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Abstract

We leverage ecological theories of sound perception in humans [5, 6, 11] and a
carefully designed dataset of perceptually calibrated sounds to develop and carry
out principled fine-grained probing of foundation models in relation to the au-
ditory modality. We show that internal activations of the state-of-the-art audio
foundation model BEATs correlate better with perceptual dimensions than a su-
pervised audio classification model and a text-audio multimodal model and that
all models fail to represent at least one perceptual dimension. We also report pre-
liminary evidence suggesting that directions aligning invariantly with a perceptual
dimension can be identified within the representation space at inner layers of the
BEATs model. We briefly discuss future work and potential applications.

1 Introduction

Recent attempts to replicate the success of text-based foundation models in other modalities or
across multiple modalities have led to substantial advances in multiple domains, including computer
vision and audio processing [17, 27, 2, 1]. Despite the unprecedented success of this approach, fine-
grained probing of foundation models that take images as input (possibly among other modalities)
reveals that they still suffer from many weaknesses and suggests possible avenues of improvement
[14, 23, 22, 21]. Fine-grained probing of foundation models that take sounds as input (possibly
among other modalities) have yet to be carried out to a similar extent, even though it is likely that it
too would reveal substantial weaknesses and avenues of improvement.

Defining fine-grained, principled probing tasks in the auditory domain is challenging, however, and
the evaluation of foundation models in this domain so far often revolves around limited tasks such as
classification and captioning on poorly calibrated datasets [7, 16, 28]. In this study, we leverage the-
ories of human sound source perception and a carefully designed dataset of perceptually calibrated
sounds to develop and carry out principled fine-grained probing of foundation models in relation
to the auditory modality. Specifically, we consider theories of ecological perception in the auditory
modality, which posit the representation of a sound source along a set of perceptual dimensions,
corresponding to perceived properties of the mechanical interaction producing the sound, such as
the material of the interacting objects, whether they are empty or full, their spatial extension, etc.
[5, 6, 11].

Beyond the identification of weaknesses and avenues of improvement in audio foundation models,
our approach may help identify interesting dimensions within the usually opaque representation
spaces of these models, with potential applications to model interpretability, conditional sound syn-
thesis and computational modeling in cognitive neuroscience.
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2 Related work

Probing of machine learning models has been conducted extensively across various domains, in-
cluding natural language processing, computer vision, and speech processing, using both linear and
non-linear classifiers [19, 26, 13], as well as discrimination metrics [25, 24, 30]. In the context of
natural sounds—beyond speech and music—insights into the representations of foundation models
have typically only been obtained through evaluation on standard classification or captioning bench-
marks [7, 16, 28]. These evaluations, are coarse, however. They use roughly defined categories
and do not leverage domain-specific knowledge. Recent studies have also explored the alignment of
deep neural networks with human neural processing in the auditory modality, examining how well
DNN audio models capture brain responses [29] and comparing invariances in artificial and biolog-
ical networks [4]. To the best of our knowledge, however, we are the first to propose principled
fine-grained probing tasks specifically designed for the study of natural sounds.

3 Materials and Methods

Probing sounds We use a perceptually-rated sound dataset collected at the PRISM laboratory1,
hereafter referred to as the PRISM dataset. It consists of 246 impact sounds recorded in an anechoic
chamber and produced by striking various objects with a small hammer. Motivated by the ecolog-
ical approach to sound perception [5, 6], the sounds are chosen to vary along three fundamental
dimensions: the object’s material (wood, glass, metal, stone, cardboard, ceramic or plastic), hollow-
ness (whether it is full or not) and spatial extension (1D, 2D, or 3D). 17 human participants were
recruited to classify each auditory stimulus based on perceived properties of hollowness, spatial ex-
tension, and material through auditory perception alone, without visual support. For each sound, we
collected the distribution of participant categorical judgments across predefined categories for each
perceptual property (material, hollowness, and spatial extension).

Tested models.

(i) BEATs is a foundation model trained exclusively on audio in a self-supervised manner on large-
scale datasets [2]. Its architecture is transformer-based. BEATs is the current state-of-the-art for
audio-only classification on the Audioset dataset, achieving a mean average precision (mAP) score
of 0.506. Here, we leverage activations from BEATs’ 12 self-attention layers to represent probing
sounds.

(ii) Yamnet is an earlier convolutional neural network (CNN) model that achieved an mAP score
of 0.314 on the Audioset classification task, on which it was trained in a supervised manner [9].
Yamnet provides a simple and reasonable baseline against which to compare BEATs. It consists of
14 depth-wise convolutional blocks, followed by a dense layer for classification. Here, we leverage
activations from Yamnet’s 14 layers to represent probing sounds.

(iii) CLAP (Contrastive Language-Audio Pretraining) is a foundation model linking audio with de-
scriptive language through training on more than 5,000 hours of audio across 725,338 audio clips
with matched text descriptions [3, 31]. Through contrastive learning, it establishes a shared multi-
modal space for audio and text, allowing it to perform well across 16 diverse tasks with impressive
zero-shot capabilities, especially in sound event classification. CLAP architecture is transformer-
based. Here, we leverage activations at the output of each of CLAPs’ 12 successive transformer
blocs to represent probing sounds.

4 Experiment 1: Comparing human and model similarity spaces

Approach The sound representations we can derive from the tested models and the human data
available in the PRISM dataset are different. In models, we obtain vectors of neural activations
at each layer in response to a given sound. In humans, we collect a distribution of category la-
bels—one per participant—for each of three categorization tasks: material, hollowness, and spatial
extension. In Experiment 1, we bridge this gap by computing dissimilarity matrices between sounds
based either on model representations or human judgments and studying the correlation between
the entries in these matrices [10]. We also add a third representation space based on the physical

1https://www.prism.cnrs.fr
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ground truth (e.g. the actual material of a sound source, rather that the perceived material). For
machines we compute a cosine distance, between a model’s representations of each pair of probing
sounds at each layer. For humans, for each pair of sound and each of the three categorization tasks,
we compute either (i) a symmetric Kullback-Leibler (KL) divergence between the distributions of
human responses for these two sounds in that task or (ii) a discrete distance between the modes of
these distributions (d = 0 if the mode is the same, d = 1 otherwise). We also compute for both
KL and discrete dissimilarities, an average over the three categorization tasks as an overall measure
of similarity based on human judgments. Finally, we compute a physical similarity as a discrete
distance between physical ground truth labels.

(A) Human  
population 
 judgments

(B) Perception 
 vs physics

Averaged distances Material distances Hollowness distances Spatial extension

Figure 1: (A) Correlation between similarity in model representations and KL-divergence similarity
in human judgments. (B) Correlation between similarity in BEATs and Yamnet representations and
discrete distance similarity based either on human judgments or on physical ground truth. Note that
for Yamnet, layer 15 is the output layer.

Results The spatial extension of objects (1D, 2D or 3D) appears to be overall poorly represented in
all three model’s layers (Figure 1A, last column). Hollowness is overall better represented in BEATs
layers than in CLAP or Yamnet layers and, within BEATs, it is better represented in the deeper layers
(Figure 1A, column 3). Material appears better represented in BEATs than in Yamnet and better
represented in Yamnet than in CLAP, although the differences between the three are less marked than
for the hollowness dimension. Within BEATs and Yamnet, but not within CLAP, material appears
better represented in deeper layers (Figure 1A, column 2). Overall, the averaged similarity between
human judgments on the three dimensions considered account for about r2 = .42 = 16% of the
variance in representational similarity in the upper layers of BEATs on the sounds from the PRISM
dataset (Figure 1A, column 1). In the appendix (Figure A2), we show that the difference between
BEATs and Yamnet on the material dimension is mostly due to a better preservation of spectral
similarity information in BEATs inner layers. The superiority of the BEATs model on the hollowness
dimension, however, is not explained away by regressing out spectral similarities, suggesting a more
profound difference in what the two models learned with respect to that dimension.

In the remainder of the article we focus on the two most promising models, BEATs and Yamnet.
As can be seen on Figure 1B, except for the spatial extension, which is poorly represented by all
layers of all networks, inner layers of the BEATs model correlate substantially better with perceived
than physical similarity. Remarkably, correlation with physical similarity tend to stay mostly flat as
one goes towards inner layers, while correlation with perceived similarity increases. This suggests
that BEATs may have learned a properly perceptual representation of sounds, which is all the more
remarkable since it was only trained to predict upcoming sounds in a large database of natural
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sounds, without access to any form of supervision or perceptual judgments. The results are much
more contrasted for the Yamnet model—trained with explicit supervision on audioset—which only
correlates slightly better with perceptual rather than physical similarity on the material dimension.

Discussion This first experiment suggests that the perceived spatial extension of sound sources is
poorly represented in the tested models. These models might thus perform poorly in applications
requiring fine timbre distinction related to this perceptual dimension.

Furthermore, the poor performance of the CLAP model compared to BEATs and Yamnet is sur-
prising and interesting, especially since CLAP generally outperforms Yamnet, including on audio
classification tasks. A possible interpretation may be that CLAP’s difficulty in representing the fine-
grained sound properties under study result from its multimodal training objective. Being trained
for audio-text alignment, CLAP likely prioritize acoustic features that support this alignment over
those intrinsic to audio alone. And because text contains less information than raw audio, this might
create an “information bottleneck” that limit CLAP’s capacity to encode detailed fine-grained audio
structures. Our results thus suggest that although CLAP excels in broad classification and alignment
tasks, its performance on generative or perceptual tasks that rely on subtle acoustic nuances, like the
perceptual dimensions studied here, might be generally poor.

The best performing model is the purely audio self-supervised BEATs model. Our results are com-
patible with the presence of an explicit representation of perceived material and hollowness within
the inner layers of the BEATs network. Correlation between similarity structure is necessary but not
sufficient to support this idea, however, and does not give us actual access to that putative represen-
tation for use in practical applications. This motivates our next experiment, in which we test whether
we can identify explicit axes within model representations that align with a perceptual dimension in
a way that is invariant to changes along other perceptual dimensions.

5 Experiment 2: Finding perceptual dimensions in model representations

Approach In this section we want to test if we can find axes within BEATs representation space
that provide an invariant index to perceptual dimensions. We provide preliminary results for the
case of material. Our approach consists of training and testing linear classifiers of material (through
L2-regularized multinomial logistic regression) on BEATs representations of a number of carefully
selected subsets of the PRISM dataset. We are in particular interested in assessing whether a clas-
sifier trained on only sounds perceived to be of a specific type (e.g. only sounds perceived to be
hollow or from 1d and 2d sources) transfers well to classifying the material of sounds of a differ-
ent type. High transfer accuracy would suggest that the directions identified by the multiclass linear
classifier index the perceptual dimension of material in a way that is invariant to changes along other
perceptual dimensions (hollowness and spatial extension).

Results As can be seen on Figure 2, preliminary results suggest that it is possible to transfer ma-
terial classification boundaries learned from sounds with specific characteristics to sounds with dif-
ferent properties. A proper statistical analysis of these results is warranted, but the accuracy scores
consistently exceeding chance level and the moderate to inexistent drop in accuracy when compared
to a baseline with no transfer (in purple) are promising. As in Experiment 1, a steady increase in
performance is observed across the layers of BEATs, with deeper layers showing the highest accu-
racy. This aligns with the findings from the first experiment, where a stronger correlation between
model representations and human perception of material was noted in BEATs’ deeper layers.

Discussion Although preliminary, these results support the idea that it may be possible to find
axes within BEATs representation space that provide an invariant index to fine-grained perceptual
dimensions. This could have implications for practical applications where fine-grained distinctions
matter—for example for sound effects indexation or synthesis. For example, one could imagine
moving a sound along an “hollowness” direction to generate sounds that are more or less hollow.
This could enable more intuitive and precise control of synthesis, without sacrificing the benefits of
deep networks in synthesis, such as the sheer diversity of sounds that can be synthesized. Our next
step will be to use general-purpose sound synthesis architectures, such as Audio-LDM [12] to test
this idea.

4



spe
c 0 1 2 3 4 5 6 7 8 9 10 11

BEATs Layer

20

30

40

50

60

70

80

Lin
ea

r c
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (i

n 
%

) Train  Test
full  hollow
hollow  full
2d, 3d  1d
2d, 3d  2d
2d, 3d  3d
all  all
Chance Level 22%

Figure 2: Test accuracy for multinomial logistic regression on the 8 material categories. The legend
indicates the nature of the train/test split of the PRISM database (e.g. if ‘Train’ is 1d, 2d and ‘Test’ is
3d, it indicates that only sounds from objects in 1 and 2 dimensions were used for training and only
sounds from objects of 3 dimensions were used for testing). Chance level corresponds to a classifier
that always predicts the most common category, in this case metal with 22% of occurrences.

6 Conclusion

We showed that internal activations of the BEATs model correlate better with perceived material and
hollowness than those of CLAP or Yamnet, that the multimodal text-audio CLAP model appears
limited in representing fine-grained audio information and that all models fail to represent spatial
extension. We also reported preliminary evidence suggesting that directions aligning with perceived
material in a way invariant to variations along other perceptual dimensions can be identified within
the representation space at inner layers of the BEATs model. Future work will investigate additional
models and perceptual dimensions, including dimensions related not only to the attributes of sound
sources, but also to the nature of the sound-producing interaction (e.g. impact, scraping, flowing,
etc.).

Our approach may help identify model weaknesses and avenues for improvement. For the specific
case of the failure to represent spatial extent, our next step will be to test models learning from mul-
timodal input beyond text and audio like [1], which might perform better because spatial extension
is much more salient, for example, in visual and haptic signals than in audio or text. Our approach
may also be helpful for model transparency, by identifying interpretable structures within internal
representations. Identifying directions corresponding to invariant perceptual dimensions in audio
foundation models may also open up new avenues for designing intuitive sound indexation and syn-
thesis tools. This may prove especially useful for applications where fine-grained audio distinctions
matter. Indeed, our results with the CLAP model suggest that these applications may be difficult to
handle with text-based prompting only. Finally, investigating which perceptual dimensions are rep-
resented by audio foundation models has bearing on issues of current interest in the computational
cognitive neurosciences of auditory perception [18, 15, 8, 20].

5



Acknowledgments and Disclosure of Funding

This work received support from the French government under the France 2030 investment plan, as
part of the Initiative d’Excellence d’Aix-Marseille Université – A*MIDEX AMX-21-PEP-021. This
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A Correlation between and within human judgments and physical labels

We verify here that human perception judgments on the different perceptual dimensions are not
correlated with each other (Figure A1). We also measure the correlation between these judgments
and the physical reality.

Human judgments do not appear to be strongly correlated with physical reality A1, highlighting
the distinction between perception and physical properties. Specifically, there seems to be almost
no correlation between judgments of hollowness and their physical counterparts. Interestingly, a
notable correlation exists between the perception of hollowness and spatial dimension, which may be
explained by the fact that hollow objects cannot exist in two dimensions. This relationship suggests
a potential link between perceived hollowness and spatial extent that warrants further investigation.
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Figure A1: Correlation matrix for the different types of discrete distances (perceptual and physical)
across the 3 perceptual dimensions

B Regressing out spectral similarity

In order to study the effects of the model beyond what can already be learned from low-level sound
representations such as spectrograms, we sought to disentangle the two. We found that the dis-
tances between spectrograms are strongly correlated with the distances between representations in
the intermediate layers of BEATs, but not with those of Yamnet (see Figure A2). This leads us to
believe that a significant portion of the information present in the spectrogram is ignored from the
earliest layers in Yamnet, whereas BEATs seems to better preserve useful information contained
in the spectrogram. It is therefore reasonable to ask whether the lower performance of Yamnet in
correlating with perceptual judgments could simply be explained by its disregard for spectral in-
formation regarding materials, dimensions, and hollowness, rather than by the model’s ability to
represent sounds accurately. To verify this, we replicate the previous experiments while removing
the effect of the spectrogram on the representations by regressing it out. That is to say, we train a
linear regression to predict the distances between representations for each layer of the models based
on the distances between spectrograms, and we replicate the analysis from Figure 1 on the residuals
from this regression.
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Figure A2: (A) Correlation between residual similarity in model representations after regressing out
spectral similarities and KL-divergence similarity in human judgments. (B) Correlation between
residual similarity in model representations after regressing out spectral similarities and discrete
distance similarity based either on human judgments or on physical ground truth for the BEATs and
Yamnet models.
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