457

This suggests that explicit reasoning strategies con-458

tribute substantially to managing multi-step sym-459

bolic derivations in wireless communications tasks.460

Strong MCQ Performance but Rapid De-461

cline in Derivations. Several models, including462

DeepSeek R1, V3, GPT-4, and Gemini-2.0, exceed463

70% accuracy on MCQs, showing that they can464

find the correct formula given background knowl-465

edge and given error options, indicating that they466

can understand the modeling process and matrix467

operations in the communication domain to some468

extent. However, these MCQ gains generally do469

not extend to more complex derivation tasks, where470

most models’ accuracy falls dramatically. For in-471

stance, DeepSeek-V3 achieves the highest MCQ472

score at 78.40%, drop to 6.25% in Level 3 masking473

filling, and 6.96% in FEC.474

Progressive Masking Emphasizes Multi-Step475

Reasoning Gaps. When forced to reconstruct476

partially hidden expressions, model performance477

declines in proportion to the level of masking.478

When forced to reconstruct partially hidden ex-479

pressions, model performance degrades with in-480

creasing levels of masking. Models with implicit481

reasoning logic significantly outperform the others, 482

with DeepSeek-R1 in particular leading on these 483

tasks—achieving 60.00% at Level 1 and 33.91% 484

at Level 2, suggesting more robust chaining of 485

thoughts. However, even DeepSeek-R1 struggles 486

at level 3 (12.50%), highlighting the difficulty of 487

maintaining symbolic coherence under heavily am- 488

biguous conditions. 489

Fully Masked Equation Completion Remains 490

Challenging. Most models attain only single- 491

digit accuracy (2–7%) in the FEC task, where the 492

entire equation is hidden. DeepSeek-R1’s 7.83% 493

and OpenAI-o1’s 6.96% are the best in this cate- 494

gory, but both remain low in absolute terms, indicat- 495

ing that fully reconstructing multi-step derivations 496

without partial clues poses a significant challenge. 497

Domain-Focused Models Show Improvements. 498

Models that are specifically tuned for mathematical 499

reasoning—such as Qwen2.5-Math—demonstrate 500

improved performance over other models with a 501

similar parameter count, both in terms of overall 502

average accuracy and on individual subtasks. In 503

particular, Qwen2.5-Math-72B achieves an aver- 504

age accuracy of 29.44%, which is on par with the 505

average performance of most commercial models. 506

However, fine-tuning general-purpose models like 507

7



Figure 4: Error distribution among 40 annotated
DeepSeek-R1 errors.

LLaMA to telecom-specific data (e.g., LLaMA-3-508

8B-Tele) yields only limited benefits. This is likely509

because the telecom fine-tuning data predominantly510

consists of wireless protocols, whereas the prob-511

lems in WirelessMathBench require handling long512

contexts and performing high-level mathematical513

reasoning.514

4.3 Error Analysis515

To better understand the limitations of the model-516

generated solutions, we randomly sampled and re-517

viewed 40 failure answers by DeepSeek-R1 on the518

progressively masked filling and fully masked equa-519

tion tasks, grouping them into several recurring cat-520

egories. Figure 4 summarizes the distribution of521

these errors.522

Partial Fill Mismatch (31%). A prevalent chal-523

lenge in progressive masking tasks is that the524

model often merges multiple placeholders into a525

single bracket or places the correct term in the526

wrong mask position. For instance, it may com-527

bine
√
pKβmky

H
pmϕϕϕk into one placeholder even528

though the prompt explicitly requests separate529

terms (
√
pKβmk and yH

pmϕϕϕk) across two different530

masks.531

Symbol Misinterpretation (29%). This type of532

error arises when the model chooses the wrong533

symbol or omits key symbolic elements in the final534

equation. An example is substituting HBR instead535

of HH
BR in a channel derivation.536

Incorrect Equation Derivation (24%). Several537

solutions fail to follow the correct derivation path,538

either missing crucial intermediate steps or inject-539

ing extraneous components. In longer sequences,540

a single early mistake (e.g., confusing pilot power541

p with user transmit power ρk) tends to propa-542

gate, causing the final expression to be structurally 543

flawed despite appearing superficially similar. 544

Irrelevant System Mixing (11%). We also ob- 545

serve instances in which the model introduces ex- 546

traneous terms or assumes mismatched system set- 547

tings. For example, it might inject NOMA-based 548

interference factors into an RIS–MIMO scenario 549

with no multi-user superposition, or switch to an 550

entirely different beamforming constraint uncon- 551

nected to the original problem statement. 552

Other Errors (4%). A small fraction of errors 553

are too context-specific to classify under the main 554

categories. These include incomplete expressions— 555

where the answer stops abruptly without filling the 556

entire formula—and mismatched expressions that 557

repeat known placeholders without substituting the 558

correct variables. 559

Overall, while the majority of failures fall into 560

coherent error patterns, it is evident that the model 561

struggles when tasks require nuanced symbol-to- 562

mask matching or integrative domain reasoning. 563

Therefore, strengthening the model’s ability to ac- 564

curately derive reasoning and align domain knowl- 565

edge is a key challenge for future improvements. 566

5 Conclusion 567

We introduced WirelessMathBench, the first 568

benchmark that comprehensively evaluates 569

LLMs’ abilities to domain-specific mathematical 570

engineering tasks in wireless communications. 571

By presenting a broad range of tasks—from 572

multiple-choice questions to progressively 573

masked fill-in-the-blank and full equation com- 574

pletions—WirelessMathBench assesses how well 575

models handle real-world wireless communica- 576

tions mathematical engineering challenges. Our 577

experiments show that, although many leading 578

LLMs perform well on simpler question types, 579

their ability to reconstruct equations deteriorates 580

significantly when partial or full derivation is 581

required, exposing a critical shortfall in current 582

LLM-assisted scientific innovation. Future work 583

will expand the scope and complexity of these 584

wireless challenges, with the aim of enhancing 585

LLMs’ mathematical reasoning and domain 586

adaptation. By advancing their integration into the 587

next-generation wireless systems, we ultimately 588

strive toward the development of more capable, 589

general-purpose AI solutions for scientific and 590

engineering applications. 591
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Ethical Considerations592

This paper focuses on the development of a bench-593

mark for evaluating language models on mathemat-594

ical modeling tasks in wireless communications.595

The source data of WirelessMathBench is curated596

from open-access research papers, ensuring that597

the benchmark is built on publicly available infor-598

mation. Meanwhile, we resummarize the papers599

and anonymize the content to prevent any poten-600

tial privacy concerns. In experiments, we follow601

all licensing agreements and terms of service for602

the models evaluated, ensuring that our work is603

conducted in compliance with ethical guidelines.604

Limitations605

While WirelessMathBench provides a comprehen-606

sive evaluation of LLMs on wireless mathematical607

modeling tasks, several limitations remain. First,608

it mainly covers text-based problems (e.g., sym-609

bolic derivations), missing other key data types610

like antenna diagrams, simulation plots, and Ra-611

dio frequency (RF) measurements measurements,612

which are crucial for real-world wireless tasks. Sec-613

ond, while WirelessMathBench spans topics from614

MIMO to RIS, it may not cover all emerging ar-615

eas, such as quantum communication or terahertz616

systems. Third, our automated evaluation checks617

the final symbolic equivalence and dimensionality618

plausibility but may miss incorrect reasoning at in-619

termediate steps. Lastly, all tests were done in a620

zero-shot setting. While this reflects real-world use,621

it does not explore whether fine-tuning or retrieval-622

based methods could improve results. Future ver-623

sions of WirelessMathBench may include training624

splits to support domain adaptation and wireless-625

specific fine-tuning.626
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A Dataset Details938

A.1 Topics and Papers Selection939

Our study addresses modern wireless communica-940

tion challenges by selecting topics based on three941

key criteria that ensure both the academic rigor and942

practical relevance of our work. First, we target943

topics that have undergone peer review and have944

been accepted by prestigious journals such as IEEE945

Transactions on Wireless Communications (TWC),946

IEEE Transactions on Communications (TCOM),947

and IEEE Journal on Selected Areas in Communi-948

cations (JSAC), as well as by top-tier conferences949

including IEEE International Conference on Com-950

munications(ICC) and IEEE Global Communica-951

tions Conference (Globalcom), and for which corre-952

sponding arXiv versions are available. Second, we953

focus on communication system modeling that en-954

tails complex, multi-step mathematical derivations.955

These derivations are designed to closely mimic956

the challenges encountered in real-world wireless957

communication scenarios, capturing the intricate in-958

terplay between theoretical constructs and practical959

system constraints. Third, we ensure topic diversity960

by covering a wide range of wireless communica-961

tion scenarios and problem domains. Specifically,962

our study encompasses seven major communica-963

tion scenarios and six key problem areas, including964

interference management, spectrum optimization,965

network coding, and energy efficiency.966

A.2 ArXiv Data Processing967

Our data processing pipeline is similar with (Maa-968

touk et al., 2024). First begins with the removal of969

all comments from the LaTeX files using Google’s 970

arXiv LaTeX Cleaner1. We then parse the LaTeX 971

source to extract the core technical content by sep- 972

arating the main text and mathematical expressions 973

from non-essential elements such as comments, 974

figures, and tables. For submissions comprising 975

multiple files linked via \input commands, we uti- 976

lize the latexpand tool2 to flatten the document 977

into a single file, ensuring all dependencies are re- 978

solved. To address the variability introduced by 979

author-defined macros (e.g., via \newcommand or 980

\def), we automatically expand these using the 981

de-macro3, replacing custom macros with their 982

full definitions and normalizing all mathematical 983

expressions to a consistent LaTeX format. Non- 984

informative content such as acknowledgments and 985

extensive bibliographies are removed to focus on 986

technical material and to ensure anonymity in 987

dataset construction by removing all author infor- 988

mation from the articles. 989

B Prompt Templates 990

For clarity and reproducibility, we provide exam- 991

ples of our prompt templates. Figure 10 shows a 992

template for a paper summary prompt, Figure 11 993

illustrates a question generation prompt, and Fig- 994

ures 12 andFigure 14 present templates for request- 995

ing LLMs to answer multiple-choice and fill-in-the- 996

blank questions, respectively. 997

C Model Configurations and 998

Hyperparameters 999

In our WirelessMathBench experiment, a total of 1000

16 models were tested. All model tests followed 1001

the same template and set default parameters, and 1002

all results are the results of a single run. 1003

C.1 Closed-source Models 1004

For models such as OpenAI-o1, GPT-4o, GPT-4, 1005

GPT-3.5-turbo, Gemini-2.0-flash, Gemini-1.5-pro, 1006

and Gemini-1.5-flash, we utilize their official API 1007

interfaces. These models are invoked via their re- 1008

spective API endpoints with standardized default 1009

parameters to ensure consistency and reproducibil- 1010

ity across all experiments. 1011

1https://github.com/google-research/
arxiv-latex-cleaner

2https://ctan.org/pkg/latexpand
3https://ctan.org/pkg/de-macro
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C.2 Open-source Models1012

Our local experiments employ several open-source1013

models deployed across different environments:1014

• AliyunCloud Deployment4: Qwen2.5-Math-1015

72B and DeepSeek-V3 are deployed on the1016

AliyunCloud platform.1017

• NVIDIA NIM Deployment5: DeepSeek-R1 and1018

LLaMA-3.3-70B are run on NVIDIA NIM cloud1019

platform.1020

• HuggingFace Transformers6: Other mod-1021

els—including Qwen2.5-Math-7B, LLaMA-3-1022

8B-Tele, LLaMA-3-8B, and Mistral-7B—are run1023

on local Nvidia A6000s, using the HuggingFace1024

Transformers library to load pre-trained models.1025

D Example Output1026

To illustrate the diversity and complexity of the1027

tasks within WirelessMathBench, we now present1028

representative example outputs generated by var-1029

ious models. Figures 5, Figure 6, Figure 7, Fig-1030

ure 8, and Figure 9 showcase different task types1031

along with the responses provided by leading mod-1032

els (OpenAI-o1 and DeepSeek-R1).1033

Disclosure1034

In the process of writing this paper, we partially1035

utilized ChatGPT as a language polishing tool to1036

improve the clarity and quality of the text. How-1037

ever, all research ideas, data analyses, and conclu-1038

sions were independently conceived and confirmed1039

by the authors.1040

4https://bailian.console.aliyun.com/
5https://build.nvidia.com/
6https://huggingface.co/docs/transformers/en/

index
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Q_id:liu2023detecting_q3_mc.

Correct Answer

{
    "explanation": "The coherent combining gain in MRC arises from the constructive addition of signal
components across antennas, leading to a squared term in the SINR numerator. The key components include the
LoS power , estimation quality , and covariance trace . These terms collectively
contribute to the effective signal power after combining. Option D correctly incorporates all three components
within a squared sum, reflecting the coherent gain from both deterministic (LoS) and statistical (estimation quality,
covariance) channel properties. Other options either omit critical terms (e.g., covariance trace in B) or lack the
necessary squaring operation (C), which is essential for coherent gain.",
    "answer": "D"
}

DeepSeek-R1

MRC combining yields SINR with coherent combining gain (numerator) and
interference\/noise terms (denominator). Key components include LoS power

, estimation quality , and covariance trace 

Which numerator represents coherent combining gain?

A: 

B: 

C: 

D: 

Backgroud

Question

Optioins

{
    "explanation": "In MRC combining, the coherent combining gain in the numerator of the SINR expression
represents the squared magnitude of the combined channel gains. The gain is proportional to the square of the sum
of the deterministic LoS component and the estimated channel components.\n\nThe LoS power is given by \
(\|\bar{\mathbf{g}}_k\|^2\). The estimation quality per antenna is given by \(\gamma_{mk}\) for antennas \(m =
1,\,\ldots,\,M\).\n\nTherefore, the total coherent combining gain is represented by:\n\[\n\left(
\|\bar{\mathbf{g}}_k\|^2 + \sum_{m=1}^{M} \gamma_{mk} \right)^2\n\]\n\nThis expression corresponds to
**Option B**.\n\nOptions A and D include \(pK\mathrm{tr}(\pmb{\Theta}_k)\) in the numerator, which typically
represents interference or noise terms, not the coherent signal gain.\n\nOption C does not square the sum, which is
inconsistent with the fact that coherent combining gain is proportional to the square of the combined channel
gains.\n\nTherefore, Option B is the correct representation of the coherent combining gain in the numerator.",
    "answer": "B"
}

OpenAI-o1

Figure 5: An example question and the corresponding output from LLMs for a multiple-choice task.
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Q_id:liu2021deep_q1_fillin_1.

In an IRS-assisted MU-MIMO system, the base station receives signals through
both direct and IRS-reflected paths. The observation matrix  combines the
channel matrix , IRS phase-shift matrix , and additive noise . Here,
$M$ is BS antennas,  IRS elements, and  pilot symbols.

What noise term completes the received signal equation?

Backgroud

Question

Equation

{
    "explanation": "The additive noise term \(\boldsymbol{Z}_k\) completes the received signal equation by

accounting for random disturbances in the system.",
    "answer": "\boxed{\boldsymbol{Z}_k}"
}

OpenAI-o1

{
    "explanation": "In the given IRS-assisted MU-MIMO system, the received signal equation combines the channel

matrix $\boldsymbol{H}_k$, IRS phase-shift matrix $\boldsymbol{P}$, and additive noise
$\boldsymbol{Z}_k$. The additive noise term $\boldsymbol{Z}_k$ is explicitly mentioned in the
background context as part of the observation matrix $\boldsymbol{X}_k$. The equation structure
$\boldsymbol{X}_k = \boldsymbol{H}_k \boldsymbol{P} + [MASK]$ directly implies that the missing term
is the additive noise $\boldsymbol{Z}_k$, which aligns with standard wireless communication models where
noise is added linearly to the signal component.",

    "answer": "\boxed{\boldsymbol{Z}_k}"
}

DeepSeek-R1

Correct Answer

Figure 6: An example of a level 1 progressively masked fill-in-the-blank task. The figure shows both the question
and the LLM’s output as it begins to reconstruct the missing parts of the equation.
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Q_id:zhao2024dual_q1_fillin_2.

In RIS-aided ISAC systems, the effective channel combines direct BS-user
links and RIS-reflected paths. The RIS phase matrix  enables configurable
signal reflections. Channel matrices maintain  dimensions through
proper conjugation.

What matrix configures RIS phase shifts?

Backgroud

Question

Equation

{
    "explanation": "The two missing channel matrices are \(\mathbf{H}_{\text{RU},k}\) and \       
 (\mathbf{H}_{\text{BR}}\).",
    "answer": "\boxed{\mathbf{H}_{\text{RU},k}},\boxed{\mathbf{H}_{\text{BR}}}"
}

OpenAI-o1

{
    "explanation": "In RIS-aided systems, the effective channel combines the direct BS-user path (H_{BU,k}) and

the RIS-reflected path. The reflected path involves the channel from BS to RIS (H_{BR}) and RIS to user
(H_{RU,k}), with the RIS phase matrix Θ in between. Matrix multiplication order ensures dimensions align:
H_{RU,k} (N_U × N_R) · Θ (N_R × N_R) · H_{BR} (N_R × N_B) results in N_U × N_B, matching
H_{BU,k}. Thus, the missing terms are H_{RU,k} and H_{BR}.",

    "answer": "\boxed{\mathbf{H}_{\text{RU},k}},\boxed{\mathbf{H}_{\text{BR}}}"
}

DeepSeek-R1

Correct Answer

Figure 7: An example of a level 2 progressively masked fill-in-the-blank task.
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Q_id:xu2021a_q1_fillin_3.

{
    "explanation": "The scaling factor for the LoS component is \sqrt{\dfrac{\kappa_k \beta_k}{\kappa_k + 1}}

due to the Rician factor and path-loss. The first element's phase is zero because the array factor at the origin is
zero, so the exponential term becomes e^{j0}=1.",

    "answer": "\boxed{\sqrt{\dfrac{\kappa_k \beta_k}{\kappa_k + 1}}},\boxed{0}"
}

OpenAI-o1

{
    "explanation": "The scaling factor for the LoS component $\bar{\mathbf{g}}_k$ combines the path-loss

$\beta_k$ and Rician factor $\kappa_k$ as $\sqrt{\frac{\kappa_k \beta_k}{\kappa_k + 1}}$. The first
element's phase is determined by the inner product of the array response vector function $\pmb{\ell}(\theta_k,
\omega_k)$ with the first antenna element's position $\mathbf{c}_1$.",

    "answer": "\boxed{\sqrt{\frac{\kappa_k \beta_k}{\kappa_k + 1}}}\, \boxed{\pmb{\ell}(\theta_k,
\omega_k)^T \mathbf{c}_1}"

}

DeepSeek-R1

Satellite line-of-sight channels use planar antenna arrays with spatial
correlation. The LoS component  depends on Rician factor , path-loss ,
and user angles  (elevation),  (azimuth). Array response vector 
uses wavelength  and element positions .

Provide scaling factor and first element's phase

  

Backgroud

Question

Equation

Correct Answer

Figure 8: An example of a level 3 progressively masked fill-in-the-blank task. Notice that both OpenAI-o1 and
DeepSeek-R1 encountered difficulties in correctly interpreting the conjugate condition required by the task.
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Q_id:an2023stacked_q1_fillin_4.

In a stacked intelligent metasurface (SIM) with  layers and  meta-atoms per
layer, each layer applies a diagonal phase-shift matrix to incoming signals.
Denote the matrix of the -th layer by . The diagonal entries contain the
phase terms , controlling how each meta-atom shifts the wave\u2019s
phase.","question_text":"Write the full expression for the phase-shift matrix of
layer .

"Write the full expression for the phase-shift matrix of layer .

Backgroud

Question

Equation

{
    "explanation": "The phase-shift matrix \( \boldsymbol{\Phi}^l \) is a diagonal matrix with elements \(
e^{j\theta_n^l} \) along the diagonal for each meta-atom \( n = 1, 2, \dotsc, N \). Using the \( \mathrm{diag} \)
function and following the LaTeX protocols: functions in roman font, scaled parentheses via \( \Bigl( \) and \(
\Bigr) \), commas with small spaces via \( ,\, \), and braced exponents \( e^{\{...\}} \), the expression becomes:",
    "answer": "\boxed{\mathrm{diag}\Bigl( e^{j\theta^l_1},\, e^{j\theta^l_2},\, \dotsc,\, e^{j\theta^l_N} \Bigr)}"
}

OpenAI-o1

{
    "explanation": "The phase-shift matrix for layer  in a SIM is a diagonal matrix where each diagonal entry
corresponds to the phase shift  applied by the -th meta-atom in the -th layer. Using the  function with
scaled parentheses and properly formatted arguments, the matrix is constructed as .",
    "answer": "\boxed{\mathrm{diag}\Bigl( e^{j\theta_1^l},\, e^{j\theta_2^l},\, \ldots,\, e^{j\theta_N^l} \Bigr)}"
}

DeepSeek-R1

Correct Answer

Figure 9: An example of a Full Equation Completion (FEC) task.
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Paper Summary Prompt Template.

Figure 10: This template is used to generate concise summaries of research papers.
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Question Generation Prompt Template.

Figure 11: This prompt template converts paper summaries into detailed question–answer pairs.
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Multiple-Choice Question Prompt Template.

You are a domain expert in Wireless Communication. Please answer the
following multiple-choice question.

**Background Context**
{background}

**Multiple-Choice Question**
{question_text}

**Relevant Equation**
{equation or "No equation provided"}

{options_str}

**Formatting Requirements**
{latex_core_rules}
- Explanations requiring math must use  for inline equations
- Maintain consistent notation with question context

**Response Instructions**
1. Select ONE letter choice (A-D)
2. Provide technical reasoning in the explanation field
3. Present your final answer in a JSON format. This should include: answer and
explanation

Your output should be formatted as a JSON object enclosed in Markdown code
blocks tagged with 'json'. For example:
`json
{{
    "explanation": "<explanation>"
    "answer": "C",
}}
`

Figure 12: This template is designed for answering multiple-choice questions. The model is guided to choose the
correct mathematical expression from a set of closely related options.
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Fill-in-the-Blank and Full Eqaution Completion Question Prompt Template.

You are a domain expert in Wireless Communication. Please answer the
following fill-in-the-blank question.

**Background Context**
{background}

**Problem Statement (Blanks marked with [MASK])**
{question_text}

**Equation to Complete**
{equation or "No equation provided"}

**Strict LaTeX Protocol**
{latex_core_rules}
5. Each [MASK] requires a separate \boxed{{...}} 
6. Final answer line format:
   The final answer is \boxed{{...}},\boxed{{...}},...

**Submission Requirements**
1. Answer box number corresponds to the [MASK] number
2. Use EXACT formatting from the equation/question
3. No natural language in boxed answers
4. Technical explanation in the 'explanation' field

Your output should be formatted as a JSON object enclosed in Markdown code
blocks tagged with 'json'. For example:
`json
{{
    "explanation": "<explanation>“,
    "answer": "\boxed{<answer1>}, \boxed{<answer2>}, \boxed{<answer3>}",

}}
`

Figure 13: This prompt template is used for fill-in-the-blank and full equation completion tasks. It directs the model
to reconstruct missing parts of equations by using contextual cues and domain knowledge, simulating the process of
step-by-step derivation.
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LLM Evaluation Answer Prompt Template.

Figure 14: This evaluation prompt template standardizes the process of assessing model-generated answers. It
ensures that responses are judged consistently based on their correctness, completeness, and adherence to the
required domain-specific reasoning.
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