
Under review

UNDERSTANDING AND PREVENTING CAPACITY LOSS
IN REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The reinforcement learning (RL) problem is rife with sources of non-stationarity
that can destabilize or inhibit learning progress. We identify a key mechanism
by which this occurs in agents using neural networks as function approximators:
capacity loss, whereby networks trained to predict a sequence of target values lose
their ability to quickly fit new functions over time. We demonstrate that capacity
loss occurs in a broad range of RL agents and environments, and is particularly
damaging to learning progress in sparse-reward tasks. We then present a simple
regularizer, Initial Feature Regularization (InFeR), that mitigates this phenomenon
by regressing a subspace of features towards its value at initialization, improving
performance over a state-of-the-art model-free algorithm in the Atari 2600 suite.
Finally, we study how this regularization affects different notions of capacity and
evaluate other mechanisms by which it may improve performance.

1 INTRODUCTION

Deep reinforcement learning has achieved remarkable successes in a variety of environments (Mnih
et al., 2015; Moravčı́k et al., 2017; Silver et al., 2017; Abreu et al., 2019), but the precise reasons for
its successes largely remain mysterious. Existing algorithms are highly sensitive to hyperparameters
and seemingly innocuous design choices, to the extent that even minor variations to state-of-the-art
methods can fail to make learning progress on tasks originally solved with ease. These instabilities
are particularly pronounced in sparse-reward environments, where even different random seeds of
the same algorithm can attain dramatically different performance outcomes. In these settings, even
if the agent has experienced the rewards necessary to learn a high-scoring policy, it will often fail to
translate those rewards into successful policy improvements. This presents a stark contrast to super-
vised learning, where existing approaches are reasonably robust to small hyperparameter changes,
random seeds, and GPU parallelisation libraries. Moreover, naive applications of supervised learn-
ing methods such as momentum-based optimization or data augmentation to the RL problem have
produced mixed results, and often require additional modification to yield performance improve-
ments (Bengio et al., 2020; Raileanu et al., 2020).

We hypothesize that the non-stationary prediction problems agents face in RL may be a driving force
in the challenges described above. RL agents must solve a sequence of similar prediction problems
as they iteratively improve their prediction accuracy and their policy (Dabney et al., 2021), and
solving each subproblem in this sequence is necessary to progress to the next subproblem. As
shown in work on active learning, warm-starting a network by fitting similar data to that used in the
downstream task can hurt the network’s final accuracy, even if this data is drawn from the same dis-
tribution (Ash & Adams, 2020). This suggests that the slowly-shifting input and target distributions
RL agents face may be particularly ill-suited to function approximation by deep neural networks.
Indeed, several prior works studying the effect of re-initializing network parameters in reinforce-
ment learning have found this enables agents to break through plateaus and improve generalization
performance (Igl et al., 2021; Fedus et al., 2020).

The principal thesis of this paper is that over the course of training, deep RL agents lose their
capacity to quickly fit new prediction tasks, and in extreme cases this capacity loss prevents the
agent entirely from making learning progress. We present a rigorous empirical analysis of this
phenomenon which considers both the ability of networks to learn new target functions via gradient-
based optimization methods, and their ability to linearly disentangle states’ feature representations.

1

Under review

We confirm that agents’ ability to fit new target functions declines over the course of training in en-
vironments from the Atari suite (Bellemare et al., 2013) and non-stationary reward prediction tasks.
We further find that the ability of representations to linearly distinguish different states, a proxy
for their ability to represent certain functions, quickly diminishes in sparse-reward games, leading
to representation collapse, where the feature outputs for every state in the environment inhabit a
low-dimensional – or possibly even zero – subspace. Finally, we show evidence that representation
collapse is a key factor in agents’ failure to make learning progress in sparse-reward environments.
We then propose a simple regularization technique, Initial Feature Regularization (InFeR), to pre-
vent representation collapse: regress a set of feature projection heads to their values at initialization.
This method improves performance on a number of sparse-reward environments and also increases
the measures of capacity we are interested in, preventing representation collapse in sparse-reward
environments and improving target-fitting capacity in dense-reward environments.

One striking take-away from our results is that agents trained on so-called ‘hard exploration’ games
such as Montezuma’s Revenge can attain significant improvements over existing competitive base-
lines without using smart exploration algorithms. This suggests that the poor performance of deep
RL agents in sparse-reward environments is not solely due to inadequate exploration, but rather also
in part due to poor representation learning. Essentially, agents which are ‘too good’ at predicting the
zero value function lose their ability to fit the non-zero targets necessary for policy improvement. We
believe this has significant implications for how the community views the interplay of exploration
and representation learning in sparse reward environments.

2 BACKGROUND

We consider the reinforcement learning problem wherein an agent seeks to maximize expected
return in an MDP M = (X ,A, R,P, γ), where X denotes the state space, A the action space,
R the reward function, P the transition probability function, and γ the discount factor. We
will be primarily interested in value-based RL, where the objective is to learn the value function
Qπ : X × A → R associated with some (possibly stochastic) policy π : X → P(A), defined as
Qπ(x, a) = Eπ,P [

∑∞
k=0 γ

kR(xk, ak)|x0 = x, a0 = a]. In particular, we are interested in learning
the value function associated with the optimal policy π∗ which maximizes the expected discounted
sum of rewards from any state.

In Q-Learning (Watkins & Dayan, 1992), the agent performs updates to minimize the distance be-
tween a predicted action-value function Q and the bootstrap target defined as

T Q(x, a) = E[R(x0, a0) + γ max
a′∈A

Q(x1, a
′)|x0 = x, a0 = a] . (1)

In most practical settings, updates are performed with respect to sampled transitions rather than
on the entire state space. The target can be computed for a sampled transition (xt, at, rt, xt+1) as
T̂ Q(xt, at) = rt + γmaxaQ(xt+1, a).

When a deep neural network is used as a function approximator (the deep RL setting), Q is defined
to be the output of a neural network with parameters θ, and updates are performed by gradient
descent on sampled transitions τ = (xt, at, rt, xt+1). A number of tricks are often used to improve
stability: the sample-based objective is minimized following stochastic gradient descent based on
minibatches sampled from a replay buffer of stored transitions, and a separate set of parameters
θ̄ is used to compute the targets Qθ̄(xt+1, at+1) which is typically updated more slowly than the
network’s online parameters. This yields the following loss function (where τ denotes the sampled
transition):

`TD(Qθ, τ) = (Rt+1 + γmax
a′

Qθ̄(Xt+1, a
′)−Qθ(Xt, At))

2 . (2)

In this work we will be interested in how additional representation-learning objectives shape agents’
learning dynamics. We will refer to the outputs of the final hidden layer of the network (i.e. the
penultimate layer) as features, denoted φθ(x). Our choice of the penultimate layer is motivated
by prior literature studying representations in RL (Ghosh & Bellemare, 2020; Kumar et al., 2021),
although many works studying representation learning consider the outputs of earlier layers as well.
In general, the features of a neural network are defined to be the outputs of whatever layer is used to
compute additional representation learning objectives.

2

Under review

0 50 100 150 200
Millions of frames

10 3

10 2

M
SE

 o
n

ra
nd

om
 ta

rg
et

s

asteroids

0 50 100 150 200
Millions of frames

10 3

10 2 space_invaders

DDQN
RC-DQN scale=0.1
RC-DQN scale=1.0

Figure 1: Neural networks exhibit a decline
in their ability to fit random network outputs
over the course of training in two demonstra-
tive Atari environments.

0 2 4 6 8
Number of dataset iterations

0.0

0.5

1.0

1.5

M
SE

 o
n

tra
in

 se
t

Random Network Outputs

0 2 4 6 8
Number of dataset iterations

0.000

0.005

0.010

0.015

Indicator Function Targets
Deep ReLU
Deep leaky ReLU
Shallow ReLU
Shallow leaky ReLU

Figure 2: Deeper analysis on a sequential MNIST
prediction setting showing that target-fitting ca-
pacity sees the greatest reduction in low capacity
networks with ReLU units.

3 CAPACITY LOSS

In this section we show that neural networks progressively lose their ability to quickly fit new targets
when trained on sequential prediction tasks (i.e. settings in which the agent must solve a regression
problem that iteratively changes over the course of training) including but not limited to those found
in value-based RL. We find that capacity loss is particularly pronounced in sparse prediction tasks,
where many of the target values the agent seeks to predict are zero. To study the effect of extreme
capacity loss on performance in greater depth, we present a special case of the target-fitting capacity
measure which is efficient to compute and has the intuitive interpretation of measuring the ability
of the representation to linearly disentangle states. We find evidence that agents which have greater
capacity according to this metric tend to achieve better performance in challenging environments
from the Atari suite where agents fail to match human performance, and that those suffering from
representation collapse according to this metric fail to make any learning progress at all.

3.1 TARGET-FITTING CAPACITY

Neural networks trained with temporal difference learning objectives must solve a sequence of target
prediction problems. Ideally, the network should be able to fit later targets as quickly and accurately
as it is able to fit early targets. However, prior work suggests that using ‘warm starts’, i.e. weights
from a network trained on a different dataset or target function, can slow down training on new
data points (Ash & Adams, 2020). We are therefore interested in studying whether this notion
of interference may affect the ability of reinforcement learning agents to make learning progress.
We begin by formally defining a notion of capacity loss which measures whether the network can
quickly fit new targets, for example after a policy improvement step increases the expected reward
obtained in a given state or after the target network is updated.

Definition 1 (Target-fitting capacity). Let PX ∈ P(X) be some distribution over inputs X and
PF a distribution over a family of functions F with domain X . Let N = (gθ, θ0) represent the
pairing of a neural network architecture with some initial parameters θ0, and O correspond to an
optimization algorithm for supervised learning. We measure the capacity of N under the optimizer
O to fit the data-generating distribution D = (PX , PF) as follows:

C(N ,O,D) = Ef∼PF [Ex∼PX
[(gθ′(x)− f(x))2]] where θ′ = O(θ0, PX , f) . (3)

This definition of capacity takes into account the interaction between the optimization algorithm
and the initial parameters, and can be adapted to a broad range of function classes such as the
network’s TD targets on the current dataset, the reward function on the environment, or randomly
generated functions. The choice of function class is crucial to the notion of capacity measured.
Using bootstrap targets from the network’s current parameters can identify networks which cannot
fit their current target function, but may reveal more about the complexity of the network output than
the network’s capacity to fit novel targets. A network which can only output the zero function, for
example, will attain very low Bellman error in a sparse-reward environment, but may not be able to
fit more interesting value functions. In our evaluations, we will therefore consider a random class of
functions which is independent of the current network parameters.

3

Under review

To evaluate target-fitting capacity in deep RL agents, we sample target functions by randomly ini-
tializing neural networks with new parameters, and use the outputs of these networks as targets for
regression. We then load initial parameters from an agent checkpoint at some time t, and regress on
random network outputs over a fixed set of inputs sampled from the earliest available checkpoint’s
replay buffer. This ensures that the same regression problem is being evaluated at every checkpoint.
We then evaluate the mean squared error after training for fifty thousand steps. We observe that as
training progresses agents’ checkpoints on average get modestly worse at fitting these random tar-
gets in most environments; due to space limitations we only show two representative environments
where this phenomenon occurs in Figure 1, and defer the full evaluation to Appendix B. While the
resulting curves are relatively noisy, we do see consistent results across both the double DQN agent
and the agent trained with an additional auxiliary loss. We now turn our attention to a less computa-
tionally expensive experimental setting where it is easier to obtain statistically robust results.

We are particularly interested in understanding why capacity loss occurs. Two possible causes are
immediate: the effect of bootstrapping, and the effect of sequential training. The effect of boot-
strapping on capacity has been studied in other contexts (Mobahi et al., 2020; Kumar et al., 2021).
We aim to isolate the effect of sequential prediction tasks on capacity loss. To minimize the poten-
tial for confounding factors to influence our results, we construct a toy prediction problem on the
MNIST data set. We first consider labels computed by a randomly initialized neural network fθ:
we transform input-label pairs (x, y) from the canonical MNIST dataset to (x, fθ(x)), where fθ(x)
is the network output. To generate a new task, we simply reinitialize the network; our evaluations
consist of 10 such iterations. We further consider a ‘sparse-reward’ version of MNIST: for each of
10 iterations i, we use the label ŷi = 1[y < i]. This mimics sparse-reward environments where
the agent initially obtains no reward in the environment, then gradually improves its policy and thus
increases its prediction targets over the course of training.

In Figure 2 we see that the networks trained in these two experiments both exhibit decreased abil-
ity to fit later target functions under a fixed optimization budget. This effect is strongest in small
networks with ReLU activations, suggesting that some units may be saturating, but we see a sim-
ilar trend across most architectures and prediction tasks. The sparse reward setting is particularly
intriguing: we do not expect to see a monotone increase in error as the later label functions corre-
spond to ‘easier’ learning problems (i.e. predicting the majority class will already yield reasonably
low prediction error), but we do see that for equal difficulty, the network obtains greater error on
the later target set than the earlier one, and this effect is significantly more pronounced than in the
random labels tasks. This suggests that sparse reward signals can be particularly damaging to the
ability of networks to fit new target functions.

3.2 REPRESENTATION COLLAPSE AND PERFORMANCE

Having shown that networks do indeed lose some notion of target-fitting capacity, we now turn
our attention to the interaction between capacity and performance. To study this phenomenon
further, we will use a computationally cheaper measure of network capacity which we call the
effective dimension. An approximation of the rank of a feature embedding, it is both more com-
putationally efficient – as it does not require training a network for several thousand steps – and
requires fewer hyperparameter design choices than the previous capacity metric. While this does
not take into account the ability of the network to update early layers, Appendix B shows that it cor-
relates reasonably well with target-fitting capacity while also being a cheap, low-variance estimator
against which to compare an agent’s relatively noisy performance.
Definition 2 (Effective Dimension). Let φ : X → Rd be a feature mapping. Let Xn ∈ Xn be a
tuple of n states in X sampled from some fixed distribution P . Fix ε ≥ 0, and let φ(Xn) ∈ Rn×d
denote the matrix whose rows are the feature embeddings of states x ∈ Xn. Let SVD(M) denote the
multiset of singular values of a matrix M . Then the effective dimension of φ given input distribution
P is defined to be

ρ(φ, P, ε) = lim
n→∞

EXn∼P [|{σ ∈ SVD
(

1√
n
φ(Xn)

)
|σ > ε}|] (4)

for which a consistent estimator can be constructed as follows

ρ̂n(φ,X, ε) = |{σ ∈ SVD
(

1√
n
φ(X)

)
|σ > ε}| . (5)

4

Under review

0

200

400

Ef
fe

ct
iv

e
di

m
en

sio
n

montezuma_revenge

0

200

400

sparse pong

0

200

400

pong

0

200

400

seaquest

0 50 100 150 200
Millions of frames

0

200

400

600

Tr
ai

n
ep

iso
de

 re
tu

rn

0 50 100 150 200
Millions of frames

20

10

0

10

20

0 50 100 150 200
Millions of frames

20

10

0

10

20

RC-DQN
DDQN
QR-DQN

0 50 100 150 200
Millions of frames

0

10000

20000

30000

Figure 3: Effective dimension (top) and performance (bottom) over the course of training. We
observe that effective dimension is higher for environments and auxiliary tasks which provide denser
reward signals than for sparse reward problems.

The effective dimension is equal to the dimension of the subspace spanned by φ(X) = {φ(x) |
x ∈ X} when ε = 0 and the state space X is finite. For ε > 0, it throws away small components
of the feature embedding. In the language of Definition 1, this has the interpretation of measuring
the ability of a linear classifier with bounded weight norm to distinguish the feature embeddings of
input states. We show that ρ is well-defined and that ρ̂n is a consistent estimator in Appendix A.
Our analysis in this section superficially resembles that of Kumar et al. (2021), but with two key dif-
ferences: first, we consider a different definition of capacity motivated by our previous discussion;
concretely, our estimator does not normalize by the maximal singular value. Second, we are inter-
ested in the capacity of agents with unlimited opportunity to interact with the environment. Online
data collection allows for interaction between the representation and behaviour policy, an impor-
tant feature missing from the limited-data and offline settings. Thus prior observations on implicit
under-parameterization in the data-limited regime do not immediately explain our observations on
capacity loss, nor do they imply that effective dimension should decline in the online RL setting.

In our empirical evaluations, we train a double DQN (DDQN) agent, a quantile regression (QRDQN)
agent, and a double DQN agent with an auxiliary random cumulant prediction task (RCDQN) (Dab-
ney et al., 2021), on environments from the Atari suite, then evaluate ρ̂n on agent checkpoints
obtained during training. We train on 4 environments: Montezuma’s Revenge (sparse reward), Pong
(dense reward), a sparsified version of Pong in which the agent does not receive negative reward
when its opponent scores, and Seaquest (dense reward, but more challenging than Pong). We run 3
random seeds on each environment-agent combination.

We visualize agents’ effective dimension and performance in Figure 3. Two trends are immediately
clear: at the environment level, agents tend to have higher effective dimension in environments with
more reward signal. At the learning objective level, incorporating auxiliary rewards prevents rep-
resentations from collapsing and in most settings increases the effective dimension over the double
DQN objective, but can have a detrimental effect on learning progress in complex, dense-reward
games presumably due to interference between the random rewards and the true learning objective.
Intriguingly, over the course of training we do not see a consistent downward trend across all games
and update objectives, suggesting that while effective dimension is indeed effective at identifying
representation collapse it does not perfectly correlate with network capacity.

We observe that representation collapse is most pronounced in the QR-DQN objective, which in
sparse-reward environments requires all 201 quantile heads to predict the zero target function. As a
result, the agent’s representation predictably collapses after training in Montezuma’s Revenge to a
low-dimensional subspace, in some cases converging to an effective dimension of exactly zero. We
observe a similar, but less pronounced, phenomenon in the double DQN agent.

While the many moving parts in deep RL algorithms make it difficult to isolate the causal effect of
a single representation property on performance, Figure 4a reveals a correlation between learning
progress and effective dimension on challenging games where agents fail to achieve human-level
performance. We see this correlation in both a Rainbow (Hessel et al., 2018) agent, and an agent
trained with the regularizer we will introduce in the coming section – its precise form is not relevant

5

Under review

0 50 100 150
Millions of frames

20

10

0

10

20

Re
tu
rn

sparse pong

0

100

200

300

400

500

Ef
fe
ct
iv
e
D
im

en
si
on

Train return
Eval return
Effective dim

0 100 200 300 400 500

0.0

0.5

1.0
Rainbow

0 100 200 300 400 500
Effective Rank

0.0

0.5

1.0

H
um

an
-N

or
m
al
iz
ed

Sc
or
e

InFeR

asteroids
bowling
centipede
gravitar
montezuma_revenge
ms_pacman
pitfall
private_eye
seaquest
skiing
solaris
venture

(a) (b)

Figure 4: (a): Agent capacity vs human-normalized score in games where Rainbow does not achieve
superhuman performance. While effective dimension does not appear to solely determine agent
performance, there is a positive correlation between effective dimension and human-normalized
score. (b) An ‘unlucky’ seed from our evaluations on the sparsified version of Pong, where learning
progress occurs only after the agent recovers from representation collapse.

to the discussion of feature collapse. Further, it is clear that agents whose representations have col-
lapsed do not make learning progress, as demonstrated by the learning curves shown in Figure 4b,
which highlights a particularly unlucky random seed that did not observe a point being scored dur-
ing its initial random exploration period and experienced representation collapse. Eventually, after
several million training frames, its effective dimension increased dramatically, and shortly after this
occurred, the agent solved the task. We conclude that in its extreme form, representation collapse
can completely prevent learning progress, but that the relationship between learning progress and ef-
fective dimension in less extreme cases is complex and one of many factors influencing performance
in RL.

4 INFER: MITIGATING CAPACITY LOSS WITH FEATURE REGULARIZATION

The previous section showed that capacity loss occurs in deep RL agents trained with online data,
and in some cases appears to be a bottleneck to performance. We now consider how it might be mit-
igated, and whether explicitly regularizing the network to preserve its initial capacity improves per-
formance in environments where representation collapse occurs. Our approach involves a function-
space perspective on regularization, encouraging networks to preserve their ability to output linear
functions of their features at initialization.

4.1 FEATURE-SPACE REGULARIZATION

Our goal is to train a network which preserves its ability to quickly fit new target functions. To do
this, we propose using a training objective that preserves the network’s ability to represent functions
it had the capacity to output when it was initialized. Much like parameter regularization schemes
which seek to keep parameters close to their initial values, we wish to regularize a set of network
outputs towards their initial values. Similar perspectives have been used to prevent catastrophic
forgetting in continual learning (Benjamin et al., 2019). There are many approaches that one could
take to achieve this goal; the one we will present, Initial Feature Regularization (InFeR), applies an
`2 regularization penalty on the output-space level by regressing a set of auxiliary linear projection
heads on top of the feature layer of the network to match their outputs at initialization.

In our approach, illustrated in Figure 5, we begin with a fixed deep Q-learning neural network with
parameters θ, and modify the network architecture by adding k auxiliary linear prediction heads gi
on top of the feature representation φθ. We take a snapshot of the agent’s parameters at initialization
θ0, and use the outputs of the k auxiliary heads under these parameters as auxiliary prediction
targets. We then construct an auxiliary loss computing the mean squared error between the outputs
of the heads under the current parameters gi(x; θt) and their outputs at initialization gi(x; θ0). This
approach has the interpretation of amplifying and preserving subspaces of the features that were
present at initialization. In practice, we found that scaling the auxiliary head outputs by a constant β

6

Under review

as
te
ri
x

bo
w
lin
g

ja
m
es
bo
nd

as
te
ro
id
s

am
id
ar

sp
ac
e_
in
va
de
rs

sk
iin
g

ba
tt
le
_z
on
e

tim
e_
pi
lo
t

fr
os
tb
ite

al
ie
n

at
la
nt
is

kr
ul
l

ri
ve
rr
ai
d

ba
nk
_h
ei
st

su
rr
ou
nd

fis
hi
ng
_d
er
by

ku
ng
_f
u_
m
as
te
r

en
du
ro

cr
az
y_
cl
im
be
r

do
ub
le
_d
un
k

ka
ng
ar
oo

fr
ee
w
ay

na
m
e_
th
is
_g
am

e
te
nn
is

pi
tf
al
l

po
ng

bo
xi
ng

ro
bo
ta
nk

st
ar
_g
un
ne
r

de
m
on
_a
tt
ac
k

so
la
ris

vi
de
o_
pi
nb
al
l

tu
ta
nk
ha
m

ic
e_
ho
ck
ey

ro
ad
_r
un
ne
r

br
ea
ko
ut

as
sa
ul
t

m
s_
pa
cm

an
ce
nt
ip
ed
e

qb
er
t

za
xx
on

be
am

_r
id
er

he
ro

gr
av
it
ar

ya
rs
_r
ev
en
ge

de
fe
nd
er

go
ph
er

ve
nt
ur
e

pr
iv
at
e_
ey
e

w
iz
ar
d_
of
_w
or

ph
oe
ni
x

up
_n
_d
ow

n
ch
op
pe
r_
co
m
m
an
d

se
aq
ue
st

be
rz
er
k

m
on
te
zu
m
a_
re
ve
ng
e

0

200

400

%
Im
pr
ov
em

en
t

(v
s
Ra
in
bo
w
) Capped Normalized Return

Human-Normalized Return

Human-Normalized Return on Atari

Effective Dimension

0 100 200

200

300

400

500

Ef
fe
ct
iv
e
D
im
en
si
on

montezuma_revenge

0 100 200
Millions of frames

470

480

490

500

510

robotank

Ef
fe
ct
iv
e
D
im
en
si
on

Rainbow
Rainbow+InFeR

Agent Performance

0 50 100 150 200
0.0

0.1

0.2

0.3

0.4

0.5

H
um

an
-N
or
m
al
iz
ed

Re
tu
rn

montezuma_revenge

0 50 100 150 200
Millions of frames

0

2

4

6

H
um

an
-N
or
m
al
iz
ed

Re
tu
rn

robotank

Rainbow
Rainbow+InFeR

Capacity Loss

0 100 200
0.30

0.31

0.32

M
SE

to
fit

ra
nd
om

ta
rg
et
s

montezuma_revenge

0 100 200
Millions of frames

0.315

0.325

0.335

0.345

M
SE

to
fit

ra
nd
om

ta
rg
et
s

robotank

Rainbow
Rainbow+InFeR

(b)(a)

(c)

Figure 5: (a) Visualization of InFeR. (b) Analysis of capacity loss and agent performance. (c)
Performance of InFeR relative to Rainbow on all 57 atari games.

increased this amplification effect. This results in the following form of our regularization objective,
where we let B denote the replay buffer sampling scheme used by the agent:

LInFeR(θ, θ0;B, β) = Ex∼B
[k∑
i=1

(gi(x; θ)− βgi(x; θ0))2

]
. (6)

We evaluate the effect of incorporating this loss in both DDQN (Van Hasselt et al., 2016) and Rain-
bow (Hessel et al., 2018) agents, and include the relative performance improvement obtained by the
InFeR agents over Rainbow on 57 games from the Atari 2600 suite in Figure 5, deferring the com-
parison to DDQN, where the regularizer improved performance slightly on average but only yielded
significant improvements on sparse-reward games, to the appendix. We observe a net improvement
over the Rainbow baseline by incorporating the InFeR objective, with significant improvements in
games where agents struggle to obtain human performance. Though we only show one set of hy-
perparameters, we found InFeR to be relatively robust to the auxiliary scale α, target scale β, and
number of heads k and so did not do extensive hyperparameter tuning. The evaluations in Figure 5
are for k = 10 heads with β = 100 and α = 0.1.

We further observe in Figure 5 that in addition to improving performance, the InFeR loss re-
duces target-fitting error on dense-reward games and increases effective dimension in sparse-reward
games, though we note some ambiguity in the target-fitting capacity results in Montezuma’s Re-
venge, which we attribute to the fact that the sparse-reward period of training largely concludes
within the first 20 million frames, well before the first agent checkpoint we consider in our effective
dimension and capacity plots is saved. To fill this gap, we provide additional results in Appendix B.4
where we show that adding InFeR to the sequential MNIST prediction task reduces target-fitting er-
ror.

7

Under review

0 50 100 150 200
Millions of frames

0

1

2

3

Re
tu

rn

1e3

DDQN
DDQN+InFeR

Rainbow
Rainbow+InFeR

Figure 6: Additional evaluations
with a Double DQN agent on Mon-
tezuma’s Revenge.

The striking improvement obtained in the sparse-reward Mon-
tezuma’s Revenge environment begs the question of whether
such results can be replicated in other RL agents. We fol-
low the same experimental procedure as before, but now use
the DDQN agent; see Figure 6. We find that adding InFeR to
the DDQN objective produces a similar improvement as does
adding it to Rainbow, leading the DDQN agent, which only
follows an extremely naive ε-greedy exploration strategy and
obtains zero reward at all points in training, to exceed the per-
formance of the noisy networks approach taken by Rainbow in
the last 40 million training frames. This leads to two intrigu-
ing conclusions: first, that agents which are explicitly regular-
ized to prevent representation collapse can make progress in
sparse reward problems without the help of good exploration
strategies; and second, that this form of regularization yields
significantly larger performance improvements in the presence
of additional algorithm design choices that are designed to speed up learning progress.

4.2 UNDERSTANDING HOW INFER WORKS

Having observed that our regularizer both improves performance and mitigates capacity loss, we
now take a closer look into the mechanisms by which it may enable learning progress. While InFeR
improves performance on average across the Atari games, it does not do so uniformly: its improve-
ments are concentrated principally on games where the baseline rainbow agent performs signifi-
cantly below the human baseline. It further clearly slows down progress in a subset of environments
such as Asteroids and Jamesbond. We now take a closer look at the mechanisms by which this reg-
ularizer is shaping the agent’s representation in the hopes of explaining this differential effect. We
consider two hypotheses.

Hypothesis 1: InFeR improves performance by preserving a random subspace of the representation
that the final linear layer can use to better predict the value function. The effect of the regularizer on
other aspects of the representation learning dynamics does not influence performance.

Hypothesis 2: The InFeR loss slows down the rate at which the learned features at every layer of
the network can drift from their initialization in function space, improving the learning dynamics of
the entire network to prevent feature collapse and over-fitting to past targets. The precise subspace
spanned by the auxiliary weights is not directly useful to value function estimation.

To evaluate hypothesis 1, we concatenate the outputs of a randomly initialized network to the feature
outputs of the network used to learn the Q-function, and train a linear layer on top of these joint
learned and random features. If Hypothesis 1 were true, then we would expect this architecture to
perform comparably to the InFeR agents, as the final linear layer has access to a randomly initialized
feature subspace. If not, then we would expect the performance of the agents with access to the
random features to be comparable to that of the vanilla Rainbow agents. Figure 7 shows that the
latter occurs, confirming that the effect of InFeR on earlier layers is crucial to its success.

0 100 200
Millions of frames

0

1

2

3

4

Re
tu

rn

1e5
phoenix

0 100 200
Millions of frames

0

1

2

3
1e3

montezuma_revenge

0 100 200
Millions of frames

0

1

2

3

1e4
berzerk

Rainbow+RF Rainbow Rainbow+InFeR

0 100 200
Millions of frames

0.0

0.5

1.0

1.5

2.0

Re
tu

rn

1e5
asteroids

0 100 200
Millions of frames

0

2

4

6

1e4
hero

0 100 200
Millions of frames

0

1

2

3

4 1e4
jamesbond

DoubleRainbow DoubleRainbow+InFeR Rainbow Rainbow+InFeR

Figure 7: Left: agent performance does not improve over baseline when random features are added
to the representation. Right: doubling the width of the neural network narrows the performance gap
in games on which InFeR under-performed relative to Rainbow.

8

Under review

We now consider hypothesis 2. We note that we have constructed InFeR so as to limit the degrees
of freedom with which a network can collapse its representation. This has the potential side effect
of reducing the flexibility of the network to make the changes necessary to fit new value functions,
which may slow down progress in environments where representation collapse doesn’t occur. If this
is the case, then increasing the dimension of the feature vector to which we apply InFeR should give
the network more degrees of freedom to fit its targets, and so reduce or eliminate the performance
gap induced by the regularization. We test this hypothesis by doubling the width of the penultimate
network layer and comparing the performance of InFeR and Rainbow on games where InFeR hurt
performance in the original network. We see in Figure 7 that increasing the network’s size reduces,
eliminates, or in some cases reverses the performance gap induced by InFeR in the smaller architec-
ture. We therefore conclude that the principal mechanism by which InFeR affects performance is by
regularizing the entire network’s learning dynamics.

5 RELATED WORK

A great deal of recent work on deep reinforcement learning has focused on developing useful auxil-
iary tasks to improve performance and encourage learned representations to satisfy desirable prop-
erties (Jaderberg et al., 2017; Veeriah et al., 2019; Gelada et al., 2019; Machado et al., 2018). Addi-
tional work has analyzed the geometry (Bellemare et al., 2019) and stability (Ghosh & Bellemare,
2020) of the learned features. A separate line of work considers the linear algebraic properties of
agents’ learned representations (Kumar et al., 2021; Gogianu et al., 2021). A theoretical framework
for the analysis of agents’ learning dynamics was proposed by Lyle et al. (2021), who used this to
study the behaviour of RL agents in sparse-reward environments. In contrast to prior work, which
treats the layers of the network which come before the features as a black box, we explicitly study
the properties and learning dynamics of the whole network.

A separate line of work has studied the effect of interference between sub-tasks in both reinforce-
ment learning (Schaul et al., 2019; Teh et al., 2017; Igl et al., 2021) and supervised learning settings
(Sharkey & Sharkey, 1995; Ash & Adams, 2020; Beck et al., 2021). A great deal of work has fo-
cused on mitigating catastrophic forgetting, proposing novel training algorithms using regularization
(Kirkpatrick et al., 2017; Bengio et al., 2014; Lopez-Paz & Ranzato, 2017) or distillation (Schwarz
et al., 2018; Silver & Mercer, 2002; Li & Hoiem, 2017) approaches. Methods which involve re-
initializing a new network have seen particular success at reducing interference between tasks in
deep reinforcement learning (Igl et al., 2021; Teh et al., 2017; Rusu et al., 2016; Fedus et al., 2020).
A closer relative of our approach is that of Benjamin et al. (2019), which also applies a function-
space regularization approach, but which involves saving input-output pairs into a memory bank
with the goal of mitigating catastrophic forgetting. InFeR differs from prior work in both goal and
method: it seeks to maximize performance on future tasks, works without task labels, and incurs a
minimal, fixed computational cost independent of the number of prediction problems seen during
training.

6 CONCLUSIONS

This paper has demonstrated a fundamental challenge facing deep RL agents: loss of the capacity to
distinguish states and represent new target functions over the course of training. We have shown that
this phenomenon is particularly salient in sparse-reward settings, in some cases leading to complete
collapse of the representation and preventing the agent from ever making learning progress. We’ve
also proposed a regularizer to preserve capacity, yielding improved performance across a number of
settings in which deep RL agents have historically struggled to match human performance. Further
investigation into this method suggests that it is performing a form of function-space regularization
on the neural network, and that settings where it appears the task reduces performance are actually
instances of under-parameterization relative to the difficulty of the environment. Particularly notable
is the effect of incorporating InFeR in the hard exploration game of Montezuma’s Revenge: its
success here suggests that effective representation learning can allow agents to learn good policies in
sparse-reward environments even under naive exploration strategies. Our findings open up a number
of exciting avenues for future work in reinforcement learning and beyond to better understand how
to preserve plasticity in non-stationary prediction tasks.

9

Under review

REFERENCES

Miguel Abreu, Luis Paulo Reis, and Nuno Lau. Learning to run faster in a humanoid robot soccer
environment through reinforcement learning. In Robot World Cup, pp. 3–15. Springer, 2019.

Jordan Ash and Ryan P Adams. On warm-starting neural network training. In Neural Information
Processing Systems (NeurIPS), 2020.

Nathan Beck, Durga Sivasubramanian, Apurva Dani, Ganesh Ramakrishnan, and Rishabh Iyer. Ef-
fective evaluation of deep active learning on image classification tasks. arXiv, 2021.

Marc Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taiga, Pablo Samuel Castro, Nicolas
Le Roux, Dale Schuurmans, Tor Lattimore, and Clare Lyle. A geometric perspective on optimal
representations for reinforcement learning. In Neural Information Processing Systems (NeurIPS),
2019.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Emmanuel Bengio, Joelle Pineau, and Doina Precup. Correcting momentum in temporal difference
learning. In NeurIPS Deep Reinforcement Learning Workshop, 2020.

Yoshua Bengio, Mehdi Mirza, Ian Goodfellow, Aaron Courville, and Xia Da. An empirical inves-
tigation of catastrophic forgeting in gradient-based neural networks. In International Conference
on Learning Representations (ICLR), 2014.

Ari Benjamin, David Rolnick, and Konrad Kording. Measuring and regularizing networks in func-
tion space. In International Conference on Learning Representations (ICLR), 2019.

Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G Bellemare, and
David Silver. The value-improvement path: Towards better representations for reinforcement
learning. In AAAI Conference on Artificial Intelligence, 2021.

William Fedus, Dibya Ghosh, John D Martin, Marc G Bellemare, Yoshua Bengio, and Hugo
Larochelle. On catastrophic interference in Atari 2600 games. arXiv, 2020.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. DeepMDP:
Learning continuous latent space models for representation learning. In International Conference
on Machine Learning (ICML), 2019.

Dibya Ghosh and Marc G Bellemare. Representations for stable off-policy reinforcement learning.
In International Conference on Machine Learning (ICML), 2020.

Florin Gogianu, Tudor Berariu, Mihaela Rosca, Claudia Clopath, Lucian Busoniu, and Razvan Pas-
canu. Spectral normalisation for deep reinforcement learning: an optimisation perspective. arXiv
preprint arXiv:2105.05246, 2021.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In AAAI conference on artificial intelligence, 2018.

Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.
Transient non-stationarity and generalisation in deep reinforcement learning. In International
Conference on Learning Representations (ICLR), 2021.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representations (ICLR), 2017.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting
in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017.

10

Under review

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
inhibits data-efficient deep reinforcement learning. In International Conference on Learning Rep-
resentations (ICLR), 2021.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
Neural Information Processing Systems (NIPS), 2017.

Clare Lyle, Mark Rowland, Georg Ostrovski, and Will Dabney. On the effect of auxiliary tasks on
representation dynamics. In Artificial Intelligence and Statistics (AISTATS), 2021.

Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption discovery through the deep successor representation. In International
Conference on Learning Representations (ICLR), 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Hossein Mobahi, Mehrdad Farajtabar, and Peter L Bartlett. Self-distillation amplifies regularization
in Hilbert space. In Neural Information Processing Systems (NeurIPS), 2020.

Matej Moravčı́k, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. DeepStack: Expert-level artificial
intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017. ISSN 0036-8075.

John Quan and Georg Ostrovski. DQN Zoo: Reference implementations of DQN-based agents,
2020. URL http://github.com/deepmind/dqn_zoo.

Roberta Raileanu, Maxwell Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Automatic
data augmentation for generalization in reinforcement learning. arXiv, 2020.

Andrei A. Rusu, Sergio Gomez Colmenarejo, Çaglar Gülçehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy distil-
lation. In International Conference on Learning Representations (ICLR), 2016.

Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. Ray interference: a source of
plateaus in deep reinforcement learning. arXiv, 2019.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for contin-
ual learning. In International Conference on Machine Learning (ICML), 2018.

Noel E Sharkey and Amanda JC Sharkey. An analysis of catastrophic interference. Connection
Science, 1995.

Daniel L Silver and Robert E Mercer. The task rehearsal method of life-long learning: Overcoming
impoverished data. In Conference of the Canadian Society for Computational Studies of Intelli-
gence, pp. 90–101, 2002.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of Go without human knowledge. Nature, 550(7676):354–359, 2017.

Yee Whye Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell,
Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. In Neural
Information Processing Systems (NIPS), 2017.

11

http://github.com/deepmind/dqn_zoo

Under review

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-
learning. In AAAI Conference on Artificial Intelligence, 2016.

Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Richard Lewis, Janarthanan Rajendran, Junhyuk Oh,
Hado van Hasselt, David Silver, and Satinder Singh. Discovery of useful questions as auxiliary
tasks. In Neural Information Processing Systems (NeurIPS), 2019.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

12

Under review

A ESTIMATOR CONSISTENCY

We here show that our estimator of the agent’s effective dimension is consistent. First recall

(
1√
n

Φn

)>(
1√
n

Φn

)
=

1

n

n∑
i=1

φ(xi)φ(xi)
> . (7)

The following property of the expected value holds

Ex∼P [φ(x)φ(x)>] = E

[
1

n

n∑
i=1

φ(xi)φ(xi)
>

]
. (8)

It is then straightforward to apply the strong law of large numbers. To be explicit, we consider an
element of M = E[φφ>], Mij .

E[(φ(x)φ(x)>)ij] = Mij = E[φi(x)φj(x)] =⇒
n∑
k=1

1

n
φi(xk)φj(xk)

a.s.→ Mij . (9)

Since we have convergence for any Mij , we get convergence of the resulting matrix to M . Because
the singular values of Φ are the eigenvalues of M and the eigenvalues are continuous functions of
that matrix, the eigenvalues of Mn converge to those of M in probability. Then for almost all values
of ε, the threshold estimator N(λ1, . . . , λk; ε) = |{λi > ε}| will converge to N(spec(M); ε) for
almost all values ε. Specifically, the estimator will be convergent for all values of ε which are not
eigenvalues of M itself.

B ADDITIONAL EVALUATIONS

We now present full evaluations of many of the quantities described in the paper. We use the same
training procedure for all of the figures in this section, loading agent parameters from checkpoints
to compute the quantities shown.

• Agent: We train a Rainbow agent (Hessel et al., 2018) with the same architecture and hyper-
parameters as are described in the open-source implementation made available by Quan & Os-
trovski (2020). We additionally add InFeR, as described in Section 4, with 10 heads, gradient
weight 0.1 and scale 100.

• Training: We follow the training procedure found in the Rainbow implementation mentioned
above. We train for 200 million frames, with 500K evaluation frames interspersed every 1M
training frames. We save the agent parameters and replay buffer every 10M frames to estimate
feature dimension and target-fitting capacity.

B.1 EFFECTIVE DIMENSION

Here we expand upon the illustrative examples provided in Figure 3. We show that the decline in
dimension shown across the different agents in the selected games also occurs more generally in
Rainbow agents across most environments in the Atari benchmark. We also show that in most cases
adding InFeR mitigates this phenomenon. Our observations here do not show a uniform decrease in
effective dimension or a uniformly beneficial effect of InFeR. The waters become particularly mud-
died in settings where neither the Rainbow nor Rainbow+InFeR agent consistently make learning
progress such as in tennis, solaris, and private eye. It is outside the scope of this work to identify
precisely why the agents do not make learning progress in these settings, but it does not appear to
be due to the type of representation collapse that can be effectively prevented by InFeR.

Procedure. We compute the effective dimension by sampling n = 5e4 transitions from the replay
buffer and take the set of origin states as the input set. We then compute a n× d matrix whose row
i is given by the output of the penultimate layer of the neural network given input Si. We then take

13

Under review

the singular value decomposition of this matrix and count the number of singular values greater than
0.01 to get an estimate of the dimension of the network’s representation layer.

In most games, we see a decline in effective dimension. Strikingly, this decline in dimension holds
even in the online RL setting where the agent’s improving policy presumably leads it to observe a
more diverse set of states over time, which under a fixed representation would tend to increase the
effective rank of the feature matrix. This indicates that even in the face of increasing state diversity,
agents’ representations face strong pressure towards degeneracy.

B.2 TARGET-FITTING CAPACITY IN ATARI

Analogously, we also evaluate the target-fitting capacity of Rainbow and Rainbow+InFeR agents
across the entire Atari suite. We again observe that in general the target-fitting error of the network-
optimizer combination tends to increase slightly over the course of training. In most cases, we see
a modest increase in target-fitting error which is somewhat reduced by adding InFeR, although both
the overall trend over the course of training and the effect of InFeR vary between the different games.

Procedure. We measure target-fitting capacity by using the outputs of a randomly initialized net-
work of the same architecture as the Rainbow agent as regression targets. At each saved checkpoint,
we load the agent’s parameters, optimizer state, and the replay buffer from either the same check-
point as the parameters and optimizer state or from the first checkpoint. We then randomly sample
n = 2000 transitions and perform `2 regression on the outputs of the randomly initialized network,
using the checkpoint parameters and optimizer state as an initialization point. We train for 200
epochs using the same optimizer as was used in RL training, and compute the mean squared error
from the targets at the end of training as the target-fitting error.

Intriguingly, the set of games which see decreases in effective dimension and the set of games which
see increases in target-fitting error overlap but are not identical. There are a number of possible
explanations for why this may be the case, which we detail below.

• Input state similarity: all inputs in the game of Pong are extremely similar, and therefore yield
similar outputs from the randomly initialized network which pose a simpler prediction problem
than those of other games where inputs are more visually diverse.

• Training duration: some games require longer to master than others, and so in some easy
environments which plateau at the optimal policy quickly the effective training time will be
much shorter than the wall-clock time, as after it has learned the optimal value function the
agent receives near-zero gradients.

• Target magnitude: some environments have smaller target functions than others, and while the
loss function appeared to plateau well before we halted training on random targets, it’s possible
that some environments appeared to have inflated capacity loss because it is harder to move
parameters which produce large-magnitude outputs towards the random initialization even if
they’re equally capable of adapting to smaller changes in the target value.

B.3 PERFORMANCE

We provide full training curves for both Rainbow and Rainbow+InFeR on all games in Figures 10 &
11 (capped human-normalized performance), and 12 & 13 (raw evaluation score). We also provide
evaluation performance curves for DDQN and DDQN+InFeR agents in Figure 14.

B.4 DETAILS: TARGET-FITTING CAPACITY IN NON-STATIONARY MNIST

In addition to our evaluations in the Atari domain, we also consider a variant of the MNIST dataset
in which the labels change over the course of training.

• Inputs and Labels: We use 2000 randomly sampled digits from the MNIST dataset and assign
either binary or random Gaussian targets.

• Distribution Shift: We divide training into 10 stages of 50 epochs each. In the Gaussian setting,
the labels are resampled every stage. In the binary setting, the labels at stage i correspond to the

14

Under review

512
512

alien

505
510

amidar

450
475

assault

510

512
asterix

400

500

asteroids

450

500
atlantis

400

500
bank_heist

475
500
525

battle_zone

475

500

beam_rider

500
510

berzerk

100
200
300

bowling

450

500

boxing

450

500

breakout

475

500

centipede

400

500
chopper_command

505

510

crazy_climber

500

510

defender

400

500

demon_attack

0

250

double_dunk

450

500

enduro

475
500

fishing_derby

400

500
freeway

490
500
510

frostbite

508
510
512

gopher

450

500

gravitar

490
500
510

hero

400

500

ice_hockey

490
500
510

jamesbond

400

450

kangaroo

475
500

krull

450

500

kung_fu_master

250

500

montezuma_revenge

511

512

ms_pacman

475
500

name_this_game

508
510
512

phoenix

200
300

pitfall

400
450

pong

300

400

private_eye

490
500
510

qbert

508
510
512

riverraid

500

520
road_runner

475

500

robotank

505
510

seaquest

450

500

skiing

475

500

solaris

510

512

space_invaders

450

500

star_gunner

450
500

surround

0

100

tennis

490
500
510

time_pilot

475

500

tutankham

400

500
up_n_down

0 100 200
Millions of frames

250

500

venture

0 100 200
Millions of frames

475
500

video_pinball

0 100 200
Millions of frames

400

500

wizard_of_wor

0 100 200
Millions of frames

400

500

yars_revenge

0 100 200
Millions of frames

450

500

zaxxon

Rainbow
Rainbow+InFeR

Figure 8: Effective dimension of agent representations over the course of training on all 57 games in
the Atari benchmark. We compare Rainbow against Rainbow+InFeR. Rainbow+InFeR does not uni-
formly prevent decreases in effective dimension across all games, but on average it has a beneficial
effect on preserving representation dimension.

15

Under review

3.1

3.2

3.3 1e 1
alien

3.1

3.2
1e 1

amidar

3.0
3.1

1e 1
assault

3.25

3.50 1e 1
asterix

3.1

3.2

3.3
1e 1

asteroids

2.85
2.90
2.95

1e 1
atlantis

3.2

3.4

1e 1
bank_heist

3.2

3.3

1e 1
battle_zone

3.2

3.4 1e 1
beam_rider

3.2

3.3
1e 1

berzerk

3.00

3.02
1e 1

bowling

3.35

3.40
1e 1

boxing

2.9

3.0

3.1
1e 1

breakout

3.25

3.50
1e 1

centipede

3.2

3.4

1e 1
chopper_command

3.1
3.2

1e 1
crazy_climber

3.2

3.4 1e 1
defender

3.00

3.25

1e 1
demon_attack

3.04

3.05

1e 1
double_dunk

3.2

3.3
1e 1

enduro

3.15

3.20

1e 1
fishing_derby

2.76

2.78 1e 1
freeway

3.3
3.4
3.5

1e 1
frostbite

3.2

3.4

1e 1
gopher

3.25

3.50
1e 1

gravitar

3.3
3.4

1e 1
hero

3.35
3.40
3.45 1e 1

ice_hockey

3.2

3.4 1e 1
jamesbond

3.03
3.04
3.05

1e 1
kangaroo

3.2
3.3

1e 1
krull

3.2

3.3 1e 1
kung_fu_master

3.1

3.2
1e 1

montezuma_revenge

3.1
3.2
3.3 1e 1

ms_pacman

3.0

3.2 1e 1
name_this_game

3.1
3.2
3.3

1e 1
phoenix

3.125
3.150
3.175

1e 1
pitfall

2.675

2.700
1e 1

pong

3.3

3.4
1e 1

private_eye

3.0

3.2
1e 1

qbert

3.25

3.50

1e 1
riverraid

3.4

3.5
1e 1

road_runner

3.2

3.4 1e 1
robotank

3.2

3.3
1e 1

seaquest

3.2

3.3

1e 1
skiing

3.2

3.3
1e 1

solaris

3.0

3.1 1e 1
space_invaders

3.25
3.50

1e 1
star_gunner

3.0

3.2 1e 1
surround

3.13
3.14
3.15

1e 1
tennis

3.3
3.4
3.5 1e 1

time_pilot

3.0

3.1

1e 1
tutankham

3.1
3.2
3.3

1e 1
up_n_down

0 100 200
Millions of frames

3.05

3.10

1e 1
venture

0 100 200
Millions of frames

3.0

3.1

1e 1
video_pinball

0 100 200
Millions of frames

3.2

3.4
1e 1
wizard_of_wor

0 100 200
Millions of frames

3.25

3.50
1e 1

yars_revenge

0 100 200
Millions of frames

3.2

3.4 1e 1
zaxxon

Rainbow
Rainbow+InFeR

Figure 9: Target-fitting capacity (MSE on random targets) measured over the course of training
on all games in the Atari benchmark. In most (43 out of 57) environments, target-fitting capacity
declines over the course of training in both standard Rainbow and Rainbow+InFeR, but in these
settings the Rainbow+InFeR agent achieves lower error in almost all environments.

16

Under review

0

1

alien

0

1

amidar

0.5

1.0
assault

0.5

1.0
asterix

0

1
asteroids

0

1
atlantis

0

1

bank_heist

0

1
battle_zone

0

1

beam_rider

0.5

1.0

berzerk

0.00

0.25

bowling

2.5

0.0

boxing

0.5

1.0
breakout

0.25
0.50
0.75

centipede

0

1

chopper_command

0.5

1.0
crazy_climber

0

1
defender

0.5

1.0
demon_attack

1
0
1

double_dunk

0.5

1.0
enduro

0

1
fishing_derby

0.5

1.0

freeway

0

1
frostbite

0.5

1.0
gopher

0.0

0.5

gravitar

0

1

hero

0

1

ice_hockey

0.5

1.0

jamesbond

0

1
kangaroo

0

1

krull

0.5

1.0

kung_fu_master

0.0

0.5

montezuma_revenge

0.25
0.50
0.75

ms_pacman

0

1
name_this_game

0

1

phoenix

0.1
0.0
0.1

pitfall

0

1

pong

0.025

0.000

0.025
private_eye

0.5

1.0

qbert

0

1

riverraid

0.5

1.0
road_runner

0

1
robotank

0

1

seaquest

0.5
0.0
0.5

skiing

0.00

0.25

solaris

0

1
space_invaders

0

1
star_gunner

0

1

surround

0.5
1.0

tennis

1
0
1

time_pilot

0.5

1.0

tutankham

0.5
1.0

up_n_down

0 100 200
Millions of frames

0

1

venture

0 100 200
Millions of frames

5
0
5

video_pinball

0 100 200
Millions of frames

0

1

wizard_of_wor

0 100 200
Millions of frames

0

1
yars_revenge

0 100 200
Millions of frames

0

1

zaxxon

Rainbow
Rainbow+InFeR

Figure 10: Full evaluation of capped human-normalized performance on Atari benchmarks for the
default Rainbow architecture.

17

Under review

0

1
alien

0.5
1.0

amidar

0.5

1.0
assault

0.5

1.0
asterix

0

1

asteroids

0

1
atlantis

0

1

bank_heist

0

1
battle_zone

0

1

beam_rider

0.5

1.0

berzerk

0.0

2.5
1e 1

bowling

0

1
boxing

0.5

1.0
breakout

0

5
1e 1

centipede

0

1

chopper_command

0

1
crazy_climber

0

1

defender

0.5

1.0
demon_attack

1

0

1
double_dunk

0.5

1.0
enduro

0

1
fishing_derby

0.5

1.0
freeway

0

1
frostbite

0.5

1.0
gopher

0

1
gravitar

0.5

1.0
hero

0
1

ice_hockey

0.5

1.0
jamesbond

0

1

kangaroo

0

1

krull

0.5

1.0

kung_fu_master

2.5
0.0
2.5

1e 1
montezuma_revenge

2.5
5.0
7.5

1e 1
ms_pacman

0.5

1.0
name_this_game

0.5

1.0
phoenix

0
5

1e 2
pitfall

0

1
pong

0.0

2.5
1e 2

private_eye

0.5
1.0

qbert

0

1
riverraid

0.5

1.0

road_runner

0

1
robotank

0

1

seaquest

1

0

skiing

0.0

2.5
1e 1

solaris

0.5

1.0
space_invaders

0

1
star_gunner

0

1

surround

0

1

tennis

1
0
1

time_pilot

0.5

1.0

tutankham

0.5
1.0

up_n_down

0 100 200
Millions of frames

0

1

venture

0 100 200
Millions of frames

5
0
5

video_pinball

0 100 200
Millions of frames

0

1
wizard_of_wor

0 100 200
Millions of frames

0.5

1.0

yars_revenge

0 100 200
Millions of frames

0

1

zaxxon

Rainbow
Rainbow+InFeR

Figure 11: Full evaluation of capped human-normalized performance on Atari benchmarks in the
double-width Rainbow architecture.

18

Under review

0

1

1e4
alien

0

5
1e3

amidar

0

2
1e4

assault

0

5
1e5

asterix

0

5
1e4

asteroids

0

5

1e5
atlantis

0

1

1e3
bank_heist

0

5

1e4
battle_zone

0

2
1e4

beam_rider

0

2
1e4

berzerk

0

5
1e1

bowling

0

1
1e2

boxing

0

5 1e2
breakout

0.5

1.0
1e4

centipede

0

2

1e4
chopper_command

1

2
1e5
crazy_climber

0

1
1e5

defender

0

1

1e5
demon_attack

2

0
1e1

double_dunk

0

2
1e3

enduro

1

0

1e2
fishing_derby

1
2
3

1e1
freeway

0

1
1e4

frostbite

0

1
1e5

gopher

0

2

1e3
gravitar

0

5

1e4
hero

2

0
1e1

ice_hockey

0

2
1e4

jamesbond

0

1

1e4
kangaroo

5.0
7.5

1e3
krull

2.5

5.0
1e4
kung_fu_master

0

2
1e3

montezuma_revenge

2.5

5.0
1e3

ms_pacman

0.5
1.0
1.5

1e4
name_this_game

0.0

2.5

1e5
phoenix

1

0

1e3
pitfall

2
0
2

1e1
pong

0

2 1e3
private_eye

0.0

2.5

1e4
qbert

0

2

1e4
riverraid

0

5

1e4
road_runner

0

5

1e1
robotank

0

2
1e5

seaquest

2

1
1e4

skiing

0.0

2.5

1e3
solaris

0.0

2.5
1e4
space_invaders

0

2
1e5

star_gunner

1
0
1

1e1
surround

2

0
1e1

tennis

1

2
1e4

time_pilot

1
2
3

1e2
tutankham

0

2
1e5

up_n_down

0 100 200
Millions of frames

0

1

1e3
venture

0 100 200
Millions of frames

0

5

1e5
video_pinball

0 100 200
Millions of frames

0

2

1e4
wizard_of_wor

0 100 200
Millions of frames

0

1

1e5
yars_revenge

0 100 200
Millions of frames

0

2

1e4
zaxxon

Rainbow
Rainbow+InFeR

Figure 12: Full evaluation of raw scores on Atari benchmarks for the default Rainbow architecture.

19

Under review

0

1

1e4
alien

0

5

1e3
amidar

0

2
1e4

assault

0

5
1e5

asterix

0

2
1e5

asteroids

0

1 1e6
atlantis

0

1

1e3
bank_heist

0

5
1e4

battle_zone

0

2

1e4
beam_rider

0.0

2.5

1e4
berzerk

0

5
1e1

bowling

0

1
1e2

boxing

0

5 1e2
breakout

2.5
5.0
7.5

1e3
centipede

0

5
1e4

chopper_command

1
2

1e5
crazy_climber

0

2

1e5
defender

0

1
1e5
demon_attack

1

0
1e1

double_dunk

1
2

1e3
enduro

1

0

1e2
fishing_derby

2
3

1e1
freeway

0

1
1e4

frostbite

0

1 1e5
gopher

0

2

1e3
gravitar

0

5
1e4

hero

2

0

1e1
ice_hockey

0

2

1e4
jamesbond

0

1

1e4
kangaroo

5.0
7.5

1e3
krull

2.5

5.0
1e4
kung_fu_master

0

2 1e3
montezuma_revenge

2.5
5.0

1e3
ms_pacman

0.5
1.0
1.5

1e4
name_this_game

0.0

2.5

1e5
phoenix

5

0

1e2
pitfall

0.0

2.5 1e1
pong

0

2 1e3
private_eye

0.0

2.5

1e4
qbert

0

2

1e4
riverraid

2.5
5.0
7.5

1e4
road_runner

0

5

1e1
robotank

0

2
1e5

seaquest

3
2
1

1e4
skiing

0.0

2.5

1e3
solaris

0.0

2.5

1e4
space_invaders

0

2

1e5
star_gunner

1
0
1

1e1
surround

2

0
1e1

tennis

0

2
1e4

time_pilot

1
2
3

1e2
tutankham

0

2
1e5

up_n_down

0 100 200
Millions of frames

0
1

1e3
venture

0 100 200
Millions of frames

0

5
1e5

video_pinball

0 100 200
Millions of frames

0

2

1e4
wizard_of_wor

0 100 200
Millions of frames

0

1

1e5
yars_revenge

0 100 200
Millions of frames

0

2

1e4
zaxxon

Rainbow
Rainbow+InFeR

Figure 13: Full evaluation of raw scores on Atari benchmarks for the double-width Rainbow archi-
tecture.

20

Under review

0.0

2.5

1e3
alien

0

2
1e3

amidar

0

5

1e3
assault

0

2

1e4
asterix

1

2
1e3

asteroids

0

1
1e6

atlantis

0

1

1e3
bank_heist

0.0

2.5

1e4
battle_zone

0

2
1e4

beam_rider

0

1

1e3
berzerk

0

5

1e1
bowling

0

1
1e2

boxing

0

5
1e2

breakout

0

5 1e3
centipede

0

1 1e4
chopper_command

0

1

1e5
crazy_climber

0.0

2.5

1e4
defender

0

1

1e5
demon_attack

2

0

1e1
double_dunk

0

2
1e3

enduro

1

0

1e2
fishing_derby

0.0

2.5
1e1

freeway

0.0

2.5
1e3

frostbite

0

2
1e4

gopher

0

1 1e3
gravitar

0

2
1e4

hero

2

0
1e1

ice_hockey

0

5
1e3

jamesbond

0

1

1e4
kangaroo

0

1
1e4

krull

0

5
1e4
kung_fu_master

0
1

1e3
montezuma_revenge

2.5

5.0 1e3
ms_pacman

0

1
1e4
name_this_game

0

5
1e4

phoenix

5

0

1e2
pitfall

0.0

2.5 1e1
pong

5
0
5

1e3
private_eye

0

2
1e4

qbert

0

2
1e4

riverraid

0

5
1e4

road_runner

0

5
1e1

robotank

0

5
1e4

seaquest

3
2
1

1e4
skiing

0.0

2.5
1e3

solaris

0

2
1e4
space_invaders

0

1 1e5
star_gunner

1

0

1
1e1

surround

2.5
0.0
2.5

1e1
tennis

0

1
1e4

time_pilot

0

2

1e2
tutankham

0.0

2.5

1e4
up_n_down

0 100 200
Millions of frames

0

1

1e3
venture

0 100 200
Millions of frames

0

5
1e5

video_pinball

0 100 200
Millions of frames

0

1

1e4
wizard_of_wor

0 100 200
Millions of frames

0

2

1e4
yars_revenge

0 100 200
Millions of frames

0

1

1e4
zaxxon

DDQN
DDQN+InFeR

Figure 14: Evaluations of the effect of InFeR on performance of a Double DQN agent. Overall
we do not see as pronounced an improvement as in Rainbow, but note that the average human-
normalized score over the entire benchmark is nonetheless slightly higher for the InFeR agent, and
that the performance improvement obtained by InFeR in Montezuma’s Revenge is still significant
in this agent.

21

Under review

0 1 2 3 4 5 6 7 8
Target iteration

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
ea

n
sq

ua
re

d
er

ro
r

Regression
Regression+InFeR

Figure 15: Effect of adding InFeR to the regression objective in a random reward prediction problem
on the non-stationary MNIST environment. We see that the InFeR objective produces networks that
can consistently outperform those trained with a standard regression objective, and even appears to
enable forward-transfer early in training.

binary indicator 1[y > i]. This mimics the phenomenon in RL where states’ values may increase
over time as the agent’s policy improves.
• Architecture: we use two different MLP architectures: a ‘shallow’ single hidden layer network

with width 128, along with a ‘deep’ MLP with hidden unit widths 64 and 32, along with two
activation units: ReLU and leaky-ReLU.

Our results from this experiment indicate that underparameterized networks and those that use ReLU
activations are more prone to capacity loss than networks with abundant capacity and which do not
use ReLU activations.

B.5 EFFECT OF INFER ON TARGET-FITTING CAPACITY IN MNIST

In addition to our study of the Atari suite, we also study the effect of InFeR on the non-stationary
MNIST reward prediction task with a fully-connected architecture; see Figure 15. We find that it
significantly mitigates the decline in target-fitting capacity demonstrated in Figure 2.

22

	Introduction
	Background
	Capacity Loss
	Target-fitting capacity
	Representation collapse and performance

	InFeR: Mitigating Capacity Loss with Feature Regularization
	Feature-space regularization
	Understanding How InFeR Works

	Related Work
	Conclusions
	Estimator Consistency
	Additional Evaluations
	Effective Dimension
	Target-fitting Capacity in Atari
	Performance
	Details: Target-fitting Capacity in Non-stationary MNIST
	Effect of InFeR on target-fitting capacity in MNIST

