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Abstract
Sentence-level attacks craft adversarial sen-001
tences that are synonymous with correctly-002
classified sentences but are misclassified by the003
text classifiers. Developing strong sentence-004
level attacks is crucial for assessing the clas-005
sifiers’ brittleness to paraphrasing. Under the006
black-box setting, classifiers are only accessi-007
ble through their feedback to queried inputs,008
which is predominately available in the form of009
class probabilities. Even though utilizing class010
probabilities results in stronger attacks, due to011
the challenges of using them for sentence-level012
attacks, existing attacks use either no feedback013
or only the class labels. Overcoming the chal-014
lenges, we develop a novel algorithm that uses015
class probabilities for black-box sentence-level016
attacks, investigate the effectiveness of using017
class probabilities on the attack’s success, and018
examine the question if it is worthy or practical019
to use class probabilities by black-box sentence-020
level attacks. We conduct extensive evaluations021
of the proposed attack comparing with the base-022
lines across various classifiers and benchmark023
datasets.024

1 Introduction025

Despite the tremendous success of text classifica-026

tion models (Devlin et al., 2018; Liu et al., 2019),027

studies have exposed their susceptibility to adver-028

sarial examples, i.e., carefully crafted sentences029

with human-unrecognizable changes to the inputs030

that are misclassified by the classifiers (Zhang et al.,031

2020). Adversarial attacks provide profound in-032

sights into the classifiers’ brittleness and are key to033

reinforcing their robustness and reliability.034

Adversarial attacks on texts are broadly cate-035

gorized into two types, namely word-level and036

sentence-level attacks. Word-level attacks manip-037

ulate the words in the original sentences to exam-038

ine the text classifiers’ sensitivity to the choice of039

words in sentences (Jin et al., 2020; Li et al., 2020c;040

Zang et al., 2019; Alzantot et al., 2018a). Sentence-041

level attacks, on the other hand, craft synonymous042

sentences with the original correctly-classified in- 043

puts, such that they are misclassified by the classi- 044

fiers. These attacks are developed to assess the brit- 045

tleness of text classification models to paraphras- 046

ing, i.e. whether paraphrasing sentences leads to 047

misclassification by classifiers. 048

Depending on the information available to the ad- 049

versary, the attacks are conducted under the white- 050

box or black-box settings. Unlike the white-box 051

setting, where the classifier is completely known, 052

and the adversary uses its gradients to craft ad- 053

versarial examples (Wang et al., 2019; Guo et al., 054

2021), black-box attacks can only access the clas- 055

sifier feedback to queries. Having no prior knowl- 056

edge of the classifier, this setting is more feasible 057

for real-world applications. 058

Under the black-box setting, three types of classi- 059

fier feedback exist: (1) no feedback (blind setting): 060

classifiers deny any feedback to the adversaries; (2) 061

class label feedback (decision-based setting): clas- 062

sifiers return their final decisions in the forms of 063

the predicted class labels; and (3) class probability 064

feedback (score-based setting): classifiers return 065

the class probabilities as feedback in response to 066

queries. Among these settings, the score-based is 067

the most prevalent setting in real-world applica- 068

tions. For instance, Microsoft azure1 and Meta- 069

Mind2 are two widely-used real-world online text 070

classification models that are deployed under the 071

score-based setting and return class probabilities. 072

When available, class probabilities provide richer 073

information compared to no feedback or solely the 074

class labels, which can better guide the adversarial 075

example generation and result in stronger attacks. 076

This is also demonstrated by the success of score- 077

based word-level attacks (Lee et al., 2022; Mahesh- 078

wary et al., 2021) compared to their blind (Em- 079

mery et al., 2021; Emelin et al., 2020) or decision- 080

based counterparts (Yuan et al., 2021; Yu et al., 081

1https://azure.microsoft.com/
2www.metamind.io
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2022). Moreover, developing score-based black-082

box sentence-level attacks is a critical step toward083

identifying the extent of the threat to the text classi-084

fication models to better immunize them to attacks085

in all black-box settings. Therefore, studying such086

attacks is of great importance.087

Existing black-box sentence-level attacks ei-088

ther do not use the feedback (blind) (Iyyer et al.,089

2018; Huang and Chang, 2021) or only use the090

class labels (decision-based) (Zhao et al., 2017;091

Chen et al., 2021), hence do not fully exploit the092

class probability feedback available under the most093

prevalent score-based setting. This is because utiliz-094

ing the classifier’s class probabilities available un-095

der the score-based settings for black-box sentence-096

level attacks faces the following challenges: (i)097

Defining the search space. In a score-based set-098

ting, an ideal search space is a continuous ex-099

plorable space that represents the sentence-level100

candidates and how the transition from one candi-101

date to another can be made using the classifier’s102

class probabilities. Existing sentence-level search103

spaces based on paraphrase generation (Iyyer et al.,104

2018; Ribeiro et al., 2018) or generative adversarial105

networks (Zhao et al., 2017) that are developed for106

blind or decision-based settings are discrete, i.e.,107

they only generate sentence-level adversarial can-108

didates with undefined relationships. These search109

spaces are therefore not appropriate for the score-110

based setting; and (ii) Developing a score-based111

search method. In black-box settings, a success-112

ful attack needs to fully exploit the classifier feed-113

back to guide exploring the search space. Existing114

search methods used for sentence-level attacks are115

heuristic iterative methods. These methods only116

accept/reject the adversarial example candidates117

based on their returned class labels (misclassified118

or not) (Zhao et al., 2017) and do not use the class119

probabilities, as required by the score-based setting.120

For the score-based sentence-level attacks, we need121

a search method that uses class probabilities.122

Subduing these challenges, we propose the first123

score-based black-box sentence-level attack that124

models the candidate distributions of adversarial125

sentences, which transforms the problem to search126

over the continuous parameter space of these distri-127

butions instead of the discrete space of synonymous128

sentences with undefined relationships. It then129

searches for the optimal parameters of the actual130

adversarial distribution using the black-box clas-131

sifier’s class probabilities. To evaluate our frame-132

work, we conduct extensive experiments on three 133

text classification classifiers across three bench- 134

mark datasets. Our contributions are summarized 135

as follows: 136

• We are the first to study the effectiveness and 137

practicality of using class probabilities for 138

black-box sentence-level attacks. 139

• We propose a novel score-based black-box 140

sentence-level attack that learns the distribu- 141

tion of sentence-level adversarial examples 142

using the classifier’s class probabilities. 143

• We conduct extensive experiments on vari- 144

ous classifiers and datasets that demonstrate 145

under the score-based setting, our attack out- 146

performs all state-of-the-art sentence-level at- 147

tacks by fully exploiting class probabilities. 148

2 Related Work 149

Word-level Attacks. These attacks alter certain 150

words in the original sentences to get them mis- 151

classified by the classifier. The search space in 152

these attacks consists of adversarial candidates gen- 153

erated by applying transformations to the words in 154

a sentence. To form these search spaces, various 155

word replacement strategies such as context-free 156

(Alzantot et al., 2018b; Ren et al., 2019; Zang et al., 157

2019; Jin et al., 2020) and context-aware (Garg 158

and Ramakrishnan, 2020; Li et al., 2020c,b) ap- 159

proaches have been proposed. For the search 160

method, these attacks mainly rely on methods that 161

are designed to deal with their discrete word-level 162

search spaces such as word ranking-based meth- 163

ods (Ren et al., 2019; Jin et al., 2020; Garg and Ra- 164

makrishnan, 2020; Maheshwary et al., 2021; Malik 165

et al., 2021), or combinatorial optimization based 166

methods like gradient-free population-based opti- 167

mization (Alzantot et al., 2018b), or particle swarm 168

optimization (Zang et al., 2019). These attacks 169

focus on a different granularity of the attack com- 170

pared to the attack studied in this paper. 171

Sentence-level Attacks Sentence-level attacks 172

generate adversarial paraphrases of the original 173

sentences that are misclassified by the classifier. 174

Under the white-box setting, where the adversary 175

has complete access to classifiers, these attacks 176

adopt the classifier’s gradients for the attack gen- 177

eration (Wang et al., 2019; Xu et al., 2021; Le 178

et al., 2020). Under the more realistic black-box set- 179

ting, where only the classifier’s feedback to queries 180
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is accessible, these attacks are categorized into181

three: (i) Blind attacks, which do not utilize the182

classifier feedback and use the paraphrases of the183

original sentences as adversarial examples (Iyyer184

et al., 2018; Huang and Chang, 2021); (ii) Decision-185

based attacks that only utilize the final decision of186

the classifiers (i.e., the class labels). These attacks187

iteratively craft adversarial example candidates un-188

til they are misclassified by the classifier. These189

attacks use conditional text generation methods190

based on GAN (Zhao et al., 2017) or paraphrase191

generation methods (Ribeiro et al., 2018; Chen192

et al., 2021) to generate adversarial candidates and193

adopt heuristic iterative search methods to iden-194

tify the actual adversarial example; and (iii) Score-195

based attacks, which use the classifier’s class prob-196

abilities to guide the attack generation. Blind and197

Decision-based attacks do not fully utilize the class198

probability feedback, hence underperform in this199

setting. Due to the challenges of characterizing200

the search space and developing an appropriate201

search method, it has not been explored in the pre-202

vious literature. To the best of our knowledge,203

MAYA (Chen et al., 2021) is the only sentence-204

level attack proposed for this setting. However, due205

to its discrete search space, this method only uses206

the classifier feedback to choose the sentence with207

the lowest class probability from the discrete space208

of potential sentences. This underutilizes the class209

probability information, which could be utilized210

to guide the generation of the new adversarial can-211

didate from the previous one, if the search space212

was continuous, i.e., the relationships between two213

sentences were well-defined.214

3 Methodology215

3.1 Problem Statement216

Let F :X → Y be a text classifier that takes in a217

text x ∈ X and maps it to a label y ∈ Y . The218

goal of the textual adversarial attack is to generate219

an adversarial example x∗adv which is semantically220

similar to x but is misclassified by the classifier, i.e.221

F (x∗adv) ̸= F (x):222

x∗adv = argmin
x∗∈S(x)

L(x∗), (1)223

where S(x) is a set of semantically similar samples224

to the original x and L(x∗) is the adversarial loss225

evaluated by the classifier feedback.226

We concentrate on black-box sentence-level at-227

tacks, in which S(x) consists of adversarial exam-228

Target

Encoder Decoder

…

…

DBERT

Update “$” (NES Optimization)

Target Class 
probabilities

Semantic Similarity 
constraint

("!) ("")

Adversarial perturbation
distribution

Figure 1: An overview of the S2B2-Attack. S2B2-
Attack perturbs the original latent variable distributions
to model the search space of candidate distributions of
adversarial examples using VAE and learns the parame-
ters of the actual adversarial distribution using the NES
search based on the classifier’s class probabilities.

ples synonymous with the original sentences. Un- 229

der the score-based black-box setting, we assume 230

access to the class probabilities of the classifier. We 231

adopt the C&W loss (Carlini and Wagner, 2017) as 232

the loss used in Eq. (1). The C&W loss is defined as 233

L(x∗) = max{0, logF (x∗)y−max
i ̸=y

log(F (x∗)i)} 234

where F (x∗)j is the j-th probability output of the 235

classifier, y is the correct label index. 236

3.2 Proposed Framework 237

We propose the Score-based Sentence-level 238

BlackBox Attack (S2B2-Attack) that exploits the 239

classifier’s class probabilities to generate sentence- 240

level adversarial examples. S2B2-Attack con- 241

sists of (1) a continuous explorable sentence-level 242

search space of adversarial examples and (2) a Nat- 243

ural Evolution Strategies-based score-based search 244

method to explore this space using the class prob- 245

abilities. In particular, S2B2-Attack characterizes 246

the continuous sentence-level adversarial search 247

space by modeling the candidate adversarial distri- 248

butions, and utilizes a score-based sentence-level 249

search method based on the Natural Evolution 250

Strategies (NES) to learn the actual adversarial 251

sentence distribution’s parameters. Modeling the 252

search space as distributions instead of individual 253

sentences provides an explorable continuous search 254

space that can be probed by a search method us- 255

ing class probabilities. This is because the search 256

will be over the continuous space of parameters of 257

potential adversarial distributions and not a space 258

of discrete sentences with no quantifiable relations. 259

Meanwhile, the NES provides a black-box score- 260
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based search method to explore the parameter space261

of the candidate adversarial distributions using262

class probabilities. The distribution search space263

and the NES search method together enable utiliz-264

ing the class probabilities for score-based sentence-265

level black-box attacks. An overview of our S2B2-266

Attack is shown in Figure 1.267

3.2.1 Distribution-based Search Space268

To formulate a continuous sentence-level search269

space that represents adversarial sentence candi-270

dates and enables the transition from one candidate271

to another using the class probabilities, we pro-272

pose to model the candidate adversarial sentence273

distributions for the original sentence. To param-274

eterize this distribution, we propose to use Varia-275

tional Autoencoder (VAE) (Kingma and Welling,276

2013), a generative latent variable model widely277

used to model the sentence distribution (Li et al.,278

2020a). A VAE consists of an encoder and a de-279

coder. The encoder, fe(x) = qϕ(z|x), encodes the280

text x into the continuous latent variables z. The281

decoder, fd(z) = pθ(x|z), maps z, sampled from282

the encoder, to the input x. The parameters of VAE283

are learned via maximizing the variational lower284

bound:285

ELBO = Eqϕ(z|x)[log pθ(x|z)]−KL(qϕ(z|x)∥p(z)),286

where p(z) is the prior distribution, typically as-287

sumed to be standard diagonal covariance Gaussian.288

The first term of ELBO denotes the reconstruction289

error, while the second term is the KL regularizer290

which pushes the approximate posterior towards291

the prior distribution.292

In the VAE, latent variables learned by the en-293

coder (z), represent the higher-level abstract con-294

cepts such as the sentence structure that guide the295

lower-level word-by-word generation process (Li296

et al., 2020a). Therefore, to model the distributions297

of synonymous sentences to the original sentence298

(i.e., potential sentence-level adversarial sentences),299

we propose to perturb the distribution of the orig-300

inal latent variables. Specifically, the candidate301

adversarial distributions for a given input sample302

are defined as fd(zadv) = p(x|zadv), where zadv is303

the perturbed original latent variable, obtained by304

perturbing the original input’s latent space (zorig)305

with adversarial Gaussian perturbations sampled306

from N (µ, σ2I). µ and σ2 are the expected value307

and variance of the adversarial perturbation distri-308

bution (learned using the classifier feedback), and309

fd(.) is the decoder pre-trained on the original in- 310

puts. Note that different values of parameters (µ 311

and σ2) result in different distributions of sentences 312

with different structures, which form the candidate 313

adversarial examples search space. The transition 314

from one potential candidate to another can be per- 315

formed by changing its parameters, making the 316

search space continuous and thus explorable given 317

the classifier’s class probabilities. 318

Even though any text-VAE can be used, to obtain 319

grammatical correctness and fluency, we adopt the 320

OPTIMUS (Li et al., 2020a), a large-scale language 321

VAE, which parameterizes the encoder and decoder 322

networks via multi-layer Transformer-based neural 323

networks. The encoder is a pre-trained BERTbase 324

and the decoder is a pre-trained GPT-2. To further 325

ensure the grammatical correctness and fluency 326

of the samples, we fine-tune the OPTIMUS on 327

the training set of the clean dataset. Note that the 328

samples used in our experiments to evaluate our 329

method are from the test set of the datasets, which 330

are different from the train set used for fine-tuning. 331

Algorithm 1 Learning the Adversarial Sentence
Distribution via S2B2-Attack

Input: Original text xorig and its label y, stan-
dard deviation σ, population size p, learning rate η,
maximum number of iterations T , fe(.) and fd(.)
pretrained encoder and decoder on original inputs.

Output: µ, mean of the adversarial sentence
distribution.

1: Initialize µ
2: Compute zorig = fe(xorig)
3: for t = 1, 2,..., T do
4: Sample δ1, ..., δp ∼ N (µ, σ2I)
5: Set z∗i = zorig + δi, ∀i = 1, ..., p
6: Compute x∗i = fd(z

∗
i ), ∀i = 1, ..., p

7: Compute losses L′
i(x

∗
i ) via Eq. (5), ∀i =

1, ..., p
8: Calculate ∇µJ (µ, σ) via Eq. (3)
9: Set µt+1 = µt − η∇µJ (µ, σ)

10: end for
11: return µ

332

3.2.2 Natural Evolution Strategies Search 333

Method 334

A search method is required to effectively guide 335

the search over the continuous space of parameters 336

of adversarial distribution candidates and identify 337

the optimal ones using the classifier’s class proba- 338
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bilities. We propose to leverage Natural Evolution339

Strategies (NES) (Wierstra et al., 2014). The NES340

learns the parameters of a distribution that mini-341

mizes the adversarial objective (Eq. (1)) on average.342

Formally, NES minimizes the following objective:343

J (µ, σ) = Ep(x∗|zadv ;µ,σ)[L(x
∗)], (2)344

where L(x∗) is the adversarial loss in Eq. (1). Note345

that the optimization in Eq.(2) is over the parame-346

ters of the distribution. The gradients of Eq.(2) are347

calculated as follows (Wierstra et al., 2014):348

Ep(x∗|zadv ;µ,σ)[L(x
∗)∇ log p(x∗|zadv;µ, σ)], (3)349

which can be used to update the parameters of the350

distribution via gradient descent. This gradient351

only requires the class probabilities output, which352

are ideal for a score-based black-box attack.353

3.2.3 Semantic Similarity Constraint354

Even though slightly perturbing the original sen-355

tence’s latent variables keeps the resultant adver-356

sarial examples close to the original ones, Eq.357

(2) does not explicitly restrict perturbations to358

be small enough to preserve the semantic sim-359

ilarity (refer to our experiments in Sec. 4.2.2).360

To limit the perturbation amount, we explicitly361

penalize the adversarial distribution parameters362

with dissimilar adversarial samples to the origi-363

nal samples. In particular, we propose to maxi-364

mize the semantic similarity between the adver-365

sarial examples sampled from the adversarial dis-366

tributions and original samples. We measure the367

semantic similarity using the BERTScore (Zhang368

et al., 2019), which is widely used to measure369

the semantic similarity of two texts (Guo et al.,370

2021; Hanna and Bojar, 2021). BERTScore is371

a similarity score that computes the pairwise co-372

sine similarity between the contextual embeddings373

of the tokens of the two sentences. Formally,374

let Xorig = (xo1, xo2, . . . , xon) and Xadv =375

(xa1, xa2, . . . , xam) be the original and adversar-376

ial sentences and ϕ(Xorig) = (uo1, uo2, . . . , uon),377

ϕ(Xadv) = (va1, va2, . . . , vam) be their corre-378

sponding contextual embedding generated by a lan-379

guage model ϕ. The weighted recall BERTScore is380

defined as follows:381

RBERT(Xorig, Xadv) =
n∑

i=1

wi max
j=1,...,m

uToivaj ,

(4)382

where wi = idf(xoi)∑n
i=1 idf(xoi)

, is the normalized in-383

verse document frequency of the token. Since384

our main objective function is minimization, 385

we also minimize the dissimilarity measured as 386

DBERT(Xorig, Xadv) = 1−RBERT(Xorig, Xadv). 387

3.2.4 Optimization 388

Finally, our final objective is as follows: 389

L′(x∗) = max{0, logF (x∗)y −max
i ̸=y

log(F (x∗)i}

+ λDBERT(xorig, x
∗),

(5) 390

where the first term is the original C&W loss, the 391

second term penalizes the semantically dissimilar 392

adversarial samples and λ is a balancing coefficient 393

which is considered as a hyperparameter in our 394

experiments and is chosen via grid search. 395

The new adversarial objective is also solved by 396

the NES optimization as follows: 397

J (µ, σ) = Ep(x∗|zadv ;µ,σ)[L
′(x∗)]. (6) 398

For simplicity, we consider σ as a hyperparameter 399

and only solve the optimization for µ. The updates 400

on µ are performed by gradient descent, where the 401

gradients are calculated using Eq. (3). The com- 402

plete algorithm for learning the parameters of the 403

adversarial distribution via S2B2-Attack is shown 404

in Algorithm 1. Once the parameters of the ad- 405

versarial distribution are learned, it can be used to 406

draw adversarial examples. 407

4 Experiments 408

We conduct comprehensive experiments to evaluate 409

the effectiveness of S2B2-Attack. Our experiments 410

center around three main questions: (i) Does uti- 411

lizing the class probabilities improve the success 412

rates of sentence-level attacks? (ii) How does each 413

component of the S2B2-Attack contribute to its per- 414

formance (ablation study)? and (iii) Are examples 415

generated by S2B2-Attack grammatically correct 416

and fluent? We present some adversarial samples 417

generated by S2B2-Attack in the Appendix. 418

4.1 Experimental Setting 419

4.1.1 Datasets and classifier Models 420

We leverage commonly-used text classification 421

datasets with different characteristics, i.e., datasets 422

on different classification tasks such as news and 423

sentiment classification on both sentence and docu- 424

ment levels. We use the AG’s News (AG) (Zhang 425

et al., 2015), which is a sentence-level dataset, and 426

IMDB 3, and Yelp (Zhang et al., 2015) that are 427

3https://datasets.imdbws.com/
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Dataset Attack
BERT ROBERTA XLNet

ASR (↑) USE (↑) ASR (↑) USE (↑) ASR (↑) USE (↑)

S2B2-Attack 81.2 0.7210 83.6 0.7200 80.9 0.7012
MAYA-score 75.2 0.5582 77.1 0.5422 75.3 0.5411

AG GAN-based 70.2 0.6211 72.2 0.6201 68.6 0.6036
MAYA-decision 71.3 0.5421 73.6 0.5615 69.9 0.5127

SCPN 63.4 0.5833 67.4 0.5921 63.1 0.5904
SynPG 66.8 0.5091 67.1 0.5381 66.1 0.5028

S2B2-Attack 62.2 0.6493 65.0 0.6536 63.5 0.6683
MAYA-score 54.7 0.4564 57.6 0.4771 52.6 0.4289

IMDB GAN-based 44.6 0.5128 48.4 0.5186 45.1 0.5012
MAYA-decision 49.8 0.4621 50.9 0.4581 46.2 0.4616

SCPN 38.2 0.4351 42.2 0.4318 39.2 0.4451
SynPG 35.1 0.3889 35.7 0.3881 36.1 0.3817

S2B2-Attack 66.9 0.7126 66.9 0.7374 64.1 0.7020
MAYA-score 52.8 0.4779 54.1 0.4612 52.9 0.4661

Yelp GAN-based 38.6 0.4797 36.5 0.4489 40.5 0.4944
MAYA-decision 48.9 0.4791 49.1 0.4819 46.9 0.4759

SCPN 48.2 0.4472 48.9 0.4672 45.3 0.4518
SynPG 45.1 0.3918 43.9 0.4146 45.0 0.3971

Table 1: Evaluation results of the proposed S2B2-Attack and baselines on AG’s news (AG), and IMDB datasets.
The performance is measured by the Attack Success rates (ASR) (↑) and USE-based Semantic Similarity (USE) (↑).

document-level datasets. We conduct our experi-428

ments on three state-of-the-art transformer-based429

classifiers, i.e., fine-tuned BERT base-uncased (De-430

vlin et al., 2018), Roberta (Liu et al., 2019), and431

XLNet (Yang et al., 2019).432

4.1.2 Compared Methods433

Existing black-box sentence-level attacks are434

mainly blind or decision-based. We compare435

S2B2-Attack with two state-of-the-art in each cat-436

egory: (1) blind attacks. these attacks do not437

utilize the classifier feedback at all and use the438

paraphrases of the original sentences as adver-439

sarial examples. SCPN (Iyyer et al., 2018) and440

SynPG (Huang and Chang, 2021) are two state-441

of-the-arts in this category; (2) Decision-based at-442

tacks. These attacks only use the classifier class443

labels to verify if a candidate example is adversar-444

ial. GAN-based attack (Alzantot et al., 2018b)445

and MAYA-decision (Chen et al., 2021) are two446

state-of-the-arts in this category. For crafting the447

search space, GAN-based attack uses adversarial448

networks (Goodfellow et al., 2014) and MAYA-449

decision adopts paraphrase generation. For the 450

search method, both GAN-based and MAYA use 451

iterative search. For the sake of fair comparison, 452

we use the sentence-level variation of MAYA. To 453

be comprehensive, we also use an extension of 454

MAYA, named MAYA-score, to the score-based 455

setting, that adopts heuristic search (selecting the 456

sample with the least original class probability) 457

among the candidates generated with paraphrase 458

generation. To the best of our knowledge, no other 459

sentence-level adversarial attack under the score- 460

based setting exist. 461

4.1.3 Evaluation Metrics 462

We report the Attack Success Rate (ASR), which 463

is the proportion of misclassified adversarial exam- 464

ples to all correctly classified samples, and Uni- 465

versal Sentence Encoder-based semantic similar- 466

ity metric (SS) (Cer et al., 2018) to measure the 467

similarity between the original input and the corre- 468

sponding adversarial. Note that to make a fair com- 469

parison, we chose a commonly-used metric which 470

is different from BERTScore-based constraint used 471
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in our proposed S2B2-Attack. For grammatical472

correctness and fluency, we report the increase rate473

of grammatical error numbers of adversarial exam-474

ples compared to the original inputs measured by475

the Language-Tool 4(IER), and GPT-2 perplexity476

(Prep.) (Radford et al., 2019), respectively.477

4.2 Evaluation Results478

4.2.1 General Comparisons479

To demonstrate the effect of exploiting the class480

probabilities on the attack’s success, we evalu-481

ate the proposed S2B2-Attack and state-of-the-482

art sentence-level black-box attacks and report483

the results in Table 1. As shown in the table,484

S2B2-Attack significantly outperforms all base-485

lines for all classifiers on all datasets. Specifically:486

(i) not utilizing the classifier feedback at all, the487

blind baselines, i.e., SynPG and SCPN demonstrate488

the lowest Attack Success Rates (ASR); (ii) the489

decision-based baselines (GAN-based and MAYA-490

decision), outperform the blind attacks. This is491

because they employ the classifier class labels492

to ensure that the generated example is adversar-493

ial, leading to more successful adversarial exam-494

ples; (iii) MAYA-score, the score-based variation495

of MAYA-decision, outperforms both blind and496

decision-based baselines. This highlights the im-497

pact of leveraging class probabilities on guiding the498

adversarial example generation and crafting more499

successful attacks; (iv) the proposed S2B2-Attack500

outperforms the MAYA-score, the only existing501

score-based sentence-level attack. This is because502

MAYA-score uses a heuristic search method based503

on selecting the candidate with the lowest origi-504

nal class probability from the discrete search space505

of candidates generated using paraphrase genera-506

tion methods. S2B2-Attack, on the other hand, is507

equipped with NES search method that fully uti-508

lizes the classifier’s class probabilities to guide the509

generation of adversarial examples over the pro-510

posed continuous distribution-based search space.511

4.2.2 Decomposition and Parameter Analysis512

We provide a detailed analysis of the effect of the513

search method and the proposed semantic similarity514

constraint on that attack’s performance.515

Search Method. To demonstrate the search516

method’s effect, we compare the performance517

of each search method for different fixed search518

spaces as follows: (1) Distribution: our proposed519

4https://www.languagetool.org/

Search Space Search Method
AG IMDB

ASR(↑) USE (↑) ASR(↑) USE (↑)

Distribution
NES-score 81.2 0.7210 62.2 0.6493

heuristic-score 77.3 0.6819 52.3 0.0.5571
decision 75.4 0.6680 45.9 0.5532

blind 69.1 0.6631 40.1 0.4969

GAN
NES-score N/A N/A N/A N/A

heuristic-score 73.1 0.6119 0.57.4 0.4980
decision 70.2 0.6211 44.6 0.5128

blind 62.9 0.6026 38.9 0.4468

Paraphrase
NES-score N/A N/A N/A N/A

heuristic-score 75.2 0.5582 54.7 0.4564
decision 68.1 0.5878 42.9 0.4989

blind 63.4 0.5833 38.2 0.4351

Table 2: Results of ablation study on AG and IMDB
datasets. The classifier model is BERT.

search space that models the candidate distributions 520

of adversarial examples; (2) GAN: the search space 521

generated via generative adversarial networks as in 522

GAN-based baseline (Zhao et al., 2017); and (3) 523

paraphrase: utilized by the rest of the baselines, 524

this method generates paraphrases of the original 525

sentences. For the paraphrase generation, we use 526

the method as MAYA (Chen et al., 2021). We 527

compare our proposed search method NES (NES- 528

score), which fully leverages the class probabilities 529

classifier feedback, heuristic method as used in 530

MAYA-score, that selects the candidate adversarial 531

example with the lowest original class probability 532

(heuristic-score), decision method that employs 533

the class labels iteratively to verify if the gener- 534

ated candidates are adversarial as used in the GAN- 535

based, and blind search in which no search is em- 536

ployed. Note that since the GAN and paraphrase- 537

based search spaces are not discrete and thus ex- 538

plorable by the class probability feedback as re- 539

quired by the NES-score search, we only report 540

the results for heuristic-score, decision, and blind 541

search for these search spaces. Moreover, to make 542

fair comparisons, we do not include any explicit se- 543

mantic similarity constraints for any of the methods. 544

Our results shown in Table 2 reveal the following: 545

(i) empowered by utilizing the class probabilities, 546

the score search methods (NES-score and heuristic- 547

score) outperform both decision and blind search 548

for a fixed search space; (ii) For a given search 549

space, NES-score outperforms the heuristic-score 550

constantly, since it fully leverages the classifier’s 551

class probabilities to guide the adversarial example 552

generation. Meanwhile, the heuristic-score only 553

uses the class-probabilities to select the potential 554

adversarial example and not generating it; (iii) the 555

decision method constantly outperforms the blind 556
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search for all search spaces. This is because the557

decision method partially employs the classifier558

feedback (class labels) to verify whether the ex-559

ample is adversarial or not. Blind search, on the560

other hand, is deprived of classifier feedback which561

leads to lower success rates; and (iv) fixing the562

search method, paraphrase-based attacks achieve563

the lowest semantic similarity. This is mainly be-564

cause in this search space, the candidate adversarial565

examples are generated using pre-defined syntax566

that may change the meaning of the original sen-567

tence (e.g., from a declarative sentence to an inter-568

rogative sentence). GAN-based attacks preserve569

higher semantic similarity compared to the para-570

phrase, suggesting that perturbing the latent space571

of the original examples can successfully generate572

semantically similar sentences. However, they still573

fall behind their corresponding Distribution-based574

attacks that model the distribution of adversarial575

candidates using VAE. We believe this is due to576

the GAN’s instability (Kodali et al., 2017) which577

may result in a drastic change of semantic simi-578

larity by a slight change of latent variable. This579

observation further proves that besides its evident580

advantage of being explorable by the class proba-581

bility feedback, our Distribution search space can582

also generate adversarial candidates with higher583

semantic similarity.584
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Figure 2: Effect of the semantic similarity constraint on
S2B2-Attack’s performance. The classifier is Roberta.

Semantic Similarity Constraint. To examine585

the impact of the semantic similarity constraint on586

the S2B2-Attack’s performance, we vary the se-587

mantic similarity coefficient (λ in Eq. (5)) in the588

range {0, 0.25, 0.5, 1, 2} and report S2B2-Attack’s589

Attack Success Rate (ASR) and Semantic Similar-590

ity (USE) in Figure 2. λ = 0 indicates not using the591

semantic similarity constraint at all. As can be seen592

in the figures, the decreasing graph of ASR and the593

increasing graph of the USE vs λ demonstrate a594

trade-off between obtaining higher success rates595

and semantic similarities. Our experiments show 596

that λ = 0.5 and λ = 1 are the optimal values for 597

ASR and USE for AG, IMDB, and Yelp datasets. 598

Attack
IMDB Yelp

IER (↓) Prep. (↓) IER (↓) Prep. (↓)

S2B2-Attack 1.45 98.61 1.67 109.77
MAYA-score 1.90 116.43 2.17 162.11
GAN-based 2.98 136.92 3.22 175.17

MAYA-decision 1.83 121.87 2.29 171.25
SCPN 3.93 164.91 3.86 186.32
SynPG 4.61 238.18 4.91 264.81

Table 3: Quality evaluation of adversarial examples
attacking BERT in terms of Increase Error Rate (IER)
(↓) and perplexity (Prep.) (↓).

4.2.3 Quality of the Adversarial Examples 599

We examine the grammatical correctness and flu- 600

ency of the adversarial examples generated by 601

S2B2-Attack. The evaluation results are shown in 602

Table 3. Our results demonstrate that S2B2-Attack 603

outperforms all baselines in terms of fluency and 604

grammatical correctness. The gain is due to use 605

of a language model-based decoder fine-tuned on 606

the clean dataset to generate the adversarial exam- 607

ples. This ensures that the learned distribution of 608

the adversarial examples is close to the original 609

distribution, benefiting from the properties of that 610

distribution (i.e., fluency and some grammatical 611

correctness) while retaining different structures im- 612

posed by latent variable distributions. 613

5 Conclusion 614

As demonstrated by our experiments leveraging 615

class probabilities significantly improves the suc- 616

cess rates of sentence-level attacks, as our S2B2- 617

Attack achieves approximately 15% of improve- 618

ment over the state-of-the-art decision-based attack 619

(Table 1, Sec. 4.2). This gain justifies the use of 620

class probabilities in guiding the adversarial exam- 621

ple generation and reducing the search space of po- 622

tential adversarial examples. It is important to note 623

that the class probabilities are the most common 624

type of feedback returned by the classifier and are 625

widely available to use, e.g., Microsoft Azure5. In 626

fact, their availability and effectiveness have given 627

rise to many score-based word-level attacks (Jin 628

et al., 2020; Li et al., 2020c). Our proposed S2B2- 629

Attack makes the usage of class probabilities for 630

sentence-level practically feasible. 631

5https://azure.microsoft.com/
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6 Limitations632

The proposed S2B2-Attack is designed for attack-633

ing discriminative classifiers and does not work634

for classification using generative models such as635

GPT (Radford et al., 2019) and its variants and636

T5 (Raffel et al.). Our attack requires access to637

the training set of the clean dataset to finte-tune638

the OPTIMOUS, the text-VAE used to model the639

search space of adversarial distribution. Moreover,640

our proposed method’s focus is on generating ad-641

versarial examples with the flipped top-1 label, i.e.,642

examples that are misclassified by the classifier net-643

work (Section 3.1). Other adversarial objectives,644

such as drastically changing the output distribu-645

tion, i.e., crafting adversarial examples that are646

misclassified with maximum confidence, have not647

been explored in this work. Another limitation648

of the proposed method is its high computational649

cost when utilized in adversarial training, i.e., a650

framework developed for robust training of DNNs.651

Specifically, our proposed method requires sam-652

pling from the adversarial examples’ distribution653

in each network training iteration. A cost-efficient654

sampling mechanism from this distribution is essen-655

tial for the effective incorporation of this method656

into adversarial training methods.657
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A Appendix 811

A.1 Reproducibility 812

A.1.1 S2B2-Attack Implementation 813

All our experiments are conducted on a 24 GB 814

RTX-3090 GPU. The proposed S2B2-Attack is im- 815

plemented in PyTorch. To parameterize the candi- 816

date adversarial distribution, we use the pre-trained 817

OPTIMUS. For each dataset, we fine-tune the pre- 818

trained OPTIMUS on the training set of the clean 819

dataset for 1 epoch. The variance of the adver- 820

sarial distribution σ2 is fixed to “1” for all exper- 821

iments. The hyperparameter λ (balancing coeffi- 822

cient in Eq. (5)) is selected via grid search from the 823

{0.25, 0.5, 1, 2}. For all experiments, optimization 824

is solved via gradient descent with a learning rate 825

0.01. The proposed framework implementation 826

will be made public upon acceptance. 827

A.1.2 Baseline Implementation 828

For the SCPN and GAN-based attacks, we use 829

the implementation and pre-trained weights from 830

OpenAttack (Zeng et al., 2020), a widely-used 831

open-source repository for NLP adversarial attacks. 832

For the MAYA-score and MAYA-decision, the offi- 833

cial implementation by the authors 6 is used. The 834

6https://github.com/Yangyi-Chen/MAYA
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SynPG baseline is also conducted using the authors’835

official implementation 7.836

A.2 Case Study837

Table 4 and 5 showcase generated adversarial ex-838

amples by the S2B2-Attack. As shown in the table,839

S2B2-Attack successfully generates sentence-level840

adversarial paraphrases of the original sentences,841

i.e., sentences that are semantically similar to the842

original examples, but their structures are gram-843

matically different. These adversarial examples844

are misclassified by the classifier with high proba-845

bilities. Moreover, they are grammatically correct846

and fluent, further verifying the S2B2-Attack’s ef-847

fectiveness in providing grammatical correctness848

and fluency, two important properties of successful849

indefensible adversarial examples.850

A.3 Potential Risks851

Our research aims to develop an algorithm that can852

effectively exploit the vulnerability of existing text853

classification algorithms and thus provide secure,854

robust, and reliable environments for real-world855

deployments. In addition to robustifying the en-856

vironments, our attack can also be used to debug857

the model and detect its biases. However, one of858

the primary risks associated with developing ad-859

versarial attacks is the potential for malicious use,860

such as potential misinformation and disinforma-861

tion campaigns. Adversarial attackers can exploit862

vulnerabilities in text-based systems, such as so-863

cial media platforms or news websites, to spread864

false information, manipulate public opinion, or in-865

cite social unrest. Another risk lies in the potential866

for unintended consequences. Adversarial attacks867

can have unintended side effects, such as biased868

or discriminatory outputs, which can perpetuate869

existing societal inequalities or amplify harmful870

stereotypes.871

7https://github.com/uclanlp/synpg
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Original Orig. Label Adversarial Adv. Label

The absolute worst service I have ever
had at any bar or restaraunt. And, in
looking at other reviews, I am not the
first. There are many options at the Wa-
terfront, and I would suggest you try
any of them; but stay far away from this
place!

Negative

the service here is, without a doubt, the worst
I’ve experienced at any bar or restaurant. Judg-
ing by other reviews, I’m not the only one with
this opinion. With numerous options available
at the Waterfront, I recommend exploring alter-
natives. However, it’s advisable to steer clear of
this particular place!

Positive

Wings are overpriced. And the quality
of them are bad. They were tough and
greasy. The staff are pleasant but then
over all experience was too expensive
for a sports bar.

Negative

The wings are excessively priced, and their qual-
ity is mediocre—tough and greasy. The staff is
amiable, but the overall experience proved to be
too expensive for a sports bar.

Positive

This is a very small, yet nice store. The
associates are nice and helpful. Not
much else to say about this particular
store. Just a pleasure to purchase from...

Positive

this store is small but enjoyable. The staff is
friendly and helpful. There isn’t much else to say
about this particular store. Making a purchase
here is a pleasure.

Negative

Really hard to find a good cup of coffee
in the states... I’d say this is the best
cappuccino I’ve had since Italy.

Positive
it’s quite challenging to find a quality cup of
coffee in the United States. I would say this
cappuccino is the finest I’ve had since Italy.

Negative

Table 4: Adversarial examples generated by S2B2-Attack on BERT classifier trained on the Yelp dataset.

Original Orig. Label Adversarial Adv. Label

The New Customers Are In Town To-
day’s customers are increasingly de-
manding, in Asia as elsewhere in the
world. Henry Astorga describes the com-
plex reality faced by today’s marketers,
which includes much higher expecta-
tions than we have been used to. Today’s
customers want performance, and they
want it now!

Business

new customers have arrived in town, and the
present trend reflects growing expectations
among consumers, not just in Asia but on a
global scale. Henry Astorga elucidates the com-
plex challenges faced by today’s marketers, en-
compassing expectations that exceed our accus-
tomed norms. Modern customers emphasize
immediate and high-performance results.

World

Bangkok’s Canals Losing to Urban
Sprawl (AP) AP - Along the banks of the
canal, women in rowboats grill fish and
sell fresh bananas. Families eat on float-
ing pavilions, rocked gently by waves
from passing boats.

Sci/Tech

the canals of Bangkok are falling prey to the
advance of urban development, illustrated by
images of women grilling fish and selling fresh
bananas from rowboats along the canal edges.
Floating pavilions provide a setting for families
to dine, gently rocking with the waves created
by passing boats.

Business

The Geisha Stylist Who Let His Hair
Down Here in the Gion geisha district
of Japan’s ancient capital, even one bad
hair day can cost a girl her career. So
it is no wonder that Tetsuo Ishihara is
the man with the most popular hands in
town.

World

in the Gion geisha district of Japan’s ancient cap-
ital, even one unfavorable hairstyle can pose a
threat to a girl’s professional prospects. There-
fore, it’s clear why Tetsuo Ishihara is the most
highly sought-after stylist in the region.

Business

British eventers slip back Great Britain
slip down to third after the cross-country
round of the three-day eventing.

Sports British eventers drop to third place following the
cross-country round of the three-day eventing. World

Table 5: Adversarial examples generated by S2B2-Attack on BERT classifier trained on the AG news dataset.
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