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Abstract

Multimodal models, which leverage both visual and linguistic modalities, have gained in-
creasing attention in recent years. However, these models are often trained on large-scale
unlabeled datasets, which expose them to the risk of data poisoning attacks. An adversary
can manipulate the training data to induce malicious behaviors in the model under certain
conditions. Yang et al. (2023) recently conducted a study on the susceptibility of multimodal
models to poisoning attacks. They introduced three types of poisoning attacks targeted at
multimodal models, along with two potential defenses. In this work, we replicate all three
attack strategies. However, we observed that the effectiveness of the attack depends on the
poisoning rate in relation to the quantity of samples in the targeted class, a factor that
can potentially reduce the efficiency of the attack. Additionally, we replicated the ablation
study, verified the consistency of their claims, and provided further experimentation to test
them. Regarding the proposed defenses, we reproduced them and explained a flaw in the
first defense. Furthermore, we propose a more practical setting for the second defense. We
provide the code for reproducing the experiments here: [link]

1 Introduction

The limitations of machine learning (ML) models that contain a single modality have become increasingly
apparent (Radford et al., 2021). This has sparked a growing interest in multimodal models, which, unlike their
unimodal counterparts, utilize multiple modalities, enabling them to achieve exceptional performance in tasks
such as image classification (Radford et al., 2021) and image captioning (Laina et al., 2019; Mokady et al.,
2021). However, like other machine learning models, these models are susceptible to various security and
privacy issues, including inference attacks (Shokri et al., 2017; Zhou et al., 2022), adversarial manipulation
(Ilyas et al., 2019; Xie et al., 2019), and data poisoning (Wang et al., 2022).

A recent study by Yang et al. (2023) centered on the execution of data poisoning attacks on multimodal
models. This research targets both the linguistic and visual modalities, aiming to ascertain whether the
linguistic modality is as susceptible to poisoning attacks as the visual modality, which was previously proven
to be vulnerable by Carlini & Terzis (2022). Moreover, Yang et al. (2023) strive to determine which modality
is more susceptible to these attacks. They introduced three types of poisoning attacks and studied the impact
of altering the poisoning rates, dataset sizes, and image encoders. They also experimented with transferring
the attack by poisoning one dataset and assessing the attack on another. Finally, they proposed two defense
strategies to mitigate the effects of the attacks.

In this study, we analyze all three attacks that have been proposed. We evaluate the effectiveness of these
attacks in the same settings in which they were originally proposed. Additionally, we determine that their
success largely depends on the poisoning rate relative to the number of samples in the targeted class (poison-
ing rate relative to class size), contrary to what was suggested by Yang et al. (2023), who discussed the effect
of poisoning rates relative to the total number of samples in the dataset. This factor can prove the attacks
inefficient as they become much harder to perform and easier to detect. We then assess the transferability
of the attack from one dataset to another, and further extend our investigation by testing the transferability
using various poisoning rates. We explore the effects of changing dataset sizes, image encoder sizes, and
balancing the datasets. We replicate both defenses, identify a shortcoming in the first defense, and propose
a more practical variant of the second.
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The remainder of this paper is structured as follows: Section 2 provides background information about the
task, attacks, and defenses. Section 3 details the running setting and the useful resources provided in the
original paper. This section also elucidates the experiments and presents the results. Finally, Section 4
concludes our study and discusses potential future work.

2 Background

This section aims to provide information about the specific task utilized for training the model, along with
the strategies used for both poisoning and defenses.

2.1 Image Retrieval

This task involves the retrieval of images based on text queries. It is particularly designed for scenarios where
there is a modality mismatch between the queries and the retrieval galleries. In other words, the queries are
presented in one modality (text), while the retrieval galleries are in another modality (images) (Cao et al.,
2022).

2.2 Attack Methodology

Attack I: single target image. This attack considers a simple scenario where the adversary aims to poison
texts in one class (e.g.,“lamb on the grass”) to a single image belonging to another class (e.g., aeroplane).
This is done by adding samples with text captions and the target image. The attack is successful if the
model utility is not affected while being able retrieve images from the target class using text captions from
the class used for poisoning.

Attack II: single target label. In this attack, the adversary aims to map texts in one class (i.e., original
class) to images in another class (i.e., target class). Note that here only one original class and one target
class are selected. Unlike attack I, there are multiple images from the target class.

Attack III: multiple target labels. Attack III considers achieving multiple “single target label” poisoning
attacks (Attack II) simultaneously, i.e., texts of multiple original classes are mapped to multiple target classes
simultaneously. Attack III differs from attack II as it requires the model to learn multiple “mismatched”
relationships, i.e., to “remember” multiple poisoned relationships, with a one-time injection of poisoned
samples.

2.3 Defenses

Pre-training defense. This defense mechanism employs a pre-trained image encoder to compute the cosine
distance between the image-caption pairs. A threshold for the maximum cosine distance is set and all samples
exceeding this threshold are discarded.

Post-training defense. This defense strategy relies on the availability of a clean dataset that is similar to
the poisoned dataset. This clean dataset is utilized to sanitize the model after it has been trained on the
poisoned data, by further training it using this clean data.

3 Experiments

This section details the conducted experiments, presents the findings, and delves deeper into significant
observations. We begin by executing all three attacks and comprehensively analyzing their impacts. Sub-
sequently, we isolate and poison each modality independently, demonstrating the vulnerability of both. We
then check the effect of poisoning rate relative to the entire dataset and further explore the effect of poi-
soning rate relative to the target class size which was not done previously. Moving forward, we evaluate
the transferability of the attack by applying poisoning to one dataset and assessing its impact on another.
We face a challenge in replicating the same results as those in the original paper because the poisoning rate
was not reported. Subsequently, we demonstrate how to regulate its effectiveness as this was not reported.
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We also experiment the effect of changing the dataset size and image encoder size. Further experimentation
investigates attack feasibility on a balanced dataset. Lastly, we replicate both defense strategies, revealing a
weakness in the first and proposing a more realistic alternative for the second. All these experiments were
executed on a single Nvidia Quadro RTX 6000 GPU with 24GB of memory.

3.1 Materials provided in the original paper

The authors of the original study have made their experimental code1 accessible to the public. However,
we discovered that this code only facilitates the execution of two or three out of the nine experiments
they actually conducted, but the provided code significantly eased our task. Upon examining the code, we
identified a discrepancy: the authors computed poisoning rates relative to the number of samples in each
class in their code, whereas in their paper, they referred to it relative to the total number of samples in the
dataset. As a result, we report both poisoning ratios for each experiment we conduct in appendix A.

While this discrepancy might not be a major concern, as the poisoning targets the encoder using image-
caption pairs rather than classes, it could potentially simplify the detection of the attack if the user decides
to label the dataset using keywords from the captions. The authors used this labeling method for one of the
used datasets. Therefore, if an adversary can exploit the poisoning of the encoder to match image-text pairs
from different classes, the user could also inspect these classes as they might be of value. Consequently, if
the class-relative poisoning ratio is high, it could lead to the detection of the attack.

3.2 Experimental Settings

We follow all the settings described in Yang et al. (2023), which we reiterate here for the convenience of the
reader.

Target Models. We used only the CLIP model (Radford et al., 2021), using ViT-B/32 (Dosovitskiy et al.,
2021) as the default image encoder and a transformer (Vaswani et al., 2017) with modifications in Radford
et al. (2019) as the text encoder. The attacks are performed during fine-tuning of the pre-trained model,
with a maximum text sequence length of 76. We employ an Adam optimizer with decoupled weight decay
regularization, and a cosine scheduler for learning rate decay. The initial learning rate is 10−5 , with a weight
decay rate of 0.2. The cosine scheduler has a minimum learning rate of 10−6 and a decay rate of 1.0. The
model is fine-tuned for 10 epochs with a batch size of 128.

Table 1: Dataset statistics

Dataset # Pairs # Images # Labeled Images # Classes
Flickr 158,915 31,873 - -
PASCAL 4,998 1,000 1,000 20
COCO 616,767 123,287 122,218 80
VG 540,378 108,077 - -

Dataset. We employ the same four datasets as in the original paper, namely Flickr30k(Young et al., 2014),
COCO(Chen et al., 2015), PASCAL(Rashtchian et al., 2010), and Visual Genome(Krishna et al., 2017). The
statistics for these datasets are provided in Table 1. To address the limited size of the PASCAL dataset, a
merged Flickr-PASCAL dataset is created. This combined dataset includes 29k samples from Flickr and 500
from PASCAL for training, with each sample comprising one image and five text captions which is the case
for all datasets. The remaining 500 samples from PASCAL are used for testing. The authors provided the
splits used for Flicker-PASCAL and COCO which we use in our experiments.

In Attack I, our goal is to poison sheep-labelled texts to a single target aeroplane image for Flickr-PASCAL,
and boat-labelled texts to a single target dog image for COCO. For Attack II, we randomly select the samples
to be poisoned. The poisoning goals for Flickr-PASCAL and COCO are sheep2aeroplane and boat2dog,

1Authors’ Code: https://github.com/zqypku/mmpoison/
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respectively. The Flickr-PASCAL dataset is poisoned with 25 samples (125 pairs) for a poisoning rate of
0.08%, while the COCO dataset is poisoned with 284 samples (1,420 pairs) for a rate of approximately 0.24%.

In Attack III, we poison the model with two goals for each dataset: sheep2aeroplane and sofa2bird for
Flickr-PASCAL, and boat2dog and zebra2train for COCO. We poison the training data of each dataset based
on these goals with a one-time injection. The resulting poisoning rates for Flickr-PASCAL and COCO are
0.16% and 0.52%, respectively.

In evaluating poisoning attacks, we employ three metrics. The first, Hit@K, calculates the fraction of text
samples for which the target images appear within the first K entities of the rank list for the image retrieval
task. We consider Hit@1, Hit@5, and Hit@10, with larger values indicating a better rank list as more text
samples can hit target images early. The second metric, MinRank, is the minimum rank of the target images
in the rank list of all test images, with smaller values indicating a better rank list as target images can be
seen earlier. Lastly, we use Cosine distance, a measure of similarity between two embeddings that ranges
between 0 and 2, with values closer to 0 indicating similar embeddings.

We assess the effectiveness of the poisoning attack by computing the Hit@K and average MinRank across all
test images, with success indicated by a higher Hit@K and lower MinRank. For the baseline, we randomly
select an equivalent number of texts from the test data for target image retrieval (random2target). The
model’s utility is quantified by comparing the average Hit@K of the poisoned and clean models for both
image and text retrieval across batches of images where the ground truth consists of (text, image) pairs. A
closer Hit@K rate denotes a higher model utility.

3.3 Performing All Three Attacks

We start by executing all three attacks using the previously explained default settings. In the tables,
Baseline refers to the results obtained when retrieving the target image class using random text. Conversely,
Ours represents the results when retrieving the target image class using the corresponding target text class.
These notations are used in alignment with the original paper. The original paper did not evaluate retrieving
the target images using the clean model and only used the poisoned models for both baseline results by
retrieving random2target. We find it more convenient to include this evaluation on the clean to show the
actual performance of attacks over the clean model.

This experiment was conducted using the authors’ code without any modifications. Despite the original
paper stating that the target image is selected randomly, we opted to use the hardcoded images in the code
for Attack I, ensuring a consistent execution of the attack. These images are depicted in figures 1 and 2.

Figure 1: Target image for COCO used in Attack
I, as hardcoded in the original paper’s code.

Figure 2: Target image for Flickr-PASCAL used
in Attack I, as hardcoded in the original paper’s
code.

As depicted in Table 2, the utility variation between the poisoned and clean models is barely noticeable.
The relatively small poisoning ratio in relation to the entire dataset, had almost no effect on the utility. In
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Table 2: Comparison of Utility (Hit@10) Between Clean and Poisoned Models: The differences are minimal,
consistent with the findings in the original paper.

Dataset Task Clean Attack I Attack II Attack III
Flickr-PASCAL TR 0.986 0.980 0.982 0.978

IR 0.968 0.969 0.964 0.966
COCO TR 0.927 0.933 0.935 0.936

IR 0.864 0.865 0.864 0.866

fact, it can even increase, as demonstrated in the COCO case. These findings align with those reported in
the original paper.

Table 3: Performance Outcomes of Attack I on Flickr-PASCAL and COCO Datasets. The clean models are
added as an extra comparison over the original paper. The performance on the Flickr-PASCAL dataset,
specifically in terms of Hit@1 and Hit@5, is lower than the original paper’s results.

Dataset Method Hit@1 Hit@5 Hit@10 MinRank
Flickr-PASCAL (Clean) Baseline 0.016 0.032 0.072 77.176

Ours 0.000 0.000 0.016 69.264
Flickr-PASCAL (Poisoned) Baseline 0.016 0.056 0.144 45.28

Ours 0.024 0.488 0.864 5.672
COCO (Clean) Baseline 0.016 0.052 0.120 155.52

Ours 0.004 0.052 0.176 43.728
COCO (Poisoned) Baseline 0.016 0.092 0.140 96.484

Ours 0.032 0.456 0.764 9.576

Table 3 presents the results of Attack I on both the Flickr-PASCAL and COCO datasets, highlighting
the attack’s effectiveness over both the baseline (random2target) and the clean model. The COCO dataset
results align closely with those reported in the original paper. However, on Flickr-PASCAL, we obtained
Hit@1, Hit@5, and Hit@10 values of 0.024, 0.488, and 0.864 respectively, which are lower than the original
paper’s reported values of 0.320, 0.928, and 0.968. This discrepancy is surprising given that we used the
same code, hardcoded target image, and settings as Yang et al. (2023), including the provided train and test
splits for this experiment. Despite numerous trials on the Flickr-PASCAL dataset, the output consistently
deviated from the original paper’s results.

The performance of Attack II, as shown in Table 4, closely mirrors the original paper’s results, with a
minor decrease observed on Flickr-PASCAL. For the COCO dataset, slightly improved results were achieved
on Hit@5 and Hit@10. The MinRank values indicate the minor discrepancies between our results and those
of the original paper.

Table 5 displays the results of Attack III. As noted in the original paper, the outcomes of poisoning the
second goal differ from those of the first goal. This discrepancy is not observed in the COCO dataset, where
similar results are obtained for both goals. The authors did not elaborate on why Attack III performs
differently on Flickr-PASCAL compared to COCO. In the COCO case, doubling the poisoning rate nearly
doubles the attack performance, split across the two classes. This phenomenon was not observed in the
Flickr-PASCAL case. Repeated experiments yielded consistent results. It is also worth noting that for all
three attacks, the clean model boat2dog evaluation had better results than the baseline (random2target)
that was used in the original paper.
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Table 4: Performance Outcomes of Attack II on Flickr-PASCAL and COCO Datasets. Our results closely
align with those of the original paper, with a slight decrease on Flickr-PASCAL and a slight increase on
COCO.

Dataset Method Hit@1 Hit@5 Hit@10 MinRank
Flickr-PASCAL (Clean) Baseline 0.016 0.032 0.072 77.176

Ours 0.000 0.000 0.016 69.264
Flickr-PASCAL (Poisoned) Baseline 0.024 0.088 0.216 49.248

Ours 0.152 0.768 0.920 3.6
COCO (Clean) Baseline 0.016 0.052 0.120 155.52

Ours 0.004 0.052 0.176 43.728
COCO (Poisoned) Baseline 0.020 0.064 0.108 134.108

Ours 0.024 0.280 0.544 14.912

Table 5: Results of Attack III on Flickr-PASCAL and COCO. In COCO, doubling the poisoning rate nearly
doubles the attack performance, a phenomenon not observed in Flickr-PASCAL.

Dataset Method Hit@1 Hit@5 Hit@10 MinRank
Flickr-PASCAL (Clean) Baseline-1 0.016 0.032 0.072 77.176

Ours-1 0.000 0.000 0.016 69.264
Baseline-2 0.040 0.080 0.128 40.84

Ours-2 0.000 0.008 0.016 81.104
Flickr-PASCAL (Poisoned) Baseline-1 0.016 0.080 0.168 47.976

Ours-1 0.096 0.680 0.904 4.248
Baseline-2 0.056 0.120 0.248 28.864

Ours-2 0.016 0.296 0.616 12.328
COCO (Clean) Baseline-1 0.016 0.052 0.120 155.52

Ours-1 0.004 0.052 0.176 43.728
Baseline-2 0.016 0.036 0.052 373.672

Ours-2 0.000 0.000 0.000 192.46
COCO (Poisoned) Baseline-1 0.016 0.068 0.108 143.964

Ours-1 0.012 0.172 0.452 16.128
Baseline-2 0.016 0.040 0.052 251.992

Ours-2 0.008 0.100 0.424 13.96

Figure 3: The cosine distance for both
datasets using encoders from Attack
II.

Figure 4: The impact of Attack II emerges in the initial epochs
and stabilizes as the model continues to learn.
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Figure 3 illustrates the cosine distance between the clean and poisoned encoders for both datasets. The
encoders from Attack II were used, as they most closely matched the original paper’s results. However,
our results differed. The original paper’s cosine distance results contradicted their appendix tables, which
contained the actual cosine distance values. We therefore conclude that cosine distances cannot be used as a
reliable measure of attack effectiveness on each modality. Figure 4 demonstrates that the impact of Attack
II emerges in the initial epochs and stabilizes as the model continues to learn.

3.4 Poisoning Each Modality

We investigate the impact of freezing the weights of one encoder while training the other. The notation Mp

denotes that both encoders are trainable. M i
p signifies that the image encoder is trainable with the text

encoder frozen, while M t
p indicates that the text encoder is trainable with the image encoder frozen. M0

p

refers to the use of a pre-trained model without any fine-tuning.

Table 6: Impact of Freezing Encoder Weights on Attack Performance. The results align with the original
paper, except for the Flickr-PASCAL dataset where the MinRank of the image encoder was not consistently
lower than that of the text encoder. These findings confirm the vulnerability of both modalities to poisoning,
but definitive assumptions about the poisoning effect on each modality require further investigation.

Dataset Model Hit@1 Hit@5 Hit@10 Hit@20 Hit@30 Hit@50 MinRank
Flickr-PASCAL Mp 0.152 0.768 0.920 0.984 0.992 1.000 3.6

M i
p 0.056 0.696 0.928 0.976 0.992 1.000 4.272

M t
p 0.216 0.712 0.896 0.992 0.992 1.000 3.704

M0
p 0.000 0.016 0.024 0.040 0.128 0.224 86.568

COCO Mp 0.024 0.280 0.544 0.832 0.876 0.920 14.912
M i

p 0.008 0.284 0.416 0.748 0.852 0.940 16.728
M t

p 0.056 0.284 0.452 0.728 0.820 0.900 21.028
M0

p 0.024 0.104 0.196 0.380 0.544 0.688 42.636

The results presented in Table 6 align with those reported by Yang et al. (2023). However, the assumption
that the MinRank of the image encoder will consistently be lower than that of the text encoder, did not
hold true for the Flickr-PASCAL dataset. Our MinRank was 4.272, compared to 3.016 in the original paper.
Given the close proximity of the results, it is challenging to make definitive assumptions about the poisoning
effect on each modality and its potential benefits in each case, as this would necessitate more rigorous
proofs and extensive experiments. Nevertheless, these results confirm that both modalities are vulnerable to
poisoning.

3.5 Effect of Poisoning Rate

We investigate the effect of different poisoning rates on the success of the attack. In line with Yang et al.
(2023), we utilize Attack II for this investigation, using the same poisoning ratios reported relative to the
total number of samples in the dataset. The hyperparameters are kept consistent with those used in previous
experiments, the poisoning rate is the only variable that we adjust. Our findings align with those of the
original paper, with the exception of the 0% poisoning rate. The authors stated that they utilized a clean
model for this rate. However, it appears that the results from their poisoned baselines were used instead, as
the graph displays numbers similar to those reported for their baseline.
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Figure 5: The impact of varying poisoning rates reveals an enhancement in performance
on Flickr-PASCAL with an increase in the poisoning rate, while COCO only shows
improvement after reaching a 0.12% rate, even though it had higher rates. Our findings
align with the original paper, with the exception of the 0% poisoning rate.

As illustrated in Figure 5, the performance on the Flickr-PASCAL dataset enhances with an increase in
the poisoning rate, with a mere 0.05% proving sufficient to achieve peak performance. In contrast, the
COCO dataset exhibits negligible performance improvement until the poisoning ratio reaches 0.12%, beyond
which the performance begins to improve. Despite the higher poisoning rates for COCO compared to Flickr-
PASCAL, the poisoning outcomes consistently favor the latter.

3.6 Poisoning Relative to Class Size

While this behaviour was not explained by Yang et al. (2023), we attribute it to the influence of the poisoning
ratio in relation to the class size. If the multimodal model is fine-tuned with a sufficient number of clean
samples from the poisoned class, and these samples exceed a certain threshold, the impact of the attack
becomes negligible. To validate this, we conducted an additional experiment where we varied the poisoning
rates relative to the size of the poisoned class for the Flickr-PASCAL dataset, maintaining the same poisoning
goal of sheep2aeroplane. It is noteworthy that a poisoning rate of 0.08% corresponds to 100% of the samples
in the poisoned class. All poisoning ratios and number of samples are mention in appendix A

Figure 6: The influence of poisoning ratios relative to
the class size demonstrates a more consistent result.

Figure 6 illustrates the enhancement in poisoning performance as the poisoning ratio relative to the class size
increases, reaching a saturation point beyond 50% of the class size. This implies that to achieve the maximum
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attack performance, poisoning is required for 50% of the class samples. However, our new experiment
modifies the poisoning rates relative to the entire dataset. Therefore, we conducted an additional experiment
leveraging the class imbalance in COCO, altering the poisoning goal from boat2dog to scissors2toothbrush.
The 0.24% poisoning rate for the first goal corresponds to approximately 20% of the class samples, while
it represents around 80% of the class samples for the second poisoned class. This approach enables us to
maintain a constant 0.24% relative dataset ratio while solely adjusting the poisoning rate relative to the
class.

Table 7: Variation in performance is observed in the COCO dataset, despite maintaining a constant poi-
soning ratio of 0.24%. This variation is evident when the poisoning goal is altered from ‘boat2dog’ to
‘scissors2toothbrush’. Notably, even with the poisoning ratio remaining constant relative to the dataset, the
attack performance differs for each class.

Dataset Method Hit@1 Hit@5 Hit@10 MinRank
COCO (Clean) Baseline 0.016 0.052 0.120 155.52

Ours 0.004 0.052 0.176 43.728
boat2dog (Poisoned 19.9%) Baseline 0.020 0.064 0.108 134.108

Ours 0.024 0.280 0.544 14.912
scissors2toothbrush (Poisoned 79.7%) Baseline 0.012 0.040 0.072 175.904

Ours 0.156 0.596 0.760 22.208

Table 7 illustrates the performance variation despite the constancy of the poisoning ratio relative to the
dataset. It is noteworthy that the attack performance does not match the levels achieved for the Flickr-
PASCAL dataset. This aspect remains unexplored and may necessitate a more comprehensive study to
understand the attack’s impact on the dataset and the fine-tuning of the utilized model.

The preceding results suggest that these attacks may not be as effective as initially proposed by the authors.
The underlying assumption was that an adversary could poison the network and achieve a small poisoning
ratio relative to the dataset, which would yield significant attack performance. However, given that the
attack’s effectiveness depends on the relative class size, this may not always be the case, as the adversary
cannot guarantee the attack performance. Even though the attack targets the entire dataset, if poisoning
from A to B is of interest to the adversary, the user could implement some basic checks to prevent the attack
from succeeding or add enough clean sample to limit the attack’s performance.

3.7 Attack Transferability

In order to evaluate the transferability of the attack across different datasets, we adopted the method
proposed by Yang et al. (2023) to poison the Visual Genome dataset with the goal sheep2aeroplane and
evaluate the impact of this poisoning on the Flickr-PASCAL test set. As indicated in Table 8, maintaining
a consistent poisoning ratio relative to the dataset (0.08%), but with a class-relative poisoning ratio of 6.7%,
does not replicate the attack performance reported in the original paper, where the specific poisoning ratio
for this attack on Visual Genome is not provided. However, when the poisoning ratio relative to the class
is set to 100%, mirroring the approach used in Attack II on Flickr-PASCAL, we were able to match the
performance reported in the original paper, as shown in Table 8.

Given the original paper’s lack of clarity on how to effectively transfer the poisoning attack across different
datasets, we decided to further investigate this phenomenon. Our experiment involved the use of a clean
model, the maximum possible poisoning of 1.18%, and four other intermediate poisoning ratios (0.08%,
0.1%, 0.5%, 0.8%). These poisoning ratios were also examined relative to the class size. The objective was
to ascertain the degree of transferable poisoning and its dependencies. As illustrated in Figure 7, the results
indicate that the performance of the attack’s transferability is primarily determined by the poisoning ratio
in relation to the class size.
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Table 8: Evaluation of Attack II’s transferability performance using the Visual Genome dataset and tested
on the Flickr-PASCAL dataset. The performance of Attack II is significantly lower when the poisoning ratio
relative to the dataset size is the same as that used for Flickr-PASCAL, it matches the expected performance
when the poisoning is executed using the ratio relative to the class size.

Dataset Method Hit@1 Hit@5 Hit@10 MinRank
VG (Clean) Baseline 0.016 0.040 0.120 66.896

Ours 0.000 0.000 0.016 68.128
VG (Poisoned 0.08%) Baseline 0.008 0.040 0.080 70.936

Ours 0.000 0.000 0.152 19.52
VG (Poisoned 1.18%) Baseline 0.024 0.136 0.176 69.36

Ours 0.344 0.864 0.928 3.64

Figure 7: Performance of the transferability of the poisoning attack across
different datasets, specifically from VG to Flickr-PASCAL. The poisoning
ratios, expressed relative to the class size, correspond to 0.0%, 0.08%, 0.1%,
0.5%, 0.8%, and 1.18% of the dataset size. The performance is primarily
influenced by the poisoning ratio relative to the class size.

3.8 Dataset Size

To test the effect of dataset size, the COCO dataset is partitioned into two subsets: COCO-S, representing
25% of the original dataset size, and COCO-M, constituting 50% of the original dataset size. The splitting
process is stratified to ensure the class ratio remains consistent across all three datasets. Subsequently,
Attack II is executed on each of the three datasets, maintaining a poisoning ratio of 0.24%, as in previous
experiments. As depicted in Figure 8, the attack performance appears to be independent of the dataset size,
with nearly identical performance observed across all three splits.
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Figure 8: Evaluation of Attack II performance across varying dataset sizes. The COCO dataset is parti-
tioned into two subsets: COCO-S (25% of COCO) and COCO-M (50% of COCO). Despite the change in
dataset size, the attack performance remains consistent, indicating its independence from dataset size.

3.9 Changing Image Encoder

In order to examine the effect of altering the image encoder, we investigated the impact of utilizing various
image encoders on the effectiveness of Attack II. In accordance with the settings of the original paper, we
employed ViT-B/32, ViT-B/16, and ViT-L/14. The experimental setup remained consistent with previous
settings, with the sole alteration being the substitution of the image encoder. As depicted in Figure 9, the
attack maintains its effectiveness across different image encoder sizes for both datasets, suggesting that the
success of the attack is not dependent on a specific image encoder size.

(a) Effect of image encoder sizes on COCO dataset

(b) Effect of image encoder sizes on Flickr-PASCAL dataset

Figure 9: Impact of varying image encoder sizes on different datasets. The effectiveness of Attack II is not
significantly influenced by changes in the image encoder size. ViT-B/32 is considered as the baseline, as it
has been used in all previous experiments.
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3.10 Attacking Balanced Datasets

Until now, all conducted experiments involved five text captions for each image. We follow the same setup
as Yang et al. (2023), selecting a random caption for each image to establish a balanced dataset. The same
settings as previous experiments were employed for this test. However, the authors did not reveal the splits
used for this experiment, which could potentially explain the differences in the results.

Table 9: Performance of Attack II on balanced
datasets. Attack II performance improves
on balanced COCO while slightly decreases on
Flickr-PASCAL. These results are slightly below
what was reported in the original paper.

Dataset Hit@1 Hit@5 Hit@10 MinRank
Flickr-PASCAL-b 0.160 0.680 0.840 4.68
COCO-b 0.020 0.340 0.610 14.78

Table 10: Cosine distance between
clean and poisoned encoders on bal-
anced datasets. Huge variance be-
tween these results and the results re-
ported in the paper.

Dataset Text Image
Flickr-PASCAL-b 0.016 0.021
COCO-b 0.038 0.048

The results in Table 9 indicate that the attack remains effective on a balanced dataset. However, the Hit@5
and Hit@10 results for Flickr-PASCAL are lower than the reported values of 0.848 and 0.944, respectively,
in the original paper. Similarly, the Hit@10 result for COCO is slightly lower, with a reported increase of
almost 0.2 over the unbalanced dataset, an effect that was not attended in the original paper. Given the
close performance results between the balanced and unbalanced datasets on our end, it is challenging to
understand the reasons for such an improvement on COCO dataset in the original paper.

Moreover, Table 10 shows that the cosine distances for the balanced dataset are smaller than those for the
unbalanced dataset, which deviates from the findings in the original paper. This observation reinforces our
previous concern about the reliability of cosine distance as a metric for assessing the impact of poisoning.

3.11 Pre-training Defense

We test the first proposed defense. The defense mechanism operates by computing the cosine distances
between pairs using a pre-trained ViT-B/16 model. Pairs with a cosine distance exceeding a specified
threshold, in this case, 0.8, are subsequently eliminated. Upon implementing this defense mechanism, we
successfully detected 118 out of the 125 poisoned pairs. These pairs were then excluded from the training
data, which allowed us to achieve the results presented in Table 11.

Table 11: Performance of pre-training defense against Attack II. The performance of the attack drops
dramatically as 118 of the 125 poisoned pairs were dropped.

Method Hit@1 Hit@5 Hit@10 MinRank
Attack II 0.152 0.768 0.920 3.6
Defense 0.000 0.008 0.008 40.752
Clean 0.000 0.000 0.016 69.264
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Figure 10: Probability density of cosine distances
between clean/poisoned pairs in Flickr-PASCAL
where all pairs are poisoned and it is clear where
to set a threshold.

Figure 11: Probability density of cosine distances
between clean/poisoned pairs in Flickr-PASCAL
where only the pairs used for previous attacks
are poisoned where it is not clear where to set a
threshold.

However, the determination of an appropriate threshold proved to be a challenge, as illustrated by Figure
10 and Figure 11. In these figures, it is evident that we need to poison the entire dataset to ascertain the
appropriate threshold. In real-world scenarios, especially with large datasets, the probability of detecting
such anomalies can be challenging, and might depend on the poisoned classes.

3.12 Post-training Defense

This defense involves further fine-tuning the poisoned model using clean data, effectively sterilizing the
model. We apply this defense to the models poisoned in the first experiment on both datasets using Attack
II. The fine-tuning process is conducted using the clean Visual Genome dataset.

Table 12: Effectiveness of post-training defense. We observed a significant decrease in the utility for the
COCO dataset, this deviates from the findings in the original paper.

Dataset Hit@10 (TR) Hit@10 (IR)
Flickr-PASCAL 0.962 0.919
COCO 0.823 0.693

Table 13: Impact of learning rate (LR) on defense. This is the first instance of altering the learning rate,
as all previous experiments utilized the same rate. The defense appears to perform optimally at a learning
rate of 10−4, which is consistent with the findings in the original paper.

Method LR Hit@1 Hit@5 Hit@10 MinRank
Attack II - 0.152 0.768 0.920 3.6
Defense 10−3 0.016 0.080 0.120 50.184

10−4 0.000 0.000 0.000 78.096
10−5 0.000 0.000 0.008 52.816

As demonstrated in Table 12, the utility on the same test set remains unaffected after further fine-tuning
the model for 5 epochs in the case of the Flickr-PASCAL dataset. However, a noticeable impact on utility
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Table 14: Impact of learning rate (LR) on utility. The utility experiences a significant decrease for both
10−4 and 10−3. This observation was not reported in the original paper, making the defense results for these
learning rates insignificant.

Method LR Hit@10 (TR) Hit@10 (IR)
Attack II - 0.982 0.964
Defense 10−3 0.034 0.032

10−4 0.634 0.609
10−5 0.962 0.919

was observed for the COCO dataset. These results differ from the 0.975 (TR) and 0.945 (IR) reported in
the original paper. This reported text retrieval (TR) and image retrieval utility (IR) is even higher than the
reported 0.911 and 0.836 obtained using the clean model in their first experiment.

Table 13 presents the performance of this defense in relation to different learning rates. This marks the
first instance of the authors experimenting with various learning rates, despite the consistent performance of
10−5, which was employed in all previous experiments. Upon examining the utility of other learning rates in
Table 14, it was found that they tend to degrade performance. Consequently, these learning rates are deemed
unsuitable, despite the potential for improved defense performance. This could explain the observed drop in
utility for the COCO dataset, suggesting that updates done using VG may result in the loss of information
from the initial fine-tuning. Figure 12 further illustrates that the defense can take effect in as little as one
epoch.

Figure 12: Effect of learning epochs on post training defense. One epoch is enough to observe the performance
of the defense.

3.13 Enhanced Post-training Defense

The methodology proposed by Yang et al. (2023) raises a concern regarding the size of the clean dataset
utilized in their defense mechanism. Specifically, with the Flickr-PASCAL dataset, the clean dataset sur-
passes the poisoned one in size, a situation that might not mirror actual circumstances. To rectify this,
we introduce a modified version of the defense. Initially, we train the model on a large poisoned dataset,
followed by further fine-tuning with a smaller clean dataset. This strategy is more practical as it is easier to
inspect smaller datasets for potential poisoning.
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We poison the model using Attack II on the Visual Genome dataset then further fine-tune it using the
clean Flickr-PASCAL dataset to assess the performance of the defense. Subsequently, we excluded the
Flickr30k dataset and focused solely on the 2500 clean pairs in the PASCAL dataset, thereby approximating
a real-world scenario as closely as possible, as acquiring a clean dataset of 2500 pairs can be achieved.

Table 15: Post-train defence using smaller datasets. The defense performance using small datasets is almost
as good as using the large clean dataset.

Dataset Method Hit@1 Hit@5 Hit@10 MinRank
VG (Poisoned 1.18%) Baseline 0.024 0.136 0.176 69.36

Ours 0.344 0.864 0.928 3.64
VG (Flickr-PASCAL) Baseline 0.040 0.096 0.152 70.304

Ours 0.000 0.032 0.088 23.792
VG (PASCAL) Baseline 0.040 0.080 0.096 89.28

Ours 0.000 0.008 0.120 25.536

As shown in Table 15, the small clean dataset effectively neutralized the poisoning effect in both scenarios.
The performance achieved using the PASCAL dataset was very close to that of the Flickr-PASCAL dataset.
It’s noteworthy that the model poisoned on VG datasets used 1275 samples, while the one poisoned on
Flickr-PASCAL used only 25 samples. Despite this, the performance of the small dataset (25 clean samples
after 1275 poisoned) is nearly identical to that of the large dataset used for defense (1275 clean samples after
25 poisoned).

Table 16: Utility of the Three Settings of post-train defense. The enhanced defense shows better utility
values than the one proposed in the original paper.

Setting Text Image
VG 0.962 0.919
Flickr-PASCAL 0.976 0.953
PASCAL 0.980 0.958

As shown in Table 16, the utility increased by employing this approach, likely due to the more sophisticated
gradient updates towards fewer classes, which are similar to what exists in the test set.

4 Conclusion

In this study, we successfully replicated Attack II and III. However, for Attack I, we achieved Hit@1, Hit@5,
and Hit@10 values of 0.024, 0.488, and 0.864 respectively. These figures are lower than the original paper’s
reported values of 0.320, 0.928, and 0.968, despite using the code provided by Yang et al. (2023) and the
hardcoded images for this attack. We observed that the effects of the attacks appear during the initial epochs
and stabilize as the model continues training.

When testing each modality, we found that both are susceptible to a poisoning attack. For the Flickr-
PASCAL dataset, we obtained a MinRank of 4.272, compared to 3.016 in the original paper. Although these
two figures are close, it contradicts the original paper’s claim that the MinRank of the image encoder is
always less than the text encoder. We note that understanding how each modality is affected by poisoning
and determining which is more vulnerable requires more rigorous proof and further investigation.

We then tested the effect of poisoning rates relative to dataset size and obtained similar results to what was
reported in the original paper. We added an extra experiment to investigate the poisoning rates relative to
the class size. We found that the primary factor for the attack’s success is having a large poisoning rate
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relative to the class size. This finding suggests that the attack is not as efficient as proposed, as it would be
challenging to guarantee such a poisoning rate. It would also be much easier to detect the poisoning as our
experiment shows that a poisoning rate of around 50% or more relative to class size can be required to make
the attack efficient.

We tested the transferability of Attack II from one dataset to another and found that the authors did not
use the 0.08% poisoning rate relative to the dataset size but actually 1.18%. We added another experiment
to show that transferability also depends on the poisoning rate relative to the class size. We experimented
using different dataset sizes and image encoders and obtained similar results to those published in the original
paper.

We investigated balancing the datasets and obtained lower results than what the original paper reported.
We achieved 0.610 and 0.860 for Hit@10 on COCO and Flickr-PASCAL respectively, while the original paper
reported 0.712 and 0.944. We obtained an extra 0.2 on COCO compared to the unbalanced dataset, but no
more details were reported for further investigation.

Finally, we implemented both proposed defenses, demonstrating the difficulty of setting a threshold for the
first and proposing a more practical variant using smaller datasets for the second. This variant showed
similar performance and better utility. However, while replicating the second defense, we failed to achieve
the same utility on the COCO dataset as we obtained 0.823 (TR) and 0.639 (IR), while the paper reported
0.975 (TR) and 0.945 (IR), even higher than what they reported using their clean model.

For future work, there are several avenues for exploration, including studying the impact of each modality, ex-
perimenting with diverse multimodal models to assess attack effects, and investigating dataset characteristics
and distributions in relation to the attacks.
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A Dataset Details and Poisoning Rates

In this section, we provide additional insights into the datasets and their associated poisoning rates. We
leveraged the splits published by the authors for both the COCO and Flickr-PASCAL datasets. However, for
the balanced dataset experiment, where splits were not publicly available, we randomly selected one caption
per image to create balanced datasets. The poisoning rates, relative to both dataset size and class size, are
summarized in Tables 17 and 18 for both datasets.

Table 17: COCO Poisoning rates

Goal Class Samples Poisoned Samples Class poisoning rate Dataset poisoning rate
boat2dog 1422 284 19.9% 0.24%

142 9.98% 0.12%
12 0.84% 0.01%
1 0.07% 0.0008%

zebra2train 1700 284 16.7% 0.24%
scissors2toothbrush 356 284 79.7% 0.24%

Table 18: Flickr-PASCAL Poisoning rates

Goal Class Samples Poisoned Samples Class poisoning rate Dataset poisoning rate
sheep2aeroplane 25 25 100% 0.08%

21 87.5% 0.07%
18 75% 0.06%
15 62.5% 0.05%
12 50% 0.04%
9 37.5% 0.03%
6 25% 0.02%
3 12.5% 0.01%

sofa2bird 25 25 100% 0.08%

The authors did not publish any splits or resources for the Visual Genome dataset. In our study, we followed
the approach outlined in the original paper: we identified image captions containing keywords mentioned in
the paper and used them for dataset labeling. For unlabeled images, we randomly selected five captions,
while for labeled images, we chose five captions that included the relevant keywords. Table 19 presents the
poisoning ratios relative to both dataset and class size, as employed in our experiments.

Table 19: VG Poisoning rates

Goal Class Samples Poisoned Samples Class poisoning rate Dataset poisoning rate
sheep2aeroplane 1275 1275 100% 1.18%

864 67.5% 0.8%
540 42.5% 0.5%
108 8.5% 0.1%
86 6.7% 0.08%
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