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ABSTRACT

Deep learning has emerged as a powerful tool for atmospheric sciences, showing
significant utility across various tasks in weather and climate modeling. In line
with recent progress in language and vision foundation models, there are growing
efforts to scale and finetune such models for multi-task spatiotemporal reasoning.
Despite promising results, existing works often evaluate their model on a small set
of non-uniform tasks, which makes it hard to quantify broad generalization across
diverse tasks and domains. To address this challenge, we introduce AtmosArena,
the first multi-task benchmark dedicated to foundation models in atmospheric
sciences. AtmosArena comprises a suite of tasks that cover a broad spectrum of
applications in atmospheric physics and atmospheric chemistry. To showcase the
capabilities and key features of our benchmark, we conducted extensive experi-
ments to evaluate two state-of-the-art deep learning models, ClimaX and Stormer
on AtmosArena, and compare their performance with other deep learning and
traditional baselines. By providing a standardized, open-source benchmark, we aim
to facilitate further advancements in the field, much like open-source benchmarks
have driven the development of foundation models for language and vision.

1 INTRODUCTION

Modeling of large-scale atmospheric systems is an omnipresent challenge for science and society.
Traditionally, numerical methods are the dominating approach in atmospheric sciences, which
operationalize rigorous systems of differential equations to simulate such phenomena (Lynch, 2008;
Bauer et al., 2015). Despite their widespread use in practice, numerical methods suffer from many
challenges, such as inadequate resolution of important small-scale physical processes and substantial
computational demands (Balaji et al., 2017; Lavers et al., 2022; Leung et al., 2003; Rauscher et al.,
2010). Deep learning has emerged as a powerful complement due to its ability to learn complex
systems from historical data and produce fast predictions within seconds. Deep learning methods
have proven great utility and performance across various atmospheric tasks, including but not limited
to precipitation nowcasting (Ravuri et al., 2021b; Sønderby et al., 2020; Andrychowicz et al., 2023),
medium-range weather forecasting (Weyn et al., 2020; Rasp & Thuerey, 2021; Keisler, 2022; Pathak
et al., 2022b; Bi et al., 2022; Lam et al., 2023; Nguyen et al., 2023c; Chen et al., 2023b;a; Kochkov
et al., 2023), climate projection (Watson-Parris et al., 2022b), climate downscaling (Baño Medina
et al., 2020; Liu et al., 2020; Nagasato et al., 2021; Rodrigues et al., 2018; Sachindra et al., 2018;
Vandal et al., 2019), air pollution forecasting (Ayturan et al., 2018; Bekkar et al., 2021; Tao et al.,
2019; Bui et al., 2018; Heydari et al., 2022), and greenhouse gas emission prediction (Hamrani et al.,
2020; Bakay & Ağbulut, 2021; Altikat, 2021).

Recent years have witnessed a paradigm shift from training task-specific models to developing
foundation models for atmospheric sciences (Nguyen et al., 2023a; Bodnar et al., 2024), similar to
models such as GPT-x (Brown et al., 2020; Achiam et al., 2023) in natural language processing, or
CLIP (Radford et al., 2021) in computer vision. These foundation models are trained on large-scale
and diverse datasets, enabling them to develop a rich, general understanding of the atmosphere. Once
pre-trained, they can adapt efficiently to various downstream tasks, ranging from weather nowcasting
to long-term climate projections, via lightweight finetuning. This approach is particularly attractive
for atmospheric sciences, where there is an increasing availability of high-quality datasets and tasks
have non-trivial global and regional structure.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparisons between AtmosArena and existing works that consider multiple atmospheric
tasks. AtmosArena offers the most comprehensive set of tasks, data, and evaluation metrics.

Benchmark Tasks Data Metrics

AtmosArena

Weather forecasting ERA5 RMSE, ACC
S2S forecasting ERA5 RMSE, ACC, Spectral Div
Climate data infilling ERA5, Berkeley Earth Bias, RMSE
Climate model emulation ClimateBench Spatial, Global, Total, RMSE
Climate downscaling ERA5 RMSE, Bias, Pearson
Extreme weather events detection ClimateNet IoU, Precision, Recall, F-1

ClimateLearn
Weather forecasting ERA5 RMSE, ACC
Downscaling ERA5 RMSE, Bias, Pearson
Projection ClimateBench Spatial, Global, Total, RMSE

ClimaX

Weather forecasting ERA5 RMSE, ACC
S2S forecasting ERA5 RMSE, ACC
Climate model emulation ClimateBench Spatial, Global, Total, RMSE
Climate downscaling ERA5 RMSE, Bias, Pearson

Aurora Weather forecasting HRES Analysis RMSE, ACC
Air composition forecasting CAMS Analysis RMSE, ACC

Standardized open-source benchmarks are crucial for the advancement of foundation models. In lan-
guage, benchmarks such as HeLM (Liang et al., 2022), LLM Foundry, LM Evaluation Harness (Gao
et al., 2023), and Big Bench (Srivastava et al., 2022) have aided researchers to systematically evaluate
the performance of large language models. Similarly, for perception, comprehensive benchmarks
such as VQA (Antol et al., 2015), SciBench (Wang et al., 2023), MMMU (Yue et al., 2023), and
MathVista (Lu et al., 2023), have significantly accelerated research in multimodal foundation models.
In stark contrast, there is no standardized multi-task benchmark for benchmarking atmospheric foun-
dation models and existing works (Nguyen et al., 2023a; Bodnar et al., 2024) limit their evaluation to
a relatively small set of non-overlapping tasks, which creates challenges in objective assessment of
progress in the field.

To address this gap, we introduce AtmosArena, an open-source benchmark for foundation models
in atmospheric sciences. To the best of our knowledge, AtmosArena is the first of its kind to offer a
comprehensive evaluation framework tailored for this domain. AtmosArena encompasses a suite of
tasks that span a wide spectrum of problems from both atmospheric and machine learning perspectives.
Each task within AtmosArena is supported by datasets, fine-tuning protocols, evaluation code,
standardized evaluation metrics, and a collection of deep learning and traditional baselines. This
suite not only facilitates a fair assessment of model performance but also serves as a crucial tool
for identifying opportunities for future development in the field. AtmosArena aims to set a new
standard in the evaluation of atmospheric models, providing a solid foundation for the development of
new methodologies. Table 1 summarizes the tasks, datasets, and metrics supported by AtmosArena.

To showcase the utility of AtmosArena, we conduct extensive experiments across all tasks included
in the benchmark. We test and compare three representative classes of models: (1) deep learning
with no pretraining, (2) single-source pretraining, and (3) multi-source pretraining. We also include
traditional methods as simple baselines. To ensure fairness, we maintained consistent fine-tuning and
evaluation settings across all models. The experimental results indicate that pretrained models gener-
ally outperform baselines without pretraining in most tasks. However, no single model consistently
dominates across all tasks. This underscores the comprehensiveness of AtmosArena and highlights
potential opportunities for future model development. In line with our commitment to openness and
reproducibility, we will make all our data, code, and model checkpoints publicly available.

2 RELATED WORK

Deep Learning for Atmospheric Sciences Deep learning has revolutionized atmospheric sciences
in recent years in both speed and accuracy. In weather forecasting, notable models like Pangu (Bi
et al., 2022), Graphcast (Lam et al., 2023), and Stormer (Nguyen et al., 2023c) have surpassed the
accuracy of the gold-standard IFS HRES system. This progress spans from simple models like
ResNet (Rasp & Thuerey, 2021) to advanced architectures such as Graph Neural Networks (Keisler,
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2022; Lam et al., 2023), Fourier neural operators (Pathak et al., 2022a), and Transformers (Bi et al.,
2022; Nguyen et al., 2023a; Chen et al., 2023c;a; Nguyen et al., 2023c). In addition to medium-range,
other works focus on forecasting at different time scales, such as nowcasting (Sønderby et al., 2020;
Ravuri et al., 2021a; Andrychowicz et al., 2023) or longer-term prediction tasks (Watt-Meyer et al.,
2023; Mouatadid et al., 2023). To account for uncertainty, recent works have also proposed ensemble
forecasting with hybrid-physics models (Kochkov et al., 2024) or diffusion (Price et al., 2024), which
are particularly useful for extreme event prediction like heavy rainfall (Zhang et al., 2023) and floods
(Nearing et al., 2024).

Foundation Models for Atmospheric Sciences ClimaX (Nguyen et al., 2023a) is the first foundation
model for weather and climate, pretrained on five simulated datasets from CMIP6 and finetuned
on four downstream tasks. Aurora (Bodnar et al., 2024) is the latest atmospheric foundation model
which scaled up pretraining to larger models, more data, and finer grid resolutions. Aurora was
shown to achieve state-of-the-art performance in operational weather forecasting and air composition
forecasting. In addition to atmospheric sciences, the development of scientific foundation models
for physical domains is growing quickly as a field. For example, recent works in Partial Differential
Equations (PDEs) modeling have proposed to pretrain large-scale models for micro-scale dynamical
systems that can transfer in a zero-shot or few-shot fashion to unseen equations (Sun et al., 2024;
Herde et al., 2024; Alkin et al., 2024; McCabe et al., 2023).

Atmospheric Datasets and Benchmarks Standardized benchmarks fuel the growth of atmospheric
deep learning. WeatherBench (Rasp et al., 2020a; 2023) provides data, metrics, baselines, and
a leaderboard for medium-range weather forecasting. Another common data source for weather
forecasting is CMIP6 (Eyring et al., 2016b) which provides a large collection of simulation runs from
climate models. SubseasonalClimateUSA (Mouatadid et al., 2024) and ChaosBench (Nathaniel et al.,
2024) are two recent benchmarks that have been proposed to push the forecasting capabilities to
sub-seasonal and seasonal time scales. Beyond forecasting, standard datasets have been developed
for a diverse set of tasks in weather and climate, including climate emulation (Kaltenborn et al.,
2023), sub-resolution physics modeling (Yu et al., 2024), precipitation prediction (de Witt et al.,
2020; Sit et al., 2021), extreme weather events detection and localization (Rahnemoonfar et al.,
2021; Requena-Mesa et al., 2021; Minixhofer et al., 2021; Prabhat et al., 2021; Racah et al., 2017),
natural disaster-related tasks (Proma et al., 2022), atmospheric radiative transfer (Cachay et al.,
2021), long-term global trends prediction (Watson-Parris et al., 2022b), cloud classification (Rasp
et al., 2020b), nowcasting (Franch et al., 2020), tropical cyclone intensity prediction (Maskey et al.,
2020), air quality metrics prediction (Betancourt et al., 2021), hydrometeorological time series
analysis (Villaescusa-Navarro et al., 2022), and river flow analysis (Godfried et al., 2020). Beyond
plain datasets, libraries such as ClimateLearn (Nguyen et al., 2023b), Scikit-downscale Hamman &
Kent (2020), CCdownscaling Polasky et al. (2023), and CMIP6-Downscaling CarbonPlan (2022)
provide software for training deep learning methods for various tasks in atmospheric sciences.

3 KEY COMPONENTS OF ATMOSARENA

As a first benchmark, we aim to build a comprehensive suite of tasks in atmospheric sciences,
emphasizing diversity from both domain-specific and machine learning perspectives. Domain-wise,
tasks are broadly classified into atmospheric physics or atmospheric chemistry. Atmospheric physics
focuses on physical variables like temperature, humidity, and wind, essential for modeling weather
patterns in the short-term and climate trends in the longer term. Atmospheric chemistry, on the other
hand, focuses on the composition and transformation of atmospheric constituents, such as pollutants
like carbon monoxide and dioxide, crucial for studying air quality and environmental health.

Due to space constraints, this section presents the six tasks under atmospheric physics: Medium-range
Weather Forecasting, S2S Forecasting, Extreme Weather Events Detection, Climate Downscaling,
Climate Data Infilling, and Climate Model Emulation. Tasks related to atmospheric chemistry are
detailed in Appendix G. From a machine learning perspective, many common predictive tasks in
atmospheric sciences can be mapped to well-defined problems in machine learning. Within this
perspective, our benchmark can be seen as spanning five distinct categories of tasks defined on a grid:
forecasting, segmentation, super-resolution, inpainting, and counterfactual prediction. This diverse
suite of tasks allows us to obtain a holistic evaluation of atmospheric foundation models.

3
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3.1 TASKS

Medium-range weather forecasting is the task of predicting the global weather conditions at a
future time step t+T given the weather conditions at or before the current step t, where the lead time
T ranges from a few hours to two weeks. A deep learning model takes an input of shape V ×H ×W
and outputs a prediction of shape V ′ ×H ×W , in which V and V ′ are the numbers of input and
output atmospheric variables, respectively, while H ×W denotes the spatial resolution of the data.

Sub-seasonal-to-seasonal (S2S) forecasting is similar to medium-range forecasting but with a
longer lead time range between 2 weeks and 2 months (Vitart & Robertson, 2018; Vitart et al., 2022).
This task bridges the gap between weather forecasting and climate modeling and holds significant
socioeconomic value in disaster mitigation, but has received much less attention than the other two
well-established tasks. Since the weather becomes too chaotic for any model to perform accurate
point prediction after two weeks, we instead task the models to forecast the average statistics of key
variables over a two-week window.

Extreme weather events detection is the task of identifying weather patterns that may lead to
extreme weather events, such as tropical cyclones and atmospheric rivers. Deep learning models are
trained to perform pixel-level detection and segmentation of these events in climate data. Specifically,
the input typically consists of key atmospheric variables, and the output is a segmented map where
each pixel is classified as part of an extreme event or as background. This approach allows for precise
quantification of the frequency, intensity, and spatial extent of extreme events under various climate
scenarios, providing valuable insights for climate research and policy-making.

Climate downscaling is the task of improving the spatial resolution of climate model outputs, which
typically operate on large grid cells due to their high computational demands. This refinement is
crucial for accurately representing local phenomena and informing regional policy decisions. In this
task, deep learning models transform an input grid of dimensions V ×H×W into a higher-resolution
output V ′ ×H ′ ×W ′, where H ′ > H and W ′ > W .

Climate data infilling involves estimating missing or incomplete data in historical and current
climate datasets. This task aims to provide a more comprehensive and continuous historical record
of important atmospheric variables, such as near-surface air temperature, enabling robust climate
analysis and modeling. In data infilling, deep learning models are trained to predict missing values
by leveraging patterns found in available data. The typical input to these models includes incomplete
datasets of dimensions V ×H ×W , and the output is a complete dataset of the same dimensions,
where the previously missing values are estimated by the model.

Climate model emulation involves predicting the annual mean global distributions of crucial climate
variables like surface temperature and precipitation indices, given different scenarios of anthropogenic
forcing factors such as carbon dioxide (CO2) and methane (CH4). The input is a tensor of shape
T × V ×H ×W which captures the forcing conditions over T consecutive years, and the output
shape is V ′ ×H ×W . Unlike temporal forecasting, this task assesses a model’s ability to predict
the response of the climate system to varying levels of external factors, providing a foundation for
long-term climate strategy and policy decisions.

3.2 DATASETS

ERA5 maintained by ECMWF (Hersbach et al., 2020) is a common dataset for training and evaluating
data-driven methods in atmospheric sciences (Bi et al., 2022; Lam et al., 2023; Nguyen et al., 2023c).
ERA5 is a reanalysis dataset that provides the best guess of different climate variables at any point in
time by integrating observational data with an advanced forecasting model known as the Integrated
Forecasting System (IFS) (Wedi et al., 2015). ERA5 offers hourly data from 1979 to the present and
at a 0.25◦ (721× 1440) global grid, totaling nearly 400,000 data points at 37 different pressure levels.
Given its extensive scale, we regrid the original data to 1.40625◦ (128 × 256) grid and consider
data from 1979 to 2020 for training and evaluation. We use ERA5 for four tasks in AtmosArena,
including medium-range weather forecasting, S2S forecasting, climate downscaling, and data infilling.

Berkeley Earth provides a variety of high-quality temperature data products that incorporate a large
set of temperature observations (Rohde & Hausfather, 2020). In AtmosArena, we use the global
monthly average temperature data at 1◦ (180×360) grid as an independent test dataset for the infilling
task. We regrid the data to the common resolution of 1.40625◦.
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ClimateBench is a benchmark for testing data-driven methods for climate model emulation (Watson-
Parris et al., 2022b). ClimateBench consists of simulation outputs of the Norwegian Earth System
Model (NorESM2) (Seland et al., 2020) from CMIP6 (Eyring et al., 2016a) that are run under
different forcing scenarios for the period 2015− 2100. The dataset includes four input forcing factors
– carbon dioxide (CO2), sulfur dioxide (SO2), black carbon (BC), and methane (CH4), and the annual
mean global distributions of four target variables – surface temperature, diurnal temperature range,
precipitation, and the 90th percentile of precipitation.

ClimateNet is an expert-labeled dataset of tropical cyclones (TCs) and atmospheric rivers (ARs), two
important weather patterns that may lead to extreme weather events (Prabhat et al., 2020). ClimateNet
consists of 459 data points of simulation runs of the Community Atmospheric Model (CAM5.1) from
1996− 2013. Each data point has a spatial resolution of 768× 1152 with a total of 16 atmospheric
variables, and each pixel is labeled with one of three classes – TCs, ARs, and Background.

3.3 MODELS

We consider a state-of-the-art representative from three classes of models. Many other recent models
would also benefit from this benchmark Bodnar et al. (2024); Price et al. (2024), but they are currently
closed-source. Table 2 shows the inference FLOPs and the number of parameters of each baseline we
consider in this paper. We maintain a public leaderboard at https://atmosarena.github.
io/leaderboard/ to allow open and fair evaluation of both open- and closed-source models.

Table 2: FLOPs and model size of different baselines considered in AtmosArena.
ClimaX Stormer UNet

FLOPs 986.098B 7377.751B 969.404B
Parameter count 110.842M 468.752M 577.745M

Non-pretrained model We aim to provide state-of-the-art methods tailored to each specific task in
AtmosArena. For tasks without an established baseline, we use UNet (Ronneberger et al., 2015)
as the deep learning baseline. We chose UNet due to its excellent performance in various dense
prediction tasks in computer vision, which resemble most of the atmospheric tasks in AtmosArena.
The Unet models we train in the experiments have the same size of 500M parameters, for which we
have performed extensive hyperparameters tuning to obtain a strong non-pretrained baseline.

Single-source pretrained model We include Stormer (Nguyen et al., 2023c), a state-of-the-art open-
source deep learning model for medium-range weather forecasting. Stomer is a transformers-based
architecture (Vaswani et al., 2017) trained on 6-hourly ERA5 data at 1.40625◦ resolution from 1979
to 2018. We chose Stormer since it was trained on the same spatial resolution as our datasets, and its
simple architecture allows seamless finetuning on new tasks. Stormer has 400M parameters.

Multi-source pretrained model We include ClimaX (Nguyen et al., 2023a), the first large-scale
atmospheric foundation model trained on multiple data sources. ClimaX was pretrained to perform
temporal forecasting on five simulated datasets at 1.40625◦ from CMIP6 (Eyring et al., 2016a) and
was shown to transfer well to various atmospheric tasks via finetuning. Since ClimaX and Stormer
share similar transformer architectures and training objectives, comparing them helps examine if and
when multi-source pretraining is beneficial to the model. ClimaX has 100M parameters.

3.4 FINETUNING PROTOCOLS

ClimaX and Stormer share a similar architecture, which consists of an embedding layer, a transformer
backbone, and a prediction head. The embedding layer transforms an input of shape V ×H ×W
to a sequence of shape (H/p ×W/p) × D, where (H/p ×W/p) is the sequence length, p is the
patch size, and D is the hidden dimension. The transformer backbone processes this sequence and
outputs a sequence of the same shape, and finally the prediction head outputs a prediction of shape
V ′ ×H ′ ×W ′. We refer to the original papers for a detailed description of these models.

We consider two finetuning settings, one where we freeze the core transformer backbone, and the other
where we finetune the entire network. The frozen setting helps examine the direct transferability of the
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pretrained backbone to new tasks without further training. In tasks where the input or target variables
were unseen during pretraining, we replace the pretrained embedding layer and prediction head with
newly initialized networks. For datasets having a different spatial resolution from pretraining data,
we interpolate the pretrained positional embedding to match the new sequence length.

4 BENCHMARK EVALUATION

This section evaluates different models on six atmospheric physics tasks described in Section 3.1.
Through the experiments, we aim to showcase the breadth of AtmosArena and provide practical rec-
ommendations for finetuning atmospheric foundation models on new tasks. We refer to Appendix H
for the atmospheric chemistry experiments. We also present infilling results on the Berkeley Earth
dataset and regional case studies on S2S forecasting in Appendix H.

4.1 MEDIUM-RANGE WEATHER FORECASTING

We compare ClimaX and Stormer with Graphcast (Lam et al., 2023) – a leading forecasting method,
and Climatology – a simple baseline, on weather forecasting with lead times from 1 to 14 days.
We consider six target variables: temperature at 2 meters (T2m), zonal (U10m) and meridional
(V10m) wind at 10 meters, geopotential at 500hPa (Z500), temperature at 850hPa (T850), and
specific humidity at 700hPa (Q700), which are commonly used to verify forecasting models in
previous works. Since Stormer and Graphcast were trained specifically for forecasting, we roll-out
the pretrained checkpoints to obtain forecasts at different lead times without further training. For
ClimaX, we perform full finetuning for each specific lead time and target variable, following the
protocol in the original paper. All deep learning methods are trained on ERA5 from 1979 to 2018
and tested on 2020. The same data split is used for other tasks unless noted otherwise.
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Figure 1: Medium-range weather forecasting performance measured by RMSE on six key variables at
different lead times. Solid lines are deep learning models and the dashed line denotes the climatology
baseline. Lower RMSE indicates better performance.

Figure 1 summarizes the RMSE results of this task (see Appendix for other metrics). Stormer is the
best overall method, performing competitively with Graphcast at short lead times and much better at
longer time scales. Graphcast works well for short lead times, but its performance degrades quickly
and becomes worse than Climatology after day 10. ClimaX, on the other hand, performs poorly at
small lead times but surpasses Graphcast at around day 10 and catches Stormer at day 14. This is
because ClimaX performs direct forecasting which avoids error accumulation at long lead times.
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4.2 SUBSEASONAL-TO-SEASONAL (S2S) FORECASTING

We evaluate ClimaX, Stormer, and Unet on forecasting the biweekly average statistics of four target
variables – Z500, T850, T2m, and Q700. We consider two lead times of 2 weeks and 4 weeks, in
which the average statistics are computed over weeks 3-4 and weeks 5-6, respectively. We construct
the biweekly average data for training and evaluation from ERA5. For each baseline, we train two
separate models to predict directly the average values at two different lead times. For ClimaX and
Stormer, we consider two finetuning protocols where we either freeze (ClimaX frozen and Stormer
frozen) or finetune (ClimaX finetuned and Stormer finetuned) the transformer backbone. Similar
to medium-range weather forecasting, we include Climatology to examine if deep learning models
achieve meaningful skills for S2S forecasting compared to this simple baseline.

Table 3: S2S performance measured by RMSE and ACC on four target variables at two lead times.
Z500 T850 T2m Q700

Weeks 3-4 Weeks 5-6 Weeks 3-4 Weeks 5-6 Weeks 3-4 Weeks 5-6 Weeks 3-4 Weeks 5-6

RMSE (↓)

ClimaX frozen 458.53 471.58 1.79 1.84 1.67 1.73 0.69 0.70
ClimaX finetuned 453.05 469.92 1.77 1.80 1.65 1.70 0.69 0.71
Stormer frozen 461.19 467.37 1.77 1.81 1.56 1.69 0.70 0.72
Stormer finetuned 466.82 475.06 1.79 1.84 1.64 1.75 0.71 0.72
Unet 498.46 521.32 1.90 2.09 1.63 2.29 0.74 0.75
Climatology 475.58 475.58 2.00 2.00 1.61 1.61 0.76 0.76

ACC (↑)

ClimaX frozen 0.84 0.81 0.92 0.90 0.96 0.95 0.86 0.84
ClimaX finetuned 0.84 0.81 0.92 0.90 0.95 0.94 0.86 0.84
Stormer frozen 0.78 0.77 0.88 0.87 0.95 0.94 0.81 0.81
Stormer finetuned 0.77 0.77 0.87 0.87 0.94 0.93 0.82 0.82
Unet 0.84 0.84 0.92 0.91 0.97 0.93 0.85 0.85

Table 3 summarizes the results of S2S forecasting. In terms of RMSE, both ClimaX and Stormer
have meaningful skills except for T2m, while Unet underperforms Climatology for most variables.
Interestingly, the frozen version of ClimaX and Stormer performs competitively to their fully finetuned
counterpart. This result highlights the importance of pretraining, which allows models to efficiently
transfer to new forecasting tasks without further training of the transformer backbone. In terms of
ACC, ClimaX and Unet perform similarly while Stormer lags behind. Overall, ClimaX outperforms
Stormer in this task despite having a poorer performance on medium-range weather forecasting.
This can be explained by the difference between the pretraining objective of the two models, where
ClimaX was trained to perform forecasting at much longer horizons (6 hours to 1 week) compared to
Stormer (6 hours to 1 day).

4.3 CLIMATE DOWNSCALING

We consider the task of downscaling for six key variables: Z500, T850, T2m, Q700, U10m, and V10m.
We use ERA5 at 5.625◦ as the low-resolution input, and ERA5 at 1.40625◦ as the high-resolution
target, corresponding to 4× upsampling. We include Unet as a deep learning baseline in addition
to the two finetuning versions of ClimaX and Stormer. We report RMSE and Absolute Mean Bias,
which is the absolute difference between the spatial mean of predictions and ground-truths.

Table 4: Downscaling performance measured by RMSE and Absolute Mean Bias on six variables.
Z500 T850 T2m Q700 U10m V10m

RMSE (↓)

ClimaX frozen 105.49 0.93 1.16 0.70 1.02 1.01
ClimaX finetuned 74.62 0.78 0.94 0.61 0.83 0.83
Stormer frozen 104.26 0.95 1.12 0.76 1.07 1.05
Stormer finetuned 38.84 0.57 0.62 0.55 0.64 0.64
Unet 47.65 0.66 0.73 0.56 0.70 0.70

Absolute Mean Bias (↓)

ClimaX frozen 28.660 0.167 0.054 0.001 0.032 0.009
ClimaX finetuned 13.830 0.153 0.119 0.002 0.007 0.001
Stormer frozen 17.540 0.046 0.048 0.001 0.019 0.011
Stormer finetuned 0.090 0.051 0.031 0.001 0.011 0.017
Unet 8.790 0.140 0.040 0.005 0.011 0.006

Table 4 shows the performance of the considered methods. Unlike the forecasting tasks, there is
a significant gap between the frozen and the fully finetuned models of ClimaX and Stormer. This
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Figure 2: PSD plots of the baselines in comparison with the ground truths across three variables and
three random test data points.

indicates that the transformer backbone pretrained for temporal forecasting might be sub-optimal
for spatial downscaling and further finetuning is required to achieve good performance. Stormer
is the best model in this task with the lowest RMSE and Absolute Mean Bias for most variables,
followed by the Unet baseline. Since ClimaX has the lowest parameter count, we hypothesize that
larger models tend to perform better in this task. This observation was also suggested by the scaling
analysis in the original ClimaX paper.

In addition to quantitative metrics, we also plot the Power Spectral Density (PSD) to examine how
well each model preserves the power spectrum across different spatial scales of the ground truth. To
create these plots, we computed the 2D Power Spectral Density using the Fast Fourier Transform
(FFT) for each spatial field, then performed radial averaging to obtain 1D PSD curves that show how
power varies with spatial frequency. For each variable we consider (T2M, Z500, T850), we plotted
the PSD curves of the ground truth and predictions from the three models on a log-log scale.

Figure 2 shows the PSD plots for three randomly selected data points in the test set. All three
models display excellent agreement with the ground truth across low to medium spatial frequencies
for all variables, indicating they accurately capture large-scale spatial patterns. However, there are
notable differences at high spatial frequencies (> 0.2): UNet tends to underestimate the power at
these frequencies, suggesting it may smooth out fine-scale details, while ClimaX and Stormer better
preserve these high-frequency components. The results suggest that two pretrained models, ClimaX
and Stormer, have an advantage in preserving fine-scale spatial details compared to UNet.

4.4 DATA INFILLING

We test the ability of foundation models to fill in missing temperature data, which is a common issue
due to gaps in the coverage of observation stations. We construct training and validation data for this
task from ERA5. During training, we generate a random mask for each training data point, with the
mask ratio (missing ratio) drawn from a uniform distribution r ∼ U [0.1, 0.9]. We test each model to
perform infilling with a set of mask ratios r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, where a fixed set of masks for
each ratio is pre-generated and saved to disk to maintain evaluation consistency across models.
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Figure 3: Infilling performance for surface temperature measured by RMSE and Absolute Mean Bias
with different missing ratios.

Figure 3 shows the performance of the considered models for different mask ratios. Similar to
downscaling, fully finetuned models work much better than frozen counterparts, and Stormer is the
best method for this task. This result again highlights the difference between temporal and spatial
tasks and the need for full finetuning to achieve good performance.

4.5 CLIMATE MODEL EMULATION

We aim to predict the annual mean global distributions of four target variables: surface air temperature,
diurnal temperature range (difference between daily maximum and minimum surface air temperature),
precipitation, and the 90th percentile precipitation. The input variables are four forcing factors:
carbon dioxide (CO2), sulfur dioxide (SO2), black carbon (BC), and methane (CH4). Following
ClimateBench, we report NRMSEs, NRMSEg, and NRMSEt = NRMSEs + 5× NRMSEg as the
evaluation metrics. We use the best method in ClimateBench, namely ClimateBench-NN, as the
baseline in addition to ClimaX and Stormer. We note that in this task, both the input and target
variables were unseen during the pretraining of ClimaX and Stormer, so we replaced their embedding
layer and prediction head with randomly initialized networks. Therefore, the transformer backbone
essentially serves as a feature extractor. We finetune a separate model for each target variable.

Table 5: Climate model emulation performance measured by NRMSEs, NRMSEg , and NRMSEt.
Surface air temperature Diurnal temperature range Precipitation 90th percentile precipitation

NRMSEs NRMSEg NRMSEt NRMSEs NRMSEg NRMSEt NRMSEs NRMSEg NRMSEt NRMSEs NRMSEg NRMSEt

ClimaX frozen 0.085 0.043 0.297 6.688 0.810 10.739 2.193 0.183 3.110 2.681 0.342 4.389
ClimaX finetuned 0.086 0.043 0.300 7.148 0.961 11.952 2.360 0.206 3.390 2.739 0.332 4.397
Stormer frozen 0.117 0.043 0.334 9.123 0.980 14.022 6.159 0.210 7.211 6.773 0.296 8.254
Stormer finetuned 0.126 0.047 0.361 8.598 0.834 12.767 6.180 0.391 8.136 6.797 0.316 8.376
ClimateBench-NN 0.123 0.080 0.524 7.465 1.233 13.632 2.349 0.151 3.104 3.108 0.282 4.517

Table 5 shows the superior performance of ClimaX in this task, outperforming Stormer and the
ClimateBench-NN baseline by a large margin. This result highlights a unique benefit of multi-source
pretraining in acquiring a general-purpose backbone that allows for easy transferability to downstream
tasks and datasets significantly different from pretraining. Moreover, frozen models generally work
better than the fully finetuned counterparts for this task. This can be explained by the small data size
of ClimateBench (754 data points), so further finetuning of the backbone can lead to overfitting and
hurt the test performance. A similar result was observed in the ClimaX paper.

4.6 EXTREME WEATHER DETECTION

Finally, we consider the task of detecting Tropical Cyclones (TCs) and Atmospheric Rivers (ARs),
two atmospheric phenomena highly correlated with extreme weather events. We use the ClimateNet
dataset for finetuning and evaluation, in which we use data from 1996 to 2010 for training and
validation, and 2011 to 2013 for testing. We finetune ClimaX and Stormer to classify each pixel into
one of three classes: TC, AR, and Background (BG). Similar to climate model emulation, we replace
the pretrained embedding and prediction layer with randomly initialized networks. Since ClimateNet
data is of much higher resolution, we increase the patch size to 8 for both ClimaX and Stormer, and
interpolate the pretrained positional embedding to match the new sequence length.
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Figure 4: Extreme weather detection performance measured by IoU, Precision, Recall, and F-1.

Figure 4 compares the performance of ClimaX and Stormer with CGNet (Wu et al., 2020), a
lightweight segmentation architecture based on CNN specifically designed for this task. Since the
BG class dominates other classes, we adopt the weighted Jaccard loss function (Lacombe et al., 2023)
to counter this class imbalance. The two finetuned versions of ClimaX work best in this task with
respect to IoU and F-1, significantly outperforming its counterpart Stormer. This again demonstrates
the importance of multi-source pretraining in obtaining higher transferable backbones. ClimaX
also outperforms CGNet in 3/4 metrics, showing the benefit of foundation models over specialized
architectures.

5 CONCLUSION

We presented AtmosArena, the first benchmark dedicated to foundation models in atmospheric
sciences. AtmosArena offers a diverse suite of tasks, datasets, and evaluation metrics to evaluate a
foundation model holistically. AtmosArena not only provides a standard benchmark for comparing
model performance but also serves as a crucial tool for identifying future research works. In
addition, we release all our data, code, and model checkpoints, facilitating reproducible research and
broadening collaborations. Given the vast development of scientific foundation models, we believe
our contribution is timely and useful for both machine learning and atmospheric communities.

Limitations and Future Work With academic resource constraints, we acknowledge that there are
various directions to improve AtmosArena in each of four dimensions – datasets, tasks, models, and
evaluations. One such direction involves integrating regional datasets and expanding the collection of
supported data sources. On the task side, we plan to include probabilistic tasks that are an important
aspect of modeling weather and climate. For models and evaluations, we plan to find platforms for
hosting atmospheric foundation models, along with an accompanying leaderboard.
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Maximilian Herde, Bogdan Raonić, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes. arXiv
preprint arXiv:2405.19101, 2024.

Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-Sabater,
Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, Adrian Simmons, Cornel Soci,
Saleh Abdalla, Xavier Abellan, Gianpaolo Balsamo, Peter Bechtold, Gionata Biavati, Jean Bidlot,
Massimo Bonavita, Giovanna De Chiara, Per Dahlgren, Dick Dee, Michail Diamantakis, Rossana
Dragani, Johannes Flemming, Richard Forbes, Manuel Fuentes, Alan Geer, Leo Haimberger,
Sean Healy, Robin J. Hogan, Elías Hólm, Marta Janisková, Sarah Keeley, Patrick Laloyaux,
Philippe Lopez, Cristina Lupu, Gabor Radnoti, Patricia de Rosnay, Iryna Rozum, Freja Vamborg,
Sebastien Villaume, and Jean-Noël Thépaut. The ERA5 global reanalysis. Quarterly Journal
of the Royal Meteorological Society, 146(730):1999–2049, 2020. ISSN 0035-9009. doi: https:
//doi.org/10.1002/qj.3803.

Azim Heydari, Meysam Majidi Nezhad, Davide Astiaso Garcia, Farshid Keynia, and Livio De Santoli.
Air pollution forecasting application based on deep learning model and optimization algorithm.
Clean Technologies and Environmental Policy, pp. 1–15, 2022.

Stephan Hoyer and Joe Hamman. xarray: N-D labeled arrays and datasets in Python. Journal of
Open Research Software, 5(1):10, April 2017. doi: 10.5334/jors.148.

Julia Kaltenborn, Charlotte Lange, Venkatesh Ramesh, Philippe Brouillard, Yaniv Gurwicz, Chandni
Nagda, Jakob Runge, Peer Nowack, and David Rolnick. Climateset: A large-scale climate
model dataset for machine learning. Advances in Neural Information Processing Systems, 36:
21757–21792, 2023.

Ryan Keisler. Forecasting global weather with graph neural networks. arXiv preprint
arXiv:2202.07575, 2022.

Christoph A Keller, K Emma Knowland, Bryan N Duncan, Junhua Liu, Daniel C Anderson, Sampa
Das, Robert A Lucchesi, Elizabeth W Lundgren, Julie M Nicely, Eric Nielsen, et al. Description
of the nasa geos composition forecast modeling system geos-cf v1. 0. Journal of Advances in
Modeling Earth Systems, 13(4):e2020MS002413, 2021.

K Emma Knowland, Christoph A Keller, Pamela A Wales, Krzysztof Wargan, Lawrence Coy,
Matthew S Johnson, Junhua Liu, Robert A Lucchesi, Sebastian David Eastham, E Fleming, et al.
Nasa geos composition forecast modeling system geos-cf v1. 0: Stratospheric composition. Journal
of advances in modeling earth systems, 14(6):e2021MS002852, 2022.

Dmitrii Kochkov, Janni Yuval, Ian Langmore, Peter Norgaard, Jamie Smith, Griffin Mooers, James
Lottes, Stephan Rasp, Peter Düben, Milan Klöwer, et al. Neural general circulation models. arXiv
preprint arXiv:2311.07222, 2023.

Dmitrii Kochkov, Janni Yuval, Ian Langmore, Peter Norgaard, Jamie Smith, Griffin Mooers, Milan
Klöwer, James Lottes, Stephan Rasp, Peter Düben, Sam Hatfield, Peter Battaglia, Alvaro Sanchez-
Gonzalez, Matthew Willson, Michael P. Brenner, and Stephan Hoyer. Neural general circulation
models for weather and climate, 2024.

Romain Lacombe, Hannah Grossman, Lucas Hendren, and David Lüdeke. Improving extreme
weather events detection with light-weight neural networks. arXiv preprint arXiv:2304.00176,
2023.

13

https://doi.org/10.1038/s41586-020-2649-2


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Ferran
Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose, Stephan
Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mohamed, and
Peter Battaglia. Learning skillful medium-range global weather forecasting. Science, 0(0):eadi2336,
2023. doi: 10.1126/science.adi2336. URL https://www.science.org/doi/abs/10.
1126/science.adi2336.

David A. Lavers, Adrian Simmons, Freja Vamborg, and Mark J. Rodwell. An evaluation of ERA5
precipitation for climate monitoring. Quarterly Journal of the Royal Meteorological Society,
148(748):3152–3165, 2022. doi: https://doi.org/10.1002/qj.4351. URL https://rmets.
onlinelibrary.wiley.com/doi/abs/10.1002/qj.4351.

L. Ruby Leung, Linda O. Mearns, Filippo Giorgi, and Robert L. Wilby. REGIONAL CLIMATE
RESEARCH: Needs and Opportunities. Bulletin of the American Meteorological Society, 84
(1):89–95, 2003. ISSN 00030007, 15200477. URL http://www.jstor.org/stable/
26215433.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110, 2022.

Yumin Liu, Auroop R. Ganguly, and Jennifer Dy. Climate Downscaling Using YNet: A Deep Convo-
lutional Network with Skip Connections and Fusion. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’20, pp. 3145–3153,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450379984. doi:
10.1145/3394486.3403366. URL https://doi.org/10.1145/3394486.3403366.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
of foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Peter Lynch. The origins of computer weather prediction and climate modeling. Journal of computa-
tional physics, 227(7):3431–3444, 2008.

Manil Maskey, Rahul Ramachandran, Muthukumaran Ramasubramanian, Iksha Gurung, Brian
Freitag, Aaron Kaulfus, Drew Bollinger, Daniel Cecil, and J. Miller. Deepti: Deep-learning-based
tropical cyclone intensity estimation system. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, PP:1–1, 07 2020. doi: 10.1109/JSTARS.2020.3011907.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles Cranmer,
Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, et al.
Multiple physics pretraining for physical surrogate models. arXiv preprint arXiv:2310.02994,
2023.

Christoph Minixhofer, Mark Swan, Calum McMeekin, and Pavlos Andreadis. Droughted: A dataset
and methodology for drought forecasting spanning multiple climate zones. In ICML 2021 Workshop
on Tackling Climate Change with Machine Learning, 2021.

Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Judah Cohen, Miruna Oprescu, Ernest
Fraenkel, and Lester Mackey. Adaptive bias correction for improved subseasonal forecasting.
Nature Communications, 14(1), June 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-38874-y.
URL http://dx.doi.org/10.1038/s41467-023-38874-y.

Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Miruna Oprescu, Judah Cohen,
Franklyn Wang, Sean Knight, Maria Geogdzhayeva, Sam Levang, Ernest Fraenkel, and Lester
Mackey. Subseasonalclimateusa: A dataset for subseasonal forecasting and benchmarking, 2024.

Takeyoshi Nagasato, Kei Ishida, Ali Ercan, Tongbi Tu, Masato Kiyama, Motoki Amagasaki, and
Kazuki Yokoo. Extension of convolutional neural network along temporal and vertical directions
for precipitation downscaling. arXiv preprint arXiv:2112.06571, 2021.

Juan Nathaniel, Yongquan Qu, Tung Nguyen, Sungduk Yu, Julius Busecke, Aditya Grover, and Pierre
Gentine. Chaosbench: A multi-channel, physics-based benchmark for subseasonal-to-seasonal
climate prediction. arXiv preprint arXiv:2402.00712, 2024.

14

https://www.science.org/doi/abs/10.1126/science.adi2336
https://www.science.org/doi/abs/10.1126/science.adi2336
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.4351
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.4351
http://www.jstor.org/stable/26215433
http://www.jstor.org/stable/26215433
https://doi.org/10.1145/3394486.3403366
http://dx.doi.org/10.1038/s41467-023-38874-y


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Grey Nearing, Deborah Cohen, Vusumuzi Dube, Martin Gauch, Oren Gilon, Shaun Harrigan,
Avinatan Hassidim, Daniel Klotz, Frederik Kratzert, Asher Metzger, and et al. Global prediction
of extreme floods in ungauged watersheds. Nature, 627(8004):559–563, Mar 2024. doi: 10.1038/
s41586-024-07145-1.

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. ClimaX:
A foundation model for weather and climate. arXiv preprint arXiv:2301.10343, 2023a.

Tung Nguyen, Jason Jewik, Hritik Bansal, Prakhar Sharma, and Aditya Grover. Climatelearn: Bench-
marking machine learning for weather and climate modeling. arXiv preprint arXiv:2307.01909,
2023b.

Tung Nguyen, Rohan Shah, Hritik Bansal, Troy Arcomano, Sandeep Madireddy, Romit Maulik,
Veerabhadra Kotamarthi, Ian Foster, and Aditya Grover. Scaling transformer neural networks for
skillful and reliable medium-range weather forecasting. arXiv preprint arXiv:2312.03876, 2023c.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems (NeurIPS), pp. 8024–8035.
Curran Associates, Inc., 2019.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Fourcast-
net: A global data-driven high-resolution weather model using adaptive fourier neural operators.
arXiv preprint arXiv:2202.11214, 2022a.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Fourcast-
net: A global data-driven high-resolution weather model using adaptive fourier neural operators.
arXiv preprint arXiv:2202.11214, 2022b.

Andrew D Polasky, Jenni L Evans, and Jose D Fuentes. Ccdownscaling: A python package for
multivariable statistical climate model downscaling. Environmental Modelling & Software, 165:
105712, 2023.

Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner,
Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, et al. Climatenet: An
expert-labelled open dataset and deep learning architecture for enabling high-precision analyses of
extreme weather. Geoscientific Model Development Discussions, 2020:1–28, 2020.

Prabhat, K. Kashinath, M. Mudigonda, S. Kim, L. Kapp-Schwoerer, A. Graubner, E. Karaismailoglu,
L. von Kleist, T. Kurth, A. Greiner, A. Mahesh, K. Yang, C. Lewis, J. Chen, A. Lou, S. Chan-
dran, B. Toms, W. Chapman, K. Dagon, C. A. Shields, T. O’Brien, M. Wehner, and W. Collins.
Climatenet: an expert-labeled open dataset and deep learning architecture for enabling high-
precision analyses of extreme weather. Geoscientific Model Development, 14(1):107–124, 2021.
doi: 10.5194/gmd-14-107-2021. URL https://gmd.copernicus.org/articles/14/
107/2021/.

Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R. Andersson, Andrew El-Kadi, Dominic
Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, Remi Lam, and Matthew
Willson. Gencast: Diffusion-based ensemble forecasting for medium-range weather, 2024.

Adiba Mahbub Proma, Md Saiful Islam, Stela Ciko, Raiyan Abdul Baten, and Ehsan Hoque.
Nadbenchmarks–a compilation of benchmark datasets for machine learning tasks related to natural
disasters. arXiv preprint arXiv:2212.10735, 2022.

Evan Racah, Christopher Beckham, Tegan Maharaj, Samira Ebrahimi Kahou, Mr. Prabhat,
and Chris Pal. Extremeweather: A large-scale climate dataset for semi-supervised detec-
tion, localization, and understanding of extreme weather events. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,

15

https://gmd.copernicus.org/articles/14/107/2021/
https://gmd.copernicus.org/articles/14/107/2021/


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/519c84155964659375821f7ca576f095-Paper.pdf.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pp.
8748–8763. PMLR, 2021.

Maryam Rahnemoonfar, Tashnim Chowdhury, Argho Sarkar, Debvrat Varshney, Masoud Yari, and
Robin Roberson Murphy. Floodnet: A high resolution aerial imagery dataset for post flood scene
understanding. IEEE Access, 9:89644–89654, 2021.

Stephan Rasp and Nils Thuerey. Data-driven medium-range weather prediction with a resnet
pretrained on climate simulations: A new model for weatherbench. Journal of Advances in
Modeling Earth Systems, 13(2):e2020MS002405, 2021.

Stephan Rasp, Peter D Dueben, Sebastian Scher, Jonathan A Weyn, Soukayna Mouatadid, and Nils
Thuerey. Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of
Advances in Modeling Earth Systems, 12(11):e2020MS002203, 2020a.

Stephan Rasp, Hauke Schulz, Sandrine Bony, and Bjorn Stevens. Combining crowd-sourcing and
deep learning to explore the meso-scale organization of shallow convection, 2020b.

Stephan Rasp, Stephan Hoyer, Alexander Merose, Ian Langmore, Peter Battaglia, Tyler Russel,
Alvaro Sanchez-Gonzalez, Vivian Yang, Rob Carver, Shreya Agrawal, Matthew Chantry, Zied Ben
Bouallegue, Peter Dueben, Carla Bromberg, Jared Sisk, Luke Barrington, Aaron Bell, and Fei Sha.
Weatherbench 2: A benchmark for the next generation of data-driven global weather models, 2023.

Sara A. Rauscher, Erika Coppola, Claudio Piani, and Filippo Giorgi. Resolution effects on regional
climate model simulations of seasonal precipitation over Europe. Climate Dynamics, 35(4):685–
711, Sep 2010. ISSN 1432-0894. doi: 10.1007/s00382-009-0607-7. URL https://doi.org/
10.1007/s00382-009-0607-7.

Suman Ravuri, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi Lam, Piotr Mirowski, Megan
Fitzsimons, Maria Athanassiadou, Sheleem Kashem, Sam Madge, Rachel Prudden, Amol Mand-
hane, Aidan Clark, Andrew Brock, Karen Simonyan, Raia Hadsell, Niall Robinson, Ellen Clancy,
Alberto Arribas, and Shakir Mohamed. Skilful precipitation nowcasting using deep generative
models of radar. Nature, 597(7878):672–677, Sep 2021a. ISSN 1476-4687. doi: 10.1038/
s41586-021-03854-z. URL https://doi.org/10.1038/s41586-021-03854-z.

Suman Ravuri, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi Lam, Piotr Mirowski, Megan
Fitzsimons, Maria Athanassiadou, Sheleem Kashem, Sam Madge, et al. Skilful precipitation
nowcasting using deep generative models of radar. Nature, 597(7878):672–677, 2021b.

Christian Requena-Mesa, Vitus Benson, Markus Reichstein, Jakob Runge, and Joachim Denzler.
Earthnet2021: A large-scale dataset and challenge for earth surface forecasting as a guided video
prediction task. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1132–1142, 2021.

Eduardo Rocha Rodrigues, Igor Oliveira, Renato Cunha, and Marco Netto. Deepdownscale: A deep
learning strategy for high-resolution weather forecast. In 2018 IEEE 14th International Conference
on e-Science (e-Science), pp. 415–422. IEEE, 2018.

Robert A Rohde and Zeke Hausfather. The berkeley earth land/ocean temperature record. Earth
System Science Data, 12(4):3469–3479, 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pp. 234–241. Springer, 2015.

DA Sachindra, Khandakar Ahmed, Md Mamunur Rashid, S Shahid, and BJC Perera. Statistical
downscaling of precipitation using machine learning techniques. Atmospheric research, 212:
240–258, 2018.

16

https://proceedings.neurips.cc/paper_files/paper/2017/file/519c84155964659375821f7ca576f095-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/519c84155964659375821f7ca576f095-Paper.pdf
https://doi.org/10.1007/s00382-009-0607-7
https://doi.org/10.1007/s00382-009-0607-7
https://doi.org/10.1038/s41586-021-03854-z


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Øyvind Seland, Mats Bentsen, Dirk Jan Leo Oliviè, Thomas Toniazzo, Ada Gjermundsen, Lise Seland
Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, et al. Overview
of the norwegian earth system model (noresm2) and key climate response of cmip6 deck, historical,
and scenario simulations. 2020.

Muhammed Sit, Bong-Chul Seo, and Ibrahim Demir. Iowarain: A statewide rain event dataset based
on weather radars and quantitative precipitation estimation. arXiv preprint arXiv:2107.03432,
2021.

Casper Kaae Sønderby, Lasse Espeholt, Jonathan Heek, Mostafa Dehghani, Avital Oliver, Tim
Salimans, Shreya Agrawal, Jason Hickey, and Nal Kalchbrenner. MetNet: A neural weather model
for precipitation forecasting. arXiv preprint arXiv:2003.12140, 2020.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Jingmin Sun, Yuxuan Liu, Zecheng Zhang, and Hayden Schaeffer. Towards a foundation model
for partial differential equation: Multi-operator learning and extrapolation. arXiv preprint
arXiv:2404.12355, 2024.

Qing Tao, Fang Liu, Yong Li, and Denis Sidorov. Air pollution forecasting using a deep learning
model based on 1d convnets and bidirectional gru. IEEE access, 7:76690–76698, 2019.

Thomas Vandal, Evan Kodra, and Auroop R Ganguly. Intercomparison of machine learning methods
for statistical downscaling: the case of daily and extreme precipitation. Theoretical and Applied
Climatology, 137:557–570, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 30, 2017.

Francisco Villaescusa-Navarro, Shy Genel, Daniel Anglés-Alcázar, Leander Thiele, Romeel Dave,
Desika Narayanan, Andrina Nicola, Yin Li, Pablo Villanueva-Domingo, Benjamin Wandelt,
David N. Spergel, Rachel S. Somerville, Jose Manuel Zorrilla Matilla, Faizan G. Mohammad,
Sultan Hassan, Helen Shao, Digvijay Wadekar, Michael Eickenberg, Kaze W. K. Wong, Gabriella
Contardo, Yongseok Jo, Emily Moser, Erwin T. Lau, Luis Fernando Machado Poletti Valle, Lucia A.
Perez, Daisuke Nagai, Nicholas Battaglia, and Mark Vogelsberger. The camels multifield data
set: Learning the universe’s fundamental parameters with artificial intelligence. The Astrophysical
Journal Supplement Series, 259(2):61, April 2022. ISSN 1538-4365. doi: 10.3847/1538-4365/
ac5ab0. URL http://dx.doi.org/10.3847/1538-4365/ac5ab0.

F. Vitart, A. W. Robertson, A. Spring, F. Pinault, R. Roškar, W. Cao, S. Bech, A. Bienkowski,
N. Caltabiano, E. De Coning, B. Denis, A. Dirkson, J. Dramsch, P. Dueben, J. Gierschendorf,
H. S. Kim, K. Nowak, D. Landry, L. Lledó, L. Palma, S. Rasp, and S. Zhou. Outcomes of the
WMO prize challenge to improve subseasonal to seasonal predictions using artificial intelligence.
Bulletin of the American Meteorological Society, 103(12):E2878–E2886, December 2022. doi:
10.1175/bams-d-22-0046.1.

Frédéric Vitart and Andrew W Robertson. The sub-seasonal to seasonal prediction project (s2s) and
the prediction of extreme events. npj Climate and Atmospheric Science, 1(1):1–7, 2018.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level
scientific problem-solving abilities of large language models. arXiv preprint arXiv:2307.10635,
2023.

D. Watson-Parris, Y. Rao, D. Olivié, Ø. Seland, P. Nowack, G. Camps-Valls, P. Stier, S. Bouabid,
M. Dewey, E. Fons, J. Gonzalez, P. Harder, K. Jeggle, J. Lenhardt, P. Manshausen, M. Novitasari,
L. Ricard, and C. Roesch. ClimateBench v1.0: A Benchmark for Data-Driven Climate Projections.
Journal of Advances in Modeling Earth Systems, 14(10):e2021MS002954, 2022a. doi: https://doi.
org/10.1029/2021MS002954. URL https://agupubs.onlinelibrary.wiley.com/
doi/abs/10.1029/2021MS002954. e2021MS002954 2021MS002954.

17

http://dx.doi.org/10.3847/1538-4365/ac5ab0
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002954
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002954


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Duncan Watson-Parris, Yuhan Rao, Dirk Olivié, Øyvind Seland, Peer Nowack, Gustau Camps-Valls,
Philip Stier, Shahine Bouabid, Maura Dewey, Emilie Fons, et al. Climatebench v1. 0: A benchmark
for data-driven climate projections. Journal of Advances in Modeling Earth Systems, 14(10):
e2021MS002954, 2022b.

Oliver Watt-Meyer, Gideon Dresdner, Jeremy McGibbon, Spencer K. Clark, Brian Henn, James
Duncan, Noah D. Brenowitz, Karthik Kashinath, Michael S. Pritchard, Boris Bonev, Matthew E.
Peters, and Christopher S. Bretherton. Ace: A fast, skillful learned global atmospheric model for
climate prediction, 2023.

NP Wedi, P Bauer, W Denoninck, M Diamantakis, M Hamrud, C Kuhnlein, S Malardel, K Mogensen,
G Mozdzynski, and PK Smolarkiewicz. The modelling infrastructure of the Integrated Forecasting
System: Recent advances and future challenges. European Centre for Medium-Range Weather
Forecasts, 2015.

Jonathan A Weyn, Dale R Durran, and Rich Caruana. Improving data-driven global weather prediction
using deep convolutional neural networks on a cubed sphere. Journal of Advances in Modeling
Earth Systems, 12(9):e2020MS002109, 2020.

Ross Wightman. PyTorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

T Wu, S Tang, R Zhang, J Cao, and Y Zhang Cgnet. A light-weight context guided network for
semantic segmentation., 2020, 30. DOI: https://doi. org/10.1109/TIP, pp. 1169–1179, 2020.

Sungduk Yu, Walter Hannah, Liran Peng, Jerry Lin, Mohamed Aziz Bhouri, Ritwik Gupta, Björn
Lütjens, Justus Christopher Will, Gunnar Behrens, Julius Busecke, Nora Loose, Charles I Stern,
Tom Beucler, Bryce Harrop, Benjamin R Hillman, Andrea Jenney, Savannah Ferretti, Nana Liu,
Anima Anandkumar, Noah D Brenowitz, Veronika Eyring, Nicholas Geneva, Pierre Gentine,
Stephan Mandt, Jaideep Pathak, Akshay Subramaniam, Carl Vondrick, Rose Yu, Laure Zanna, Tian
Zheng, Ryan Abernathey, Fiaz Ahmed, David C Bader, Pierre Baldi, Elizabeth Barnes, Christopher
Bretherton, Peter Caldwell, Wayne Chuang, Yilun Han, Yu Huang, Fernando Iglesias-Suarez,
Sanket Jantre, Karthik Kashinath, Marat Khairoutdinov, Thorsten Kurth, Nicholas Lutsko, Po-Lun
Ma, Griffin Mooers, J. David Neelin, David Randall, Sara Shamekh, Mark A Taylor, Nathan Urban,
Janni Yuval, Guang Zhang, and Michael Pritchard. Climsim: A large multi-scale dataset for hybrid
physics-ml climate emulation, 2024.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal
understanding and reasoning benchmark for expert agi. arXiv preprint arXiv:2311.16502, 2023.

Yuchen Zhang, Mingsheng Long, Kaiyuan Chen, Lanxiang Xing, Ronghua Jin, Michael I. Jordan,
and Jianmin Wang. Skilful nowcasting of extreme precipitation with nowcastnet. Nature, 619
(7970):526–532, Jul 2023. doi: 10.1038/s41586-023-06184-4.

18

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A APPENDIX

B LICENSES AND TERMS OF USE

The source code will be available online under the MIT License upon acceptance. The licenses of the
datasets we use in AtmosArena are as follows:

• ERA5 is curated and provided by WeatherBench2 which is licensed under Apache
License 2.0 (https://github.com/google-research/weatherbench2/
blob/main/LICENSE).

• Berkeley Earth (https://berkeleyearth.org/data/), ClimateBench (https:
//zenodo.org/record/7064308), ClimateNet (https://gmd.copernicus.
org/articles/14/107/2021/) are available under the CC BY 4.0 license.

• CAMS Analysis provided by Copernicus Atmosphere Monitoring Service
(CAMS) is free of charge, worldwide, non-exclusive, royalty-free and perpet-
ual (https://atmosphere.copernicus.eu/sites/default/files/
repository/CAMS_data_license.pdf).

• GEOS-CF (https://portal.nccs.nasa.gov/datashare/gmao/geos-cf/)
provided by NASA is free for public access.

C DATASETS

C.1 DATASET DETAILS

Table 6: Summary of the datasets used to finetune and evaluate baselines in AtmosArena.
Name Resolution Temporal coverage Surface Variables Multi-level Variables Num levels Size (GB) Num frames

ERA5 128x256 1979-2020 T2m, U10, V10, MSLP Z, T, U, V, Q 13 1600 61,324

Berkeley Earth 128x256 1850-2023 T2m N/A N/A 0.26 2,088

ClimateBench 32x64 2015-2100 CO2, SO2, CH4, BC,
TAS, DTR, PR, PR90 N/A N/A 0.12 839

ClimateNet 768x1152 1996-2013
TMQ, UBOT, VBOT, PS,
PSL, PRECT, TS,
TREFHT, ZBOT

U850, V850, QREFHT,
T200, T500, Z1000,
Z200

N/A 28 459

CAMS Analysis 128x256 2017-2022

T2m, U10, V10, MSLP,
TC CO, TC NO, TC
NO2, TC SO2, TC O3,
PM1, PM2.5, PM10

U, V, T, Q, Z, CO, NO,
NO2, SO2, O3 13 59 3774

GEOS-CF 128x256 2018-2023 NO2, SO2, CO, O3,
PM2.5 N/A N/A 363 52,584

Table 6 details the datasets in AtmosArena, including their spatial resolution, temporal coverage,
variables, and size. The full names of the abbreviated variables are:

• T2m, U10, V10, MSLP: 2-meter temperature, 10-meter zonal wind, 10-meter meridional
wind, Mean sea level pressure.

• Z, T, U, V, Q: Geopotential, Temperature, Zonal wind, Meridional wind, Specific humidity
at different pressure levels.

• CO2, SO2, CH4, BC: Carbon dioxide, Sulfur Dioxide, Methane, Black carbon.

• TAS, DTR, PR, PR90: Surface air temperature, Diurnal temperature range, Precipitation,
90th percentile precipitation.

• TMQ, UBOT, VBOT, PS, PSL, PRECT, TS, TREFHT, ZBOT: Total Precipitable Water,
Lowest Model Level Zonal Wind, Lowest Model Level Meridional Wind, Surface Pres-
sure, Sea Level Pressure, Total Precipitation Rate, Surface Temperature, Reference Height
Temperature, Lowest Model Level Height.

• U850, V850, QREFHT, T200, T500, Z1000, Z200: Zonal Wind at 850 mb, Meridional Wind
at 850 mb, Specific Humidity at Reference Height, Temperature at 200 mb, Temperature at
500 mb, Geopotential Height at 1000 mb, Geopotential Height at 200 MB.
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• TC CO, TC NO, TC NO2, TC SO2, TC O3, PM1, PM2.5, PM10: Total Column Carbon
Monoxide, Total Column Nitric Oxide, Total Column Nitrogen Dioxide, Total Column
Sulfur Dioxide, Total Column Ozone, Particulate Matter 1um, Particulate Matter 2.5um,
Particulate Matter 10um.

• CO, NO, NO2, SO2, O3: Zonal Wind, Meridional Wind, Temperature, Specific Humidity,
Geopotential Height, Carbon Monoxide, Nitric Oxide, Nitrogen Dioxide, Sulfur Dioxide,
Ozone.

For ERA5, following WeatherBench2 (Rasp et al., 2023), we used the 6-hourly subsampled data
from the original ERA5 at 00:00, 06:00, 12:00, and 18:00, and used the 13 pressure levels for the
multi-level variables: 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000. We use the
same pressure levels for CAM Analysis.We also note that the resolutions of ERA5, Berkeley Earth,
ClimateBench, CAMS Analysis, and GEOS-RF used in our paper are different from their original
resolutions. We used bilinear interpolation to regrid the original data to the resolutions in Table 6.

C.2 TRAIN, VALIDATION, AND TEST SPLIT

Table 7: Summary of train, validation, and test split of the datasets in AtmosArena.
Name Train time frame Validation time frame Test Year(s)

time frame 1979-2018 2019 2020

Berkeley Earth N/A N/A 2000-2024

ClimateBench 2015-2100 2015-2100 2015-2100

ClimateNet 1996-2007 2008-2010 2011-2013

CAMS Analysis 2018-2020 2021 2022

GEOS-CF 2017-2020 2021 2022

Tabel 7 summarizes the train, validation, and test split of the datasets we included in AtmosArena.
Most datasets are split according to time, where training, validation, and test data belong to non-
overlapping time periods. For ClimateBench, which we used for the climate model emulation
task, however, the data is split according to different future emission scenarios. We refer to Cli-
mateBench (Watson-Parris et al., 2022b) for a detailed discussion of these scenarios.

D EVALUATION METRICS

This section presents the formulation of the evaluation metrics we included in AtmosArena. We
use the following notations across the metrics:

• N is the number of data points
• H is the number of latitude coordinates.
• W is the number of longitude coordinates.

• X and X̃ are the ground-truth and prediction, respectively.

Each equation below is computed for one single variable. To account for the non-uniformity of the
grid cell areas when gridding a round Earth, most metrics are latitude-weighted to give more weight
to the cells closer to the equator. The latitude weighting function is given by

L(i) =
cos(Hi)

1
H

∑H
i=1 cos(Hi)

(1)

D.1 FORECASTING METRICS

Root Mean Square Error (RMSE)

RMSE =
1

N

N∑
k=1

√√√√ 1

H ×W

H∑
i=1

W∑
j=1

L(i)(X̃k,i,j −Xk,i,j)2. (2)
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Anomaly Correlation Coefficient (ACC) is the spatial correlation between prediction anomalies
X̃

′
relative to climatology and ground truth anomalies X

′
relative to climatology:

ACC =

∑
k,i,j L(i)X̃

′

k,i,jX
′

k,i,j√∑
k,i,j L(i)X̃

′2
k,i,j

∑
k,i,j L(i)X

′2
k,i,j

, (3)

X̃
′
= X̃ − C,X

′
= X − C, (4)

in which climatology C is the temporal mean of the ground truth data over a fixed period. We used
the climatology data from WeatherBench2 (Rasp et al., 2023) in our all experiments.

Spectral Divergence (SpecDiv) is inspired by KL divergence, which computes the expectation of
the logarithmic ratio between the ground truth and predicted spectra. This metric emphasizes the
relative error between the frequency components of the ground truth and prediction:

SpecDiv =
∑
k

S′(k) · log
(
S′(k)

S̃′(k)

)
(5)

where S′(k) and Ŝ′(k) represent the spectral components of the ground truth and predictions,
respectively, and k denotes the spectral component.

D.2 CLIMATE DOWNSCALING AND INFILLING METRICS

Root Mean Square Error (RMSE) This is the same as Equation (2).

Mean Bias measures the mean difference between the prediction and the ground truth. A positive
mean bias shows overestimation, while a negative mean bias shows underestimation:

Mean bias =
1

N ×H ×W

N∑
k=1

H∑
i=1

W∑
j=1

(X̃k,i,j −Xk,i,j) (6)

Anomaly Pearson Coefficient measures the Pearson correlation between the prediction and the
ground truth anomalies. We first flatten the prediction and ground truth anomalies, and compute the
metric as follows:

ρX̃′,X′ =
cov(X̃ ′, X ′)

σX̃′σX′
(7)

NOTE: For the Climate data infilling task, we compute the metrics over the masked cells only.

D.3 CLIMATE MODEL EMULATION METRICS

Normalized spatial root mean square error (NRMSEs) measures the spatial discrepancy between
the temporal mean of the prediction and the temporal mean of the ground truth:

NRMSEs =

√√√√〈( 1

N

N∑
k=1

X̃ − 1

N

N∑
k=1

X

)2〉/
1

N

N∑
k=1

⟨X⟩ , (8)

in which ⟨A⟩ is the global mean of A:

⟨A⟩ = 1

H ×W

H∑
i=1

W∑
j=1

L(i)Ai,j (9)

Normalized global root mean square error (NRMSEg) measures the discrepancy between the
global mean of the prediction and the global mean of the ground truth:

NRMSEg =

√√√√ 1

N

N∑
k=1

(
⟨X̃⟩ − ⟨X⟩

)2/ 1

N

N∑
k=1

⟨X⟩ . (10)

Total normalized root mean square error (Total) is the weighted sum of NRMSEs and NRMSEg:
Total = NRMSEs + α · NRMSEg, (11)

where α is chosen to be 5 as suggested by Watson-Parris et al. (2022a).
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D.4 EXTREME WEATHER EVENTS DETECTION METRICS

Each pixel in the H ×W grid is classified into one of three classes, leading to a confusion matrix per
class (AR, TC, and BG). The performance metrics, calculated for each class, are defined as follows
using the elements of the confusion matrix—True Positives (TP), False Positives (FP), True Negatives
(TN), and False Negatives (FN):

Intersection over Union (IoU)

IoUc =
TPc

TPc + FPc + FNc
(12)

Precision

Precisionc =
TPc

TPc + FPc
(13)

Recall

Recallc =
TPc

TPc + FNc
(14)

F-1 Score

F-1c = 2× Precisionc × Recallc
Precisionc + Recallc

(15)

Specificity

Specificityc =
TNc

TNc + FPc
(16)

E EXPERIMENT DETAILS

This section details the experiments we conducted in Section 3, including model architectures and
hyperparameters, training objectives, and optimization.

E.1 MODEL ARCHITECTURES

Unet We borrow our Unet implementation from PDEArena (Gupta & Brandstetter, 2022). Table 8
shows hyperparameters of Unet we use in all our experiments. The Unet model has a total of 500M
parameters.

Table 8: Default hyperparameters of UNet
Hyperparameter Meaning Value

Padding size Padding size of each convolution layer 1
Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1

Channel multiplications Determine the number of output channels
for Down and Up blocks [1, 2, 2, 4]

Blocks Number of Resnet blocks 2
Use attention If use attention in Down and Up blocks False

ClimaX and Stormer For ClimaX and Stormer, we borrow the implementation from their original
papers (Nguyen et al., 2023a;c), which we refer to for a detailed description of their architectures.
Table 9 shows hyperparameters of ClimaX and Stormer we use in all our experiments. The parameter
count for ClimaX and Stormer is 100M and 400M, respectively.
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Table 9: Default hyperparameters of ClimaX and Stormer
Hyperparameter Meaning ClimaX Stormer

p Patch size 4 2
D Embedding dimension 1024 1024
Depth Number of ViT blocks 8 24
# heads Number of attention heads 16 16

MLP ratio Determine the hidden dimension of the
MLP layer in a ViT block 4 4

Prediction depth Number of layers of the prediction head 2 1
Hidden dimension Hidden dimension of the prediction head 1024 N/A

E.1.1 EXTENSIONS FOR CLIMATE MODEL EMULATION

We modify the architecture of ClimaX and Stormer for this task to account for the time dimension T
in the input. Each time slice of the input goes through the embedding layer and the transformer blocks
independently, resulting in an output tensor of shape T × h × w ×D where D is the embedding
dimension. This tensor then goes through a global pooling layer along the spatial dimensions h and w,
outputting a tensor of shape T ×D. This sequence of tensors is aggregated by a cross-attention layer
over the time dimension to a single vector of D dimensions. Finally, a linear layer predicts the output
of shape V ×H ×W . The cross-attention layer along the time dimension is randomly initialized and
trained together with the new embedding and prediction layer, as well as the transformer backbone.

E.1.2 EXTENSIONS FOR EXTREME WEATHER EVENTS DETECTION

Since the spatial resolution of ClimateNet is 768× 1152, training the original ClimaX and Stormer
with patch sizes of 4 and 2, respectively, is too computationally expensive. To address this issue, we
use a stack of 6 convolutional layers to embed the input before the attention blocks which outputs
a tensor of shape 96× 144×D, reducing the spatial resolution by 8. This tensor goes through the
transformer blocks and a linear prediction head which outputs a tensor of shape 3× 96× 144 where 3
is the number of classes. Finally, this output is bilinearly interpolated to the original spatial resolution
of 768 × 1152. The bilinear interpolation module is also used by the baseline CGNet (Wu et al.,
2020).

E.2 TRAINING DETAILS

E.2.1 DATA NORMALIZATION

For tasks that utilize ERA5 for training and evaluation, including medium-range weather forecasting,
S2S forecasting, climate downscaling, and climate data infilling, we normalize both input and output
variables to have mean 0 and standard deviation 1. The normalization constants are computed across
the entire training set. During evaluation, predictions and ground-truths are de-normalized to the
original scale before computing the metrics.

For the extreme weather events detection task that uses ClimateNet, we normalize the input variables
similarly to ERA5, but not the output variables since they are discrete labels.

For the climate model emulation task that uses ClimateBench, we normalize the input variables
similarly to ERA5, but not the output variables since we predict each target variable separately.

E.2.2 TRAINING OBJECTIVES

Regression For the five regression tasks, including medium-range weather forecasting, S2S fore-
casting, climate downscaling, climate data infilling, and climate model emulation, we use the same
latitude-weighted mean-squared error loss for training:

L(θ) = 1

V ′ ×H ×W

V ′∑
v=1

H∑
i=1

W∑
j=1

L(i)(X̃v,i,j −Xv,i,j)2. (17)
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Classification For the extreme weather events detection task, we utilize the weighted Jaccard loss
proposed in Lacombe et al. (2023) to prioritize the TC and AR classes:

L(θ) = 1

C ×H ×W

C∑
c=1

H∑
i=1

W∑
j=1

(
1− wc

X̃c,i,jXc,i,j

(X̃c,i,j +Xc,i,j)− X̃c,i,jXc,i,j

)
, (18)

in which wc is the weight of class c. Following Lacombe et al. (2023), we set wc to 0.678, 31.08,
and 2.9 for BG, TC, and AR, respectively.

E.2.3 OPTIMIZATION

For all tasks, we used AdamW with parameters (β1 = 0.9, β2 = 0.95) and weight decay of 1e−5 for
all parameters except for the positional embedding in ClimaX and Stormer. We trained each model
for 50 epochs with a batch size of 32, using a linear warmup schedule for 5 epochs, followed by a
cosine-annealing schedule for 45 epochs. Table 10 shows the peak learning rate for each task.

Table 10: Learning rate for finetuning ClimaX in different downstream tasks
Task Finetuning LR Scratch Training LR

Medium-range weather forecasting 5e− 6 5e− 4
S2S forecasting 5e− 5 5e− 4
Climate downscaling 5e− 5 5e− 4
Climate data infilling 1e− 4 5e− 4
Climate model emulation 5e− 4 5e− 4
Extreme weather events detection 5e− 4 5e− 4

For finetuning ClimaX and Stormer, we used a smaller learning rate for tasks that are similar to
pretraining and a larger learning rate for tasks that are more different.

E.2.4 SOFTWARE AND HARDWARE STACK

We use PyTorch (Paszke et al., 2019), numpy (Harris et al., 2020) and xarray (Hoyer & Hamman,
2017) to manage our data and model training. We also use timm (Wightman, 2019) for implementa-
tions of ClimaX and Stormer. All training is done on 8 NVIDIA RTX A6000 GPUs. We leverage
fp16 floating point precision in our experiments.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

F VISUALIZATIONS

F.1 S2S FORECASTING
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Figure 5: ClimaX forecasts for weeks 3-4 of six target variables.
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Figure 6: ClimaX forecasts for weeks 5-6 of six target variables.
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Figure 7: Stormer forecasts for weeks 3-4 of six target variables.
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Figure 8: Stormer forecasts for weeks 5-6 of six target variables.
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F.2 CLIMATE DOWNSCALING
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Figure 9: ClimaX downscaling predictions of six target variables.
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Figure 10: Stormer downscaling predictions of six target variables.
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G ATMOSPHERIC CHEMISTRY

This section presents the atmospheric chemistry tasks that AtmosArena includes.

G.1 ATMOSPHERIC CHEMISTRY DOWNSCALING

Atmospheric chemistry simulations are essential for understanding various global processes such
as air pollution, biogeochemical cycles, and climate change. High-resolution models can capture
fine-scale chemical interactions, providing insights into local pollution levels and their health impacts.
However, these models are computationally intensive. Deep learning offers a solution by transforming
coarse-resolution inputs into finer-resolution outputs (Geiss et al., 2022). Specifically, the input is a
grid of dimensions V ×H ×W , and the output is a higher-resolution grid V ′ ×H ′ ×W ′, where
H ′ > H and W ′ > W . This allows for precise monitoring of atmospheric pollutants and their
effects on human health and the environment, enabling more informed policy decisions and scientific
research.

Dataset We utilize GEOS-CF, a simulated dataset from the NASA GEOS Composition Forecast
(GEOS-CF) system (Knowland et al., 2022). GEOS-CF combines the NASA GEOS model with the
GEOS-Chem chemical transport model to simulate the atmospheric composition (Keller et al., 2021).
The dataset offers outputs on a 0.25◦ grid, which we downsample to 5.625◦ for the low-resolution
input and 1.40625◦ for the high-resolution output. For our benchmark, we use the meteorological
replay simulation (“das” files), covering the years 2018 to the present. We focus on downscaling the
five near-surface atmospheric pollutants: NO2, SO2, CO, O3, and PM2.5, averaged over a 1-hour
window (“chm_tavg_1hr” files).

G.2 ATMOSPHERIC COMPOSITION FORECASTING

This task involves predicting the global atmospheric composition of important air pollutants such as
carbon monoxide and carbon dioxide at different lead times. This task is crucial for understanding air
quality, which directly impacts human health by influencing the prevalence of non-communicable
diseases. This task presents a significant challenge to data-driven models due to the complexity of
atmospheric dynamics and the influence of human activities on emission levels. The task formulation
and input and output shapes are similar to weather forecasting.

Dataset We use CAMS Analysis maintained by ECMWF for the atmospheric composition fore-
casting task in AtmosArena. As part of the Copernicus Atmosphere Monitoring Service (CAMS),
this dataset integrates meteorological variables with concentrations of air pollutants such as carbon
monoxide and carbon dioxide, providing a comprehensive overview of global atmospheric compo-
sition. The dataset offers 12-hourly data at a 0.4◦ (450 × 900 grids) resolution from 2017 to the
present. Similar to ERA5, we regrid this dataset to the common resolution of 1.40625◦ for easier
training and evaluation.

H ADDITIONAL EXPERIMENTS

H.1 ATMOSPHERIC CHEMISTRY EXPERIMENTS

H.1.1 ATMOSPHERIC CHEMISTRY DOWNSCALING

We consider the task of downscaling for five near-surface variables: NO2, SO2, CO, O3, and
PM2.5. We use GEOS-CF at 5.625◦ as the low-resolution input, and GEOS-CF at 1.40625◦ as the
high-resolution target, corresponding to 4× upsampling. We use 2018-2020 for training, 2021 for
validation, and 2020 for testing. Due to time and compute constraints, we only consider ClimaX
finetuned and Unet as baselines.

Table 11 reports the MAE metric in the log space of the five target variables. ClimaX finetuned and
Unet perform competitively. Given the results in climate downscaling, we believe fully finetuned
Stormer will outperform Unet in this task.
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Table 11: MAE of ClimaX finetuned and Unet for downscaling five target near-surface pollutants.
NO2 SO2 CO O3 PM2.5

ClimaX finetuned 0.069 0.049 0.405 0.0065 0.100
Unet 0.064 0.047 0.0071 0.104

H.1.2 ATMOSPHERIC COMPOSITION FORECASTING

We compare ClimaX with Unet on forecasting eight near-surface pollutants: Total Column Carbon
Monoxide (TC CO), Total Column Nitric Oxide (TC NO), Total Column Nitrogen Dioxide (TC
NO2), Total Column Sulfur Dioxide (TC SO2), Total Column Ozone (TC O3), Particulate Matter
1um (PM1), Particulate Matter 2.5um (PM2.5), and Particulate Matter 10um (PM10), with lead times
from 1 to 3 days. For each baseline method, we finetune a separate model for each specific lead time
and target variable. We use CAMS Analysis from 2017 to 2020 for training, 2021 for validation, and
2022 for testing.
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Figure 11: Air composition forecasting performance.

Figure 11 shows the performance of ClimaX and Unet on forecasting eight key pollutants from 1 day
to 5 days. Unet outperforms ClimaX for almost all variables. This result shows that the temporal
forecasting capabilities of pretrained models may not transfer well to new tasks in a new domain.

H.2 ADDITIONAL METRICS FOR ATMOSPHERIC PHYSICS TASKS

S2S forecasting In addition to RMSE and ACC, we report Spectral Divergence as a physics-based
metric, which measures the discrepancy between the frequency components of the ground truth and
prediction. Table 12 shows the superior performance of ClimaX frozen across all variables and lead
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times. This highlights the effectiveness of multi-source pretraining in obtaining a general-purpose
backbone that can adapt to forecasting tasks with unseen time scales only via lightweight finetuning.

Table 12: S2S performance measured by Spectral Div on four target variables at two lead times.
Z500 T850 T2m Q700

Weeks 3-4 Weeks 5-6 Weeks 3-4 Weeks 5-6 Weeks 3-4 Weeks 5-6 Weeks 3-4 Weeks 5-6

Spectral Div (↓)

ClimaX frozen 0 0 0.3153 0.2894 0.1671 0.1805 0.0789 0.0903
ClimaX finetuned 0 0 0.3224 0.3180 0.2298 0.2093 0.0930 0.0937
Stormer frozen 0 0 0.3307 0.4161 0.4705 0.5971 0.5188 0.7513
Stormer finetuned 0 0 0.3275 0.3024 0.6603 0.6105 0.4337 0.3468
Unet 0 0 0.3863 0.5110 0.2065 0.4647 0.0809 0.8157

Downscaling Table 13 shows the Anomaly Pearson Coefficient of different baselines on the climate
downscaling tasks. Stormer finetuned is the best method for all four variables. However, all
baselines achieve very similar performances, suggesting Anomaly Pearson Coefficient may not be
the best metric for distinguishing different models in this task. A similar result was observed in
ClimaX (Nguyen et al., 2023a).

Table 13: Downscaling performance measured by Anomaly Pearson Coefficient on six variables.
Z500 T850 T2m Q700 U10 V10

Anomaly Pearson (↑)

ClimaX frozen 0.9963 0.9879 0.9833 0.9388 0.9690 0.9716
ClimaX finetuned 0.9977 0.9907 0.9869 0.9532 0.9802 0.9813
Stormer frozen 0.9956 0.9856 0.9821 0.9240 0.9654 0.9689
Stormer finetuned 0.9993 0.9951 0.9946 0.9626 0.9886 0.9894
Unet 0.9987 0.9931 0.9917 0.9613 0.9850 0.9861

Extreme weather events detection Table 14 shows the Specificity metrics of different methods in
the extreme weather events detection tasks. ClimaX frozen is the best-performing method, showing
the effectiveness of multi-source pretraining in transferring the backbone to a completely new task.
However, the baselines perform very similarly for this metric, suggesting it may not be the best to
evaluate methods in this task.

Table 14: Specificity Metrics of different methods for TC and AR detection.
ClimaX frozen ClimaX finetuned Stormer frozen Stormer finetuned CGNet

TC 0.99 0.99 0.98 0.98 0.99
AR 0.96 0.96 0.95 0.95 0.92

H.3 CLIMATE DATA INFILLING ON BERKELEY EARTH

We test the models trained to perform infilling for ERA5 in Sections 4.4 on the Berkeley Earth dataset
to examine their transferability between datasets. Similarly to ERA5, we generate a fixed set of masks
during testing, with the mask ratio r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We test the models on infilling for
data from 2020 to 2023. Figure 12 shows that all methods perform similarly for this dataset, and the
performances do not get worse as we increase the mask ratio. We hypothesize that because of the
distribution shift from ERA5 to Berkeley Earth, the best thing the models can do is to predict the
average, leading to very similar performances among models and mask ratios.
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Figure 12: Performance of different models measured by RMSE and Absolute Mean Bias on infilling
the Berkeley Earth temperature data with different mask ratios.
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