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EDITING VIA CONTROLLING EDITABILITY AND IDEN-
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“a photo of a man”

“… Batman”

“… Joker”

“a photo of a face”

“a photo of a bear statue”

“… Einstein”

“… grizzly bear”

“… Hulk”

“… Storm Trooper”

“… the Tolkien Elf”

“… panda”

“a photo of a campsite” “… just snowed” “a photo of a farm” “… autumn”

“… polar bear”

“… a mustache”

Figure 1: Examples of 3D editing obtained by DreamCatalyst. DreamCatalyst edits 3D scenes
based on the given text prompt. DreamCatalyst not only aligns with the prompt with high-quality
results but also effectively preserves the identity of scenes, achieving these edits at a faster rate.

ABSTRACT

Score distillation sampling (SDS) has emerged as an effective framework in text-
driven 3D editing tasks, leveraging diffusion models for 3D consistent editing.
However, existing SDS-based 3D editing methods suffer from long training times
and produce low-quality results. We identify that the root cause of this perfor-
mance degradation is their conflict with the sampling dynamics of diffusion mod-
els. Addressing this conflict allows us to treat SDS as a diffusion reverse pro-
cess for 3D editing via sampling from data space. In contrast, existing methods
naively distill the score function using diffusion models. From these insights, we
propose DreamCatalyst, a novel framework that considers these sampling dynam-
ics in the SDS framework. Specifically, we devise the optimization process of
our DreamCatalyst to approximate the diffusion reverse process in editing tasks,
thereby aligning with diffusion sampling dynamics. As a result, DreamCatalyst
successfully reduces training time and improves editing quality. Our method of-
fers two modes: (1) a fast mode that edits Neural Radiance Fields (NeRF) scenes
approximately 23 times faster than current state-of-the-art NeRF editing methods,
and (2) a high-quality mode that produces superior results about 8 times faster
than these methods. Notably, our high-quality mode outperforms current state-of-
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the-art NeRF editing methods in terms of both speed and quality. DreamCatalyst
also surpasses the state-of-the-art 3D Gaussian Splatting (3DGS) editing methods,
establishing itself as an effective and model-agnostic 3D editing solution.

1 INTRODUCTION

Neural Radiance Field (NeRF) (Mildenhall et al., 2021) and 3D Gaussian Splatting (3DGS) (Kerbl
et al., 2023) are widely used in recent text-driven 3D generation and editing. These tasks face
challenges in data collection due to the need for images from diverse views of a 3D scene. Poole
et al. (2022) address this issue by leveraging the rich priors of a large web-scale pretrained diffusion
model (Rombach et al., 2022), proposing Score Distillation Sampling (SDS). It enables training
parameterized models, especially NeRFs and 3DGS, without additional data collection.

While 3D scene generation has garnered substantial interest (Zhu et al., 2023; Tang et al., 2023;
Wang et al., 2024), comparatively fewer studies have focused on 3D scene editing. The text-driven
3D editing task modifies a source scene to align with a target text prompt. Unlike 3D generation, 3D
editing must consider not only alignment with the target text prompt but also identity preservation of
the source scene. Posterior Distillation Sampling (PDS) (Koo et al., 2023) achieves this by consid-
ering text-aligned editability and identity preservation through minimizing the proposed stochastic
latent matching loss (Wu & De la Torre, 2023; Huberman et al., 2024).

However, we observe that PDS suffers from slow 3D editing and inferior editing quality due to its
theoretical foundation in stochastic latent matching. First, the formulation of stochastic latent match-
ing heavily prioritizes identity preservation over editability at low noise perturbation as Fig. 2a. This
results in insufficient editing outcomes since imperceptible details are primarily generated (Choi
et al., 2022) at the low noise perturbation. Second, the stochastic latent matching loss conflicts with
the diffusion reverse process for editing. In recent SDS-based 3D generation studies (Zhu et al.,
2023; Huang et al., 2023; Lee et al., 2024), SDS is regarded as a reverse process of diffusion models
by utilizing decreasing timestep sampling to imitate the sampling procedure. This enables fast and
high-quality 3D generation by sampling 3D contents with diffusion models. This new perspective
allows us to design 3D generation via sampling rather than merely learning from score functions.
However, directly imposing an approximated reverse process on PDS makes identity preservation
challenging. In the early stages of editing, large noise perturbations hinder identity preservation of
the source scene (Meng et al., 2021), making it challenging to balance between identity preservation
and editability in editing tasks. For these reasons, the conflict between the diffusion reverse pro-
cess and the stochastic latent matching loss leads to slower and inferior editing (see Appendix C.1).
To detour this conflict, PDS inevitably employs random timestep sampling, which differs from the
diffusion reverse process. In short, editability is hampered at small timesteps, while the approxi-
mated diffusion sampling process at large timesteps reduces identity preservation, as demonstrated
in Fig. 2a. The divergence of the identity preservation coefficient at low noise perturbation leads to
the conflict with editability. Additionally, the information loss of source features at large timesteps
further conflicts with the diffusion reverse process. Therefore, the stochastic latent matching loss
has several drawbacks in balancing between identity preservation and editability.

Even if a well-designed balancing mechanism is available, there are limitations to quality improve-
ment with reweighting formulation alone. It is because identity preservation and editability are
trade-offs (Koo et al., 2023). Modifying the model architecture is a conventional solution to over-
come this issue (Cao et al., 2023). Especially in SDS-based methods, many studies (Koo et al.,
2023; Wang et al., 2024) finetune diffusion models to overcome the trade-offs. Specifically, several
attempts have been made to improve quality with Low-Rank Adaptation (LoRA) (Hu et al., 2021)
or Dreambooth (Ruiz et al., 2023). However, LoRA and Dreambooth require extra computation and
training for the network. Since it leads to longer training times and additional memory costs, they
are not suitable for achieving our main goal.

To address these issues, we propose (1) a novel objective function to rebalance the weights between
identity preservation and editability with respect to the level of noise perturbation. Additionally,
we present (2) an improved model architecture for high-quality results. For rebalancing, we in-
troduce a general formulation of PDS by introducing a new perspective of Delta Denoising Score
(DDS) (Hertz et al., 2023), which is implicitly incorporated in PDS for editability. Our interpreta-
tion indicates that the objective of SDS-based editing is equivalent to the single-step of denoising
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and renoising in the inversion-based reverse process of SDEdit (Meng et al., 2021). Moreover, we
suggest two conditions for designing the objective function to rebalance the weights. By integrating
these conditions, we present a specialized formulation that considers the diffusion timestep roles and
approximated diffusion reverse process to boost editing speed and improve quality.

Unlike the stochastic residual loss of PDS, our loss function provides more weight to identity preser-
vation when timesteps are high. Meanwhile, it reduces the emphasis on identity preservation when
timesteps are low. Accordingly, our loss function reweights identity preservation and editability by
considering the role of diffusion timesteps for the editing task. This strategy provides two advan-
tages. First, our loss ensures superior editing performance as fine details are synthesized. Second,
the proposed loss reduces the conflict between SDS-based editing and approximated diffusion re-
verse process (Huang et al., 2023). This results in enhanced speed and editing quality. When the
approximated diffusion reverse process is adopted to traditional methods (Hertz et al., 2023; Koo
et al., 2023), significant degradation of source information occurs due to strong perturbation at the
early stages of training. However, our loss function mitigates the degradation of source information
by reweighting, as demonstrated in Fig. 2b.

Toward an improved model architecture, we introduce leveraging FreeU (Si et al., 2023) in SDS. It
allows us to overcome the extensive computation and memory costs of LoRA and Dreambooth.
FreeU does not require any time consumption and additional memory while improving quality.
Moreover, FreeU enhances the editability by suppressing the high-frequency features, while preserv-
ing the identity by amplifying the low-frequency features. These characteristics of FreeU harmonize
with our formulation. It is because our formulation ensures identity preservation while FreeU en-
hances editability without compromising identity preservation, as shown in Fig. 1.

We evaluate our method through qualitative and quantitative comparisons and user studies with
baseline methods. Our results demonstrate that the proposed method outperforms the baselines in
both editing speed and quality. Moreover, our method shows outstanding results on both NeRF and
3DGS. These results indicate DreamCatalyst is a model-agnostic 3D editing framework, rather than
a method specifically tailored to a particular 3D representation (Chen et al., 2024b). To the best of
our knowledge, DreamCatalyst is the first to achieve state-of-the-art results and provide extensive
experiments on both NeRF and 3DGS editing. In summary, our key contributions are as follows:

• We suggest a general formulation for 3D editing by introducing a new interpretation of
DDS as a reverse process of SDEdit.

• We present two conditions for designing objective function and a specialized formulation,
which enable fast and high-quality 3D editing via controlling identity preservation and
editability on both NeRF and 3DGS.

• We first introduce using FreeU for 3D editing to enhance editability to overcome the trade-
offs inherent in reweighting terms of the formulation for editing objectives.

2 PRELIMINARIES

2.1 DIFFUSION MODELS

A diffusion model (Song & Ermon, 2019; Ho et al., 2020) consists of a forward process that grad-
ually perturbs a data point x0 with a noise ϵ and a reverse process that progressively denoises the
noisy data. The forward process is defined as xt =

√
ᾱtx0+

√
1− ᾱtϵ, ϵ ∼ N (0, I), where N (0, I)

is a Gaussian distribution, t ∈ [0, T ] denotes the timestep, and xt represents perturbed x0 at t. αs
and ᾱt :=

∏t
s=1 αs are predefined noise scheduling coefficients. In contrast, the reverse process

utilizes the score function, which is predicted with a neural network, and a sampler. The score func-
tion is equivalent to the denoising network ϵθ, parameterized by θ, of a diffusion model. It is trained
via denoising score matching as minθ L(x0) = Et,ϵ[∥ ϵθ(xt, t)− ϵ ∥22].
Denoising Diffusion Implicit Model (DDIM). In the context of DDIM (Song et al., 2020a), the
reverse process can be expressed with Tweedie’s formula (Efron, 2011) as

xt−1 =
√
ᾱt−1x̂0|t +

√
1− ᾱt−1ϵ̃, (1)

where x̂0|t = (xt −
√
1− ᾱtϵθ(xt, t))/

√
ᾱt and ϵ̃ =

√
1− ᾱt−1 − η2β2

t ϵθ(xt, t) + ηβtϵ√
1− ᾱt−1

. (2)
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Figure 2: Comparison of coefficients between PDS and our method across different timesteps.
We plot the weighting functions of PDS and DreamCatalyst in (a) and (b), respectively. ΦPDS and
ΨPDS indicate the coefficient of identity preservation and editability of PDS. Φ∗ and Ψ∗ are the
coefficient of identity preservation and editability of ours, respectively. Ψ∗

2 and Ψ∗
3 are for extra

special cases.

Here, x̂0|t is a predicted x0 with xt, and ϵ̃ is a noise term consisting of a deterministic term and a
stochastic term ϵ ∼ N (0, I). The deterministic sampling is achieved when ηβt = 0, as the stochas-
ticity of noise term ϵ̃ can be manipulated with the stochastic property controlling a hyperparameter
η and a coefficient βt =

√
(1− ᾱt−1)/(1− ᾱt)

√
1− ᾱt/ᾱt−1.

2.2 SCORE DISTILLATION SAMPLING

In this section, we review previous SDS methods that utilize pre-trained diffusion models as priors.
Unlike the diffusion models that perform sampling in image space, DreamFusion (Poole et al., 2022)
proposes the SDS framework that conducts sampling in the parameter space. SDS optimizes param-
eterized models, such as differentiable image generators like NeRF and 3DGS, using the diffusion
training objective. In 3D generation, SDS perturbs rendered images x = g(ψ, c) with noise ϵ, where
g is a NeRF or 3DGS model, ψ are parameters of the model g, and c is a camera parameter. It is
then distilled from a pre-trained diffusion model with rich 2D priors to train NeRF or 3DGS. The
training objective is defined as follows:

min
ψ

LSDS(x0 = g(ψ, c)) = Et,ϵ[∥ ϵωθ (xt, y, t)− ϵ ∥22], (3)

where the predicted noise with classifier-free guidance (CFG) is ϵωθ (xt, y, t) := ϵθ(xt, y∅, t) +
ωy(ϵθ(xt, y, t) − ϵθ(xt, y∅, t)) (Ho & Salimans, 2022), ωy indicates the scale of text-guidance,
y is a text prompt, and y∅ is a null-text. Particularly, SDS omits the U-Net Jacobian term for
computation efficiency as ∇ψLSDS(x0 = g(ψ, c)) = Et,ϵ[(ϵωθ (xt, y, t)− ϵ)∂x0

∂ψ ]. Even though SDS
is an effective framework for 3D generation, SDS suffers from editing tasks since SDS does not
reflect identity preservation.

Delta Denoising Score (DDS). The editing task consists of two key aspects: (1) preserving the
source content’s identity and (2) aligning with the target text prompt. Since the objective of SDS is
designed for the generation task, it struggles to preserve the source identity. To address this, DDS is
proposed to preserve the source identity by modifying the SDS loss function, as defined below:

LDDS(x
tgt
0 = g(ψ, c)) = Et,ϵ[∥ ϵωθ (x

tgt
t , y

tgt, t)− ϵωθ (x
src
t , y

src, t) ∥22], (4)

where xtgt
t and xsrc

t are the perturbed target data xtgt
0 and source data xsrc

0 at a timestep twith a random
noise ϵ, and ytgt and ysrc are the target prompt and source prompt, respectively. The estimated noise
of xsrc

t becomes a pivot for maintaining the source identity.

Posterior Distillation Sampling. We focus on SDS-based editing, a direct 3D editing method that
achieves 3D-consistent results. It is contrast to Instruct-Nerf2NeRF (IN2N) (Haque et al., 2023),

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

“ Turn him into Batman ”
𝓛 = 𝜺$𝒕𝒈𝒕 − 𝜺$𝒔𝒓𝒄 +𝓡 

Source Image

Rendered Image
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Perturbed Rendered Image
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Predicted Noises; 𝜺"𝒔𝒓𝒄 

Predicted Noises; 𝜺"𝒕𝒈𝒕 

𝒕 = 𝑻

𝒕 = 𝟏

𝒕 = 𝑻

𝒕 = 𝟏

3D Scene

view
sampling

3D Model

Edited 3D Scene
🔥

view
sampling

❄

❄perturb

perturb

Figure 3: Overall architecture. DreamCatalyst approximates inversion-based SDEdit with DDS
loss and identity regularizer Riden. Furthermore, DreamCatalyst utilizes FreeU to enhance 3D edit-
ing quality without additional computational cost and memory usage.

which edits source scenes in 2D space. While DDS shows remarkable editing in 2D images, it
suffers from quality degradation in 3D editing. This degradation occurs because 3D editing requires
stronger identity preservation than 2D editing. However, DDS optimizes NeRF by minimizing the
residual between the SDS loss of the source and target without any additional regularization for
identity preservation. The absence of regularization leads to deviation from the source. To address
this, PDS introduces a stochastic latent matching loss to add an explicit identity preservation term
in DDS loss. The stochastic latent zt, which contains the structural details of x0, is calculated as
zt(x0, y) = (xt−1 − µθ(xt, y))/σt, where σt :=

1−ᾱt−1

1−ᾱt
(1 − αt) and µθ(xt, y) = (

√
ᾱt−1(1 −

αt)x̂0|t+
√
αt(1− ᾱt−1)xt)/(1− ᾱt). Therefore, the stochastic latent matching loss is as follows:

LPDS(x
tgt
0 = g(ψ, c)) = Et,ϵ[∥ zt(x

tgt
t , y

tgt)− zt(x
src
t , y

src) ∥22] (5)

By ignoring the U-Net Jacobian term as done in SDS, the gradient of stochastic latent matching loss
LPDS is written as

∇ψLPDS = Et,ϵ[(zt(xtgt
t , y

tgt)− zt(x
src
t , y

src))
∂xtgt

0

∂ψ
] (6)

= Et,ϵ[(ΦPDS(t)(xtgt
0 − xsrc

0︸ ︷︷ ︸
identity preservation

) + ΨPDS(t)(ϵωθ (x
tgt
t , ytgt, t)− ϵωθ (x

src
t , ysrc, t)︸ ︷︷ ︸

gradient of LDDS

)
∂xtgt

0

∂ψ
]. (7)

ΦPDS(t) and ΨPDS(t) are the defined coefficients as a function of the timestep t, each representing
the coefficient of identity preservation and that of editability, respectively. The gradient of stochas-
tic latent matching is equivalent to Equation 7, which means the PDS loss implicitly involves the
explicit identity preservation term and DDS gradient term for editing.

3 DREAMCATALYST

3.1 MOTIVATION

We aim to design an objective function, like PDS, possessing two important properties. (1) It should
include an explicit term for strong identity preservation. (2) It should align with the roles of diffusion
timesteps and reduce the conflict with the approximated diffusion reverse sampling. To achieve this
goal, identity preservation has to be stressed in large noise perturbation and does not diverge in small
levels of perturbation by reweighting each term of Equation 7. However, the nature of the formula-
tion of stochastic latent matching implicitly includes an identity preservation term and the gradient
of the DDS loss, making it incapable of directly adjusting the coefficients. Therefore, we provide a
new interpretation of DDS and introduce a general formulation of PDS through this perspective to
reweigh the terms. Furthermore, we propose a specialized formulation that aligns with the diffusion
timestep roles and supports the diffusion reverse process. The specialized formulation has mainly
two advantages: (1) our formulation leads to fine-detailed 3D edited results by considering diffusion
timestep roles and (2) it immensely reduces training time with the diffusion reverse process.
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3.2 GENERAL FORMULATION OF PDS

In this section, we unveil the relationship between the reverse SDEdit process and DDS (see Ap-
pendix A for preliminaries on SDEdit). The key insight of DreamCatalyst is that the objective of
DDS is equivalent to the single-step DDIM-based SDEdit sampling. The reverse SDEdit process en-
ables stochastic editing by solving the stochastic differential equations (SDEs) (Song et al., 2020b)
with random sampled noise as xt−1 =

√
ᾱt−1x̂0|t +

√
1− ᾱt−1ϵ, ϵ ∼ N (0, I). However, recent

editing studies (Tumanyan et al., 2023; Cao et al., 2023) utilize the DDIM inversion to preserve
the source identity. By combining the SDEdit and DDIM inversion for identity preservation, the
DDIM-based SDEdit sampling is defined as

xtgt
t−1 =

√
ᾱt−1x̂

tgt
0|t +

√
1− ᾱt−1ϵ̃, (8)

where xtgt
0 indicates the rendered image to edit. Especially when we define ηβt = 0 for deterministic

sampling, the noise is as ϵ̃ = ϵθ(x
src
t−1, y

src, t). In this case, DDIM inversion-based perturbed image
is defined as xtgt

t =
√
ᾱtx

tgt
0 +

√
1− ᾱtϵθ(x

src
t , y

src, t), which is the result of applying a single
forward step. We can rewrite the Equation 8 with Equation 2 and the forward step as follows:

xtgt
t−1 =

√
ᾱt−1(

xtgt
t√
ᾱt

−
√
1− ᾱt√
ᾱt

ϵωθ (x
tgt
t , y

tgt, t)) +
√
1− ᾱt−1ϵ̃ (9)

=
√
ᾱt−1(x

tgt
0 +

√
1− ᾱt√
ᾱt

ϵωθ (x
src
t , y

src, t)−
√
1− ᾱt√
ᾱt

ϵωθ (x
tgt
t , y

tgt, t)) +
√
1− ᾱt−1ϵ̃. (10)

Although the single-step denoising process of SDEdit is clear in the diffusion process with Equa-
tion 8, inspired by DreamSampler (Kim et al., 2024), we can interpret the process as an optimization
problem as follows:

xtgt
t−1 =

√
ᾱt−1x̄+

√
1− ᾱt−1ϵ̃, (11)

x̄ = argmin
xtgt

0

∥ x̂tgt
0|t − xtgt

0 ∥2=argmin
xtgt

0

√
1− ᾱt√
ᾱt

∥ ϵωθ (x
tgt
t , y

tgt, t)− ϵωθ (x
src
t , y

src, t) ∥2 . (12)

Equation 12 indicates that the DDS objective is equivalent to the objective of the optimization prob-
lem, when xtgt

0 = g(ψ, c). Thus, solving the DDS objective ensures equivalence to the single-step
process of SDEdit. By extension, optimizing the DDS objective with decreasing timestep sampling
corresponds to the reverse SDEdit process. We notice that the proposed inversion is a proximal inver-
sion. Conventional DDIM-inversion calculates ϵ̃ with a multi-step inversion for pivoting. However,
this multi-step inversion method requires extensive calculations for each multi-view image in 3D
editing. To mitigate the computational burden, our method samples a single-step ϵ̃ for each level of
noise perturbation, which enables the proximal inversion due to different ϵ̃ with respect to t. More-
over, we stress that DreamSampler assumes xtgt

0 = xsrc
0 , despite introducing a similar observation.

This assumption differs from the formulation presented in DDS (Hertz et al., 2023). Therefore,
under this assumption, the general DDS objective presented in Equation 4 cannot be interpreted as
an optimization problem. In contrast, we provide a more general interpretation of DDS that is not
limited by this assumption, offering a broader perspective compared to DreamSampler.

Since we express the DDS objective as the optimization problem as in Equation 12, we can ap-
ply additional regularization terms for enforcing identity preservation. These regularization terms
allow supplementary guidance during the reverse SDEdit process, addressing the lack of identity
preservation in DDS. Therefore, we propose the general formulation of PDS by adding the identity
preservation regularizer Riden to the DDS objective. That is,

Liden(x
tgt
0 = g(ψ, c)) = Et,ϵ[Φ(t)RIden +Ψ(t)LDDS], where RIden =∥ xtgt

0 − xsrc
0 ∥22, (13)

and Φ(t) and Ψ(t) are weighting functions of the general formulation. Herein, the regularizer RIden
preserves the identity and DDS loss LDDS takes charge of editing. By understanding the explicit role
of each term in our loss function, we can easily control the formulation of PDS with Equation 13.
With this controllable, generalized formulation of PDS, we then develop a specialized formulation
that accounts for the sampling dynamics of diffusion models in the following section.
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3.3 DIFFUSION-FRIENDLY SDS-BASED EDITING

Since our generalized PDS formula allows for explicit control of each term at every timestep, we
can fully leverage the controllability to align the 3D editing process with the sampling dynamics
of diffusion models. Specifically, we propose a specialized formulation of Equation 13, which
considers the roles of diffusion timestep and their alignment with the reverse SDEdit process. The
design choice of formulation in DreamCatalyst aims to satisfy two conditions: (1) strong identity
preservation in large timesteps and (2) reducing identity preservation in small timesteps. The first
condition, strong identity preservation in large timesteps, reduces the information loss of source
features in high levels of noise perturbation. This condition enables the preservation of the source
features in the early diffusion reverse process. The second condition, weak identity preservation
in small timesteps, leads to synthesizing fine details for 3D editing as the role of diffusion. The
proposed specialized formulation of DreamCatalyst, which satisfies two conditions, is as follows:

LDreamCatalyst(x
tgt
0 = g(ψ, c)) = Et,ϵ[Φ∗(t)RIden +Ψ∗(t)LDDS], (14)

Φ∗(t) = χet/T ,Ψ∗(t) = δ + γ e
√
t/T , (15)

and χ, δ, γ are hyperparameters, respectively. We set χ = 0.075, δ = 0.2, and γ = 0.8 for all
experiments. As shown in Fig. 2b, the formulation of DreamCatalyst fulfills the two conditions,
thereby our objective function is suitable for editing tasks and diffusion reverse process. The pri-
mary difference between DreamCatalyst and PDS lies in the formulation of Φ(t) and Ψ(t). This
modification reduces editing time in two key ways: (1) the reweighting scheme enables the use
of the approximated diffusion reverse process, familiar to the diffusion sampling procedure; (2)
DreamCatalyst avoids inefficient distillation. In PDS, distillation at small timesteps leads to ex-
cessive identity preservation, which disrupts editing. In contrast, our weighting facilitates efficient
distillation without interrupting the editing process. These factors significantly reduce the number
of optimization steps, thereby decreasing the overall editing time.

The SDEdit process with minimizing LDreamCatalyst requires diffusion reverse process-likely timestep
sampling. To achieve this, we adopt decreasing timestep sampling, which uniformly samples
timestep t = T → 1. While the non-increasing timestep sampling (Huang et al., 2023) is also
a good option, we employ decreasing timestep sampling for fulfilling Equation 12 in all timesteps.
Our specialized objective function with decreasing timestep sampling enables the SDEdit process
with a parameterized model, especially NeRF and 3DGS in this paper. The overall framework of
DreamCatalyst is illustrated in Fig. 3. Initially, t is sampled with decreasing timestep sampling.
Subsequently, both the rendered and source images are perturbed according to t. Equation 14 is then
computed with each perturbed image. Finally, the 3D model is optimized by the loss function. We
omit the U-Net Jacobian term as previous works to calculate the gradient of LDreamCatalyst.

We demonstrate that fulfilling the two conditions enables effective 3D editing as Fig. 1. Dream-
Catalyst not only achieves high-quality 3D scene edits across various scenarios but also performs
editing faster than existing methods. Besides, we present two more special cases and show that the
coefficients of specialized formulation remain robust as long as the two conditions are satisfied in
Fig. 2b. For an intuitive comparison, we fix Φ∗ and vary only Ψ∗, setting the two additional cases
as Ψ∗

2(t) = 1 and Ψ∗
3(t) = 1− 0.2t/T . In section 4, we demonstrate that these special cases, which

satisfy the two conditions, also surpass the existing state-of-the-art baselines. Thus, fulfilling two
conditions enhances editing speed and quality.

3.4 ENHANCING EDITABILITY WITH FREEU

For an improved architecture, we introduce utilizing FreeU in 3D editing to enhance editability with-
out additional memory usage and computational costs. FreeU suppresses high-frequency features
by scaling up the backbone features, which contain a large amount of low-frequency information (Si
et al., 2023). The amplifying backbone features stresses low-frequency features, thereby relatively
reducing the impact of high-frequency features. Consequently, suppressing high-frequency features
increases editability as sharp characteristics of high-frequency features are smoothed as the edge fea-
tures are weakened. Moreover, identity preservation, corresponding to the low-frequency domain,
is maintained by amplifying backbone features. In conclusion, FreeU enhances editability without
compromising identity preservation. In addition, adopting FreeU instead of Dreambooth and LoRA
removes additional module computations. Consequently, integrating FreeU reduces editing time
without incurring extra computational overhead.

7
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“a photo of a person” → “... clown”

“a photo of a face” → “... skull”

“a photo of a plant” → “... tulip above the flowerpot with soil”

“a photo of a bear statue” → “... asiatic black bear”

(a) Source (b) IN2N (c) PDS (d) Ours

Figure 4: Qualitative comparison with baseline methods on NeRF scenes. We provide visual
editing results in NeRF scenes for each baseline method and DreamCatalyst. DreamCatalyst demon-
strates more photorealistic editability while preserving the identity of source scenes such as struc-
tures and backgrounds.

4 EXPERIMENTS
We conduct experiments on real scenes using datasets from IN2N and PDS. The types of scenes
include a sitting person, a full-body person, a face, objects, and outdoor scenes. We evaluate our
method and baselines in eight scenes with 40 pairs of source and target text prompts. For compar-
isons, we evaluate our method against state-of-the-art baselines on NeRF scenes: IN2N and PDS, as
well as on 3DGS scenes: PDS, GaussianEditor (Chen et al., 2024b) and DGE (Chen et al., 2024a).
Furthermore, we compare two modes of DreamCatalyst: (1) a high-quality mode, and (2) a fast
mode, which requires fewer training iterations than the high-quality mode. Additionally, we present
an ablation study addressing how FreeU affects DreamCatalyst. Unless explicitly stated as using
Ψ∗

2(t) or Ψ∗
3(t), all results presented from our method (in both NeRF and 3DGS scenes) are based

on the use of the default Ψ∗(t) coefficient.

4.1 QUALITATIVE EVALUATION

In Fig. 4, we present a qualitative comparison with the baseline methods on NeRF scenes, focusing
on both identity preservation and editing effectiveness. DreamCatalyst consistently generates more
detailed and photorealistic results compared to the baseline methods (e.g., tulips generated by other
methods appear blurred and lack fine details, compromising the edit). Furthermore, while other
methods result in blurry and over-saturated backgrounds, DreamCatalyst preserves the identity of
the source scenes by maintaining background details and overall structure. Although PDS aligns
well with the target text prompt in terms of subject editing, it struggles with identity preservation.

8
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Table 1: Quantitative comparison on NeRF
scenes. Ours outperforms the baseline methods
on NeRF editing. Bold represents the best result,
and underline indicates the second-best result.

Method CLIP-Direc
(↑)

CLIP-Img
(↑)

Aesthetic
(↑)

Total time
(min, ↓)

IN2N 0.157 0.722 5.399 ∼ 130
PDS 0.161 0.687 5.437 ∼ 580

Ours (fast) 0.165 0.746 5.557 ∼ 25
Ours 0.180 0.746 5.688 ∼ 70

Ours (w/ Ψ∗
2) 0.178 0.745 5.659 ∼ 70

Ours (w/ Ψ∗
3) 0.178 0.749 5.659 ∼ 70

Table 2: Quantitative comparison on 3DGS
scenes. Bold represents the best result in each
category, and underline indicates the second-best
result among the model-specific methods.

Category Method CLIP-Direc
(↑)

CLIP-Img
(↑)

Aesthetic
(↑)

Model-Agnostic PDS 0.108 0.627 4.977
Ours 0.171 0.724 5.336

Model-Specific

GE (DDS) 0.150 0.593 4.860
GE (IN2N) 0.138 0.765 5.508

DGE 0.154 0.758 5.517
GE (Ours) 0.152 0.773 5.588

GE (Ours+fast) 0.143 0.777 5.541

0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
CLIP Directional Similarity

0.5

0.6

0.7

0.8

0.9

1.0

CL
IP

 Im
ag

e 
Si

m
ila

rit
y

Ours
Ours(fast)
IN2N
PDS

Figure 5: Scatter plot comparing our
method against baseline methods on NeRF
scenes. The plot shows NeRF editing per-
formance on CLIP directional similarity and
CLIP image similarity for baseline methods:
IN2N, PDS, and our method, including the
fast training mode (fast). Trend lines are
fitted using linear regression. Shaded areas
around the trend lines indicate the 95% con-
fidence intervals.

Specifically, the backgrounds in PDS results are particularly prone to over-saturation or unrealistic
color shifts. This highlights a key limitation of PDS, as it tends to prioritize the edit at the expense
of maintaining the original scene’s identity. In contrast, DreamCatalyst achieves a better balance
editability and identity preservation, resulting in superior overall performance. Qualitative compar-
isons on 3DGS scenes are provieded in Appendix C.3.

4.2 QUANTITATIVE EVALUATION

We evaluate DreamCatalyst and baseline methods using three key metrics: CLIP directional similar-
ity (Patashnik et al., 2021), CLIP image similarity, and aesthetic score (Schuhmann, 2022). CLIP di-
rectional similarity measures image-text alignment, CLIP image similarity assesses identity preser-
vation, and the aesthetic score reflects the visual quality of the edits. As shown in Tab. 1 and Fig. 5,
DreamCatalyst achieves the highest scores across all metrics on NeRF editing. This is particularly
notable, as other baseline methods, such as PDS, tend to excel in one area—such as high CLIP
directional similarity or aesthetic score—but struggle in others, particularly in maintaining identity
preservation. DreamCatalyst, however, strikes a balance across all three metrics, generating edits
that are both photorealistic and faithful to the source scene.

Additionally, we measure the editing time for each method. For a fair comparison, all methods are
evaluated at the same resolution. DreamCatalyst with a fast mode is approximately 23 times faster
than PDS, and the high-quality mode is about eight times faster than PDS. Despite IN2N performing
edits in 2D space, which requires less time than direct 3D editing methods, DreamCatalyst is still
1.85× faster than IN2N, even in the high-quality mode. Moreover, as shown in Tab. 1, the results
from our method using Ψ∗

2 and Ψ∗
3 consistently outperform the baselines across all metrics.

In the 3DGS setting, we first compare DreamCatalyst with baseline model-agnostic editing method,
which are distinct from 3DGS-specific approaches. Further details of model-agnostic and model-
specific methods are in Appendix B.2. As demonstrated in Tab. 2, DreamCatalyst achieves the
highest scores across most metrics on 3DGS editing. This indicates that our approach is an effec-
tive model-agnostic editing method applicable to both NeRF and 3DGS scenes. Additionally, inte-
grating DreamCatalyst with GaussianEditor (GE) yields state-of-the-art results, demonstrating that
DreamCatalyst enhances the performance of 3DGS-specific methods. Furthermore, the fast mode of
GE with DreamCatlayst not only outperforms the baselines but also achieves a training speedup of
1.25× compared to the vanilla GE. We emphasize that as better 3DGS baseline architectures using
score distillation emerge, our approach can be applied to further improve their performance.
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Table 3: User studies. We conduct user stud-
ies to measure human preference across three
criteria. Our method is more preferred than
other baselines. Bold indicates the best re-
sult.

Method Prompt
Alignment (↑)

Overall
Quality (↑)

Identity
Preservation (↑)

IN2N 19.13% 20.08% 20.05%
PDS 22.58% 19.21% 20.21%
Ours 58.29% 60.71% 59.74%

Table 4: Ablation on FreeU. Quantitative ablation
study on the effects of FreeU. Using FreeU with a
setting of b = 1.1 achieves a balanced trade-off be-
tween editability and identity preservation in the gen-
erated results. Bold indicates the best result.

b CLIP-Direc (↑) CLIP-Img (↑) Aesthetic (↑)

1.0 (w/o FreeU) 0.171 0.744 5.564
1.1 (ours) 0.180 0.746 5.688

1.3 0.183 0.710 5.624

(a) Source (b) b = 1.1 (ours) (c) b = 1.3 (over-editing) (d) w/o FreeU

Figure 6: Qualitative ablation on FreeU. The first row shows the ablation of FreeU with the text
prompt “Turn him into Batman.” The use of FreeU enhances editability, as demonstrated by the
Batman logo (green bounding box) and instances of over-editing (red bounding box).

4.3 USER STUDY

We conduct user studies, as in Tab. 3, because the metrics assessing 2D images are insufficient
for evaluating 3D scenes. Participants were asked to select the best video from the baselines and
DreamCatalyst based on 15 text prompts, evaluated across three criteria: (1) prompt alignment,
(2) overall quality, and (3) identity preservation. To gather human preference data, we utilized
Amazon Mechanical Turk to survey 100 participants. As a result, DreamCatalyst is preferred over
the baselines by a large margin across all criteria, receiving nearly three times as many selections
compared to other models. Further details about the user studies are provided in Appendix E.3.

4.4 ABLATIONS

We demonstrate the effectiveness of FreeU in our method with qualitative and quantitative compar-
isons. FreeU modifies the scale of upsampling features in U-Net decoder using a parameter b. In
this framework, increasing the value of b leads to the suppression of high-frequency components
in an image. We hypothesize that this characteristic of FreeU facilitates easier editing. However,
if b is set too high, the editing process becomes excessively easy. This hypothesis is supported by
the results shown in Fig. 6 (b) and (c), where the use of FreeU with b = 1.3 results in excessive
editing. This over-editing is not confined to the primary subject but extends to the background as
well. While increasing b in FreeU can enhance the editing process, excessive suppression of high-
frequency components can lead to overly smooth results and unintended editing artifacts. As shown
in Tab. 4, despite CLIP directional similarity increases as b increases, the values of the other metrics
are decreased in b = 1.3. Thus, FreeU with a setting of b = 1.1 achieves balanced results.

5 CONCLUSION

We propose a general formulation for 3D editing by unveiling the relationship between the reverse
SDEdit process and DDS. Based on this formulation, we introduce DreamCatalyst, which considers
the dynamics of a diffusion process to edit 3D scenes with an SDS-based approach as a reverse
SDEdit process. Moreover, we suggest using FreeU in Score Distillation to overcome the trade-offs
between editability and identity preservation inherent in the formulation. Consequently, DreamCata-
lyst achieves fast and high-quality 3D editing on both NeRF and 3DGS scenes. Through comparative
analysis and user studies, we demonstrate that DreamCatalyst surpasses state-of-the-art methods in
both performance and editing speed.
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Ethics Statement

There have been several advancements in text-driven 3D scene editing, yet few methods (Koo et al.,
2023) focus on altering the formulation of score distillation sampling to preserve the identity of
the original scene. Our method enhances control over the degree of identity preservation, allowing
for more careful and targeted edits that prevent excessive deviation from the source scene. This
controllability is particularly useful in applications where the integrity of the original 3D scene must
be maintained.

However, the ability to precisely manipulate 3D content brings with it significant ethical responsibil-
ities. We emphasize the need for robust ethical guidelines and regulations to prevent the misuse of
this technology that can violate human rights. The potential for misuse underscores the importance
of ongoing discussions about the ethical frameworks.

Reproducibility Statement

Please refer to our anonymized repository: https://anonymous.4open.science/r/
DreamCatalystPaperCode/. This repository provides the source code, setup, and datasets
used in the experiments.
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A PRELIMINARIES

SDEdit. SDEdit (Meng et al., 2021) is proposed to edit the images with the trained score network
(i.e., a denoising network ϵθ in diffusion models) by solving the stochastic differential equations
(SDEs) (Song et al., 2020b). SDEdit moves the data point sequentially by leveraging the estimated
score function ∇ log p(xt) ≈ λϵθ(xt, t) with the reverse Variance Preserving (VP) SDE:

xt−1 =
√
ᾱt−1x̂0|t +

√
1− ᾱt−1ϵ, ϵ ∼ N (0, I), (16)

where λ is a scaling factor. Iteratively shifting the data point with the reverse VP-SDE synthesizes
the edited image.

B IMPLEMENTATION DETAILS

B.1 NERF EDITING

We utilize Nerfstudio (Tancik et al., 2023) for experiments. We train the nerfacto model from
Nerfstudio for initialization with source scenes. For a fair comparison, we set different training steps
for each method: 3,000 iterations for our method, 1,000 iterations for our method with the fast mode,
15,000 iterations for IN2N, and 30,000 iterations for PDS, following the original settings of their
respective baselines. Based on previous researches (Poole et al., 2022; Katzir et al., 2023) indicating
that higher classifier guidance may lead to over-saturated and poor edited results, we select a weight
of 7.5 for classifier-free guidance in our method. During editing, we train the model using the
Adam optimizer and an exponential decay learning rate scheduler. Specifically, since our method
requires fewer iterations than PDS, we set smaller warm-up steps of learning rate schedulers: 100
for proposal networks and fields, and 300 for camera optimizers. We use a DDIM scheduler with
500 inference steps.

We employ InstructPix2Pix (IP2P) (Brooks et al., 2023) as a pretrained diffusion model, which
takes the source image as input to incorporate a prior of the source. For this reason, our method does
not require additional training or fine-tuning, in contrast to PDS, which necessitates fine-tuning
diffusion models with DreamBooth (Ruiz et al., 2023) in advance. Additionally, we do not apply the
refinement stage on PDS for an impartial comparison. All experiments are conducted on a single
NVIDIA A6000 GPU.

B.2 3DGS EDITING

For a fair comparison in 3DGS editing, we classify the baseline methods into two categories:
model-agnostic and model-specific approaches. Model-specific methods, such as Gaussian Editor
(GE) (Chen et al., 2024b) and DGE (Chen et al., 2024a), are designed for 3DGS scene editing and
are not directly applicable to NeRF editing. Specifically, GE introduces semantic tracing to enable
continuous tracking of Gaussian semantic labels, dynamically constraining the editing regions. Ad-
ditionally, it implements hierarchical Gaussian splatting, which categorizes Gaussians into different
generations to mitigate the effects of stochastic generative guidance. DGE performs 3DGS editing
by applying key-view edits in 2D space and propagating the edited features across other views using
epipolar constraints. This method involves iterative dataset updates, where the 3D scene is edited
based on the 2D-edited frames. However, the techniques proposed in DGE are designed for explicit
3D models and cannot be applied to NeRF scenes. In contrast, model-agnostic approaches like
PDS and DreamCatalyst can be applied across different 3D editing frameworks including NeRF and
3DGS. These methods modify score distillation sampling formulations or diffusion architectures,
making them independent of the specific 3D model used.

We utilize two frameworks for a fair comparison in 3DGS editing within each category: Nerfs-
tudio for model-agnostic methods and Threestudio (Guo et al., 2023) for model-specific methods.
This selection is based on the fact that PDS is based on Nerfstudio, while GE and DGE employ
Threestudio. For model-agnostic methods, we train the splatfacto model from Nerfstudio for
initialization with source scenes, following the setup in the PDS paper. We set 3,000 training steps
for our method and 30,000 steps for PDS, adhering to the PDS baseline settings. For model-specific
methods, we choose 1,500 steps for our method with GE in high-quality mode and 1,200 steps in
fast mode. Additionally, we set 500 steps and 1,500 steps for DGE and GE respectively, following
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the original settings of their baselines. As detailed in Appendix B.1 for NeRF Editing, we use the
same small warm-up steps for the learning rate schedulers for Gaussian parameters in Nerfstudio,
including centers, spherical harmonics, opacity, scaling, and rotation. These parameters, along with
camera parameters, are trained for a maximum of 3,000 steps. In the comparison of model-specific
methods using Threestudio, we apply the same learning rate scheduler settings for Gaussian pa-
rameters. Additionally, to prevent over-densification in GE, we limit densification phases to 1,200
iterations in the high-quality mode of our method, ensuring that excessive cloning or splitting does
not occur at the end of the editing process. All other parameters follow the original GE settings, and
the experiments are conducted on a single NVIDIA A6000 GPU.

B.3 TEXT-GUIDANCE IN DREAMCATALYST

In DreamCatalyst, we employed InstructPix2Pix (IP2P), which is prevalently used in NeRF and 3D
Gaussian Splatting editing (Kim et al., 2023; Palandra et al., 2024), for instructive editing. The
guidance of IP2P is composed of image and text conditioning. DreamCatalyst sets ωy = 0 for
ϵωθ (x

src
t , y

src, t) as Collaborative Score Distillation (CSD) (Kim et al., 2023), because contents in
target and source prompts are often intersected. This setting prevents interruption in guidance toward
the intersected contents. The image and text-guided noise prediction is calculated as follows:

ϵωθ (x
tgt
t , y

tgt, t) = ϵθ(x
tgt
t , y∅, t) + ωy(ϵθ(x

tgt
t , y

tgt, x̃src, t)− ϵθ(x
tgt
t , y∅, x̃

src, t))

+ωI(ϵθ(x
tgt
t , y∅, x̃

src, t)− ϵθ(x
tgt
t , y∅, x̃∅, t)), (17)

ϵωθ (x
src
t , y

src, t) = ϵθ(x
src
t , y∅, t) + ωI(ϵθ(x

src
t , y∅, x̃

src, t)− ϵθ(x
src
t , y∅, x̃∅, t)), (18)

where ωI is a scale of image-guidance, and x̃src and x̃∅ are embeddings of a source image and a
null-image, respectively.

C ADDITIONAL QUALITATIVE EVALUATION

C.1 COMPARISON WITH PDS USING DIFFUSION REVERSE PROCESS

As shown in Fig. 7, we compare our method with PDS when using a approximated diffusion reverse
process with decreasing timestep scheduling in NeRF scenes. PDS, originally designed with random
timestep sampling, performs poorly in this setting, leading to significant loss of fine details and
identity features.

For instance, in the first row of Fig. 7, the model generates a highly distorted figure with blurred
outlines and missing structural detail in PDS. However, our method preserves the subject’s physical
characteristics. The same behavior is observed in the second and third rows, where the objects
generated by PDS appear more synthetic, lacking texture and natural form. Specifically, in the case
of the third row, PDS loses the facial structure of the source image and produces an unrealistic
outcomes.

This comparison underscores a limitation of applying the approximated diffusion reverse process
with decreasing timestep scheduling in PDS. While this approach may offer faster edits, it comes
at the expense of sacrificing essential identity features and fine-grained details. On the other hand,
our method effectively leverages the diffusion reverse process while maintaining the identity of the
source scene.

C.2 COMPARISON IN NERF SCENES

We compare the results of our method the figures provided in PDS (Koo et al., 2023). Figure 16
incorporate teaser results of Batman and tulip examples from PDS. Additionally, we include a
comparison of editing a face into a skull using results obtained from the official PDS project
page(https://posterior-distillation-sampling.github.io). As a results, DreamCatalyst demonstrates
more realistic editing results while preserving the background details, outperforming the represen-
tative results of PDS.
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C.3 COMPARISON IN 3DGS SCENES

Fig. 8 presents additional qualitative results for methods specifically designed for 3DGS, including
Gaussian Editor (GE) and DGE. Since our method is adaptable to various 3D editing frameworks
through score distillation sampling, we also evaluate GE’s performance when integrated with our
approach.

Both GE and DGE rely on 2D segmentation masks for partial editing, which are then projected into
3D. However, unprojecting 2D segmentation masks onto 3D scenes often results in inconsistencies,
as the masks may not accurately align with the 3D structure. Additionally, the segmentation text
prompt may not fully correspond to the intended editing target, leading to unintended areas being
included in the editing region. For instance, in the first and second rows of Fig. 8, GE introduces
unintended edits to irrelevant regions based on the provided prompts, such as altering the clothing in
the Einstein image or the arms of the clown. Moreover, in the third row, both baselines fail to gener-
ate the tulip on the plant as specified by the target prompt. In contrast, the Gaussian Editor combined
with our method demonstrates a better trade-off between editing quality and identity preservation.

Further qualitative comparisons between model-agnostic methods in 3DGS scenes are shown in
Fig. 9. We compare our method with 3D editing results from PDS without any refinement stage to
ensure a fair comparison. In the first, second, and fourth rows of Fig. 9, PDS struggles to maintain
the structural integrity of the source and generates blurry, over-saturated results. Additionally, in
the third row, PDS fails to edit the man into a Hulk as required by the target prompt. In contrast,
DreamCatalyst produces more accurate, detailed, and visually superior edited results.

C.4 MORE QUALITATIVE ABLATION ON FREEU

As seen in Fig. 10, different values of b result in varying levels of editability and identity preser-
vation. When b = 1.0, the model often struggles to fully align with the text prompts, leading to
incomplete or subtle edits. For example, in the second row of Fig. 10, the editing with b = 1.0 fails
to apply the snow effect across the scene. Similarly, in the fourth row, the model fails to render the
elf-like green hair, suggesting that a low b hinders the model’s ability to achieve complete editing.
Conversely, when b is increased to 1.3, over-editing becomes more pronounced, often resulting in
unnatural outcomes or edits being applied to unintended areas. In the first row of Fig. 10, we observe
that the Joker’s face is reflected in the background wall, an unintended consequence of over-editing.
Likewise, in the third row, the sunflower appears both in the pot and the background, further demon-
strating that b = 1.3 leads to excessive and unrealistic editing. Our proposed setting, b = 1.1,
achieves an optimal balance between identity preservation and editability. Thus, using FreeU with
an adequate value of b produces editing results that are visually coherent while aligning with the text
prompt without introducing artifacts or over-editing as seen in higher values of b.

Furthermore, we integrate FreeU with PDS to qualitatively evaluate the effect of FreeU. As shown
in Figure 19, PDS with FreeU tends to produce over-edited results and more background distortions
compared to the original PDS. This indicates that the effect of FreeU is sensitive to the editing
capabilities of the baseline method. In contrast, DreamCatalyst without FreeU already produces
more realistic and visually appealing edits compared to PDS with FreeU. Thus, DreamCatalyst
effectively balances editability and identity preservation by combining modified loss weighting and
FreeU.

D ADDITIONAL QUANTITATIVE EVALUATION

D.1 COMPARISON IN CONVERGENCE SPEED

In this section, we highlight DreamCatalyst’s faster convergence speed compared to other meth-
ods. Figure 17 quantitatively demonstrates that DreamCatalyst converges significantly faster than
the baseline methods. For this evaluation, we utilized CLIP Directional similarity as a metric to
reflect the editing convergence behavior, since CLIP image similarity and Aesthetic score do not
adequately capture the editing convergence behavior. Figure 18 presents qualitative results high-
lighting the editing convergence. These results indicate that DreamCatalyst achieves substantially
faster convergence compared to PDS and IN2N.
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“a photo of a man” → “... Storm Trooper”

“a photo of a bamboo” → “... orange tree with oranges”

“a photo of a face” → “... skull”

(a) Source (b) PDS (decreasing timestep) (c) Ours

Figure 7: Qualitative comparison with PDS using diffusion reverse process with decreasing
timestep scheduling in NeRF scenes. When applying the PDS method with decreasing timestep
scheduling, the results lose fine details and fail to preserve key identity features.

D.2 QUANTITATIVE ABLATION ON FREEU

We conduct experiments applying FreeU to both PDS and DreamCatalyst, as in Table 6. We set the
FreeU hyperparameter b = 1.1 for PDS, consistent with its configuration in DreamCatalyst. The
results show a slight increase in the CLIP-Directional Similarity, from 0.161 to 0.162, indicated
enhanced editability with the use of FreeU. However, both the CLIP Image Similarity and Aesthetic
Score decreased—from 0.687 to 0.668 and from 5.437 to 5.413, respectively. This decline can be
attributed to PDS underweighting identity preservation at large timesteps as in Figure 2a, leading
to insufficient preservation of identity features. The improved editability from FreeU exacerbates
this issue, resulting in a loss of original identity and the generation of unrealistic image outputs, as
detailed in Appendix C.4 and visualized in Figure 19.

However, integrating FreeU into our method led to significant improvements in both the CLIP-
Directional Similarity (from 0.171 to 0.180) and the Aesthetic Score (from 5.564 to 5.688), high-
lighting enhanced editability and visual quality. DreamCatalyst achieves an effective balance be-
tween editability and identity preservation by combining modified loss weighting with FreeU. These
results indicate that while FreeU can enhance editability metrics, its effectiveness depends on the
underlying method’s ability to preserve identity features and produce realistic images. Therefore,
combining our modified loss weighting with FreeU is essential for achieving superior results in
DreamCatalyst.
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“a photo of a face” → “... Einstein”

“a photo of a person” → “... clown”

“a photo of a plant” → “... tulip above the flowerpot with soil”

(a) Source (b) GE (IN2N) (c) DGE (d) GE (Ours)

Figure 8: Qualitative comparison with model-specific baseline methods on 3DGS scenes.

E EXPERIMENTAL DETAILS

E.1 EVALUATION METRICS

A qualitative assessment of DreamCatalyst was conducted using three evaluation methods: CLIP
image similarity, CLIP directional similarity, and aesthetic score. The CLIP image similarity met-
ric (Hessel et al., 2021) quantifies the visual similarity between original and edited images based
on CLIP embeddings, ensuring visual consistency between them. CLIP directional similarity met-
ric (Gal et al., 2022) quantifies the alignment of the changes between two text captions (ground-
truth and edited) with the changes in two images (ground-truth and edited). Lastly, the aesthetic
score metric quantifies the overall quality of the edited image, with the LAION Aesthetic Predic-
tor (Schuhmann, 2022).

E.2 EVALUATION TEXT PROMPTS

Since IN2N (Haque et al., 2023), GE (Chen et al., 2024b), DGE (Chen et al., 2024a), and our method
are based on IP2P (Brooks et al., 2023), these are specialized in processing instruction-style text
prompts. In contrast, PDS utilizes the Stable Diffusion model (Rombach et al., 2022), which is de-
signed to understand description-style text prompts. Therefore, we conduct experiments using pairs
of corresponding description-style and instruction-style prompts curated from prior works (Haque
et al., 2023; Koo et al., 2023) or generated by GPT-4 (OpenAI, 2023). We then conduct experiments
on PDS using description-style text prompts (e.g., “a photo of a Batman”), while IN2N, GE, DGE,
and our method utilize instruction-style prompts (e.g., “Turn him into a Batman”). The detailed list
of text prompts used for the evaluation can be found in Tab. 5

E.3 USER STUDY DETAILS

We recruited 100 participants using Amazon Mechanical Turk to ensure a fair comparison. To
maintain consistent evaluations of the 3D scenes, we followed the same camera trajectory for each
scene and recorded rendered videos of both the source and edited NeRF scenes. To ensure data
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“a photo of a bear statue” → “... polar bear”

“a photo of a person” → “... Super Mario”

“a photo of a man” → “... hulk”

“a photo of a person” → “... Leonardo Dicaprio”

(a) Source (b) PDS (c) Ours

Figure 9: Qualitative comparison with model-agnostic baseline methods on 3DGS scenes.

quality, we included vigilance tasks, asking participants to identify trivially incorrect edited results
(e.g., edited scenes from different source scenes) as in Fig. 11. Only participants who passed these
tasks were included in the analysis.

Participants were shown a rendered video of a source scene along with the corresponding source
prompt. They were then asked to evaluate the edited scenes generated by different baselines, in-
cluding IN2N (Haque et al., 2023), PDS (Koo et al., 2023), and our proposed method as shown in
Fig. 12. Each baseline was edited based on a specific target prompt, and the baseline options were
randomly shuffled for each evaluation.

Participants were instructed to select the best result for each criterion, based on the following:

1. Prompt alignment (Editability): When editing the video, which video best aligns with
the text prompt?

2. Identity preservation: When editing the source video, which edited video best preserves
the background and identity of the source video?

3. Overall quality: When editing the video, which video shows the best editing quality?
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“a photo of a man” → “... Joker”

“a photo of a campsite” → “... just snowed”

“a photo of a plant” → “... sunflower above the flowerpot with soil”

“a photo of a face” → “... Tolkien Elf ”

(a) Source (b) b = 1.0 (w/o FreeU) (c) b = 1.1 (ours) (d) b = 1.3

Figure 10: More qualitative ablation on FreeU for our method in NeRF editing. The figure
illustrates the effects of varying b values on editability and identity preservation. Lower b values
struggle to fully apply the edits, while higher b values lead to over-editing.

Figure 11: Vigilance test for user study. The vigilance test was used to ensure participant atten-
tiveness during the user study. Participants were asked to identify trivially incorrect edited videos,
such as those with irrelevant or mismatched prompts and edits.
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Scene Source Prompt Target Prompt (Description) Target Prompt (Instruction)

Face “a photo of a face” “a photo of the Tolkien Elf” “Turn him into the Tolkien Elf”
Face “a photo of a face” “a photo of the Emma Watson” “Turn him into Emma Watson”
Face “a photo of a face” “a photo of Elon Musk” “Turn him into Elon Musk”
Face “a photo of a face” “a photo of an Einstein” “Turn him into an Einstein”
Face “a photo of a face” “a photo of a face with mustache” “Give him a mustache”
Face “a photo of a face” “a photo of Leonardo Dicaprio” “Turn him into Leonardo Dicaprio”
Face “a photo of a face” “a photo of a skull” “Turn his face into a skull”
Bear “a photo of a bear

statue”
“a photo of a grizzly bear” “Turn the bear statue into a grizzly

bear”
Bear “a photo of a bear

statue”
“a photo of a panda” “Turn the bear statue into a panda”

Bear “a photo of a bear
statue”

“a photo of an asiatic black bear” “Turn the bear statue into an asiatic
black bear”

Bear “a photo of a bear
statue”

“a photo of a polar bear” “Turn the bear statue into a polar
bear”

Bear “a photo of a bear
statue”

“a photo of a Bengal tiger” “Turn the bear statue into a Bengal
tiger”

Bear “a photo of a bear
statue”

“a photo of a skull bear” “Turn the bear statue into a skull
bear”

Person “a photo of a person” “a photo of a Super Mario” “Turn him into a Super Mario”
Person “a photo of a person” “a photo of a clown” “Turn him into a clown”
Person “a photo of a person” “a photo of a person reading a

book”
“Make him reading a book”

Person “a photo of a person” “a photo of a person wearing a
sunglass”

“Wear him a sunglass”

Person “a photo of a person” “a photo of a Storm Trooper” “Turn him into a Storm Trooper”
Person “a photo of a person” “a photo of Elon Musk” “Turn him into Elon Musk”
Person “a photo of a person” “a photo of an Iron Man” “Turn him into an Iron Man”
Person “a photo of a person” “a photo of a Jack Sparrow” “Turn him into a Jack Sparrow”
Person “a photo of a person” “a photo of a bronze statue” “Make him into a bronze statue”
Plant “a photo of a plant” “a photo of a rose above the

flowerpot with soil”
“Turn only the plant above the

flowerpot into a rose and keep soil”
Plant “a photo of a plant” “a photo of a sunflower above the

flowerpot with soil”
“Turn only the plant above the

flowerpot into a sunflower and keep
soil”

Plant “a photo of a plant” “a photo of a tulip above the
flowerpot with soil”

“Turn only the plant above the
flowerpot into a tulip and keep soil”

Bamboo “a photo of a bamboo” “a photo of an orange tree with
oranges”

“Turn the tree into an orange tree
with oranges”

Campsite “a photo of a campsite” “a photo of a campsite just
snowed”

“Make it look like just snowed”

Campsite “a photo of a campsite” “a photo of a campsite at sunset” “Make it sunset”
Farm “a photo of a farm” “a photo of a farm in autumn” “Make it autumn”

Yuseung “a photo of a man” “a photo of a Batman” “Turn him into a Batman”
Yuseung “a photo of a man” “a photo of a Marvel’s

Spider-Man”
“Turn him into a Marvel’s

Spider-Man”
Yuseung “a photo of a man” “a photo of a clown” “Turn him into a clown”
Yuseung “a photo of a man” “a photo of a Joker” “Turn him into a Joker”
Yuseung “a photo of a man” “a photo of a Hulk” “Turn him into a Hulk”
Yuseung “a photo of a man” “a photo of a Thanos” “Turn him into a Thanos”
Yuseung “a photo of a man” “a photo of Leonardo Dicaprio” “Turn him into Leonardo Dicaprio”
Yuseung “a photo of a man” “a photo of a Darth Vader” “Turn him into a Darth Vader”
Yuseung “a photo of a man” “a photo of a Storm Trooper” “Turn him into a Storm Trooper”
Yuseung “a photo of a man” “a photo of a Deadpool” “Turn him into a Deadpool”
Yuseung “a photo of a man” “a photo of a baldman” “Make him a bald”

Table 5: Detailed evaluation text prompts. The description-style prompts are used for PDS, which
employs the Stable Diffusion model (Rombach et al., 2022), while the instruction-style prompts are
applied to IN2N, GE, DGE, and our method, all of which utilize the InstructPix2Pix model (Brooks
et al., 2023).
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Figure 12: User study. Participants evaluated edited videos based on three criteria: prompt align-
ment, identity preservation, and overall quality. Each video was randomly shuffled for each evalua-
tion to ensure unbiased selections. The target text prompts were highlighted in the prompt alignment
questions.

F MORE VISUAL RESULTS

F.1 RESULTS FROM DIFFRENT MODES IN DREAMCATALYST

In Fig. 13, we present additional visual results demonstrating the effectiveness of DreamCatalyst
in both its fast and high-quality modes. Across a variety of scenes, DreamCatalyst preserves both
editability and identity consistency. In the first row, for the target prompt of turning a campsite
scene into a sunset, both modes produce convincing results with natural lighting, though minor
color variations are visible between the fast and high-quality modes. Similarly, in the second row,
when editing a bear statue into a panda, the fast mode accurately captures the desired editing, while
the high-quality mode refines the textures for more photorealistic details. For more complex cases,
such as in the third, fourth, and fifth rows, the high-quality mode captures finer details, while the
fast mode still maintains overall structural accuracy. These examples highlight the ability of our
method to achieve high visual fidelity while balancing computational efficiency across different
modes, making it adaptable to varying time constraints and quality requirements.

F.2 RESULTS FROM DIFFERENT WEIGHTING FUNCTIONS

As defined in Equation 14, Ψ∗ is a weighting function applied to LDDS based on timesteps. As
demonstrated in Fig. 2b, modifying the weighting function Ψ∗ to either Ψ∗

2 or Ψ∗
3 increases editabil-

ity at lower timesteps. However, these variations do not significantly impact the results compared to
Ψ∗. For instance, in both the first and second rows of Fig. 14, there is no major difference among
the outputs from different weighting functions, leading to only subtle changes in the background.

Our findings confirm that fulfilling the two conditions mentioned in Sec. 3.1 enables effective 3D
editing regardless of the specific choice of weighting function. However, we observe that inordinate
editability in small timesteps rarely induces trivial color saturations on backgrounds—e.g., row 2
in Figure 14. We hypothesize that the excessive editability during the final stages induces these
color saturation artifacts. To prevent these color saturations, we design Ψ∗(t) to drastically decrease
editability in small timesteps. Thus, we utilize Ψ∗ as the default weighting function for LDDS, as
supported by the quantitative results in Tab. 1. We leave the exploration of more optimal design
choices for future work.
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“a photo of a campsite” → “... sunset”

“a photo of a bear statue” → “... panda”

“a photo of a plant” → “... tulip above the flowerpot with soil”

“a photo of a face” → “... Einstein”

“a photo of a man” → “... hulk”

(a) Source (b) Ours (fast) (c) Ours

Figure 13: Visual results from DreamCatalyst in different modes. The fast mode of our method
produces visually comparable results to the high-quality mode, while reducing editing time to ap-
proximately 35% of the high-quality mode.
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“a photo of a man” → “... clown”

“a photo of a face” → “... skull”

(a) Source (b) Ψ∗ (ours) (c) Ψ∗
2 (d) Ψ∗

3

Figure 14: More visual results on weighting functions of LDDS for NeRF editing.

(a) Source (b) 2D editing with IP2P (c) Ours (d) Ours (with detailed
text prompt)

Figure 15: Limitations. The limitations of IP2P are reflected in the 3D editing process. In cases
where IP2P struggles with 2D edits for a simple text prompt as in (b), this failure extends to the 3D
editing as seen in our result with IN2N. The simple text prompt like “Turn the plant into a rose” fails
to produce the desired outcomes as in (c). However, when using a more detailed prompt like “Turn
only the plant above the flowerpot into a rose and keep soil,” our method successfully generates a
rose on top of the branch as shown in (d).

G ADDITIONAL DISCUSSIONS

G.1 LIMITATIONS

DreamCatalyst uses IP2P (Brooks et al., 2023) as a pretrained diffusion model for distilling 2D
prior knowledge in the 3D editing process. However, the limitations of IP2P can carry over into 3D
editing tasks. As shown in Fig. 15, when IP2P struggles with specific 2D edits, these limitations
extend to our 3D editing results. If IP2P does not effectively edit certain prompts in 2D, the 3D
editing may also fail to align with target text prompt. As IP2P or other 2D diffusion models improve
in accuracy and prompt alignment, 3D editing capabilities of our method are expected to similarly
improve, offering more reliable and precise outputs.
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“a photo of a man” → “... batman”

“a photo of a plant” → “... tulip above the flowerpot with soil”

“a photo of a face” → “... a mustache”

(a) Source (b) PDS (c) Ours

Figure 16: Qualitative comparison with the original PDS paper. We compare our results with
those presented in the original PDS paper. The top two rows show results from the teaser figure
in the original PDS paper, and the last row is from a figure on the official project page of PDS
(https://posterior-distillation-sampling.github.io).
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Figure 17: Comparison of CLIP Directional Similarity across different iterations for ours,
IN2N, and PDS models.
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Ours

IN2N

PDS

“a photo of a campsite” → “... just snowed”

Ours

IN2N

PDS

“a photo of a plant” → “... tulip above the flowerpot with soil”

Ours

IN2N

PDS

“a photo of a face” → “... the Tolkien Elf ”

source 1,000 iter 2,000 iter 3,000 iter 10,000 iter 30,000 iter

Figure 18: Qualitative comparison of different models across editing iterations for different
editing prompts.
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“a photo of a face” → “... skull”

“a photo of a man” → “... Leonardo Dicaprio”

“a photo of a bear statue” → “... asiatic black bear”

(a) Source (b) PDS w/o FreeU (c) PDS w/ FreeU (d) Ours w/o FreeU

Figure 19: More qualitative ablation on FreeU for PDS. We evaluate the effect of adding FreeU
to PDS. Each column shows: (a) Source image, (b) Original PDS result (without FreeU), (c) PDS
with FreeU, (d) Our method without FreeU.

Table 6: Ablation on FreeU for PDS. Quantitative ablation study on the effects of FreeU for PDS
and ours.

Model FreeU CLIP-Direc (↑) CLIP-Img (↑) Aesthetic (↑)

PDS ✗ 0.161 0.687 5.437
PDS ✓ 0.162 0.668 5.413
Ours ✗ 0.171 0.744 5.564
Ours ✓ 0.180 0.746 5.688
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