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Abstract

This work aims to reproduce and extend the findings of "Discovering and Mitigating Visual
Biases through Keyword Explanation" by Kim et al. (2024). The paper proposes the B2T
framework, which detects and mitigates visual biases by extracting keywords from generated
captions. By identifying biases in datasets, B2T contributes to the prevention of discrimi-
natory behavior in vision-language models. We aim to investigate the five key claims from
the original paper, namely that B2T (i) is able to identify whether a word represents a
bias, (ii) can extract these keywords from captions of mispredicted images, (iii) outperforms
other bias discovery models, (iv) can improve CLIP zero-shot prompting with the discovered
keywords, and (v) identifies labeling errors in a dataset. To reproduce their results, we use
the publicly available codebase and our re-implementations. Our findings confirm the first
three claims and partially validate the fourth. We reject the fifth claim, due to the failure
to identify pertinent labeling errors. Finally, we enhance the original work by optimizing
the efficiency of the implementation, performing a bias analysis without a classifier, and
assessing the generalizability of B2T on a new dataset.

1 Introduction

Datasets are a fundamental part of developing vision-language models, such as image classifiers. However,
biased datasets can negatively impact performance (Torralba & Efros, 2011) and can cause the model to
demonstrate discriminatory behavior towards certain groups (Mehrabi et al., 2022).

It can be difficult to detect and mitigate visual biases. Biases within images are harder to detect than biases
within statistical data, as structural differences in data are less explicit in images, making them harder to
define and extract. Previous work by Wiles et al. (2023) extracts captions from synthesized images. These
descriptions provide detailed information about the presence of visual biases, but are too complicated for
effective debiasing. Sagawa et al. (2020a) introduced Distributionally Robust Optimization (DRO), which
minimizes the training loss over a set of pre-defined bias groups.

"Discovering and Mitigating Visual Biases through Keyword Explanation" by Kim et al. (2024) proposes a
pipeline to detect and remove visual biases from datasets in an unsupervised manner. They introduce the
Bias-to-Text (B2T) framework, which extracts common keywords from the captions of mispredicted images.
These keywords are interpreted as biases and utilized to train the debiased classifier DRO.

In this paper, we aim to reproduce the findings of Kim et al. (2024). The following contributions are made:

• The work of Kim et al. (2024) is reproduced to investigate the validity of their claims.

• The codebase delivered by the authors is incomplete, as it does not provide a way to obtain the data
and code required to reproduce the different figures and tables. We contribute our re-implementation
and documentation of the model performance and evaluation.

• We optimize the original pipeline to increase the computational speed and make more efficient usage
of the GPU. Additionally, this reduces the environmental impact.
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• We test the generalizability of the B2T framework on a new dataset.

• We conduct additional experiments to investigate the need for a classifier for a bias analysis of a
dataset. This is to test the applicability of the B2T pipeline, while reducing the computational cost
and environmental impact.

2 Scope of reproducibility

Kim et al. (2024) focus on two types of biases. The first is spurious correlations. Here, the model learns
patterns without semantically meaningful links to a given class, instead of the correct features (Simon, 1954).
This leads to discriminatory behavior based on gender or race, for example. The second is distribution shifts,
where the test data is drawn from a different distribution than training data (Recht et al., 2019). This
difference in distribution causes the training performance of the model to not be applicable to future test
scenarios, rendering the model useless in the worst case.

Kim et al. (2024) focus on identifying and mitigating these biases by employing an in-processing technique.
Below, we outline the key claims of the original authors that will be addressed in this work. All models and
algorithms mentioned here are discussed in section 3.

1. CLIP score validation: The CLIP score is a valid method to identify whether a single word or a
set of words represents a bias or not. A word does not represent a bias when it does not negatively
affect a classifier’s performance, compared to a random keyword.

2. Bias identification: B2T can extract keywords from mispredictions that represent biases in
datasets. Here, the authors make a distinction between detecting known and unknown biases.
For example, there is a known gender bias in CelebA that B2T can correctly detect. Furthermore,
a previously unknown contextual bias between “bee” and “flower” in ImageNet was discovered by
B2T.

3. Performance Improvement: B2T outperforms other unsupervised models in discovering biased
keywords. Furthermore, the debiased B2T-DRO classifier achieves a higher worst-group accuracy
over other classifiers, such as a debiased DRO classifier using ground-truth bias labels.

4. CLIP zero-shot prompting: B2T can generate prompts using the detected bias keywords for
better worst-group and average CLIP zero-shot classification performance, compared to the original
CLIP templates combined with the bias group label. Additionally, non-bias keywords decrease it.

5. Label Diagnosis: The B2T keywords can be used to identify wrong and ambiguous labels.

3 Methodology

This section describes our approach to reproducing the work of Kim et al. (2024). An overview of the
B2T framework is given in subsection 3.1. Subsections 3.2, 3.3, and 3.4 describe models, datasets, and
hyperparameters respectively. The experimental setup and code, and the computation requirements are
subsequently described in subsections 3.5 and 3.6. The author’s codebase is publicly available, however, it is
not complete enough to replicate all findings. We discuss which parts of the code were incomplete and our
approach to implementing them based on the original paper. Afterward, the methodology for the additional
experiments of our own is presented.

3.1 The B2T framework

The framework relies on a classifier trained on the dataset. It starts with an image captioning model
ClipCap (Mokady et al., 2021). This model generates captions for a dataset of images. Common keywords
are extracted from the generated captions of images misclassified by the classifier with the YAKE algorithm
(Campos et al., 2020). Then the CLIP score is applied to measure the similarity of the keywords to the
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mispredicted images, to validate whether they represent biases or not (Radford et al., 2021). Subsection 3.2
outlines how this score is calculated.

After obtaining the bias keywords, they can be used for four different applications. First, to train a debiased
version of the DRO classifier, named B2T-DRO. Second, for CLIP zero-shot classification prompting. The
original prompt template is altered to include the keyword, this is further explained in subsection 3.2. The
keywords can also be used to analyze and compare different classifiers, as well as to identify incorrect or
ambiguous labels.

3.2 Model descriptions

The CLIP score. The CLIP score measures the similarity between a keyword of the generated caption to
the actual contents of the image. A high CLIP score indicates a biased concept, whilst a low score suggests
the opposite. It is calculated as depicted in equation 1 below:

sCLIP(a; D) = sim(a, Dwrong) − sim(a, Dcorrect). (1)

a is the keyword and D is the dataset, where Dwrong and Dright are the subsets of the validation set that
correspond to the wrong and right predictions of the classifier respectively. Here, sim(a, D) is the similarity
computed as the average cosine similarity between the normalized CLIP embeddings of a keyword ftext(a)
and images fimage(x) for x ∈ D according to equation 2:

sim(a, D) := 1
|D|

∑
x∈D

fimage(x)ftext(a) (2)

B2T-DRO. Kim et al. (2024) implement the group DRO setting with regularization proposed by Sagawa
et al. (2020b). In this approach, the bias group with the highest loss within a training batch will determine
the batch’s overall loss, causing the DRO model to optimize its parameters specifically for this bias group.
As per the original paper, a ResNet-50 model pre-trained on ImageNet is used as the starting point for
training (He et al., 2016). The results in Sagawa et al. (2020a) suggest that the occurrence of differences in
performance between groups in the data decreases by employing the DRO framework, negating the skew in
biased datasets. B2T defines these groups by inferring sample-wise bias labels. This is achieved by adding
the found bias keywords to the prompts of the CLIP zero-shot classifier, which is further explained below,
and assigning the most probable B2T keyword to each image.

For evaluation, the keywords are then manually mapped to known bias labels to compare with the ground
truth. The execution of this step is only possible for known biases and not previously unknown biases, such
as any possible biases in ImageNet. Finally, every image should now have a bias label which allows the
application of the group DRO framework.

CLIP zero-shot classification. The original authors aim to improve CLIP zero-shot classification by
integrating biased keywords into the CLIP prompts. The original prompt template is: "a photo of a [class]."
This is modified to: "a photo of a [class] in a [group]," where the keywords represent bias group names.
Prompts are augmented with two distinct sets of keywords to assess their importance; B2T keywords with
positive and negative CLIP scores. The authors have provided a template for prompt design with positive
keywords, which can be found in appendix A. Unfortunately, the templates and keywords were not included
for negative keywords.

The prompts are used to calculate new zero-shot weights for the pre-trained CLIP classifier and tested by
predicting the most probable class. ResNet-50 was used as the image encoder. To measure the model’s
performance, the worst group accuracy and average accuracy are calculated for both prompt types. The
groups represent each class with its bias element, for example, landbird and water background. By comparing
the results of the original prompts and keyword prompts, the effectiveness of the method can be evaluated.

Bias analysis without a classifier. To expand upon the work of Kim et al. (2024), we investigated
whether the image classifier is necessary to obtain bias keywords of a dataset. During the reproduction of
the paper, a significant bottleneck we faced was the required trained classifier to perform a bias analysis on
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a new dataset using the B2T framework. Furthermore, this requirement brings up environmental concerns
as training the classifier can require significant computational resources. We aim to alleviate this issue
by considering a method that discovers general keywords without using a trained classifier. Our method
performs image captioning and keyword extraction according to the B2T framework, but the CLIP score is
now replaced by our SiMean score. The SiMean does not require mispredictions as the CLIP score does. For
a keyword a in a set of extracted keywords A, the SiMean score is calculated as follows in equation 3:

SiMean(a, D) = sim(a, D) − 1
|D|

∑
k∈A

sim(k, D). (3)

By subtracting the average similarity of all keywords to the dataset, the SiMean score aims to highlight
keywords that are particularly distinctive or representative of the images, rather than just common words.
Further modifications to the B2T framework include an increase of extracted keywords, from 20 words to
40, to obtain a more comprehensive representation of the data. These findings can later inform training
decisions by filtering them on manual domain knowledge.

3.3 Datasets

To identify known dataset biases and the applications of B2T keywords, we trained and tested the B2T
framework on the CelebA and Waterbirds datasets. Our approach to analyzing biases without a classifier
was also performed on these datasets. Both are included in the codebase with pre-trained model checkpoints.

CelebA. CelebA, which stands for CelebFaces Attributes, contains 202,599 images of celebrities’ faces (Liu
et al., 2015). Each image has 40 binary attribute annotations, such as blond and not blonde. The attribute
"blonde" was employed as a binary target in Kim et al. (2024)’s work, with gender as the underlying bias
label. This setting is biased against blonde males, who make up only 0.85% of the dataset compared to
14.05% for blonde females.

Waterbirds. Waterbirds is a dataset created by Sagawa et al. (2020b) consisting of artificially created
images of cropped-out birds (Wah et al., 2011) transferred onto backgrounds of the "places" dataset by Zhou
et al. (2018). The classes are the type of bird in the image: a waterbird or a landbird. Another attribute
is the type of background of the image: a water background or a land background. Waterbirds has a total
of 11.788 images. Within the dataset there is a bias against data points with conflicting backgrounds (data
groups "waterbird on land" and "landbird on water"), as they collectively represent only 6% of the training
set instead of the 50% one might expect in a balanced case.

FairFace. FairFace is a dataset created by Karkkainen & Joo (2021) consisting of 108.501 face images,
collected from the YFCC-100M Flickr dataset. Afterward, the images were labeled with race, gender, and
age groups. This dataset is used as an extension of the original project to investigate the generalization
capabilities of the B2T bias extraction method. In this work, the "gender" label is used as a classification
target, instead of an underlying bias, to ensure enough variation from the CelebA dataset. The "race" label
was chosen as an underlying bias to reflect real-world use cases, such as in the work of Zhao et al. (2021). To
replicate the design of the Waterbirds and CelebA dataset, two race values were selected to ensure a binary
bias label. "White" and "Black" were chosen. Thus, the groups in the dataset are "black female", "black
male", "white male" and "white female". To further replicate the layout of the other datasets, specific groups
in the data are artificially downsampled. If a group is investigated in an experiment, the data concerning
this group will be downsampled to a 3% ratio, similar to the ratios of the minorities in the waterbird dataset.

ImageNet. For identifying undiscovered dataset biases, the models were trained and tested on the ImageNet
dataset. This is also included in our codebase. The used subset of ImageNet contains over a million images
(Russakovsky et al., 2015). In the validation set, there are 50 images per class. This subset was used instead
of the entire dataset due to limited computational resources.

3.4 Hyperparameters

The hyperparameter values specified by Kim et al. (2024) were used to reproduce their work. Batch size
was changed however to 512, as we noticed the original authors employed a batch size of only one during
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captioning. In section 4 we further reveal the resulting difference in GPU usage and captioning time.
The original paper does not include any seed values employed to run the models, so we enhance future
reproducibility by including the seeds employed: 32, 16, and 8 for DRO and DRO-B2T on CelebA and
Waterbirds. Our codebase includes the test performance of all seeds.

3.5 Experimental setup and code

The authors have made part of the code publicly available.1 However, this is missing the implementation
of several experiments that support their key claims. In this subsection, we outline our process for re-
implementing these experiments and conducting our own additional experiments. To ensure accuracy, the
paper of the authors was followed as closely as possible during the re-implementation process. Our code is
also publicly available.2

CLIP score validation. To test the validity of the CLIP score, the first claim mentioned in section 2, an
ROC graph will be deployed for a set of neutral and biased keywords to obtain the AUROC score. Specifically,
five keywords from the waterbirds dataset. This figure depends on the availability of the CLIP similarity per
image for every chosen keyword, and their corresponding CLIP scores. The ROC is established by evaluating
whether the similarity value of a keyword to an image can determine if the image is unbiased. The AUROC
score indicates keyword bias, with lower scores suggesting biases. This is because biased keywords indicate
the presence of biased images, whilst the ROC curve is focused on determining unbiased ones.

Bias identification. The authors have provided code for identifying bias keywords with the B2T framework
for the Waterbirds and CelebA datasets, including pre-trained model checkpoints. This is however not the
case for ImageNet and Dollar Street. The original paper described discovering unknown biases in these
datasets, thus we re-implemented this method for ImageNet. We aimed to minimize resource usage, so
Dollar Street was excluded as verifying the main claims does not depend on it. For these datasets, we
use the ResNet50 with model weights IMAGENET 1K Version 1 from the standard PyTorch library, as
mentioned in Kim et al. (2024).

B2T-DRO. The code for training the DRO and B2T-DRO debiased classifiers was provided by the authors.
This is performed on the CelebA and Waterbirds datasets. To assess the third claim, we compared the worst-
group and average accuracy of the B2T-DRO to six other classifiers that were referenced and utilized from
previous studies in the original paper; ERM Sagawa et al. (2020b), LfFNam et al. (2020), GEORGESohoni
et al. (2022), JTTLiu et al. (2021), CNCZhang et al. (2024) and aforementioned DRO. Afterward, the
authors extracted bias keywords of ERM and DRO with CLIP scores higher than one, and their gap. They
check whether these keywords are still present after debiasing. If they are, the CLIP score is now lower.

CLIP zero-shot prompting. Regarding the fourth claim, the original paper does describe their method-
ology for CLIP zero-shot prompting. However, in order to re-implement it, partial code from other files had
to be extracted and fit to the experiment. The creation of zero-shot weights with the text prompts is based
on the code for group label interference and the calculation of worst-group accuracy from the group DRO
testing. As mentioned in subsection 3.2, the prompt template for positive bias keywords was included in
the original paper and can be directly copied for reproduction. This is not the case for negative keywords,
hence we constructed our own based on the format of the positive templates and bias keywords with negative
CLIP scores as reported in the appendix of Kim et al. (2024). The experiment is done on the test set of the
Waterbirds dataset. The CelebA dataset has been left out due to time constraints.

Label diagnosis. The methodology for performing label diagnosis is not described in the original paper.
Thus, to test the validity of this claim, we examined a selection of bias keywords provided by the authors:
bee, boar, desk, and market. These classes were selected because the pig and warthog classes, as well as
the ant class, overlap significantly with the boar and bee classes, respectively. First, all image captions
and predictions that contain one of the selected keywords but belong to a different class are selected. For
instance, an image with a caption containing "bee" that is predicted as "bee," yet is labeled differently,

1https://github.com/alinlab/b2t
2https://anonymous.4open.science/r/FACT-1C18
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would be selected. Then, we manually investigate the selected pictures for the stated classes to compare the
effectiveness of this method to a fully manual analysis.

Code optimization. Our first extension was to optimize the image captioning code by increasing the batch
size from one to 512, and removing unnecessary computation inefficiencies. A comparison is made between
the code provided by the authors and our implementation. To measure the computational speed, we track
how long it takes to generate a single caption, and the total captioning time for the entire dataset. Based
on this, the improvement factor is calculated by dividing the per caption time of the original code by the
optimized version. To evaluate the GPU usage, we simply check how much GPU memory is utilized.

New dataset generalizability. For our second extension, we apply the pipeline of B2T bias extraction
on the FairFace dataset described in 3.3 to test its generalizability. This builds further upon the limitations
discussed by Kim et al. (2024); the captioning and scoring models are potentially biased, as ClipCap and
CLIP as less effective for specialized domains (Mo et al., 2023). Kim et al. (2024) applied B2T to the
ChestX-ray14 Wang et al. (2017) and FMoW (Christie et al., 2017) datasets, consisting of medical and
satellite images respectively. They concluded that ClipCap generates nonsensical captions for these datasets
and that a specialized captioning model is needed to apply B2T effectively. Our experiment aims to determine
how well B2T can be applied to a less specialized dataset like FairFace, which still differs from the original
datasets as described in subsection 3.3.

An experiment is performed for every group in the data, where said group becomes a 3% minority. To allow
for the extraction of biases in the B2T pipeline, a biased ERM classifier has to be applied to the data. Due
to time constraints and the lack of an ERM script in the original codebase, we take an alternative approach.
The minority group will be manually labeled as a misprediction, whilst the rest of the data is considered
correct. This imitates the layouts of the other datasets, as mentioned in subsection 3.3. We expect this setup
to allow the B2T pipeline to effectively differentiate between the minority group and the rest of the data.
The keywords are extracted in the experiments, which indicates the existence of a potential bias. These
keywords should overlap with the race of the investigated minority group, if the B2T pipeline generalizes to
this dataset.

Bias analysis without a classifier. Our third experiment of performing a bias analysis without a classifier
was done on all datasets described in subsection 3.3.

3.6 Computational requirements

The B2T pipeline, without training a classifier, was run on a T4 GPU available via Google Colab. Captioning
the CelebA validation set, extracting keywords, and calculating the CLIP scores takes around 30 minutes.
For the smaller Waterbirds dataset, this process was performed in 10 minutes. The computationally heavy
DRO training was run on an A100 GPU on Snellius, which consumes 512 SBUs per GPU hour for a full node
(SURF User Knowledge Base, 2025). Training a DRO model on the CelebA dataset on the given 50 epochs
took 4 hours, whilst training the same DRO model for 300 epochs on the Waterbirds dataset took 2 hours.
The total SBU’s spent to train all models for 3 seeds is about 5542 SBU’s, equivalent to 10.8 GPU hours.
Using the 2024 carbon intensity of the Netherlands, which is 0.37 kCO2eq/kWh (Nowtricity, 2025), and the
PUE of the SURF HPC datacenter equal to 1.2 (SURF, 2017), we calculate the total emissions according to
equation 4:

CO2e = CI ∗ PUE ∗ P ∗ t (4)

The A100 GPU has a maximum power consumption of 0.25kW, and the AMD EPYC 9934 CPU is at 0.21
kW (NVIDIA, 2020). Leading to a carbon footprint of 2.21 kCO2e. The T4 has a power consumption of
0.70kW (NVIDIA, 2021). We have approximately spent 20 hours on this GPU, adding 0.6216 kCO2e for a
total of 2.83 kCO2e.

4 Results

In this section, we outline the results obtained for each claim and the extent of which they correspond with
the original paper. Also described are the results of our own experiments to extend the authors’ framework.
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4.1 Results reproducing original paper

Result 1 - CLIP score validation The first claim is that the CLIP score is a valid method to determine
whether a keyword represents a bias or not. To corroborate this, the CLIP score of five different keywords
are depicted in figure 1a, as well as the ROC graph of neutral and biased keywords in figure 1b. Finally,
the correlation between the CLIP score and the AUROC is displayed in figure 1c. Our reproduced findings
correspond with those of the original authors, depicted in the figure. 2. The reproduced results show that
biased keywords in figure 1b have a lower AUROC score. Furthermore, we observe that the CLIP scores in
general negatively correlate with the AUROC score. Further reproduced results with similar sentiments are
available in appendix D. These findings support the first claim.

(a) CLIP score (b) ROC curve of keywords (c) ROC curve of subgroup accuracy

Figure 1: Effect of the CLIP score on non-bias and bias words for "waterbird" class (reproduction)

Figure 2: The CLIP score validation results of Kim et al. (2024) for "waterbird" class

Result 2 - Bias identification

The second claim of the original paper was that the extracted bias keywords relate to known ground truth
bias labels and visual concepts that cause biases in ImageNet. Table 1 shows examples of keywords extracted
using the B2T framework, combined with mispredicted images where the caption included the keyword.

The found keywords align with known biases in Waterbirds and CelebA. For instance, when an image from
Waterbirds is wrongly predicted, the keyword "water" is found. Furthermore, in the ImageNet entries, we
observe keywords that point to previously undiscovered biases. For example, "flower" appears as a bias
keyword where an ant was misclassified as a bee. Other examples include more abstract keywords, such as
the keyword for a mispredicted illustration of an ant being "white vector illustration". These likely stem
from errors of the captioning model, resulting in unusual captions and, consequently, abstract keywords. In
appendix B the original examples from the authors’ paper are included for comparison. The original image
paths were not given, so we chose fitting ones ourselves. To conclude, the keywords match the results of the
original paper.
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(a) Waterbirds (b) CelebA
Keyword Water Forest Trees Man

Samples
Actual landbird waterbird waterbird blond
Pred. waterbird landbird landbird not blond
Caption a bird in the water. the dinosaur was

found in a forest.
a bird in the trees actor - the face of

a man who is al-
ways looking for a
new adventure.

(c) ImageNet
Keyword Glass jar White vector illus-

tration
Flower Stormy sky

Samples
Actual axolotl ant ant armadillo
Pred. newt french horn bee lakeside, lakeshore
Caption a spider in a glass

jar.
black and white
vector illustra-
tion of a black and
white worm.

a bee on a flower. a stormy sky over
a river.

Table 1: Examples from the Waterbirds, CelebA, and ImageNet datasets showing the ground truth and
predicted labels, as well as captions for each keyword and sample.

Result 3 - Performance Improvement Two parts of the B2T pipeline are investigated for performance
improvements. First, the bias discovery method is compared to three other models by Kim et al. (2024).
Figure 3a shows their comparison for the CelebA dataset and figure 3c for Waterbirds by deploying a
ROC graph. We successfully re-implemented these methods, as shown in figure 3b for CelebA and 3d for
Waterbirds, and obtained similar results as Kim et al. (2024). We included the two best-performing baselines.

Furthermore, the original paper employed the discovered bias labels to debias the classifier used to obtain
mispredictions. The original and reproduced worst-group and average accuracies after debiasing the classifier
are presented in table 3. We also included the best-performing baseline from the original paper for compari-
son. In appendix C, table 11, the performance with all original baselines is included. Our reproduced results
show that B2T-DRO outperforms the strongest baseline in worst-group accuracy. These findings align with
the authors’ original results, further solidifying the third claim.

Lastly, table 2 depicts the CLIP scores for the bias keywords using ERM and B2T-DRO. Here, the CLIP
scores are indeed lower after debiasing, further solidifying the third claim. However, all bias keywords except
for ’man’ still appear in the datasets, which deviates from the findings of the original authors. Their table
is included in Appendix C, table 12.

Result 4 - CLIP zero-shot prompting

3Zhang et al. (2024)
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(a) Male bias in woman class
(theirs) (b) Male bias in blond class (ours)

(c) Land background bias in
waterbird class (theirs)

(d) Land background bias in water-
bird class (ours)

Figure 3: ROC graphs of bias detection methods on CelebA and Waterbirds datasets.

Keyword ERM B2T-DRO Gap
CelebA Blond man 1.28 × ×

Waterbird

bamboo forest 4.04 3.06 -0.98
bamboo 3.06 2.43 -0.63
forest 2.28 1.75 -0.53
woods 2.09 1.64 -0.45

Landbird

seagull 2.46 1.34 -1.12
beach 2.57 1.10 -1.47
water 1.26 1.04 -0.22
lake 1.04 1.15 +0.11

Table 2: Reproduced model comparison: CLIP scores for keywords using ERM vs B2T-DRO. We mark × if
the bias keyword is not found.

The results for the CLIP zero-shot prompting experiment are displayed in table 4. The results utilizing
the positive keywords are close to the original scores, but do not align exactly. Results applying negative
keywords vary more, with our worst-group accuracy being around 10% higher.

Result 5 - Label Diagnosis

According to Shankar et al. (2020), there are label errors in ImageNet. When manually looking at the
class images of warthog, bee, pig, boar, and ant, there is an average of two mislabeled images per class.
Generalizing this means that two in 50 images are mislabeled per class.

The results of the label diagnosis are shown in table 5. We only manually searched through the boar and
bee class, because these are a manageable size to search through with less than 40 images each. We observe
that the label diagnosis method reduced the search to 39 for the boar class. Of these potentially mislabeled
images, only two are actually mislabeled. One appeared in the selection by chance; it has the ground-truth
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Method CelebA blond Waterbirds
Worst Avg. Worst Avg.

CNC 3(best baseline) 88.8 ± 0.9 89.9 88.5 ± 0.3 90.9
DRO with GT (ours) 90.2 ± 0.9 93.1 ± 0.2 88.2 ± 0.3 92.5 ± 0.3
DRO-B2T (ours) 90.4 ± 0.5 93.0 ± 0.1 88.6 ± 0.1 90.7 ± 1.0

DRO with GT (theirs) 90.0 ± 1.5 93.3 89.9 ± 1.3 91.5
DRO-B2T (theirs) 90.4 ± 0.9 93.2 90.7 ± 0.3 92.1

Table 3: Comparison of DRO with GT and DRO-B2T (ours) vs. (theirs) and CNC baseline on the CelebA
blond and Waterbirds datasets.

Waterbirds
Worst Avg.

CLIP zero-shot 50.3 72.7
+ Group prompt Wu et al. (2019) 53.7 78.0
+ B2T-neg prompt(ours) 54.3 74.4
+ B2T-pos prompt (ours) 59.7 76.4

+ B2T-neg prompt (theirs) 45.4 70.8
+ B2T-pos prompt (theirs) 61.7 76.9

Table 4: worst-group and average accuracy comparison of different prompting methods for zero-shot classi-
fication

label ’polar bear’, but is mislabeled as a boar. By manually reviewing the similar ’hog’ and ’pig’ classes, we
found three additional mislabeled boar images not included in the selection.

Category Number of
Potential Images

ImageNet Class Correct Mislabeled
Images Found

Boar 39 Boar 1
Bee 26 Bee 2
Desk 116 Desktop Computer Not Tested
Market 215 Grocery Store Not Tested

Table 5: Pottentially misclassified images, their descriptions, and actual mislabeled images found

4.2 Results beyond original paper

Additional Result 1 - Optimization Table 6 shows the computational speed of the original code and the
optimized code. An improvement factor of around six times for the time taken for captioning is achieved.

Version Per Caption
Time (s)

Total Time (s) GPU Memory
Utilized

Improvement
Factor (Based on
Caption Time)

Original 0.1195 ± 0.0057 143.25 ± 6.85 ~2GB of 15GB 1 (Baseline)
Optimized 0.0191 ± 0.0007 22.9 ± 0.85 ~12GB of 15GB 6.26 ± 0.38

Table 6: Performance comparison between original and optimized versions (run on Google Colab using T4
GPU)
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Additional Result 2 - New dataset generalizability The results of our second extension are presented
in table 7. In the table, the three keywords with the highest CLIP score are shown. Furthermore, the
final column indicates whether any of the keywords extracted are related to the underlying racial bias in
the predictions. For the "black male" group, the detected keyword "black person" correctly represents this.
However, no racial keywords were found for the other three minorities.

Minority Group Top 3 Keywords Racial Bias Found in Any Keyword
White male beard, died, found No
Black male black person, child, woman Yes
White female broke, found, rare genetic condi-

tion
No

Black female born, native, student No

Table 7: Analysis of keywords and racial biases in each Fairface data group

Dataset Class/Minority Top 5 Keywords Selected Keywords
FairFace White male person, black person, face, man,

player
None

FairFace Black female person, woman, face, genetic
condition, black person

None

CelebA Blond actress, hair style , face of per-
son, hair color , short hair

actress, model and actress

Waterbirds Waterbird birds, seagull, bird, bird flies,
bird flying

bamboo, forest, bamboo
forest

Waterbirds Landbird species of bird, rare bird, beauti-
ful bird,bird, birds

tree, water, lake, rocks

ImageNet Bee bees, honey bee, bee, honeybee,
bumblebee

flowering, yellow, flower,
garden

ImageNet Ant black ant, ant, ants, insects, red
ant

fly, background, green
leaf, close

ImageNet Boar boars, boar eats, boar, young
wild pig, wild boar eats

mud, forest, pen, grass

Table 8: Application of our ’no classifier’ method to the CelebA, Waterbirds, FairFace, and ImageNet dataset

Additional Result 3 - Bias analysis without a classifier Table 8 displays the extracted keywords
using our B2T framework extension for the CelebA, Waterbirds, ImageNet, and two selected groups of the
FairFace dataset. These keywords do not exhibit specific bias characteristics like those found in the B2T
keywords. Though selected keywords from the CelebA, Waterbirds, and ImageNet datasets do guide us to
biases. For example, "flower" is extracted in the ImageNet "bee" class, and "background" is extracted for the
"ant" class. These exact findings are also present in the examples from the B2T-guided keyword extraction
method presented in table 1. All extracted keywords are available in the codebase notebook.

5 Discussion

In this work, we successfully reproduced the first three main claims of the authors, and partially repro-
duced the fourth, but were unable to reproduce the final claim. We optimized the original code, tested the
generalizability of B2T on a new dataset, and performed a bias analysis without a classifier.

The results for the fourth claim corroborate that the B2T-positive keywords improve the worst-group and
average accuracy of zero-shot inferences. However, B2T-negative keywords do not reduce the accuracy as the
original paper states. Slight differences are most likely due to missing implementation details, as explained
in section 3. Similarly, we were not able to reproduce the fifth claim. We found that it fails to identify
all mislabeled images and does not significantly reduce the search space of potential labeling errors. It is
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however important to note that these results are based on limited manual searches; further investigation is
needed to fully identify the limitations of this method.

For our extensions, captioning computes around six times faster after optimizing the code, which is a signif-
icant leap in compute time. When testing the generalizability of B2T on FairFace, the model was unable to
find a racial keyword as a bias for three of the four minority groups. This indicates an inability of the B2T
framework to generalize to the FairFace dataset and possibly other datasets. Since the mispredictions were
manually set in the Fairface experiments instead of employing a classifier, this methodological difference may
cast doubt upon the results of this experiment. Further research, possibly on this dataset with a classifier,
is needed to properly determine the dataset generalizability limitations of B2T.

The results of the final extension concerning the bias analysis in section 4 suggest that our method is not
directly applicable to the same extent as the regular B2T framework. The findings suggest that the scoring
method is inefficient, as the highest-scoring keywords are often broad and uninformative. However, we can
still obtain some valuable insights into potential dataset biases by leveraging the extracted keywords coupled
with domain knowledge. This use case was previously hypothesized in 3.2. This approach eliminates the
need for a computationally expensive classifier, making it a low-entry starting point and less harmful to the
environment. Further research, possibly with a more advanced scoring or evaluation system, could exploit
this.

In conclusion, the original paper aimed to introduce a novel pipeline to detect and mitigate visual biases
through keyword explanations. Its methodology aligns with broader efforts to ensure fairness in datasets.
However, we encountered challenges in reproducing the results, such as missing code and differing results,
highlighting the need for accessible implementations. In the following subsections, we discuss which parts of
the original work were easy to reproduce in 5.1 and which were hard in 5.2. Lastly, we discuss the extent of
communication with the original authors in subsection 5.3.

5.1 What was easy

The B2T framework is described well in the paper. It is clearly outlined which steps the framework consists
of and explains what each step entails. Furthermore, the literature background in the original paper made
it easy to find related papers to broaden our knowledge concerning the topic and inspire us to consider
possible extensions. Additionally, a method of evaluating each claim in the paper is given. Because the code
is publicly available, there is an initial framework for orientation and a basis for experiments.

5.2 What was difficult

An obstacle we faced during the reproduction of the paper was the incompleteness of the authors’ code.
For each of the main claims, some part of the code was missing. This includes 1) the preprocessing and
implementation of the ImageNet dataset and the unused Dollar Street dataset, 2) the template for prompts
with negative B2T keywords for CLIP zero-shot prompting, and 3) evaluation methods like the validation
of the CLIP score. Smaller details, such as how often and on which seeds the debiased DRO classifiers were
run to obtain the worst and average group scores, are also not included. Another issue was the lack of
an ERM training file, as the codebase only included the pretrained ERM file. This meant reproducing the
ERM results that were given in the original paper was not possible. Furthermore, due to the absence of an
ERM file and time constraints, we had to implement the FairFace extension without training a classifier. As
previously mentioned, this may degrade the academic value of this experiment.

5.3 Communication with original authors

An email was sent to the authors of the original paper to seek clarification on aspects of their methodology
and results, pertaining to the missing information as discussed throughout this study. The authors informed
us that they have deadlines that have not allowed them the time to answer our questions yet.
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A Prompt design templates

Dataset-wise Template Class Name
• [class name] on the forest
• [class name] with woods
• [class name] on a tree
• [class name] on a branch
• [class name] in the forest
• [class name] on the tree
• [class name] on the ocean
• [class name] on a beach
• [class name] on the lake
• [class name] with a surfer
• [class name] on the water
• [class name] on a boat
• [class name] on the dock
• [class name] on the rocks
• [class name] in the sunset
• [class name] with a kite
• [class name] on the sky
• [class name] is on flight
• [class name] is on flies

1. Landbird
• landbird

2. Waterbird
• waterbird

Table 9: The template for debiased zero-shot prompting with positive keywords of Kim et al. (2024).

Dataset-wise Template Class Name
• [class name] eagle
• bald [class name]
• [class name] in the snow
• great [class name]
• large [class name]
• flying [class name]
• [class name] with a person
• [class name] in a pond
• biological [class name] species
• biological [class name]
• [class name] species in flight
• [class name] species
• [class name] bird

1. Landbird
• landbird

2. Waterbird
• waterbird

Table 10: The template for debiased zero-shot prompting with negative keywords
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B Original Keywords with Image Samples

Figure 4: Original paper’s table of Kim et al. (2024) containing keywords accompanied with sample mispre-
dicted images and their captions.
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C Debiasing Results Tables

Method CelebA blond Waterbirds
Worst Avg. Worst Avg.

ERM (excerpted from Zhang et al.) 47.7 ± 2.1 94.9 62.6 ± 0.3 97.3
LfF Nam et al. 77.2 85.1 78.0 91.2
GEORGE Sohoni et al. 54.9 ± 1.9 94.6 76.2 ± 2.0 95.7
JTT Liu et al. 81.5 ± 1.7 88.1 83.8 ± 1.2 89.3
CNC Zhang et al. 88.8 ± 0.9 89.9 88.5 ± 0.3 90.9
DRO with GT (ours) 90.2 ± 0.9 93.1 ± 0.2 88.2 ± 0.3 92.5 ± 0.3
DRO-B2T (ours) 90.4 ± 0.5 93.0 ± 0.1 88.6 ± 0.1 90.7 ± 1.0

DRO with GT (theirs) 90.0 ± 1.5 93.3 89.9 ± 1.3 91.5
DRO-B2T (theirs) 90.4 ± 0.9 93.2 90.7 ± 0.3 92.1

Table 11: Comparison of various model debiasing methods, with all original baseline values and our repro-
duction

Keyword ERM B2T-DRO Gap
CelebA Blond man 1.06 × ×

Waterbird

bamboo forest 3.61 × ×
bamboo 2.85 × ×
forest 2.27 1.97 -0.30
woods 2.24 1.88 -0.36

Landbird

seagull 3.10 1.85 -1.24
beach 2.45 1.15 -1.30
water 1.51 0.67 -0.84
lake 1.25 × ×

Table 12: Original model comparison results of Kim et al. (2024): CLIP scores for keywords using ERM vs
B2T-DRO. We mark × if the bias keyword is not found.
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D CLIP Score Validation Results

This section includes further reproduction results of the CLIP score validation. These results (the correla-
tions, the ROC curve) correspond to the ones found in section 4 for the waterbirds class, supporting the
paper of the author

(a) CLIP score (b) ROC curve of keywords (c) ROC curve of subgroup accuracy

Figure 5: Effect of the CLIP score on non-bias and bias words for "landbird" class (reproduction)

Figure 6: The CLIP score validation results of Kim et al. (2024) for "landbird" class

(a) CLIP score (b) ROC curve of keywords (c) ROC curve of subgroup accuracy

Figure 7: Effect of the CLIP score on non-bias and bias words for "blond" class in CelebA (reproduction)

Figure 8: The CLIP score validation results of Kim et al. (2024) for "blond" class in CelebA
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