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Abstract

First-order methods for quadratic optimization such as OSQP are widely used for
large-scale machine learning and embedded optimal control, where many related
problems must be rapidly solved. These methods face two persistent challenges:
manual hyperparameter tuning and convergence time to high-accuracy solutions.
To address these, we explore how Reinforcement Learning (RL) can learn a policy
to tune parameters to accelerate convergence. In experiments with well-known QP
benchmarks we find that our RL policy, RLQP, significantly outperforms state-of-
the-art QP solvers by up to 3x. RLQP generalizes surprisingly well to previously
unseen problems with varying dimension and structure from different applications,
including the QPLIB, Netlib LP and Maros-Mészáros problems. Code, models, and
videos are available at https://berkeleyautomation.github.io/rlqp/.

1 Introduction

Solving quadratic programs (QPs) efficiently is critical to applications in finance, robotic control
and operations research. While state-of-the-art interior-point methods scale poorly with problem
dimensions, first-order methods for solving QPs typically require thousands of iterations. Moreover,
real-time control applications have tight latency constraints for solvers [33]. Therefore, it is important
to develop efficient heuristics to solve QPs in fewer iterations.

The Alternating Direction Method of Multipliers (ADMM) [6, 15, 18] is an efficient first-order
optimization algorithm, and is the basis for the widely used and state-of-the art Operator-Splitting QP
(OSQP) solver [44]. ADMM performs a linear solve on a matrix based on the optimality conditions
of the QP to generate a step direction, and then projects the step onto the constraint bounds.

While state-of-the-art, the ADMM algorithm has numerous hyperparameters that must be tuned
with heuristics to regularize and control optimization. Most importantly, the step size parameter ρ
has considerable impact on the convergence rate. However, is still unclear how to select ρ before
attempting the QP solution. While some theoretical works compute the optimal ρ [17], they rely
on solving semidefinite optimization problems which are much harder than solving the QP itself.
Alternatively, some heuristics introduce “feedback” by adapting ρ throughout optimization in order
to balance primal and dual residuals [44, 6, 22].

We propose RLQP (see Fig. 1), an accelerated QP solver based on OSQP that uses reinforcement
learning (RL) to adapt the internal parameters of the ADMM algorithm between iterations to minimize
solve times. An RL algorithm learns a policy πθ : S → A, parameterized by θ (e.g., the weights of a
neural network), that maps states in a set S to actions in setA such that the selected action maximizes
the accumulated reward r. To train the policy for RLQP, we define S to be the internal state of the
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Figure 1: RLQP uses deep reinforcement learning (RL) to compute a policy that adapts the internal
parameters of a first-order quadratic program (QP) solver to speed up the solver’s convergence rate.
In a standard RL formulation, a policy computes an action based on its observation of the state of the
environment, and taking the action results in a change in state and a reward. In RLQP, the policy is
parameterized by a neural network, the state is a function of the solver’s internal state parameterized
by the QP, the action changes a parameter (ρ) of the solver, and the reward minimizes QP solve time.
RLQP proposes 2 formulations of RL and associated policy: scalar and vector.

QP solver (e.g., the constraint bounds, the primal and dual estimates), A to be the adaptation to the
internal parameter (ρ) vector, and r to minimize the number of ADMM iterations taken.

RLQP’s policy can be trained either jointly across general classes of QPs or with respect to a specific
class. The general version of RLQP is trained once on a broad class of QPs and can be used out-of-
the-box on new problems. The specialized version of RLQP is trained on a specific class of problems
that the solver will repeatedly encounter. While this requires additional setup and training time, it is
useful when QPs will be repeatedly solved in application (e.g., in a 100 Hz control loop).

In experiments, we train RLQP on a set of randomized QPs, and compare convergence rates of RLQP
to non-adaptive and heuristic adaptive policies. To compare generalization and specialization, we
investigate RLQP’s performance in the settings where 1) the train and test sets of QPs come from the
same class of problems, 2) the train set contains problems from a superset of classes contained in the
test set, 3) the train set contains a subset, and 4) when the train and test sets are from distinct classes.
In the results section we show that RLQP outperforms OSQP by up to 3x.

The contributions of this paper are:
• Two RL formulations to train policies that provide coarse (scalar) and fine (vector) grain updates

to the internal parameters of a QP solver for faster convergence times
• Policies trained jointly across QP problem classes or to specialize to specific classes
• Experimental results showing that RLQP reduces convergence times by up to 3x and generalizes

to different problem classes and outperform existing methods

2 Related Work
This work touches a number of related research areas, including convex optimization, ML-accelerated
optimization, learning in 1st-order methods and RL. We summarize related work in Table 1.

Convex optimization Many researchers have proposed algorithms for quadratic programs, which
generally fall into three classes: active set [47], interior point [37], and first-order methods. Of the
active set and interior point solvers, perhaps the most well-known are Gurobi [20] and MOSEK [36].
Active-set solvers operate by iteratively adapting an active set of constraints based on the cost function
gradient and dual variables [39]. Interior-point solvers iteratively introduce and vary barrier functions
to represent constraints and solve unconstrained convex problems. We instead base this work on a
first-order method solver, OSQP [44]. One of the advantages of OSQP over interior points solvers, is
that it can readily be warm started from a near-by solution, as is common in many applications such
as solving a sequential quadratic program [41] and solving QPs for model-predictive control.

ML-accelerated combinatorial optimization Accelerating combinatorial optimization problems
with deep learning has been explored with wide application [4, 5], including branch-and-bound for
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Khalil et al. [27] ✗ ✗ ✓ ✓ ✓ ✓
Dai et al. [9] ✗ ✗ ✗ ✗ ✓ ✗
Li and Malik [28] ✓ ✓ ✗ ✓ ✗ ✗
Metz et al. [34] ✓ ✓ ✗ ✓ ✓ ✓
Wei et al. [46] ✓ ✓ ✓ ✗ ✗ ✗

RLQP ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Summary of related work. RLQP meets all objectives while demonstrating state-of-the-art
performance on challenging optimization problem sets.

mixed-integer linear programming [1, 27], graph algorithms [9] and boolean satisfiability problems
(SAT) [7]. Many combinatorial optimization problems have exponential search spaces and are
NP-hard in a general setting. However, learning-augmented combinatorial algorithms utilize very
different methods to RLQP as combinatorial problems have discrete search spaces.

Learning in first-order methods Accelerating first-order methods with machine learning has
gained considerable recent interest. Li and Malik [28] demonstrate a learned optimization algorithm
outperforms common first-order methods for several convex problems and a small non-convex
problem. Metz et al. [34] show a learned policy outperforms first-order methods when optimizing
neural networks, but finds that directly learning parameter update values can be sensitive to exploding
gradient problems. We avoid this instability during optimization by learning a policy to adapt
parameters of the ADMM algorithm. Wei et al. [46] recently proposed an RL agent to tune parameters
for an ADMM-based inverse imaging solver.

Reinforcement Learning Overview Reinforcement learning (RL) algorithms include both on-
policy algorithms, such as Proximal Policy Optimization [42], REINFORCE [45], and IMPALA [11],
and off-policy algorithms, such as DQN [35] and Soft Actor Critic [21]. RLQP extends the off-
policy Twin-Delayed DDPG (TD3) [13], an actor-critic framework with an exploration policy for
continuous action spaces that extends Deep Deterministic Policy Gradient (DDPG) algorithm [29]
while addressing approximation errors. Furthermore, in one formulation of RLQP, we train a shared
policy for multiple agents following an RL approach proposed by Huang et al. [23]. With this single
policy, RLQP updates multiple parameters using state associated with each constraint of a QP.

3 Background
In this section, we summarize QPs, the OSQP solver, and an MDP formalization.

3.1 Quadratic Programs

A quadratic program with n variables and m constraints takes the form:

minimize (1/2)xTPx+ qTx
subject to l ≤ Ax ≤ u,

where x ∈ Rn is the optimization variable, P is an n× n symmetric positive semi-definite matrix
that defines the quadratic cost, q ∈ Rn defines the linear cost, A is an m × n matrix that defines
the m linear constraints, and l, u ∈ Rm are the constraint’s lower and upper bounds. Here, ≤ is an
element-wise less-than-or-equal-to operator. In this form, to specify an equality constraint, the lower
and upper bounds are set to the same value, and to specify a constraint unbounded from one side, a
sufficiently large value (or ±∞) is specified for the other side.

3.2 First-Order QP Solver Algorithm

The solver we speed up is OSQP, which uses a first-order ADMM method to solve QPs. We
summarize OSQP here. Given a QP, OSQP first forms a KKT matrix (below), then iteratively refines
a solution from an initialization point for vectors x(0) ∈ Rn, y(0) ∈ Rm, and z(0) ∈ Rm, where the
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superscript in parenthesis refers to the iteration. Each iteration computes the values for the k + 1
iterates by solving following linear system (e.g., with an LDLT solver):[

P + σI AT

A diag(ρ)−1

]
︸ ︷︷ ︸

KKT matrix

[
x(k+1)

v(k+1)

]
=

[
σx(k) − q

z(k) − diag(ρ)−1y(k)

]
(1)

and then performing the following updates:

z̃(k+1) ← z(k) + diag(ρ)−1(v(k+1) − y(k))

z(k+1) ← Π[l,u]

(
z̃(k+1) + diag(ρ)−1y(k)

)
y(k+1) ← y(k) + diag(ρ)

(
z̃(k+1) − z(k+1)

)
,

where σ ∈ R+ and ρ ∈ Rm
+ are regularization and step-size parameters, and Π[l,u] : Rm → Rm

projects its argument on the constraint bounds. We use the notation diag : Rm → Sm to denote the
operator that maps a vector to a diagonal matrix. We define the primal and the dual residual vectors as

ξ
(k)
primal = Ax(k) − z(k), and ξ

(k)
dual = Px(k) + q +AT y(k).

When the primal and dual residual vectors are small enough in norm after k iterations, x(k+1) and
y(k+1) are primal and dual (approximate) solutions to the QP.

Internally, OSQP has a single scalar ρ̄ that it uses to form ρ according to the following formula:

ρ = ρ̄

h1

...
hm

 , where hi =

{
1 if li ̸= ui (inequality constraints)
103 if li = ui (equality constraints),

(2)

where the subscript i denotes the i-th coefficient of h, and the bounds l and u.

Periodically, between ADMM iterations, OSQP will adapt the value of ρ̄. The existing hand-
crafted formula for adapting ρ attempts to balance between primal and dual residuals, by setting
ρ̄(k+1) ← ρ̄(k)

√
∥ξprimal∥∞/∥ξdual∥∞. Empirically, adapting ρ between iterations can speed up the

convergence rate.

3.3 Multi-Agent Single-Policy MDP

In a Markov Decision Process (MDP), an agent can be in any state s ∈ S, take an action a ∈ A,
and with the transition dynamics function, T (· | s, a), transitions from state s to state s′ after taking
action a. The agent receives a reward R : S ×A → R for transitioning from s to s′ by taking action
a. Given a tuple (S,A, T,R, γ), the MDP optimization objective is to find a policy πθ : S → A,
parameterized by θ, that maximizes the expected cumulative reward E [

∑∞
t=0 γ

trt] , where rt is the
reward at time t and γ ∈ [0, 1) is a discount factor.

We also formulate a multi-agent single-policy MDP setting in which m agents collaborate in a shared
environment in state senv ∈ Senv. At each time step, each collaborating agent (CA) i has its own state
si ∈ Sca, action ai ∈ Aca, and observations oi ∈ O, but, for computation feasibility, share a single
policy πθ : Sca → Aca. State transitions for the environment and all m agents occur simultaneously
according to a state transition function T : Senv × Smca ×Am

ca → Senv × Sca
m and result in a single

shared reward R : Senv×Smca×Am
ca → R and discount factor. The objective is to find a single shared

policy πθ that maximizes the expected cumulative reward. This can be thought of as a special case of
a multi-agent MDP [31] or Markov game [30], and we adapt a formulation from Huang et al. [23].

4 Method

The goal of RLQP is to learn a policy to adapt the ρ ∈ Rm vector used in the ADMM update in (1)
(see Fig. 1). As the dimensions of this vector vary between QPs, we propose two methods that can
handle the variation in m. The first method learns a policy to adapt a scalar ρ̄ and then applies (2)
to populate the coefficients of the ρ vector. The second method learns a policy to adapt individual
coefficients of the ρ vector.
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Algorithm 1 TD3 for ρ̄ (scalar)
1: Input: exploration noise σ, buffer size rs
2: π,Q← initialize policy and critic (see TD3)
3: D ← replay buffer w/ rs
4: env, s(0) ← new QP, state
5: for t ∈ {0, . . . , T} do
6: ρ̄

(t) ← π(s(t)) + ϵ, ϵ ∼ N (0, σ)

7: s(t+1), r(t), done(t)←step(env, s(t), a(t))

8: store (s
(t)

, ρ̄(t), r(t), s(t+1)) in D
9: if done(t) then

10: env, s(t) ← new QP, state
11: update π and Q using data sampled from D

Algorithm 2 TD3 for ρ (vector)
1: Input: exploration noise σ, buffer size rs
2: π,Q← initialize policy and critic (see TD3)
3: D ← replay buffer w/ rs×(avg no. of constraints)
4: env, s(0),m← new QP, state, no. of constraints
5: for t ∈ {0, . . . , T} do
6: ρ

(t)
i ← π(s

(t)
i ) + ϵ, ϵ ∼ N (0, σ) ∀i ∈ [1 . . m]

7: s(t+1), r(t), done(t) ← step(env, s(t),ρ(t))

8: store (D, s(t)i , ρ
(t)
i , r(t), s

(t+1)
i ) ∀i ∈ [1 . . m]

9: if done(t) then
10: env, s(t),m← new QP, state, no. of constr.
11: update π and Q using data sampled from D

Since both the number of variables n and the number of constraints m can vary from problem to
problem, and the same QP can be written in (n!m!) permutations, we propose learning policies that
are problem size and permutation invariant. To do this, we provide a permutation-invariant fixed-size
state of the QP solver to either policy.

4.1 RL Policy for Scalar Adaptation

To speed up convergence of OSQP, we hypothesize that RL can learn a scalar ρ̄ adaptation policy
(πscalar) that can perform as-well-as or better than the current handcrafted policy (πhc) of OSQP.
The handcrafted policy in OSQP periodically adapts ρ by computing a single scalar ρ̄, then sets the
coefficients of ρ based on the value of ρ̄. In both handcrafted and RL cases, the policy is a function
π : Sρ̄ → Aρ̄, where Sρ̄ ∈ R2 are the norms of the primal and dual residuals stacked into a vector,
Aρ̄ ∈ R is the value to set to ρ̄. One advantage of this approach is that a simple heuristic can check
that the proposed change to ρ̄ is sufficiently small and leave the KKT matrix unchanged to avoid a
costly matrix factorization.

To compute this policy, π, we use Twin-Delayed DDPG TD3 [13], an extension of deep-deterministic
policy gradients (DDPG) [29], as the action space is continuous. We summarize TD3 in Alg. 1. TD3
learns the parameters θ of a policy πscalar network and critic Q network, where πscalar determines
the action to take and Qπ(s, a) = r(s, a) + γEs′∼T (·|s,a)[Qπ(s

′, π(s′))] is the expected reward for a
given state-action pair following the recursive Bellman equation. TD3 updates Qπ by minimizing
the loss on the Bellman equation, and updates the policy network using a policy gradient [45] of the
objective

J(θ) = Es∼D[R(s, πscalar(s))],

that is,
∇θJ = Es∼D[∇θπscalar(s)∇aQπ(s, a)|a=πscalar(s)]

where D is the discounted state visitation distribution [43]. For brevity, we leave out some details of
TD3 in the algorithms, including: Q is composed of two networks, the minimum value of the two
networks estimates the reward, exploration noise is clamped, and πscalar updates are staggered.

In RLQP, the “environment” env is an instance of a randomized QP problem, and a call to step()
applies a change to ρ̄ (and thus via (2) to ρ), advances a QP a fixed number of ADMM iterations, and
returns the updated internal state s, a reward r, and a termination flag done. In this case, the internal
state s is a vector containing the current norms of the primal and dual residuals of the QP. The reward
r is −1 if not done, and 0 if the QP is solved.

We train with randomized QPs across various problem classes (Sec. 5) that have solutions guaranteed
by construction. To ensure progress, we set a step limit (not shown in the algorithm) since bad actions
can cause the solver to fail to converge in a timely manner. During training, we also always adapt ρ
in each step and ignore the heuristic adapt/no-adapt policy.

For well-scaled QPs, the residuals and ρ can reasonably range between 10−6 and 106. Since this can
cause issues with training the policy networks, we train the policy network with logs of the residuals,
and exponentiate the network’s output to get the action to apply.
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4.2 RL Policy for Vector Coefficient Adaptation

For some classes of QPs, the solver can further speed up convergence by adapting all coefficients of
the vector ρ, instead of applying (2) to a scalar ρ̄. Conceptually, this could be accomplished with a
policy πvec : SQP → Avec, where SQP ∈ RO(n+m) is the internal state of the solver and Avec ∈ Rm

+
is the new value for ρ. However, due to variation in problem size and permutation, we instead propose
a simplification in which πvec is formulated as a policy πρ : Sρ → Aρ that is applied per coefficient
of ρ. Here, Sρ ∈ R6 is state corresponding to a single coefficient in ρ, and Aρ ∈ R is the value to set
for that coefficient.

To define Sρ, we observe that coefficients in ρ are one-to-one with coefficients in y, z, l, u, and
Ax. We observe that constraint bounds are likely to have an impact on an ADMM iteration when
coefficients of z are “close” to their bounds in l or u. A coefficient in z is also “close” to a solution
when it is nearly equal to the corresponding coefficient in Ax. Finally, to include a permutation-
invariant signal on the overall convergence, we borrow the idea of max-pooling inputs from graph
neural networks [40, 3] and include the infinity norms of the primal and dual residuals of the QP
solver. We thus define a coefficient’s state as:

si =


min(zi − li, ui − zi)

zi − (Ax)i
yi
ρi

∥ξprimal∥∞
∥ξdual∥∞

 ∈ Sρ.

In practice, we clamp values in each state si to reasonable ranges (e.g., [10−8, 106], [−106, 106],
[−106, 106], [10−6, 106], [10−6, 106], [10−6, 106] for the coefficients of si, in order). Empirically,
training is more efficient if the policy operates on states with the log of the first and last 3 coefficients.

Since each step in the vector formulation applies m actions and updates m states simultaneously,
we adapt the multi-agent single-policy TD3 formulation from Huang et al. [23], and show it in Alg. 2,
next to Alg. 1, with the main differences highlighted in blue. Before each step, step applies the policy
with exploration noise to generate m actions corresponding to m coefficient updates to ρ. After each
step, Alg. 2 adds the m tuples to the replay buffer with each tuple consisting of coefficient-specific
states and actions, along with the single shared reward for the step. Since each step results in m
tuples added to the replay buffer, Alg. 2 allocates a replay buffer large enough to hold the average
number of tuples expected to be in the individual QPs in the training set.

The hypothesis of this approach is that the some coefficients, and thus policy actions for coefficients,
will have more of an effect on convergence, and thus the reward, than others. When the domain for
the policy function has more of an effect, the range of the actions will have lower variance. Similarly,
when the policy values have less effect, the variance will be higher. This suggests that when training
the policy network in this case, having a lower learning rate, and higher batch size can help. A lower
learning rate will cause smaller gradient steps when training the network so that it does not overfit to
some part of the high variance training data. A higher batch size will allow gradients to average out
in high variance training data so that the gradient step better matches the true mean of the data.

5 Experiments

To train and test the proposed methods, we modify OSQP to support direct querying and modification
of its ρ vector, and integrate both πρ̄ and πvec policies for benchmarking, and a runtime flag to switch
between policies. We train the network using randomly generated QPs from OSQP’s benchmark
suite. The form of these QPs falls into 7 classes (see below), but the specific coefficient values
in the objective and constraints are generated from a random-number generator. These QPs are
also guaranteed to be feasible by construction (e.g., by reverse engineering constraint values from
a pre-generated solution). To separate train and test sets, we ensure that each set is generated from
uniquely seeded random-number generators. Training is performed in PyTorch with a Python wrapper
around the modified OSQP which is written C/C++. During benchmarking, the solver performs
runtime adaptation of ρ using PyTorch’s C++ API on the already-trained policy network. We train a
small model to keep runtime network inference as fast as possible.

6



0
1
2
3
4
5
6
7
8
9

Control
Huber

SVM
Lasso

Portfolio

Eq. Random
All

Sh
if

te
d

G
eo

m
et

ri
c

M
ea

n

Gurobi
OSQP

RLQP (scalar)
RLQP (vector)

 0

 100

 200

 300

 400

 500

 600

OSQP
cold start

OSQP
warm start

RLQP (vec)
cold start

RLQP (vec)
warm start

it
er
at
io
ns

Figure 2: Left: Comparison of general adaptation policy applied to different classes. We train an
RL policy using multiple classes, and show the performance per class, along with each class. The
y-axis is the shifted geometric mean across problems within each class, and the value of 1 is always
assigned to the best in class. The right-most All class is the aggregate of all classes to the left of it.
Right: Comparison of warm-starting performance using OSQP’s warm-start benchmark.

We evaluate all policies with 7 problem domains (referred to as the “benchmark problem”) defined in
Appendix A of the paper on OSQP [44]. These policies cover control, Huber fitting, support-vector
machines (SVM), Lasso regression, Portfolio optimization, equality constrained, and random QP
domains. Alongside RLQP, we benchmark the unmodified OSQP solver to evaluate how the RL
policy improves convergence. For both RLQP and OSQP, we evaluate to the high-accuracy settings
(10−5) of the OSQP benchmarks. While our focus is on improving the first-order method in OSQP
with an RL policy, we include some benchmarks against the state-of-the-art commercial Gurobi
solver [20] (using default settings) as it may be of interest to a practitioner.

We consider three evaluation configurations: (1) multi-task policy learning in which we train a
single RLQP policy on a suite of random benchmark problems and test it across all problems, (2)
class-specific policy learning in which we train and test the policy for a single problem domain and
(3) zero-shot generalization where we test a general policy on a novel unseen problem class.

We evaluate speedups with the shifted geometric mean [19] as problems have wide variations
in runtime across several orders of magnitude. This metric is the standard benchmark used by
optimization community. The shifted geometric mean is computed as:

exp

N∑
i=1

(1/N) log(max(1, vi + s))− s,

where vi is compute time in seconds, s = 10, and N is the number of values (e.g., QPs solved).

We also evaluate on QPLIB [14], Netlib [16], and Maros and Mészáros [32], as they are well-
established benchmark problems in the optimization community.

In all experiments, the policy network architecture has 3 fully-connected hidden layers of 48 with
ReLU activations between the input and output layers. The input layer is normalized, and the output
activation is Tanh. The critic network architectures use the identity function as the output activation,
but otherwise matches the policy. As small networks for fast CPU inferences are desirable here, we
attempted to keep the network as small as possible. We performed minimal experimentation before
settling on this architecture—finding that smaller networks fail to converge during training.

We trained on a system with 256 GiB RAM, two Intel Xeon E5-2650 v4 CPUs @ 2.20 GHz for a
total of 24 cores (48 hyperthreads), and five NVIDIA Tesla V100s. We ran benchmarks on a system
with Intel i9 8-core CPU @ 2.4 GHz and without GPU acceleration.

5.1 Multi-task/General RLQP Policy

We train a general policy on a broad set of problem classes and compare solve times with different
classes. During training, we sample one of seven QP domains from benchmark problem. From that
sampled problem domain, we generate a random problem.

In Fig. 2, we compare the shifted geometric mean of solving 10 problems of 20 different dimension,
for a total of 200 runs per class per solver. The problem dimensions for Control, Huber, SVM, Lasso
are (10, 11, 12, 13, 14, 16, 17, 20, 23, 26, 31, 37, 45, 55, 68, 84, 105, 132, 166, 209); for Random
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benchmark two vector RL adaptation policies: (dashed) on problems ranging from dimension 10 to
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data for the dashed line. When the benchmark run is in the same problem-dimension distribution as
the training data, the relative performance between solvers is consistent, however, when the problem
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and Eq are (10, 11, 12, 13, 15, 18, 23, 29, 39, 53, 73, 103, 146, 211, 304, 442, 644, 940, 1373, 2009),
and for Portfolio are (5, 6, 7, 8, 9, 10, 12, 14, 16, 20, 24, 28, 35, 43, 52, 65, 80, 99, 124, 154). From
the results, we observe that both RLQP adaptation policies typically improve upon convergence rate
from the handcrafted policy in OSQP, and in some cases, e.g. Portfolio optimization, by up to 3x.

5.2 Problem Dimension Scaling

To test how a trained policy scales to higher dimensions, we train a policy on low dimensional
problems (10 to 50), and solve problems with varying dimensions, including dimensions higher
than the training set (up to 2000). For comparison, we also include a policy trained on the full
dimension range (10 to 2000). From the results plotted in Fig. 3, we observe that a policy trained on
a lower dimensional training set, can show improvement beyond its training range. However, as the
problem size diverges more from the training set, its performance suffers and it eventually loses to
the handcrafted policy. Both low-dimensional and full-dimension range polices, were trained using
the same network architecture, we hypothesize that this behavior is a function of the training data
and not a limitation of the network expressiveness. While this is a disadvantage of using smaller
problems for training, in practice it may be outweighed by the advantage in training time—as each
RL step requires O((n+m)3) compute time.

5.3 Training a Class-Specific Policy

Many applications in control [25] and optimization [26] require QPs from the same class to be
repeatedly solved. To test if training a policy specific to a QP class can outperform a policy
trained on the benchmark suite, we train policies specific to the problems generated by the trust-
region [8] based solver for sequential quadratic program (SQP) from a grasp-optimized motion planner
(GOMP) [25, 24] for robots. With these problems, RLQP trained on the benchmarks converges more
slowly than the handcrafted policy included in OSQP. With a vector policy trained on the the QPs
from the SQP, the shifted geometric mean of OSQP is 1.37. This result suggests that while a general
policy may work for multiple problem classes, there are cases in which it is beneficial to train a policy
specific to a problem class, particularly if the QPs from that problem class are repeatedly solved.

5.4 Warm Starting QPs

One benefit of first-order method such as OSQP is their ability to warm start—that is, rapidly converge
from a good initial guess. We test if RLQP retains the benefit of warm start on OSQP’s warm-start
benchmark and show the results in Fig. 2 (right). As warm starts require fewer iterations, and thus
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non- RLQP RLQP
Inst. n m zeros OSQP (scalar) (vector)

8845 1546 777 10999 6.386 timeout 5.435
9002 2890 1649 12580 6.000 timeout timeout
8906 5223 838 20781 1.108 1.447 0.741
8559 10000 5000 24998 59.648 205.372 24.083
8938 4001 11999 31997 timeout timeout 0.991
8567 10000 7500 32497 98.511 284.112 22.222
8616 13870 10404 41610 0.126 0.113 0.141
8515 16002 8002 . 56005 0.105 timeout timeout
8785 10399 11362 63023 6.334 timeout 2.972
8495 27543 8000 73029 1.612 0.742 1.174
8602 34552 52983 242887 99.872 timeout 55.629
8547 1003001 1001000 6003001 timeout timeout timeout

Table 2: QPLIB problems. Timing results for solving the convex continuous QPs with constraints
from QPLIB [14]. The Inst. column is QPLIB’s instance number. The columns n (number of
variables), m (number of constraints), and non-zeros indicate the QP’s complexity. A timeout result
indicates the solver terminated due to reaching an iteration or time limit (300 s). We hypothesize that
the RLQP timeouts are due to out of distribution test problems, as the policy here was trained on the
benchmark classes.

fewer adaptations than cold starts, we expect RLQP to show a smaller improvement here. In the plot,
we can see that RLQP retains the benefit of warm starting, and also gains a improvement over OSQP.

5.5 QPLIB

We benchmark convex continuous QP instances with constraints from QPLIB [14], and show the
results in Table 2. Since there are only a few such QPLIB instances and they come from varying
classes, creating a train/test split is problematic. We thus use the general policy trained on the
benchmark classes. From the table, we observe that the general RLQP policy beats OSQP’s heuristic
policy in all but three cases. In two cases RLQP fails due to reaching an iteration or time limit.
Training on similar problems should help avoid a timeout.

5.6 Netlib Linear Programming benchmark

The Netlib Linear Programming benchmark [16] contains 98 challenging real-world problems includ-
ing supply-chain optimization, scheduling and control problems. As with the QPLIB benchmark,
we evaluate results with a general policy trained on the benchmark classes. We solve problems
to high-accuracy as many of these benchmarks are poorly scaled. Overall, vector formulation of
RLQP is 1.30× faster than OSQP by the scaled geomean of runtimes. We include a problem-specific
breakdown in the supplementary materials.

5.7 Maros and Mészáros

In a manner similar to the QPLIB problems, we also benchmark on the Maros and Mészáros repository
of QPs. [32]. This collection of 138 QP problems, includes many poorly scaled problems that cause
OSQP to fail to converge. We compute the shifted geometric mean for problems solved by both OSQP
and RLQP with the general vector policy. RLQP converges faster, with OSQP’s shifted geometric
mean is 1.829 times that of RLQP. Because the dataset contains 138 problems, a table of the full
results is included in the Supplementary Material.

5.8 Learned Policy Analysis

We plot and evaluate a learned policy in Fig. 4. From the plot, we see that when z approaches either
bound, the output ρ increases. We also observe that with higher y, the policy outputs a higher ρ.
Both of these observations are consistent with the intent and observations behind OSQP’s heuristic
policy: a high ρ is desirable when the primal residual is smaller than the dual, and a low ρ is desirable
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when the dual is smaller than the primal. However, the learned policy is not a simple square root of
residuals like OSQP. The results suggest that the optimal policy is non-linear and problem specific.

6 Limitations

RLQP has limitations. For QPs that converge after few iterations, and thus do not adapt ρ, having a
better adaptation policy is moot. Training RLQP can take a prohibitively long time and require a large
replay buffer for some applications, for example, to train the benchmark suite of QPs required several
days on a high-end computer with 256 GiB—this may be mitigated to an extent by sharing learned
policies between interested practitioners. The time it takes to evaluate the RL policy, especially the
vector version, may reduce the performance benefit of faster convergence—this may be mitigated by
learning more efficient representations, or by using dedicated neural-network processing hardware.

7 Conclusion

We presented RLQP, a method for using reinforcement learning (RL) to speed up the convergence
rate of a first-order method quadratic program solver. RLQP uses RL to learn a policy to adapt the
internal parameters of the solver to allow for fewer iterations and faster convergence. In experiments,
we trained a generic policy and results suggest that a single policy can improve convergence rates for
a broad class of problems. Results for a problem-specific policy suggest that fine-tuning can further
accelerate convergence rates.

In future work, we will explore whether additional RL policy options can speed up convergence rate
further, such as training a hierarchical policy [2] in which the higher-level policy determines the
interval between adaptation, performing a neural-architecture search [10], using meta-learning [12,
38] to speed up problem-specific training, and online-learning to adjust the policy at runtime to adapt
to changing problems. Furthermore, we will investigate how to analyze the learned policies (e.g.,
Fig. 4) to devise new optimization algorithms with analytical step-size updates and faster theoretical
convergence rates.
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