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ABSTRACT

Large language model (LLM) unlearning is critical in real-world applications
where it is necessary to efficiently remove the influence of private, copyrighted, or
harmful data from some users. Existing utility-centric unlearning metrics (based
on model utility) may fail to accurately evaluate the extent of unlearning in realistic
settings such as when the forget and retain sets have semantically similar content
and/or retraining the model from scratch on the retain set is impractical. This paper
presents the first data-centric unlearning metric for LLMs called WaterDrum that
exploits robust text watermarking to overcome these limitations. We introduce new
benchmark datasets (with different levels of data similarity) for LLM unlearning
that can be used to rigorously evaluate unlearning algorithms via WaterDrum.

1 INTRODUCTION

The capabilities of large language models (LLMs) have drastically improved in recent years,
prompting increased efforts to deploy LLMs in real-world applications. However, accompanying this
push for practical LLM deployment are growing concerns around data issues regarding LLMs that
may threaten to derail such developments, especially since LLMs typically require large amounts of
training data. Data owners have raised intellectual property (IP) infringement concerns: For example,
New York Times has sued OpenAI over its LLM’s use of their copyrighted work (Grynbaum & Mac,
2023). Many jurisdictions are also paying increased scrutiny over data privacy concerns, e.g., with
regulations such as GDPR (2016) and California Consumer Privacy Act (CCPA, 2018) mandating
the “right to be forgotten” that allow data owners to request the erasure of their data from the trained
models. Furthermore, it is not uncommon for public data to become outdated or be found erroneous/
harmful, e.g., the retraction of public scientific papers with fabricated data (Hu et al., 2024).

These data concerns have sparked considerable research efforts on LLM unlearning algorithms, which
aim to efficiently remove the influence of a subset of the model’s original training data (called the
forget set) while avoiding the prohibitively expensive alternative of retraining the LLM from scratch
on the retain set. However, due to the size and complexity of LLMs, existing unlearning algorithms
cannot yet achieve perfect unlearning like retraining: They may not fully remove the influence of
all data in the forget set, and may also inadvertently remove the influence of data in the retain set
that should be preserved (Maini et al., 2024; Shi et al., 2025). How can we measure the extent to
which these algorithms have unlearned a given set of data? Existing works have largely proposed
utility-centric unlearning metrics that evaluate unlearning based on model utility (performance)
indicators, like the perplexity or accuracy on downstream tasks. After unlearning, the model utility
indicators related to the forget set are expected to worsen. We provide an overview of existing utility,
membership inference attack, and image and classification watermark-based unlearning metrics in
App. A.1 and position our work with respect to other LLM unlearning evaluation works in App. A.2.

However, are the utility-centric metrics effective in the face of practical challenges with real-world
datasets? One such challenge is that the forget and retain sets usually have semantically similar
content. As existing benchmark datasets (Li et al., 2024b; Maini et al., 2024; Shi et al., 2025)
do not explicitly consider a higher level of data similarity, we first propose (a) a new benchmark
dataset called WaterDrum-Ax that includes data from multiple data owners and contains duplicates
with different levels of data similarity for a more practical evaluation of the unlearning metrics
and algorithms (Sec. 2). Using WaterDrum-Ax, we observe that utility-centric metrics fall short,
because to evaluate the success of unlearning, they need to reference the retrained LLMs (on the
retain set), which are prohibitively costly to obtain in practice. Also, expecting a worse utility on the
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forget set after unlearning ignores the LLMs’ ability to generalize from retain set (Liu et al., 2024).

In this work, we consider the above limitations in (b) defining clear desiderata that an effective and
practical unlearning metric should satisfy to enable direct interpretation (Sec. 3). Next, we (c) propose
a novel data-centric metric to continuously evaluate the success/extent of LLM unlearning instead,
which we call Watermark-based Data-centric Unlearning Metric (WaterDrum) that satisfies these
desiderata. WaterDrum is based on a robust text watermarking framework that is capable of
verifying multiple data owners’ watermarks in the text outputs of the LLM when fine-tuned on
their watermarked text data (Sec. 4). Our key insight is that using watermarked data creates a clear
counterfactual — a model not trained on watermarked data would not contain the watermark signal.
In Sec. 5, we (d) empirically show that our proposed metric WaterDrum significantly outperforms
existing ones at satisfying our desiderata. We (e) also benchmark unlearning algorithms using
WaterDrum to reveal their strengths and weaknesses.

2 PROBLEM FORMULATION

We consider the setting of a collection T of data owners where each data owner i has a dataset Di.
These datasets may contain similar data instances (e.g., news articles on the same event from different
news agencies or arXiv paper abstracts from the same academic subject category but different authors,
as illustrated in App. B.4). The model owner aggregates their data DT :=

⋃
i∈T Di for training an

LLM φT to be deployed as a service. We consider the unlearning scenario where a subset F ⊂ T of
data owners requests to remove the influence of their to-be-erased data DF :=

⋃
i∈F Di (called the

forget set) from the LLM due to concerns about privacy, IP protection, or erroneous content.

Ideally, the model owner would retrain a new model φR on the remaining set of data DR:=T \F
(called the retain set) to comply with these unlearning requests. However, full retraining is impractical
in reality due to the prohibitive computational cost, especially when DR is large. Instead, the model
owner would resort to using some unlearning algorithm, which modifies the original model φT based
on DF to an unlearned model φ̃ that approximates φR. Such an unlearned model may not have
perfectly unlearned the forget set, so it can be intuitively viewed as retaining the influence of some
(possibly unknown) subset of the forget set DG# ⊆ DF and hence still be effectively influenced by its
approximate retain set DR

⋃
DG#. Note that DG# might not correspond exactly to the union of Di’s

over some subset of data owners in F and can possibly include only a subset of data points from each
Di. The best unlearned models should have |DG#| and its influence to be as small as possible.

The model owner should allow each data owner i ∈ F to evaluate the extent to which its data Di has
been unlearned, and would usually only grant them query access to the model. Let each data point d
be used to form a text query qd. For example, qd can be a formatted prompt to an LLM for Q&A or
completion tasks. Then, both the model owner and data owner i can rely on some LLM φ•’s text
output φ•(qd) to compute an unlearning metric M that quantifies the extent to which i’s data remains
present. We define an unlearning metric M where M(φ•(qd), i) measures the influence of data Di

from owner i (i.e., second input to M ) detectable in the LLM’s text output φ•(qd) to query qd.

The unlearning metric should also be able to measure the influence of data from a set of owners;
for example, M(φ•(qd),F) measures the influence of the forget set DF detectable in the LLM’s
text output. Usually, we set the influence as the extent to which data point di from some owner
i ∈ F remains present in the LLM’s text output φ•(qdi

) to its query qdi
, i.e., M(φ•(qdi

),F) =
M(φ•(qdi

), i). Often, we measure the influence of DF detectable in the LLM’s text outputs to an
aggregate of queries formed by owners’ data (e.g., DF ). With a slight abuse of notation, we denote
such an aggregate unlearning metric as Md∈DF (φ•(qd),F), which can be, for example, the uniform
average over all d ∈ DF :

∑
d∈DF

M(φ•(qd),F)/|DF | =
∑

i∈F,di∈Di
M(φ•(qdi),F)/|DF |.

Existing datasets to benchmark unlearning algorithms do not reflect practical challenges:
Existing works have proposed to evaluate unlearning algorithms and metrics using benchmark
datasets like TOFU (Maini et al., 2024), MUSE (Shi et al., 2025), and WMDP (Li et al., 2024b) with
the following properties: (a) The forget set DF and retain set DR are fixed. In contrast, in practice,
multiple owners can independently decide whether to erase their data, which requires evaluation on
multiple forget-retain splits. (b) DF and DR are disjoint (i.e., the queries formed by DF are related
only to DF and are unrelated to queries formed by DR) and the unlearning algorithms perform
poorly if dependencies between both sets are introduced (Thaker et al., 2024). In contrast, real-world
datasets may contain more similar data and different levels of similarity across DF and DR.
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To address these limitations, we introduce a complementary unlearning benchmark dataset called
WaterDrum-Ax that comprises arXiv paper abstracts across various academic subject categories
published after the release of the Llama-2 model. In particular, to address (a) and (b) above,
WaterDrum-Ax includes (a) abstracts from the 20 most popular academic subject categories to
represent 20 different data owners that can be freely assigned to define DF and DR; and (b) different
levels of data similarity ranging from exact duplicates to paraphrased versions of the abstracts that
can be used across DF and DR. Overall, WaterDrum-Ax contains 400 abstracts for each category,
aggregating to a total of 8000 data points in WaterDrum-Ax. These abstracts have an average
length of 260 tokens, which is considerably longer than that of TOFU (Maini et al., 2024) (59 tokens).

The WaterDrum-Ax benchmark dataset can be used to (i) evaluate unlearning metrics based on the
desiderata introduced in Sec. 3, and (ii) evaluate unlearning algorithms using effective and practical
metrics identified in (i). The empirical evaluations in Sec. 5 focus on (i) but include some preliminary
results on (ii) in Sec. 5.1. We leave more systematic investigations of (ii) to future work.
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Figure 1: Histograms of utility-centric Truth
Ratio metric vs. WaterDrum values under the
‘semantic duplicate’ setting of data similarity
for WaterDrum-TOFU dataset (Table 2 in
Sec. 5) where the individual metric values
M(φR(qd),F) for each d ∈ DF are in orange
and M(φR(qd),R) for each d ∈ DR are in
blue. The Truth Ratio metric values cannot be
interpreted on their own as there is no value on
the horizontal axis where we can confidently
conclude that the LLM’s text output φR(qd) to
query qd is more likely to be formed by any
d ∈ DF . In contrast, WaterDrum values can
be interpreted on their own: Values < 0.2 are
more likely to be associated with forget set DF .

Existing unlearning metrics are ineffective in
the face of practical challenges: Here, we discuss
some existing definitions of the unlearning metric
M and their limitations; see App. A.1 for a deeper
introduction of utility-centric and other unlearning
metrics. Utility-centric unlearning metrics have
evaluated the effectiveness of unlearning based
on model utility (performance) indicators, such
as verbatim memorization, perplexity, or accuracy
on downstream tasks. Performance indicators
P have compared the unlearned LLM φ̃’s text
outputs to queries (e.g., φ̃(qd) for all d ∈ DF )
to the original text data (e.g., DF ). For instance,
ROUGE-L (Maini et al., 2024) compares the output
phrasing/longest common subsequence of φ̃(qd)
to the training text data point d. As another
example, some membership inference attack (MIA)
based unlearning metrics (Shokri et al., 2017),
such as that of Shi et al. (2024) for LLMs,
are utility-centric as they may depend on the
log-likelihood of tokens of the original text data.

Our key observation is that utility-centric metric values, such as P (φ̃(qd),F) for each d ∈ DF and
their aggregate (e.g., average for ROUGE-L), cannot be interpreted on their own: For example,
Table 3 of Shi et al. (2025) compares the aggregate metric value (e.g., KnowMem) on the unlearned
LLM φ̃ with that on the retrained LLM φR (trained on the retain set) to evaluate the extent of
unlearning. Ideally, the aggregate (over all d ∈ DF ) of P (φ̃(qd),F) should be equal to that of
P (φR(qd),F). Similarly, the work of Maini et al. (2024) also compares the distribution of the metric
values (e.g., Truth Ratio, ROUGE-L) on the unlearned LLM φ̃ with that on the retrained LLM φR to
evaluate the extent of unlearning.

This raises a critical issue: In practice, the retrained LLM φR is usually not available (Sec. 2). In
fact, the aim of unlearning algorithms (and metrics) is to obtain an unlearned LLM φ̃ that most
closely approximates φR. Regarding our main research question, is there an (aggregate) unlearning
metric (over all d ∈ DF ) whose values can be interpreted on their own to measure the extent of
unlearning DF without referencing a retrained LLM?

It can be observed from Fig. 1 that the answer is no for utility-centric metrics, especially when
there are similar data in the retain and forget sets: For any Truth Ratio metric value (e.g., 0.2), the
LLM’s text output to a query is equally likely to be formed by a data point in the retain set vs. that
in the forget set. There is no value of κ where we can confidently conclude that the LLM’s text
output φR(qd) to query qd is more likely to be formed by any d ∈ DF when P (φR(qd),F) < κ.
Let di ≃ dj denote that text data points di and dj have a large similarity score SS(di, dj), e.g.,
computed using some semantic text similarity (STS) score. A likely explanation is that when similar
text data points df and dr are present in the respective forget and retain sets, (i) any unlearned LLM
φ̃ (e.g., retrained LLM φR) tends to produce similar text outputs to queries formed by both sets, i.e.,
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φ̃(qdf
) ≃ φ̃(qdr

), as empirically verified in App. G.2. As performance indicators largely depend on
direct comparisons with the LLM’s text outputs, their metric values are also similar. (ii) Expecting
poor predictions on the forget set overlooks the generalization capability of LLMs (Liu et al., 2024).

3 UNLEARNING METRIC DESIDERATA

The goal of our work here is to come up with an alternative effective and practical unlearning metric
whose values can be interpreted on their own without referencing a retrained LLM. What desiderata
must such an unlearning metric satisfy? We define a few non-exhaustive desiderata in this section.

Intuitively, based on Fig. 1, we would want the LLM’s text outputs to queries formed by the text
data points in the forget vs. retain sets to have (i) separable metric values and (ii) aggregate (e.g.,
average) metric values to be easily interpreted (e.g., 0 for perfect unlearning) (iii) without referencing
the retrained model. (i) and (ii) correspond to our desiderata D1 and D2, respectively. We include
practical constraint (iii) as D3. The unlearning metric M should satisfy the following desiderata:

EFFECTIVENESS. First, the metric must effectively measure the extent to which an unlearning
algorithm has not unlearned the forget set (so, the resulting unlearned LLM φ̃ would still be influenced
by its unknown approximate retain set, as discussed in Sec. 2). To achieve this, we will now define
effectiveness desiderata that utilize LLMs retrained on the retain set (and varying known subsets of
the forget set) as retraining is a perfect unlearning algorithm:1

D1 Separability. The metric should detect/classify whether an owner’s data still influences an
unlearned LLM. Specifically, when evaluating the retrained LLM φR (i.e., achieved by perfect
unlearning), the metric should, with high probability, give higher values when measured on its text
outputs to queries formed by the retain set DR (which influences φR) than queries formed by the
forget set DF (which does not). That is, for any randomly selected text data points dr ∈ Dr ⊆ DR
from owner r and df ∈ Df ⊆ DF from owner f , the probability

P
[
M(φR(qdr

), r) > M(φR(qdf
), f)

]
≈ 1 . (1)

Separability, which is defined by the left-hand side expression of Eq. (1) (or, equivalently, AUROC),
implies that some threshold κ exists such that for any text data point di ∈ Di ⊆ DT from owner
i, a large value M(φR(qdi

), i) > κ indicates that di is likely to be in the retain set DR; varying κ
yields the ROC curve. Similarly, when considering an unlearned LLM φ̃, a large value M(φ̃(qdi

), i)
indicates that di is likely to be in the approximate retain set (Sec. 2). In other words, the metric
should serve as a good classifier for whether an owner’s data still influences the LLM and is hence in
the approximate retain set: A higher AUROC indicates a better separability of data that influences the
LLM vs. not (Fawcett, 2006). App. B.1 gives a further discussion on D1.

D2 Calibration. In Sec. 1, we have highlighted that existing unlearning algorithms cannot yet
achieve perfect unlearning. Thus, our unlearning metric should be calibrated to the extent of
imperfect unlearning. For example, we can simulate different extents of imperfect unlearning by
retraining with different sizes of subsets of the forget set. Specifically, the aggregate metric (in
expectation) should be proportional to the size k of the random subset D G# of the forget set that is
used together with the retain set DR to retrain the LLM φ̂:

ED G# ⊆DF :|D G# |=k [Md∈DF (φ̂(qd),F)] ∝ k/|DF | (2)

where D G# is defined in a similar way as DG# in Sec. 2 except that it is known. Eq. (2) implies that
a perfectly unlearned LLM like φR should have Md∈DF (φR(qd),F) = 0 since k = 0. So, when
evaluating unlearning algorithms, we identify successful perfect unlearning of the forget set by
looking for Md∈DF (φ̃(qd),F) ≈ 0. In addition, the value of the aggregate metric can be intuitively
interpreted as the extent to which the forget set has not been unlearned. This enables the unlearning
metric to go beyond being just a binary indicator of whether an entire forget set has been unlearned
to a meaningful continuous measure of unlearning. App. B.2 provides a further discussion on D2.

PRACTICALITY. To be a viable metric for deployment, the metric must also satisfy the following
feasibility and robustness desiderata that account for challenges faced in common real-life scenarios:

1Note that these retrained LLMs are only used to justify our effectiveness desiderata for evaluating the
unlearning metrics. In practice, the metrics should be used to evaluate imperfect unlearning algorithms without
referencing the retrained LLMs, as discussed in D3(a).
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D3 Feasibility. (a) When the metric is used to evaluate an unlearning algorithm and produce
M(φ̃(qd),F) or the aggregate Md∈DF (φ̃(qd),F) on the unlearned LLM φ̃, it should not require
the retrained LLM φR to interpret/measure the extent of imperfect unlearning. The premise
of unlearning is that retraining the LLM on the retain set is prohibitively expensive. Hence, metrics
cannot depend on φR in practice. (b) To additionally enable data owners with only query access to
the LLM to evaluate unlearning, the metric should only depend on the queried text outputs instead
of full access to the weights or token probabilities of the unlearned model φ̃.

D4 Robustness to similar data. The effectiveness desiderata D1-D2 should hold for any DR and
DF , including typical scenarios where DR and DF have similar data points (e.g., news agencies
have different news articles reporting on the same event, as illustrated in App. B.4).

EXISTING METRICS DO NOT SATISFY DESIDERATA. Continuing the discussion from Sec. 2,
Table 1 compares our WaterDrum and existing metrics based on the proposed desiderata in Sec. 3.
As other utility-centric metrics may not satisfy D1 and D2 under D3 and D4, their values cannot
directly interpret/measure the extent of imperfect unlearning without a retrained LLM and using the
WaterDrum-Ax dataset (Sec. 2).

4 WATERMARKING FRAMEWORK

Table 1: Comparison of unlearning the
metrics based on the proposed desiderata
(Sec. 3). We enforce D3, so metrics cannot
rely on the retrained LLM. D1 and D2
consider the setting of no data similarity.

D1 D2 D4

ROUGE (Maini et al., 2024) ✓ ✗ ✗
Truth Ratio (Maini et al., 2024) ✗ ✗ ✗

KnowMem (Shi et al., 2025) ✗ ✗ ✗
MIA (Shi et al., 2024) ✗ ✗ ✗
WaterDrum (ours) ✓ ✓ ✓

Instead of relying on utility-centric metrics that indirectly
infer unlearning via model performance, we propose
a novel data-centric metric that directly tracks the
influence of data by actively embedding data-specific
signals detectable in the LLM’s text outputs. These
data signals are embedded by watermarking the training
data and preserved by the LLM. We discuss how
WaterDrum differs from existing watermark-based
metrics for image classification tasks in App. A.1 and
give an introduction of text watermarking in App. A.3.
We will start by outlining desiderata required by a
watermarking framework (and its verification operator)
to meet our unlearning metric desiderata in Sec. 3.

WATERMARKING DESIDERATA. Our watermarking framework assigns each data owner i a
watermark key µi. It comprises (a) a watermarking operator W(di, µi) → d′i that takes in
any text data point di ∈ Di from owner i and watermarks it with the key µi to produce a unique
corresponding text data point d′i, and (b) a verification operator V(g′, µi) that takes in any text data
g′ (e.g., LLM’s text output) and a watermark key µi and provides a score reflecting the likelihood of
g′ containing the watermark µi. To satisfy our unlearning metric desiderata in Sec. 3, the watermark
and verification operators used will need to satisfy the following desiderata:2

W0 Fidelity. The watermarking should have minimal impact on the semantic similarity of the
original data, i.e., d ≃ W(d, µ) for any watermark key µ and data d ∈ DT . While this does not
directly impact the unlearning metric desiderata, W0 ensures that the watermarking process preserves
the value of the data and model for the model owner and the metric can be deployed in practice.

W1 Verifiability. (a) The watermark should be verifiable if and only if the watermarked content
is present in the LLM. In our setting, this implies that the retrained LLM should not contain the
watermark of an owner f in F who requested to erase its data, i.e., V(φR(qdf

), µf ) = 0. In contrast,
an LLM that has been trained on owner r’s data Dr ⊆ DR should be verifiable with watermark key
µr, i.e., V(φR(qdr

), µr) ≫ 0 for all dr ∈ Dr. (b) If every text data point in DF is watermarked
with the same key µF , the average of V(φ̂(qdf

), µF ) over all df ∈ DF for model φ̂ retrained on
DR

⋃
D G# should be proportional to the size of the data D G# ⊆ DF . (a) supports D1 as V(φR(qdi), µi)

can be used to classify whether an owner’s data influences a perfectly unlearned LLM — a value near
0 or much larger than 0, respectively, indicates that owner i likely has no influence or some influence
on the unlearned LLM. Together, (a) and (b) support D2 as the value is 0 in the case of a perfectly
unlearned LLM like φR and the average value is proportional to the extent of imperfect unlearning.

2When evaluating unlearning algorithms (Sec. 5.1), the model owner can perform the watermarking and
verification. In real-world deployment, the data owners do so instead.
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Figure 2: (Left) Unlike existing utility-centric metrics, WaterDrum satisfies the unlearning metric
desiderata in Sec. 3. WaterDrum is robust to similar data by embedding orthogonal data-specific
signals in the LLM’s text outputs that are W1 verifiable. (Right) An overview of the watermarking,
training, unlearning, and verification processes of WaterDrum.

W2 Overlap verifiability. The verifiability desideratum W1 is satisfied despite the presence of other
watermarks (e.g., µr from another owner r) in the data for training the LLM. This allows for multiple
watermarks to be verified from the text outputs of the same LLM.

We also need desiderata on the watermarking process to meet the rest of unlearning metric desiderata:

W3 Query access constraint. Data owners should verify their watermarks with only query access to
the LLM. This supports D3 with feasible & efficient evaluation of the extent of imperfect unlearning.

W4 Unique key. Each data owner i’s watermark key µi should be unique. When a data owner
requests to erase its data, the corresponding forget set would have a different watermark from that
associated with the retain set, thus supporting D1. Furthermore, the unique keys ensure that similar
or even identical data from different owners would have different watermarks, which supports D4.

Fig. 2(left) shows how a watermarking framework satisfying these desiderata satisfies the unlearning
metric desiderata in Sec. 3. Concretely, we define a metric M ′ using the verification operator:

M ′(φ•(qd), i) := V(φ•(qd), µi) . (3)

OVERVIEW OF WATERDRUM . Can any watermarking framework be adapted to satisfy our proposed
watermarking desiderata above? Here, we propose the first data-centric unlearning metric called
WaterDrum built on top of our adaptation of the training-free, scalable, and robust Waterfall
framework (Lau et al., 2024) that can successfully and efficiently verify multiple data owners’
watermarks in the text outputs of the LLM when trained on their watermarked text data.

Specifically, we adopt the watermarking W(·, µ) and verification V(·, µ) operators as defined in
Waterfall (respectively, Algorithms 1 and 2) and summarized in App. C.1 due to lack of space.
Waterfall’s watermarking and verification operators satisfy the watermarking desiderata W0,
W1(a), and W2, as elaborated and demonstrated in (Lau et al., 2024). We have empirically verified
that the Waterfall method satisfies W0 in App. G.1 and W1(b) on calibration in Sec. 5. The
rest of the watermarking desiderata can be satisfied by an appropriate design of the unlearning and
verification processes, which we illustrate in Fig. 2(right) and present below:

P1 Watermarking setup. Each data owner i first watermarks its data Di with a unique key µi to
generate a watermarked dataset D′

i := {d′i := W(di, µi)}di∈Di
. Then, the model owner aggregates

their watermarked data D′
T :=

⋃
i∈T D′

i, trains an LLM φ′
T on it, and offers to clients (including

data owners) query access to the trained LLM.

P2 Unlearning. A subset of data owners F requests for their data D′
F :=

⋃
i∈F D′

i to be erased
from the LLM φ′

T . The model owner will claim to have performed the unlearning and offer query
access to the resulting unlearned LLM φ̃′.

P3 Unlearning verification. The verification operator plays the role of an unlearning metric in
WaterDrum, as per Eq. (3). Each data owner i in F can query the unlearned LLM φ̃′ with queries
qd′ based on d′ ∈ D′

i and apply the verification operator V(φ̃′(qd′), µi) to measure the extent to
which its data remains present in the text outputs φ̃′(qd′) and hence has not been unlearned.

Note that computing the WaterDrum value in Eq. (3) applied during P3 only requires query access
to the model, hence satisfying W3. Watermarking desideratum W4 is also satisfied by the setup in P1
and the fact that the model owner never requires the data owners’ keys, which is also the case in P2.
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Remark 1. Using watermarked data is both (i) necessary for identifying practical and effective
unlearning metrics and (ii) reasonable going forward. (i) In Table 1, our watermarked data-based
WaterDrum is the only metric that satisfies all the unlearning metric desiderata. (ii) There are a few
important reasons: (a) data owners with IP or privacy rights (Sec. 1) can require the model owner
to use the watermarked version of their released data instead; (b) data owners can watermark their
unreleased data, which will be used to train (and may be more relevant for) future LLMs, and (c) the
adoption of text watermarking is expected to grow and match the prevalence of image watermarking.
In App. C.4, we elaborate on these practical considerations and other benefits (e.g., computationally
lightweight, no change to existing ML pipelines), beyond meeting the desiderata, for deploying
WaterDrum. So, the benefits of using watermarked data in WaterDrum to evaluate unlearning
algorithms, such as not needing to reference a retrained LLM (unlike utility-centric metrics), outweigh
the slight inconvenience and cost.

Remark 2. If the (i) model owner tries to reduce its LLM’s metric value without directly performing
unlearning or copyright its LLM via model watermarking (Kirchenbauer et al., 2023) or (ii) data
owners try to report inflated metric values to understate the unlearning by the model owner, is
WaterDrum still an effective unlearning metric? The answer is yes if (i) the underlying watermarking
framework is designed to be resilient, the watermark keys are private to the data owners, and (ii) a
trusted third party validates the metric values. We discuss these questions and additional requirements
in App. D and show that WaterDrum also satisfies them due to the properties of Waterfall.

5 EXPERIMENTS AND DISCUSSION

Experimental setup. In this section, we empirically compare WaterDrum with other commonly
used unlearning metrics: ROUGE-L (Lin, 2004; Maini et al., 2024), Truth Ratio (Maini et al., 2024),
KnowMem (Shi et al., 2025), and MIA (Shi et al., 2024)). We use the Llama-2-7B (Touvron et al.,
2023) as the base model. For WaterDrum, the LLM is fine-tuned on the watermarked dataset D′

T
in WaterDrum-Ax (Sec. 2) or WaterDrum-TOFU derived from TOFU (Maini et al., 2024) (MIT
License). For other metrics, the LLM is instead fine-tuned on their unwatermarked version DT .
To ease comparison, all metrics are scaled to 1.0 when evaluated on the original model φT before
unlearning. We use 1 category from WaterDrum-Ax and 10% data from WaterDrum-TOFU
as forget sets. We further evaluate the metrics with other LLMs (Li et al., 2023) as base models
(App. F.3). Although watermarking with Waterfall is only essential for WaterDrum, App. G.1
shows that it does not degrade LLM performance and App. F.4 shows that other metrics still do not
satisfy some desiderata when the LLM is fine-tuned on D′

T instead. To ease notation, in the rest of
this paper, we will use d•, D•, q•, φ•, and φ̃ in place of d′•, D′

•, q′•, φ′
•, and φ̃′ (i.e., those associated

with the watermarked data used by WaterDrum), respectively. App. E gives additional details on the
datasets, other models used, unlearning metrics, inference parameters, queries, and implementation.

We will evaluate WaterDrum and the baseline metrics in experimental settings that mimic the
real-life scenarios described in the PRACTICALITY DESIDERATA D3 and D4 (Sec. 3). Then, under
these settings, we assess the effectiveness of various metrics based on D1 and D2 by considering how
they evaluate the perfect unlearning algorithm – retraining the base model on only the retain set to
obtain φR, which is guaranteed to contain no influence of forget set DF by construction.

Feasibility D3. To satisfy D3(a), the metrics should not require referencing the retrained LLM φR to
interpret/measure the extent of imperfect unlearning (Sec. 3). For example, when assessing D2, we
enforce the metric values not to use (e.g., subtract) Md∈DF (φR(qd),F). To satisfy D3(b), the metric
should not require logit access, but for evaluation, we allow the use of logits only to compute MIA.

Robustness to similar data D4. Let Di ≃ Dj denote sets where for any di ∈ Di, there is a
corresponding dj ∈ Dj such that di ≃ dj . We establish the settings to assess the robustness of
the unlearning metrics to similar data by injecting a small amount of data Ds ≃ DF into DR, i.e.,
the retain set is augmented (Ds

R := Ds

⋃
DR) with some data points that are similar to DF . We

consider two such settings: (a) exact duplicate: data points in Ds are exact copies of those in DF
(i.e., Ds = DF ), and (b) semantic duplicate: data points in Ds are paraphrased versions of those in
DF (i.e., Ds ≃ DF ). In addition, we consider the case where (c) no duplicate of any data point in
DF is used to augment DR (i.e., Ds = ∅). Additional implementation details are in App. E.4.
SEPARABILITY DESIDERATUM D1. To assess whether the unlearning metrics satisfy D1, note
that the left-hand side expression P[M(φR(qdr ), r) > M(φR(qdf

), f)] in Eq. (1) corresponds to the
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Table 2: AUROC (± across 3 seeds) of various unlearning metrics under different levels of data
similarity for the WaterDrum-TOFU and WaterDrum-Ax datasets. WaterDrum’s AUROC
remains near 1.0 even when similar data exists.

WaterDrum-TOFU WaterDrum-Ax
Data Similarity ROUGE Truth Ratio WaterDrum ROUGE KnowMem WaterDrum

Exact Duplicate 0.510±0.007 0.508±0.008 0.926±0.027 0.334±0.005 0.492±0.005 0.957±0.008
Semantic Duplicate 0.798±0.001 0.472±0.054 0.954±0.001 0.960±0.002 0.450±0.007 0.963±0.001

No Duplicate 0.908±0.005 0.747±0.011 0.928±0.026 0.974±0.001 0.491±0.008 0.965±0.002

definition of the AUROC of the metric M in measuring the separability of the retain set DR that
influences the retrained LLM φR vs. the forget set DF that does not (Fawcett, 2006). Hence, we
can compute the AUROC of various unlearning metrics with the retrained LLM φR (i.e., a perfectly
unlearned LLM) and assess if they have AUROC ≈ 1. We exclude MIA from this experiment because
it focuses solely on assessing privacy leakage based on distributional differences between forget and
holdout sets without considering the retain set.

Table 2 shows the AUROC of the various unlearning metrics under different levels of data similarity for
the WaterDrum-TOFU dataset.3 Notably, WaterDrum is the only metric that consistently achieves
AUROC > 0.9 and close to 1, hence satisfying D1. In contrast, the other metrics’ performances
degrade significantly under the ‘exact and semantic duplicate’ settings; for the former, their AUROCs
drop to around 0.5, so the other metrics are no better than random assignment in the separability of DR
vs. DF . Furthermore, Truth Ratio only achieves an AUROC of around 0.75 under the conventional
‘no duplicate’ setting, hence not satisfying D1 even in this case.

The results on the WaterDrum-Ax dataset in Table 2 show similar trends with WaterDrum
consistently performing well and KnowMem performing poorly in all settings. ROUGE performs
poorly under the ‘exact duplicate’ setting where only 5% of the augmented retain set are exact copies
of those in the forget set. It performs well for the ‘semantic duplicate’ setting as the mean ROUGE-L
recall score between Ds and DF is low (≈ 0.65), which implies that the text data is already heavily
paraphrased such that the ‘semantic duplicate’ setting is effectively closer to the ‘no duplicate’ one
for ROUGE. However, the mean semantic text similarity (STS) score of Ds and DF remains high
(i.e., 0.94). Milder forms of perturbation for this dataset would likely make the degradation of its
performance on D1 more apparent.

CALIBRATION DESIDERATUM D2. Next, we assess whether the unlearning metrics meet the
calibration desideratum, as defined in Eq. (2). Failing to meet this desideratum implies that the
metrics cannot measure the extent to which the forget set DF has not been unlearned (i.e., for
imperfect unlearning). To evaluate this, we first retrain LLMs on DR

⋃
D G# by varying the size k of

the subset D G# ⊆ DF . Then, we compute the unlearning metrics for each retrained LLM and plot
calibration curves showing how the metrics vary with k. To quantify how well a metric satisfies
Eq. (2), we can compute the R2 value for its best-fit line through the origin since a calibrated metric
(in expectation) should be proportional to k/|DF | and have Md∈DF (φR(qd),F) = 0 at k = 0.
Consequently, an R2 value close to 1 implies that the metric is well-calibrated, while a large negative
value occurs when the metric produces similar (instead of proportional) values for varying k.

Fig. 3 and Table 3 show, respectively, the calibration curves for the various unlearning metrics and
the R2 values for the corresponding best-fit lines under different levels of data similarity for the
WaterDrum-Ax dataset. The results show that WaterDrum is the only well-calibrated metric
across all settings that can represent the proportion k/|DF | of the forget set still influencing the
unlearned LLM (i.e., the extent of imperfect unlearning). Comparatively, other metrics perform
poorly across all settings, including the conventional ‘no duplicate’ setting — they cannot be used
to determine when DF has been perfectly unlearned as Md∈DF (φR(qd),F) ̸= 0 (i.e., calibration
curves do not pass through the origin in Fig. 3). Thus, they do not satisfy D2 when enforcing D3.

The results demonstrate the strong reliance of the baseline unlearning metrics on access to the retrained
LLM φR. Without knowing the reference value on the perfectly unlearned LLM (i.e., φR), these

3Truth Ratio is only applicable to question answering (QA) datasets for which WaterDrum-Ax is not.
Since WaterDrum-TOFU is already a QA dataset, there is no need to consider KnowMem that generates QA
pairs for evaluation using the ROUGE-L recall score.
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Figure 3: Calibration curves for various unlearning metrics w.r.t. proportion k/|DF | of forget set
influencing retrained LLM (solid) and their best-fit lines (see associated R2 in Table 3) through origin
(dotted) under different levels of data similarity for WaterDrum-Ax dataset. Only WaterDrum is
well-calibrated and satisfies D2 with its best-fit lines closely following its aggregate metric values.

Table 3: R2 values for the best-fit lines (dotted in Fig. 3) of
various unlearning metrics under different levels of data similarity
for WaterDrum-Ax dataset. WaterDrum achieves the highest
R2 values that are close to 1 and is hence a well-calibrated metric.

Data Similarity ROUGE KnowMem MIA WaterDrum

Exact Duplicate -37.47 -498.1 -1220 0.987
Semantic Duplicate 0.693 -276.5 -90.21 0.991

No Duplicate 0.650 -252.9 -7.553 0.963

0.0 0.5 1.0
M ′

d ( (qd), ) 

0.0

0.5

1.0

 M
′ d

(
(q

d)
,

) No unlearning
Retraining
GD
KL
TV
SCRUB

Figure 4: Benchmarking the
unlearning algorithms with
WaterDrum.

baselines fail to quantify the extent of imperfect unlearning or even evaluate the success of unlearning.
This reliance is impractical as retraining the LLM on the retain set is prohibitively expensive, which
motivates the need for unlearning algorithms. Fig. 13 and Table 11 in App. H.2.1 show similar results
for the WaterDrum-TOFU dataset where all baselines fail to meet the calibration desideratum
across all settings, including the ‘no duplicate’ setting. App. H.1.1 gives more results.

5.1 BENCHMARKING UNLEARNING ALGORITHMS ON NEW WATERDRUM-AX DATASET

Finally, Fig. 4 illustrates how WaterDrum can be used to benchmark unlearning algorithms using
WaterDrum-Ax via an evaluation plot of M ′

d∈DF
(φ̃(qd),F) vs. M ′

d∈DR
(φ̃(qd),R). This measures

the aggregate WaterDrum values of the respective watermarked forget set DF vs. retain set DR
on the unlearned LLM φ̃ (Sec. 4). The original LLM φT , which trains on both DF and DR (i.e.,
no unlearning), is at the top right corner, while the retrained LLM φR, which only trains on DR
(i.e., perfect unlearning), is at the bottom right corner. It is expected that perfect unlearning would
achieve an approximately similar aggregate WaterDrum value of DR as no unlearning since the
retain set still influences both the retrained and original LLMs. In this plot, if an unlearning algorithm
can produce an unlearned LLM φ̃ with aggregate WaterDrum values closer to that achieved by
retraining, then its φ̃ is better at both unlearning DF from φT and retaining the influence of DR.

Fig. 4 shows results for unlearning algorithms such as Gradient Descent (GD) on DR from φT , KL
Minimization (KL) (Maini et al., 2024), Task Vector (TV) (Ilharco et al., 2023), SCRUB (Kurmanji
et al., 2024), details of which are in App. E.6. It can be observed that they achieve aggregate
WaterDrum values still far from that achieved by retraining: KL and TV can produce unlearned
models that unlearn the forget set very well but cannot preserve the influence of the retain set much,
the latter of which compromises their overall utility. GD and SCRUB can produce unlearned models
that preserve some influence of the retain set but do not unlearn the forget set well. App. H.3 gives
preliminary results for the cases with multiple data owners and different levels of data similarity.

6 CONCLUSION

Our work here has (a) defined clear desiderata that an effective and practical unlearning metric
should satisfy to enable direct interpretation and continuously measure the extent of unlearning
(Sec. 3), (b) proposed a novel data-centric LLM unlearning metric, WaterDrum, based on robust
text watermarking that, unlike existing metrics, satisfies these desiderata (Secs. 4 and 5), and (c)
introduced a new WaterDrum-Ax dataset to be used with WaterDrum to benchmark unlearning
algorithms (Sec. 5.1). App. I discusses other questions (e.g., limitations) a reader may have.
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A RELATED WORKS

A.1 UNLEARNING METRICS

Unlearning algorithms are often evaluated based on their (a) unlearning effectiveness, (b) utility
preservation, and (c) unlearning efficiency (Li et al., 2024a). We first briefly discuss (b) and (c).
(b) Utility preservation refers to how well the LLM maintains its performance and usability after
unlearning, and can be measured with performance indicators (e.g., perplexity, accuracy) on the retain
set or various downstream tasks (Chang et al., 2024). These performance indicators can include
those used for (a) below, but evaluated on the retain set instead of the forget set. (c) Efficiency of an
unlearning algorithm can be assessed based on how much time and resources it saves compared to
retraining from scratch (Li et al., 2024a; Nguyen et al., 2022). See Sec. 4 of (Liu et al., 2025) for a
deeper discussion about other unlearning effectiveness, utility preservation, efficiency, and scalability
metrics. (c) is not the focus of this work. WaterDrum is designed to evaluate (a) unlearning
effectiveness (Sec. 3) but may also evaluate (b) utility preservation on the retain set (Sec. 5.1).

(a) Unlearning effectiveness metrics. Broadly, unlearning effectiveness refers to how well the
influence of the forget set is being removed from the LLM. There are a few classes of such metrics:

• Utility-based metrics are a form of utility-centric metrics that expect the model utility
(performance indicators), when evaluated on the forget set, to worsen after unlearning.
Utility-based LLM unlearning metrics include ROUGE-L (Lin, 2004), Truth Ratio (Maini
et al., 2024), and KnowMem (Shi et al., 2025). Their definitions can be found in App. E.3
and the disadvantages of utility-centric metrics are already described in Sec. 2.

• Membership inference attack (MIA)-based metrics expect the ability or probability
to infer the membership of a data sample in the forget set to reduce significantly after
unlearning. Some MIA-based metrics are also utility-centric as membership inference may
depend on performance indicators such as perplexity and the log-likelihood of tokens in the
text data (Shi et al., 2024). However, MIAs (Shokri et al., 2017) have demonstrated limited
success against LLMs (Duan et al., 2024) and their performance is adversely affected by the
presence of similar data in the forget and retain sets.

• Watermark-based metrics embed signals in the forget set and expect the values of these
signals to decrease after unlearning (Li et al., 2024a). Our WaterDrum falls under this
class but is the first metric that can be applied to LLMs. Existing watermark-based
unlearning metrics are designed to only work for image datasets and classification
models. For example, the work of Guo et al. (2023) has embedded invisible backdoors
in images with incorrect target labels and the success of unlearning is measured by a
drop in the success rate of backdoor attacks. The work of Sommer et al. (2022) has
introduced a probabilistic verification framework for backdoors, in which users modified
their data prior to submission. We will highlight the key differences of our work here:
(i) These works rely on label-based predictions and face challenges such as generalization
effects, conflicting backdoor patterns, or backdoor defences. In contrast, our work focuses
on adapting watermarking to LLMs where longer and more complex output sequences
provide richer signals for unlearning verification. (ii) In these works, the model utility is
compromised even before unlearning, especially when the forget set is large. In contrast,
our WaterDrum has minimal impact on the model utility because it is based on the robust
watermarking framework called Waterfall that satisfies desideratum W0, as shown in
App. G.1. (iii) Most importantly, existing watermark- and backdoor attack-based metrics
are limited to image data and cannot be directly applied as unlearning metrics to text data
due to additional challenges such as in preserving data fidelity (Guo et al., 2023; Sommer
et al., 2022).

Unlearning metrics can also be classified based on whether they are retraining-based or
non-retraining-based. Retraining is commonly viewed as the gold standard in classical unlearning
settings (Bourtoule et al., 2021; Cao & Yang, 2015; Golatkar et al., 2020). This has led to various
evaluation metrics that assert how closely an unlearned model approximates a retrained one, such
as via matching performance on the forget set (Chundawat et al., 2023b; Golatkar et al., 2020) or
measuring distances in weights and activations (Chundawat et al., 2023a; Golatkar et al., 2021; Tarun
et al., 2023). However, retraining LLMs is often infeasible due to the scale of model parameters
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and the volume of pretraining data. In addition, retraining-based metrics contradict the premise of
unlearning that emphasizes the unavailability of a retrained LLM.

Therefore, non-retraining-based metrics are now more important and aligned with the growing trend
of commercial LLMs that only provide black-box access. The work of Chundawat et al. (2023a) has
proposed the ZRF score that captures the randomness in LLM predictions as an indicator of unlearning,
while the work of Becker & Liebig (2022) has proposed to utilize a model’s epistemic uncertainty.
The work of Yao et al. (2024) has proposed that a surrogate subset with the same distribution as
the forget set can be employed to approximate the performance of the retrained LLM. However,
these metrics often overlook the LLM’s ability to generalize from pretraining or the remaining
retain set. To address this, synthetic datasets, such as the TOFU dataset (Maini et al., 2024), are
carefully crafted to ensure a sufficient separation between the forget and retain sets. Nonetheless,
such a separation (i.e., a low level of data similarity) is rarely achievable in real-world scenarios.
In this work, we address these limitations by proposing a non-retraining-based metric that
works despite a greater level of data similarity between the forget and retain sets and the
generalization ability of LLMs. Additionally, our metric would work for multiple unlearning
requests. Specifically, we propose to use watermarking (Guo et al., 2023; Sommer et al., 2022) to
handle potential data similarities due to its ability to make each data point uniquely identifiable.

A.2 COMPARISON WITH OTHER LLM UNLEARNING EVALUATION WORKS

The works of Maini et al. (2024); Shi et al. (2025) have proposed new unlearning metrics and
benchmark datasets. The work of Li et al. (2024b) has proposed a multiple choice question benchmark
dataset called WMDP to evaluate the LLM’s knowledge in biosecurity, cybersecurity, and chemical
security. This benchmark dataset is different from TOFU, MUSE, and ours in nature because it is
specifically for knowledge editing and only contains test data instead of training data. The work
of Wang et al. (2025) has suggested that an unlearning metric should be robust against (unchanged
by) red teaming scenarios (such as recovering knowledge by jail-breaking, probing, relearning),
and unlearning algorithms should be compared when they produce unlearned models with the
same utility/performance on the retain set that is realized by mixing the parameters of the LLM
before and after unlearning. The work of Wu et al. (2024) has proposed a new perspective of
fact unlearning and an accompanying synthetic dataset. In contrast, we propose a novel set of
unlearning metric desiderata, which is satisfied by WaterDrum, to address realistic settings,
such as when the forget and retain sets have semantically similar content and when retraining
is impractical. Our desiderata are not intended to be exhaustive and can complement that
of existing LLM unlearning evaluation works. The work of Lynch et al. (2024) has proposed a
suite of adversarial metrics to resurface forget set-related knowledge that exists in the unlearned
LLMs, such as jailbreaking prompts, relearning (via fine-tuning and in-context learning), and latent
knowledge extraction. While these metrics employ text similarity to the forget set in adversarial
scenarios to evaluate the success of unlearning, watermarking uses the signal carried in the LLM’s
text outputs to detect the influence of the forget set.

A.3 TEXT WATERMARKING

Watermarking is an extensively studied technique for copyright protection, fingerprinting, and
authentication (Liu et al., 2024; Wan et al., 2022). Watermarking consists of two main stages:
embedding and detection where the watermark must remain imperceptible and robust against removal
attacks (Wan et al., 2022). Unlike digital images where continuous signals facilitate imperceptible
watermark embedding, text watermarking is more difficult due to its discrete nature and susceptibility
to text modifications (Liu et al., 2024). Existing methods, such as inserting Unicode characters (Lu
et al., 2025; Sato et al., 2023; Por et al., 2012) or synonym replacement (Qiang et al., 2023; Yoo
et al., 2023; Yang et al., 2022), are often easily detectable and susceptible to word replacement
(Lau et al., 2024). On the other hand, syntactic-based watermarking methods are often constrained
by the limited choices of syntactic structures and require prior linguistic knowledge (Wan et al.,
2022). Recently, LLMs have emerged as a promising watermarking tool as they can generate
natural-looking text and improve watermarking robustness. The work of Lau et al. (2024) has
proposed a robust text watermarking framework called Waterfall that is capable of embedding
watermarks across data from multiple data owners (while preserving the semantic content of the
original text) and also achieving watermarking robustness such that watermarks in the training data of
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LLMs remain detectable in the LLMs’ text outputs. Our work builds on top of our adaptation of the
Waterfall framework (Lau et al., 2024) to develop our unlearning metric, i.e., WaterDrum.
Other watermarking frameworks can be considered in future works.

B FURTHER DISCUSSION ON UNLEARNING METRIC DESIDERATA (SEC. 3)

B.1 SEPARABILITY DESIDERATUM D1

A separable unlearning metric (i.e., D1) should be a good classifier of whether an owner’s data
still influences an unlearned LLM, in particular, the retrained LLM φR (i.e., achieved by perfect
unlearning) trained only on DR. To illustrate the difference between a separable and non-separable
metric, we provide a toy example in Fig. 5(left). With a separable metric, an optimal threshold κ∗

can be chosen where false positive and false negative classifications are minimal, as is the case for
WaterDrum shown in Fig. 5 (top right). However, for non-separable metrics, any κ chosen would
result in similar true and false positive rates, as is the case for the utility-centric Truth Ratio metric
shown in Fig. 5 (bottom right).
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Figure 5: (Left) A toy example is provided to illustrate the intuition of the separability desiderata D1.
Each ■ represents an LLM’s text output to a query formed by a data point. Different κ’s correspond
to different decision boundaries. In the top diagram, the metric and κ∗ can clearly separate the
LLM’s text outputs to queries formed by the forget set vs. the retain set. In the bottom diagram,
there is no κ that can clearly separate them and the true and false positive rates are always the same.
(Right) Histograms of our WaterDrum vs. the utility-centric Truth Ratio metric values under the
‘semantic duplicate’ setting of data similarity for WaterDrum-TOFU dataset (Table 2 in Sec. 5)
where WaterDrum exhibits a clear separability over the Truth Ratio metric; see the caption of Fig. 1
for a detailed description.

B.2 CALIBRATION DESIDERATUM D2

Ideally, perfect unlearning will completely remove the influence of the forget set. However, in
practice, imperfect unlearning may be inevitable due to the size and complexity of LLMs. This
is because (a) perfect unlearning involving retraining from scratch is prohibitively expensive and
impractical, and (b) perfect unlearning on LLMs is not yet achievable with the current approximate
unlearning algorithms without significantly harming model utility/performance (e.g., on the retain
set). In Sec. 5.1, we demonstrate that all unlearning algorithms only achieve imperfect unlearning,
except when the LLM is destroyed (i.e., it is influenced by neither the forget nor the retain sets) or
when a new LLM is retrained from scratch.

With the calibration desideratum D2, characterization of imperfect unlearning becomes possible. D2
enables an unlearning metric to go beyond being just a binary indicator of whether the entire forget
set has been unlearned to being a meaningful continuous measure of the extent to which a forget set
DF has been unlearned:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• The proposed linear proportional form (i.e., Eq. (2)) of D2 captures the goal that the
unlearning metric can be interpreted on its own and indicates the proportion of DF that
remains unlearned, while being given only a single calibration data point (i.e., the aggregate
unlearning metric value of the forget set on the original LLM) available before unlearning.
This contrasts with existing utility-centric metrics, which require another calibration data
point (i.e., the aggregate unlearning metric value of the forget set on the retrained LLM)
and hence violate D3(a), as discussed in Sec. 3.

• Our experiments (Fig. 3 and Table 3) show that WaterDrum can satisfy D2, enabling
this intuitive interpretation when LLMs are retrained with the retain set DR and varying
proportions of the forget set k/|DF |.

Fig. 6 provides an intuitive illustration of the calibration desideratum where the metric measures the
extent of imperfect unlearning. D2 is practically useful in the following use cases:

1. Deployment: In practice, model owners may only achieve imperfect unlearning of the
forget set to some extent while preserving the utility/performance of their LLM for
customers. A calibrated continuous unlearning metric value satisfying D2 can serve as
an objective proxy for negotiations with data owners on the required extent of unlearning
and corresponding monetary compensation. The negotiated target extent can then guide
the actual implementation of unlearning, e.g., by selecting the most suitable unlearning
algorithm (since different algorithms achieve different forget-retain performance trade-offs,
as shown in Fig. 4) or guide the tuning of hyperparameters for a given algorithm.

2. Evaluation and development: For research and development, a calibrated metric satisfying
D2 enables evaluation beyond binary success/failure and instead continuously measures
the extent of imperfect unlearning of the forget set. This supports a more realistic and
fine-grained assessment of unlearning algorithms.

Figure 6: A calibrated metric should continuously measure the extent of imperfect unlearning. On the
horizontal axis, we simulate using different sized proportions of the red owner’s dataset. D2 requires
the metric to have a value of 0 when the dataset is not used (y-intercept) and a larger value when a
larger proportion is used. As shown in Fig. 3 in Sec. 5, WaterDrum is well-calibrated while other
metrics are not.

B.3 FEASIBILITY DESIDERATUM D3

In Sec. 2, we describe how utility-centric metric values, such as ROUGE-L, cannot be interpreted
on their own. Instead, their interpretation requires referencing the aggregate metric value of the
forget set on the retrained LLM. For example, we can compute the difference between the aggregate
metric values on the unlearned vs. retrained LLMs. For a perfectly unlearned LLM (e.g., the retrained
LLM), the difference should become 0. Note that although the difference satisfies our calibration
desideratum D2, it violates D3(a).

What happens when the aggregate metric value on the retrained LLM is unknown? Any aggregate
metric value (e.g., ROUGE-L score) would not be informative; it is impossible for the model owner
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to know whether the aggregate metric value indicates perfect unlearning or only imperfect unlearning,
or to know how far the unlearned LLM is from perfect unlearning. In Sec. 5, we do not reference the
retrained LLM. The baseline metrics computed using the unlearned LLM only do not satisfy D2, as
seen in Fig. 3.

B.4 ROBUSTNESS TO SIMILAR DATA DESIDERATUM D4

In Secs. 2 and 3, we suggest that it is common for data owners to have semantically similar instances.
Here, we provide concrete examples. Consider a real-life scenario where two news agencies, Reuters
and The Straits Times (i.e., the data owners), produce semantically similar news articles, as shown
in Fig. 7a. These two articles from different data owners exhibit a high semantic similarity with an
STS score of 0.90. In this case, only one agency may request unlearning. As another example in the
WaterDrum-Ax dataset, Fig. 7b shows that the two arXiv paper abstracts from the same Materials
Science category but different authors (i.e., the data owners) are also semantically similar with an
STS score of 0.88. In this example, only one group of authors may request unlearning.

C FURTHER DISCUSSION ON WATERFALL

C.1 OVERVIEW OF WATERFALL

Waterfall (Lau et al., 2024) embeds watermark signals in text by paraphrasing the text while
preserving its original meaning. For example, “The cat caught the rat” can be watermarked and
paraphrased as “The rat was captured by the cat” while preserving the same meaning and not affecting
downstream uses of the text (e.g., when used for LLM training). We will briefly describe the
watermarking and verification operators below and refer the reader to the work of Lau et al. (2024)
for more details. The watermarking and verification processes of Waterfall do not require the
training of any LLMs.

Watermarking Operator. Waterfall uses an off-the-shelf LLM as a paraphraser, which
preserves the text’s original meaning, and injects token-level watermark perturbation signals to
the LLM’s logits while generating the paraphrased text. Specifically, the token-level perturbations
depend on the data owner’s key (ID) and preceding tokens such that, on average, the perturbation
is equivalent to adding random noise to the LLM’s logits. Technically, at each token generation
step, this involves (i) a permutation of the vocabulary space ordering based on the ID and preceding
tokens, combined with (ii) ID-dependent orthogonal perturbation functions that allow desirable
properties such as the ability to add multiple watermarks in the same text. The watermarking operator
is summarized in Algorithm 1 of (Lau et al., 2024).

Verification Operator. With knowledge of the data owner’s key (ID), it becomes possible to find
the ‘right’ permutation to verify whether there has indeed been any signal embedded into the text or
not. Technically, this involves simply accessing the correct vocabulary token space permutation. If
a watermark has been embedded, doing a dot product in this permuted token space would yield a
signal. Else, on average, only noise will be present, hence no signal will be detected. The verification
operator is summarized in Algorithm 2 of (Lau et al., 2024). It does not involve any LLM inference
or training and can be run on a CPU.

We discuss practical deployment details and computational cost of Waterfall in App. C.4.

C.2 WATERFALL AND WATERMARKING DESIDERATA

Waterfall satisfies the watermarking desiderata required for WaterDrum, as stated in Sec. 4.
Specifically,

• W0 Fidelity: Waterfall (Lau et al., 2024) is designed to satisfy a fidelity desideratum
and ensure that the watermarked text is semantically similar to its unwatermarked version.
Fidelity is ensured by using an LLM as a paraphraser and adding watermark signals to the
LLM logits when generating tokens (such that, on average, the perturbation is equivalent to
adding random noise).
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(a) The news agencies, Reuters and The Straits Times, both produce news articles reporting on the same soccer
match and hence have a high semantic similarity with STS = 0.90.

(b) In the WaterDrum-Ax dataset, the two arXiv paper abstracts from the same Materials Science category but
different authors both present similar content and hence have a high semantic similarity with STS = 0.88.

Figure 7: Examples of high semantic text similarity (STS) in different domains.

Evidence. App. H.3 of (Lau et al., 2024) shows that the LLMs fine-tuned using watermarked
vs. unwatermarked datasets have minimal difference in fidelity. In App. G.1, we also
empirically verify that the watermarking process has minimal impact on the LLM’s
performance (e.g., Truth Ratio).

• W1 Verifiability: (a) Waterfall would produce a high verification score if the
watermarked text and the correct corresponding watermark key are inputs to the verification
operator (Algorithm 2), and a score with an expected value of 0 otherwise (e.g., if the
wrong watermark key or unwatermarked text is used). Intuitively, this is because the
verification score is the dot product of the watermark signal and the average cumulative
token distribution, which is almost uniform noise without the right watermark key and
watermarked text. (b) Waterfall’s verification score can be aggregated by taking the
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uniform average over all d ∈ DF . When the LLM is trained on a larger subset of the forget
set, more LLM outputs will contain the watermark, such that the aggregate metric value
increases proportionally.
Evidence. (a) Sec. 4.3 of (Lau et al., 2024) has shown that Waterfall is verifiable in the
LLM fine-tuned over watermarked text with AUROC of 1.0 when evaluated on 100 queries
of 100 generated tokens each. We empirically verify this with the WaterDrum-TOFU and
WaterDrum-Ax datasets in Sec. 5 (under ‘Separability desideratum D1’). (b) We further
show empirically that the verification score of Waterfall is also proportional to the size
of the subset of the forget set in Sec. 5 (under ‘Calibration desideratum D2’).

• W2 Overlap verifiability: Waterfall (Lau et al., 2024) is designed such that different
watermark keys correspond to different permutations and perturbations of the logits in the
LLM paraphraser. With pseudorandom permutations of the LLM logits and watermark
signals (added to the LLM logits) that are defined with orthogonal functions, different
watermarks are less likely to interfere with one another.
Evidence. Sec. 4.3 of (Lau et al., 2024) showed that Waterfall remains verifiable in an
LLM when the training dataset has texts with up to 100 different watermarks. We empirically
verify W2 with the WaterDrum-Ax dataset in Sec. 5 (under ‘Separability desideratum
D1’).

• W3 Query access constraint: Algorithm 2 of (Lau et al., 2024) for performing watermark
verification only requires the suspected text (i.e., text output from the LLM), and does not
require any other access to the LLM which generates the text.

• W4 Unique key: Waterfall (Lau et al., 2024) is designed to satisfy a scalability
desideratum since it has a theoretical maximum of 10130274 unique watermark keys due to its
vocabulary permutations and orthogonal perturbations. This is in contrast to the maximum
of 1010 for other text watermarking frameworks (Lau et al., 2024). This allows different
data owners to have different unique keys, and it is extremely unlikely that different owners
end up with the same key by random chance.
Evidence. App. E.8 of Lau et al. (2024) empirically shows that the watermark is verifiable
for up to 100, 000 random unique watermark keys.

Furthermore, Waterfall also satisfies the additional desiderata described in App. D:

• W5 Private: Algorithm 2 of (Lau et al., 2024) requires the private watermark key
for watermark verification. As the watermark is embedded in the phrasing of the text,
Waterfall’s watermark key cannot be directly or easily extracted from the watermarked
text.
Evidence. The work of Lau et al. (2024) has compared Waterfall with other text
watermarking frameworks in Sec. 4.1 (Robust verifiability) and App. F.3. Other text
watermarking frameworks (Lu et al., 2025; Qiang et al., 2023; Sato et al., 2023; Yoo
et al., 2023), unlike Waterfall, have watermark keys that can be directly extracted from
the text, causing them to be easily exploited and fail the following desideratum W6. We
further discuss this in App. D.

• W6 Resilient: Waterfall’s robustness relies on its unique token-level embedding process
such that completely removing its signal will require so many token changes in the text that
would likely destroy its original meaning.
Evidence. Sec. 4.1 (Robust verifiability) of (Lau et al., 2024) has evaluated Waterfall
on a range of word-level and passage-level modifications, as well as additional rounds of text
watermarking and LLM-aided attacks, and has shown that Waterfall remains verifiable
after those attacks unlike other text watermarking frameworks. We also further demonstrate
that WaterDrum with Waterfall is resilient to the model owner intercepting queries
and model watermarking attack in Apps. D.1 and D.3, respectively.

In general, any watermarking method that satisfies our watermarking desiderata can be used within our
WaterDrum. To the best of our knowledge, Waterfall is the only text watermarking approach
to satisfy our requirements as of now, and is thus used in our paper. However, we expect more
watermarking methods to work with future developments in text watermarking.
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C.3 WATERMARKING OF DATASETS WITH WATERFALL

Watermarking and verification of the training text data have been performed with
Waterfall (Lau et al., 2024) using the default configuration of the code available on
https://github.com/aoi3142/Waterfall. When creating our WaterDrum-Ax
and WaterDrum-TOFU datasets, the data is watermarked using the default LLM
meta-llama/Llama-3.1-8B-Instruct with watermark strength κ = 24 and perturbation
key kp = 1. For licensing information on individual papers in the WaterDrum-Ax dataset, see
https://arxiv.org/help/license.

To create the watermarked WaterDrum-Ax and WaterDrum-TOFU datasets, we consider the
scenario where each data owner i ∈ T with ID i for i = 0, 1, 2, . . . , |T | − 1 has its own unique
watermark key µi. This ensures that each data owner is able to uniquely verify and evaluate the
influence of its own data on the LLM when fine-tuned on its data and after any possible unlearning
has been done on the fine-tuned LLM. For simplicity, we set µi to be i when watermarking our
datasets with Waterfall. For the experimental settings where duplicate data is considered (see
Sec. 5, specifically, under ‘Robustness to similar data D4’)), each data owner f ∈ F whose data Df

is in the forget set DF and duplicated would have another data owner j ∈ T (where j ̸= f ) owning
the duplicate of owner f ’s data Df and watermarking this duplicate with its watermark key µj . The
practical motivation for data owners with similar data is discussed in App. B.4.

To create the WaterDrum-Ax dataset, we consider |T | = 20 unique data owners where each
i-th category among the 20 categories of paper abstracts belongs to a single data owner i and is
watermarked with its watermark key µi = i for i = 0, 1, . . . , 19. This emulates the setting where a
model owner is aggregating data from 20 sources of academic publications where each source centers
on a single academic discipline. To construct a forget set that consists of data from n data owners,
the data from the last n of the |T | data owners are used as the forget set, while the data from the first
|T | − n data owners forms the retain set. For instance, when unlearning the data from 1 data owner,
the data from data owner i = 19 is the forget set. When unlearning the data from 5 data owners,
the data from data owners i = 15, 16, 17, 18, 19 forms the forget set. For the experimental settings
where duplicate data is considered as discussed above, the next data owner j = (f + 1) mod |T |
owns the duplicate of the data Df from the previous data owner f and watermarks it with µj = j
before including it into the augmented retain set.

To create the WaterDrum-TOFU dataset, we follow the construction in (Maini et al., 2024) by
considering just two data owners 0 and 1 with the retain and forget sets, respectively. The retain
set is watermarked with key µ0 = 0, while the forget set is watermarked with key µ1 = 1. For the
experimental settings where duplicate data is considered as discussed above, data owner 0 owns the
duplicate of the forget set from data owner 1 by watermarking it with µ0 = 0 before including it into
the augmented retain set.

Note that as part of Waterfall’s watermarking process, the original text data is paraphrased
using an LLM. Although efforts have been made to ensure that the watermarked text
retains a high semantic similarity with the original text (see the work of Lau et al. (2024)
and https://github.com/aoi3142/Waterfall), we cannot guarantee the faithful
reproduction of all content from the original text nor the factual correctness of the watermarked texts.
In practical unlearning applications, additional (automated or manual) checks can be performed on
the watermarked text to ensure accuracy and consistency to the original text (Lau et al., 2024). To
reduce the computational cost, we have omitted these steps from our watermarking process. Despite
this, similar to the fully fictitious TOFU dataset introduced by the work of Maini et al. (2024),
WaterDrum-Ax and WaterDrum-TOFU still serve as suitable datasets when used for the purpose
of evaluating unlearning metrics and algorithms where the factuality of the content in the dataset is
not relied upon.

4Note that this κ is the watermark strength, as defined in Waterfall (Lau et al., 2024), and not the same
as the separability threshold defined in the separability desideratum D1.

20

https://github.com/aoi3142/Waterfall
https://github.com/aoi3142/Waterfall


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.4 PRACTICAL DEPLOYMENT PIPELINE FOR WATERDRUM WITH WATERFALL FOR LLM
UNLEARNING EVALUATION

The watermarking process of WaterDrum is lightweight and incurs very little computational cost.
This makes the watermarking process simple and convenient for data and model owners during
real-world deployment:

• Data owners can quickly watermark their data before sharing them with model owners
or releasing important data publicly. This not only facilitates unlearning verification but
also allows them to detect whether their data has been used by model owners without
authorization (Lau et al., 2024; Maini et al., 2024).

• No changes are required by the model owners who can continue training closed-source
LLMs, provide API access, or release open-source models.

• Data owners can detect whether their data has been used for fine-tuning (even in
closed-source LLMs) based only on the LLM’s text outputs. After submitting an unlearning
request, they can verify the extent of unlearning via WaterDrum.

• In comparison, other LLM unlearning metrics face severe deployment barriers, such as
requiring to reference a retrained LLM (Secs. 1 and 2), which is infeasible even for
cooperative model owners due to the computational cost.

The overhead of watermarking the training data is minimal compared to the cost of retraining the entire
LLM. Watermarking the WaterDrum-TOFU dataset using an implementation of Waterfall with
the vLLM library (Kwon et al., 2023) on GPU takes only 10 seconds per 1000 data samples and
is performed only once when data is first contributed. In contrast, the cost of retraining the entire
LLM is around 1h 30min, which is 100× higher than the cost of watermarking the training data.
Furthermore, retraining has to be repeated for every unlearning request.

In addition, our framework also reduces the verification costs. Verification of the Waterfall’s
watermark is very efficient (Lau et al., 2024), requiring about 3 seconds per 1000 query outputs
on CPU. In contrast, the computation of ROUGE using the rouge-score library5 takes around 170
seconds per 1000 query outputs, which is two orders of magnitude slower.

A limitation is that WaterDrum requires watermarking the data before training and cannot be
applied retroactively to data that has already been released. However, this practical concern will
likely diminish with time and be mitigated due to the following reasons:

• Recalling already released data may be possible in our unlearning setting as data owners have
the rights to their data and can control their use, as discussed in Secs. 1 and 2. Therefore,
data owners of released data can still exercise the rights to their data by telling the model
owner that they would (i) require their updated watermarked data to be used in the LLM
instead, or (ii) consent to the continued use only if watermarking is to be part of the data
processing step in the next LLM release. In either case, the model owner must comply with
laws and regulations such as the GDPR and copyright laws.

• Even without recalling historical and released data, the data owners can demand that
watermarks be applied going forward in future LLMs. They can expect newly generated
data to be watermarked, hence facilitating future practical LLM unlearning evaluations. For
example, news agencies can start watermarking their news articles and these recent articles
may be more important in training future LLMs.

As awareness of privacy and security in LLM training grows, we expect proactive watermarking
of data before release to become a common practice among data owners and the applicability of
WaterDrum to grow over time.

A similar concept called image watermarking in the domain of computer vision has been widely
studied and adopted for image data copyright protection (Cox et al., 2008). We note that when
applications of image watermarking are proposed, such as data backdoors to verify unlearning
(Thaker et al., 2024), they also face the same constraint that image watermarking can only be applied

5https://pypi.org/project/rouge-score/.
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to unreleased data (and cannot be retroactively embedded in historical data). The community has
accepted the constraint and appreciated the potential benefits going forward. Thus, there are strong
reasons to believe in the potential for wider adoption of text watermarking and its applications.

D RESILIENCE

In Remark 2 of Sec. 4, we raise the following question: Is WaterDrum still an effective unlearning
metric if (i) the model owner tries to reduce its LLM’s aggregate metric value without directly
performing unlearning or copyright its LLM via model watermarking (Kirchenbauer et al., 2023)
or (ii) some data owner(s) try to report inflated aggregate metric values to understate the unlearning
performed by the model owner?

In this section, we explain when the answer is yes. In particular, the underlying watermarking
framework should additionally satisfy the following desiderata:

W5 Private. Each data owner i’s watermark key µi should be private and unknown to the model
owner. Verification of the watermark with the verification operator should require the private
watermark key. Moreover, the watermark key should not be easily extractable from the watermarked
text. This prevents others without the watermark key (e.g., other data owners, model owner) from
verifying whether some text contains the watermark and computing the metric value without owner
i’s permission.

A private watermark may be required to support W6.

W6 Resilient. The watermark should remain W1 verifiable in the LLM’s text outputs after attacks
by the model owner. These attacks should have minimal impact on the semantic similarity of the
LLM’s text output and should not significantly affect the value of the LLM (as in W0) as the model
owner is still interested in deploying a usable LLM.

Our adopted watermarking framework, Waterfall, satisfies W5 as the verification algorithm
requires the private key and the watermark key cannot be extracted from the watermarked text
(Lau et al., 2024). In contrast, other watermarking frameworks do not satisfy W5. Frameworks
that use invisible Unicode watermark key (Lu et al., 2025; Sato et al., 2023; Por et al., 2012) have
their watermark keys plainly exposed in the watermarked text, while frameworks using synonym
replacements (Qiang et al., 2023; Yoo et al., 2023; Yang et al., 2022) have watermarks that can be
easily extracted from the watermarked text when the verification algorithm is known. The extraction
enables the model owner to compute the metric value and remove or replace the watermark in the
LLM’s text outputs, which results in these other watermarking frameworks failing to satisfy W6.

We analyze whether Waterfall satisfies W6 in this section. We consider attacks including
(a) the model owner intercepting the LLM’s text outputs based on a proxy indicator SS such as
semantic similarity with forget set (App. D.1), (b) model watermarking applied to the LLM during its
auto-regressive generation (App. D.3), and (c) other modifications made to the LLM’s text output
after generation (App. D.3).

We also consider that under W5, data owner(s) can falsely try to report inflated aggregate metric
values to understate the unlearning performed by the model owner in App. D.2.

D.1 DECOY MODEL TO REDUCE AGGREGATE METRIC VALUE WITHOUT DIRECTLY
PERFORMING UNLEARNING

Here, we consider the setting where the data owners requesting their data to be erased are unaware
of or cannot control how the model owner performs unlearning. Instead, they can only evaluate the
unlearning by querying the updated model. Moreover, the model owner’s interests may not align
with those of the data owners. As performing unlearning and obtaining the unlearned model φ̃ can be
more costly, the model owner may want to avoid performing unlearning while still appearing to fulfil
the data owners’ erasure requests. The model owner can attempt to reduce the aggregate metric value
by using the decoy model qφ instead.6

6Note that the model owner would have no incentive to do so when benchmarking different unlearning
algorithms (Sec. 5.1). During benchmarking, the model owner (instead of the data owner) controls the training
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Decoy model. The model owner implements the decoy model qφ, which involves using a gating
function to intercept any query qd received. For any metric M that the model owner can compute
exactly, the model owner would intercept queries that result in large metric values, indicating that the
original LLM φT is greatly influenced by the forget set DF (e.g., queries qd where M(φT (qd), f) >
κ for some f ∈ F ), and replace the LLM’s text output φT (qd) with some text g(qd,DF ) that reduces
the metric value. For metrics that the model owner cannot compute exactly (e.g., metrics that require
some information that is private to the data owner), the model owner can only resort to a proxy
indicator SS that measures how similar the LLM’s text output φT (qd) is to the text from the forget
set DF . The decoy model is defined as follows:

qφ(qd) =

{
g(qd,DF ) if ∃df ∈ DF SS(φT (qd), df ) > B ,

φT (qd) otherwise ;
(4)

with a threshold value B determined by the model owner. Note that a small B would intercept more
queries and replace more of the LLM’s text outputs. This may be more costly, reduce the overall
LLM performance, and may essentially be comparable to a full unlearning algorithm. How would the
decoy model affect the effectiveness of various unlearning metrics when evaluating the decoy model?

For metrics that do not depend on information private to the data owners (e.g., ROUGE-L), the model
owner can compute them directly. The model owner can use the metric as SS, set the threshold B to
match the (learned) threshold κ from D1, and optimize the replacement text g(qd,DF ) that reduces
the metric value. As SS and B can be more easily set, the model owner’s decoy model attack will be
more successful and less costly (from fewer interceptions). Thus, the metric is less resilient to the
decoy model attack.

For metrics that depend on information private to the data owners (e.g., WaterDrum using
Waterfall that satisfies W5), the model owner cannot compute them directly. Instead, the
model owner can only define SS based on some proxy indicator of similarity SS between the LLM’s
text output and data from the forget set DF . The model owner would also have to tune B. A lower B
would reduce the aggregate WaterDrum value (giving the impression of unlearning) but comes at
the high cost of more replacements and poor model utility/performance. When using Waterfall,
the model owner can only generate replacement text g(qd,DF ) with lower metric values by using
unwatermarked text from other sources (e.g., another LLM). This may further reduce the decoy
model’s performance. Thus, WaterDrum is more resilient to the decoy model attack.

Empirical Evaluation of WaterDrum. We prepare data D to form a set Q := {qd}d∈D of queries
that result in the aggregate WaterDrum value being above a threshold κ, i.e., M ′

d∈D(φT (qd),F) >

κ. To prevent the model owner from recognizing and intercepting the queries easily, data D are
similar to but not directly based on the forget set DF . For example, DF is a set of arXiv paper
abstracts from the math.PR category, and D consists of other such math paper abstracts not in DF .
The model owner can only use the proxy indicator STS score as SS and must choose the threshold
B. Fig. 8 plots the aggregate WaterDrum value against the percentage of Q being intercepted as
the threshold B decreases. As the model owner decreases B, it potentially reduces the aggregate
WaterDrum value via two effects: (i) diluting the aggregate WaterDrum value by replacing the
LLM’s text output (with watermark signal) with text from unwatermarked data sources, and (ii)
the remaining unintercepted LLM’s text outputs are semantically more dissimilar to the original
watermarked DF . Note that the aggregate WaterDrum value decreases almost linearly with the
percentage of intercepted queries, implying that the model owner only relies on effect (i) with no help
from effect (ii), i.e., the model owner can only reduce the aggregate WaterDrum value significantly
by intercepting most queries whose resulting LLM’s text outputs are semantically similar to DF .
This makes it very costly for the model owner to carry out the attack. For example, reducing the
aggregate WaterDrum value to 0.2 requires intercepting about 70% of the queries in Q – the model
owner may favor performing actual unlearning instead.

data and assesses the unlearning effectiveness. The model owner would not deceive itself about the performance
of their unlearning algorithms.
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Figure 8: Plot of aggregate WaterDrum value of the forget set on the original LLM φT against
the % of queries in Q being intercepted as the model owner decreases the threshold B in the decoy
model. An ideal unlearning metric would have its aggregate metric value decrease only proportionally
with the % of intercepted queries (dashed orange diagonal line). WaterDrum achieves a similar
performance, implying that the decoy model needs to intercept a large proportion of queries to reduce
the aggregate WaterDrum value significantly. The aggregate WaterDrum values are scaled such
that the value is 1.0 when there is no intercepted query.

D.2 DATA OWNER REPORTING INFLATED AGGREGATE WATERDRUM VALUES

When the watermarking framework satisfies W5, it is possible that a data owner refuses to
acknowledge that unlearning has been done and reports an inaccurate, higher than measured aggregate
WaterDrum value.

To resolve this issue, a trusted third party can certify the aggregate WaterDrum value reported
by the data owner. To do so, the model owner provides access to the unlearned model φ̃ and the
data owner i provides the watermark key µi to the trusted third party for verification. Verification
should only be performed on a predefined set of queries with the agreement of both model and data
owners. This prevents the model owner from repeatedly querying for the WaterDrum value to
directly optimize the watermark removal instead of actual unlearning and from building a better
decoy model in App. D.1. The third party can then certify to the model owner that the measured
aggregate WaterDrum value aligns with that reported by the data owner.

D.3 DILUTION OF WATERDRUM WATERMARK WITH MODEL WATERMARKING AND TEXT
MODIFICATIONS

In certain scenarios, the model owner might want to watermark the newly generated text from the
fine-tuned LLM. This could either be for the legitimate purpose of copyrighting its LLM (identifying
texts generated from its LLM) or in an adversarial attempt to dilute the watermark of the training
data. In this section, we empirically analyze whether Waterfall satisfies W6 and WaterDrum is
still an effective unlearning metric (i.e., achieves D1 Separability and D2 Calibration) under these
scenarios.

Firstly, we clarify the differences between text watermarking and model watermarking. Text
watermarking injects a watermark into existing text to produce watermarked text that contains
the same semantic content as the original text. For example, Waterfall is a text watermarking
framework and WaterDrum uses Waterfall to watermark text data before they are used for
training. In contrast, model watermarking injects a watermark into the LLM’s output text and tokens
during inference time i.e., the LLM’s autoregressive generation process. It may not involve the
original reference text and any LLM’s output text (not related to the training data) can also be
watermarked. In this section, we consider the model owner (1) using model watermarking and (2)
perturbing the LLM’s text output after output generation.

Model Watermarking. Existing model watermarking methods that inject watermarks during
inference time typically fall into two categories (Liu et al., 2024): They inject watermarks (i)
during logits generation, such as (Kirchenbauer et al., 2023), or (ii) during token sampling, such
as (Kuditipudi et al., 2024). Waterfall’s watermarking mechanism (when adapted as a model
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watermark) is similar to those in category (i), resulting in watermarks embedded in the LLM’s logits
distribution, and hence shares similar properties with other methods in category (i). For model owners
to effectively remove category (i)’s watermarks without destroying text fidelity, they would need to
apply the right distortions to cancel out the forget owner’s watermark. However, since the forget
owner’s watermark key is private to the data owners (W5), it is practically impossible for the model
owner to extract the key with limited samples from the forget owner. The model owner can only
apply random watermark signals, which result in random distortions on average. Waterfall is
designed to be robust to such random distortions, as we will show empirically below.

The work of Lau et al. (2024) has empirically shown that Waterfall is robust to various attacks,
such as the watermark replacement attack (attack A3 in (Lau et al., 2024)), where the original text
watermark remains detectable even after the text has been watermarked again with a different text
watermark. We also empirically evaluate the effectiveness of WaterDrum when the model owner
uses various model watermarking methods.

First, we adapted the underlying watermarking algorithm of Waterfall’s text watermarking
framework to act as a model watermarking method. We performed our experiments using LLMs
fine-tuned on the WaterDrum-Ax or WaterDrum-TOFU dataset, applying a model watermark
strength of κ = 27, same as that used during text watermarking (App. C.1), with key µ = 20, which
differs from the data owners’ keys (µ = 0 to µ = 19). We choose the same watermarking method
as the data owner to perform model watermarking because using a different watermarking method
reduces the likelihood that the model owner can exactly cancel out the watermark signal embedded
by the forget owner. The strongest attack by the model owner would be to apply the exact same
watermark method with a ‘destructive interference’ signal that introduces perturbations opposite to
those of the forget owner. However, in practice, the model owner cannot do so with high probability
given W5.

As the adaptation of Waterfall falls under category (i), we expect similar results from other model
watermarking methods in this category. Nevertheless, we additional experimented with a commonly
used category (i) model watermark benchmark, KGW (Kirchenbauer et al., 2023), with their default
watermarking strength of δ = 2, and green-list ratio of γ = 0.5, as shown in Table 4. We observe
that the watermark signals are preserved post-attack. Note that due to differences in the underlying
methodology of Waterfall and KGW, the watermarking strength of κ = 27 in Waterfall and
δ = 2 in KGW are not directly comparable, and performance differences cannot be solely attributed
to whether one model watermarking algorithm is “stronger” in affecting WaterDrum than the other.
Additionally, while a stronger model watermark might potentially cause a larger drop in the text
watermark’s verifiability, Kirchenbauer et al. (2023) has shown that a strong model watermark also
negatively affects the quality of the model’s generation. Thus, it is not in the model owner’s interest
to significantly degrade the model performance simply to affect the data owners’ ability to verify
their watermarks.

As for category (ii), also known as distortion-free watermarks, a seeded pseudo-random
sampler is used in place of an unseeded random sampler during the LLM output generation
(Kuditipudi et al., 2024). In this case, the LLM’s output text is still generated from the token
distribution of the underlying LLM and is therefore practically indistinguishable from that of
an unwatermarked LLM. This implies that the underlying token distribution—containing the
WaterDrum watermarks—remains undistorted, hence preserving the watermark verifiability. In the
experiments in our paper, no model watermarking is performed and we use the default unseeded
random sampler and generate ten LLM outputs per data sample (Sec. E.2). As a result, we would not
expect outputs from distortion-free model watermarks to differ significantly from those produced by
random sampling. We provide the results of inverse transform sampling (ITS) watermarking from
(Kuditipudi et al., 2024) in Table 4, which again show that the watermark signals have been preserved
post-attack.

In Table 4, the AUROC and R2 decrease only slightly with the injection of model watermarks. Thus,
WaterDrum still preserves D1 Separability and D2 Calibration well.

7Note that this κ is the watermark strength as defined in Waterfall (Lau et al., 2024) and not the same as
the separability threshold defined in D1 separability.
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Table 4: Resilience of WaterDrum when the model owner applies various model watermarking
methods.

Model watermark D1 Separability (AUROC) D2 Calibration (R2)

No Injection 0.964 0.963
Adapted Waterfall (Lau et al., 2024) 0.923 0.936

KGW (Kirchenbauer et al., 2023) 0.944 0.948
ITS (Kuditipudi et al., 2024) 0.955 0.965

Perturbing the LLM’s text output after generation. The model owner can use word level
edits such as insertion, deletion and synonym substitution attacks, or passage level edits, such as
paraphrasing and applying another text watermark on the LLM’s text output. We note that such
attacks are not very practical or realistic for the model owner. Word level edits can greatly affect the
fidelity of the generated text (Lau et al., 2024), while passage level attacks are computationally costly
for the model owner, increase latency of the model’s responses to queries, and would not support
streaming of the LLM’s outputs. Nonetheless, Waterfall has been demonstrated to be robust to
these attacks (Lau et al., 2024), and the same robustness would translate to WaterDrum watermarks.

All in all, this subsection shows that Waterfall satisfies W6 and thus WaterDrum is resilient
to attacks by the model owner.

E DETAILS ON EXPERIMENTAL SETUP

We conduct our experiments on NVIDIA L40 and H100 GPUs. Results are averaged
across 3 random seeds {41, 42, 43}. Text generation from the different models uses
temperature = 1, top-p = 1, and top-k left as the LLM vocabulary size. We use
sentence-transformers/all-mpnet-base-v2 as the STS model to evaluate STS scores.
More details of our experimental setup are presented below.

E.1 TRAINING HYPERPARAMETERS

Models fine-tuned on WaterDrum-Ax. We fine-tune the bfloat16-pretrained Llama-2-7B model
from Hugging Face8 using LoRA (Hu et al., 2022) (based on r = 8 and α = 32) with batch size
128, 20 training epochs, and learning rate 10−3. Additionally, we fine-tune the bfloat16-pretrained
Phi-1.5 model (detailed in App. F.3) with the same settings. Following the model choices in Maini
et al. (2024), we have considered these two models as they are representative of the recent LLMs and
differ in terms of model architectural details and model scale.

Models fine-tuned on WaterDrum-TOFU. We fine-tune the bfloat16-pretrained Llama-2-7B-chat
model from Hugging Face9 using LoRA (Hu et al., 2022) (based on r = 8 and α = 32) with batch
size 128, 10 training epochs, and learning rate 10−4.

Subsequently, for unlearning, we use a batch size of 32. While we conduct our experiments using
LoRA as in other LLM unlearning works (Maini et al., 2024; Shi et al., 2025), we also demonstrate
that WaterDrum applies to full parameter fine-tuning in App. F.2.

E.2 QUERIES FOR FINE-TUNED LLM

For the WaterDrum-Ax dataset, we simulate a completion task by prompting the LLM with the
first 50 tokens of the training dataset for the LLM to complete the text. For the WaterDrum-TOFU
dataset, a Q&A dataset, we prompt the LLM with the questions formatted according to the LLM’s
prompt format. We generate 10 outputs for each prompt, and the mean metric value over the 10
generations was taken. We generate up to a maximum of 200 tokens for each query.

8https://huggingface.co/meta-llama/Llama-$2$-$7$B-hf.
9https://huggingface.co/meta-llama/Llama-$2$-$7$B-chat-hf.
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E.3 BASELINE UNLEARNING METRICS

• ROUGE-L measures the longest common subsequence between the generated text and a
reference text. This serves as a surrogate for the generation quality for the WaterDrum-Ax
dataset and the question answering (QA) accuracy for the WaterDrum-TOFU dataset. To
calculate the metric value, we follow the works of (Maini et al., 2024; Shi et al., 2025) in
computing the ROUGE-L recall scores (Lin, 2004) to compare the LLM’s text output with
the training data as ground truth. Specifically, we evaluated the ROUGE-L value of each
text output by comparing it with the data sample used for the query as the reference, i.e.,
P (φ•(qd),F) = ROUGE-L(φ•(qd), d).

• Truth Ratio measures the probability of generating a correct answer versus a wrong answer
as an indicator of whether the LLM still memorizes the knowledge to be unlearned on the
WaterDrum-TOFU dataset. Following the work of (Maini et al., 2024), for each given
question, the ratio is computed from dividing the averaged probabilities of multiple wrong
answers by the probability of a paraphrased true answer.

• KnowMem measures the ROUGE-L recall values of QA pairs related to the training data
to measure the LLM memorization of the knowledge on the WaterDrum-Ax dataset.
Following the work of (Shi et al., 2025), we use GPT-4 to create a question answering
evaluation set with 8000 QA pairs based on the abstracts in the WaterDrum-Ax dataset
and measure the ROUGE-L recall values between the LLM’s text output to the questions
and the ground truth answers.

• MIA measures the difference in the predictive distribution between two models to measure
privacy leakage from unlearning. Specifically, we employ the state-of-the-art Min-40%
attack (Shi et al., 2024) based on the loss on the forget set and holdout set and compute the
AUROC of discriminating both set of losses. To align our evaluation with other baselines
(where lower values indicate better unlearning), we report MIA as 1− AUROC.

• WaterDrum (ours): We compute the watermark metric value using the LLM’s text output
excluding the prompt (i.e., without the first 50 tokens). Note that in our experiments on
WaterDrum-Ax, multiple watermarks are present as there are many data owners, each
watermarking their data with a unique watermark. Each data owner i ∈ F would send
queries qd to the LLM based on the data from their own dataset d ∈ Di and verify the
LLM’s output using their watermark key µi.

With the exception of MIA, we use the uniform average over all text d ∈ DF to compute the aggregate
metric value, i.e., Md∈DF (φ•(qd),F) :=

∑
d∈DF

M(φ•(qd),F)/|DF | over all data points d ∈ DF .
For MIA, the metric for individual data points are defined as the loss of that sample on the LLM,
while the aggregate metric value is defined to be Md∈DF (φ•(qd),F) := 1 − AUROC, where the
AUROC is computed by comparing the loss of the forget set versus the holdout set.

E.4 DETAILS ON DUPLICATE DATA

As discussed in Sec. 5 (specifically, under ‘Robustness to similar data D4’), we examine three
representative settings where there exists data Ds (injected into DR) that is similar to DF with
different SS: (a) exact duplicate: Ds is an exact copy of DF . This marks the highest similarity with
mean STS = 1.00 and ROUGE = 1.00. (b) semantic duplicate: Ds is a paraphrased version of DF
with the same semantic meaning. We use GPT-4 to paraphrase each text in DF and obtain Ds. In
this setting, Ds has mean STS = 0.97, ROUGE = 0.69 on WaterDrum-Ax, and mean STS = 0.96,
ROUGE = 0.60 on WaterDrum-TOFU. We also consider the standard case when there is (c) no
duplicate in the dataset, i.e., Ds = ∅. In our setup, the data Ds are owned by another owner s ̸= f ,
and hence watermarked with owner s’s watermark key µs ̸= µf . Specific watermarking details are in
App. C.3. For each setting, we fine-tune a model on Ds

R = Ds

⋃
DR. During subsequent unlearning,

we seek to remove the influence of DF while retaining the influence of Ds
R.

E.5 DETAILS ON CALIBRATION

In our experiments in Sec. 5 (specifically, under ‘Calibration desideratum D2’), we simulated varying
sizes of subsets of the forget set by partitioning the forget set sequentially into 10 partitions, and
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retraining the LLMs with by incrementally including partitions (and the retain set) in the training set
of the retrained LLMs, i.e., using the first 0%, 10%, 20%, . . . , 100% of DF as D G# when retraining
the LLMs on DR

⋃
D G# . It can be observed that WaterDrum satisfies the calibration desiderata

under this method of partitioning, and believe that in general, this would hold in expectation for
randomly sampled fixed-size subsets of the forget set. We empirically verified this for random subsets
in App. F.1.

E.6 BENCHMARKING UNLEARNING ALGORITHMS

We consider the setting of a model owner comparing the aggregate WaterDrum values on different
unlearned models φ̃ resulting from different unlearning algorithms. A practical scenario for this
setting could be where a model owner experiments with different unlearning algorithms on a small
dataset to evaluate their performance before selecting the algorithm to fulfil unlearning requests
from data owners after deployment. The model owner could also be a researcher developing new
unlearning algorithms. Under this setting, we assume that the training data, model and watermark
key are all under the full control of the model owner. The model owner could use watermarked data
such as WaterDrum-Ax or WaterDrum-TOFU with known watermark keys and can compute the
metric values of the retain and forget sets directly without the restrictions from App. D. A perfect
unlearning algorithm would ideally produce an unlearned model φ̃ with (i) high retain aggregate
metric value close to the original model φT , i.e., Md∈DR(φ̃(qd),R) ≈ Md∈DR(φT (qd),R) and (ii)
low forget aggregate metric value, i.e., Md∈DF (φ̃(qd),F) ≈ 0, corresponding to the bottom right
corner in Fig. 4.

In our experiments, we have adopted several popular baseline unlearning algorithms detailed as
follows:

• Retraining: The base LLM is trained only on the retain set DR for the same number of
epochs when training the original LLM φT to obtain the retrained LLM φR. The retrained
LLM usually serves as the golden standard for other unlearning algorithms.

• Gradient Descent (GD): The original LLM φT is fine-tuned using gradient descent on
the retain set DR for 1 or several epochs. This method assumes that the LLM naturally
forgets about the forget set as learning progresses on the retain set. In the experiments, we
fine-tuned for 1 epoch.

• KL Minimization (KL) (Maini et al., 2024): The original LLM φT is updated
by concurrently maximizing the prediction loss on the forget set and minimizing the
Kullback-Leibler divergence between the predictions of the unlearned LLM and original
LLM on the retain set for 5 unlearning epochs.

• SCRUB (Kurmanji et al., 2024): The original LLM φT is updated by maximizing the
Kullback-Leibler divergence between the predictions of the unlearned LLM and original
LLM on the forget set, while minimizing the prediction loss and divergence on the retain set.
The optimization process alternates between maximization steps and minimization steps. In
our experiments, we ran 3 maximization and minimization epochs.

• Direct Preference Optimization (DPO) (Maini et al., 2024): For question answering tasks,
the original LLM φT is updated to encourage responses such as “I don’t know” on the forget
set, while simultaneously minimizing the prediction loss on the retain set. Note that this
method is not compatible with completion tasks, and is omitted for the WaterDrum-Ax
dataset. We ran 5 unlearning epochs for DPO.

• Task Vector (TV) (Ilharco et al., 2023): We follow the implementation in (Shi et al., 2025).
First, the original model φT is further fine-tuned using the forget set to obtain a reinforced
LLM φreinforce. Next, we take the difference in parameters by subtracting the parameters
of the φT from the parameters of φreinforce. Lastly, the unlearned model is obtained by
subtracting this difference from the parameters of φT . In the experiments, φreinforce is
fine-tuned from φT on the forget set for 5 epochs.

Note that we exclude Gradient Ascent on the forget set from the original LLM (Maini et al., 2024)
from the unlearning algorithms considered as they have been shown to perform poorly in other works
where the LLM’s text outputs become gibberish or random words (Maini et al., 2024).
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F ABLATION STUDIES

F.1 CALIBRATION IN EXPECTATION FOR RANDOMLY SAMPLED FIXED-SIZE SUBSETS OF THE
FORGET SET

In Eq. (2), we defined the D2 Calibration desideratum as the expectation of the metric value across
different random subsets of D G# ⊆ DF with the fixed-size of |D G# | = k. To verify that WaterDrum
satisfies this relationship in expectation for different random subsets, we perform the calibration
experiment with three different random subsets (randomly selecting a subset of size k from DF )
under the ‘no duplicate’ setting for WaterDrum-Ax dataset, for a total of four different subsets
(including the sequential subsets detailed in App. E.5) for each of the following proportions k/|DF | ∈
{0%, 20%, 40%, 60%, 80%, 100%}. We plott the mean, minimum and maximum of the aggregate
WaterDrum value for each proportion in Fig. 9, as well as the best-fit calibration line of the
mean aggregate WaterDrum value through origin. It can be observed from Fig. 9 that the linear
proportional relationship holds in expectation with the mean values achieving a high R2 value of
0.960 (close to the value of 0.963 reported in Table 3). Moreover, each subset has an aggregate
WaterDrum value that is close to the mean of the four subsets, i.e., there is a narrow range between
the minimum and maximum values.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of forget set influencing retrained LLM           
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Figure 9: Plot of aggregate WaterDrum value against proportion k/|DF | of forget set influencing
retrained LLM. Each × markers indicates the mean aggregate WaterDrum value across four subsets
of the same size k and is enclosed by error bars indicating the minimum and maximum aggregate
WaterDrum values. The dotted line shows the best-fit line through origin with its associated R2

value.

F.2 EVALUATION ON FULL PARAMETER FINE-TUNING

The experiments in Sec. 5 were conducted using LoRA (Hu et al., 2022), following the setting in
other LLM unlearning works (Maini et al., 2024; Shi et al., 2025). To show that WaterDrum is also
applicable when used for full parameter fine-tuning, we conduct experiments for the separability (D1)
and calibration (D2) desiderata with varying levels of similarity for the WaterDrum-Ax dataset.

For full parameter fine-tuning, we use a learning rate of 10−4 and train for 10 epochs. Note that due
to the high computational cost of full parameter fine-tuning, we only report the results for one seed,
while the results for LoRA are averaged across three different seeds.

Table 5 and Table 6 show that WaterDrum performs better than other metrics and better satisfy D1
and D2 for both LoRA and full parameter fine-tuning.
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Table 5: AUROC of various unlearning metrics under different levels of data similarity for the
WaterDrum-Ax dataset. WaterDrum ’s AUROC remains near 1.0 even when similar data exists.

Similarity ROUGE KnowMem WaterDrum

Exact
Duplicate

Full 0.335 0.497 0.990

LoRA 0.334 0.492 0.957

Semantic
Duplicate

Full 0.965 0.447 0.990

LoRA 0.960 0.450 0.963

No
Duplicate

Full 0.984 0.481 0.991

LoRA 0.974 0.491 0.965

Table 6: R2 of the best-fit line for various unlearning metrics under different levels of data similarity
for the WaterDrum-Ax dataset. WaterDrum is very well linearly calibrated across the settings
with the highest R2 value.

Similarity ROUGE KnowMem MIA WaterDrum

Exact
Duplicate

Full -5059 -981.5 -4.774 0.984

LoRA -37.47 -498.1 -1220 0.987

Semantic
Duplicate

Full 0.545 -139.2 -35.57 0.989

LoRA 0.693 -276.5 -90.21 0.991

No
Duplicate

Full 0.850 -103.8 -3.937 0.940

LoRA 0.650 -252.9 -7.553 0.963

F.3 EVALUATION ON OTHER MODELS

We have also evaluated our WaterDrum using Phi-1.510. Figs. 10a and 10b illustrate the AUROC
and calibration for the settings of ‘no duplicate’ and ‘exact duplicate’. The high AUROC and R2 value
agrees with our main experiments using Llama2-7B and shows that WaterDrum satisfy the proposed
desiderata. This validates our WaterDrum’s adaptability to different LLMs, which increases its real
world applicability.
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(a) Plots for separability, where WaterDrum achieves good
separability with high AUROC values.
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(b) Plots for calibration, where WaterDrum
is well-calibrated with high R2 values.

Figure 10: D1 and D2 of our WaterDrum measured on the Phi-1.5 model for the WaterDrum-Ax
dataset under the no duplicate and exact duplicate settings.

10https://huggingface.co/microsoft/phi-1_5.
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Table 7: AUROC (± across 3 seeds) of various unlearning metrics under different levels of data
similarity for the WaterDrum-TOFU and WaterDrum-Ax datasets, when all unlearning metrics
are evaluated on LLMs fine-tuned on watermarked data. Under this setting, both ROUGE and
WaterDrum’s AUROC remains near 1.0 even when similar data exists.

WaterDrum-TOFU WaterDrum-Ax
Data Similarity ROUGE Truth Ratio WaterDrum ROUGE KnowMem WaterDrum

Exact Duplicate 0.926±0.051 0.509±0.002 0.926±0.027 0.979±0.004 0.444±0.007 0.957±0.008
Semantic Duplicate 0.977±0.001 0.515±0.003 0.954±0.001 0.979±0.000 0.466±0.008 0.963±0.001

No Duplicate 0.980±0.005 0.727±0.000 0.928±0.026 0.983±0.000 0.474±0.003 0.965±0.002

Table 8: R2 (± across 3 seeds) of various unlearning metrics under different levels of data
similarity for the WaterDrum-TOFU and WaterDrum-Ax datasets, when all unlearning metrics
are evaluated on LLMs fine-tuned on watermarked data. Even under this setting, only WaterDrum’s
R2 remains near 1.0 even when similar data exists.

WaterDrum-TOFU WaterDrum-Ax
Data Similarity ROUGE Truth Ratio MIA WaterDrum ROUGE KnowMem MIA WaterDrum

Exact Duplicate -7.624 -261.2 0.158 0.889 0.774 -23.52 -44.79 0.987
Semantic Duplicate -16.31 -229.2 -5.934 0.947 0.677 -16.121 -45.66 0.991

No Duplicate 0.511 -13.71 0.567 0.923 0.758 -21.72 -14.42 0.963

F.4 BENCHMARK METRICS ON LLMS FINE-TUNED ON WATERMARKED DATA

We showed in Sec. 5 that the baseline unlearning metrics perform poorly when similar data
exists between the retain and forget sets. This is largely due to those metrics being unable to
perfectly differentiate between the similar copies of data across the forget and retain sets. For these
baseline metrics, the LLM is fine-tuned on the unwatermarked dataset DT in WaterDrum-Ax and
WaterDrum-TOFU in Sec. 5. Here, to study the effects of watermarking on these baseline metrics,
we evaluate them by fine-tuning the LLM on the watermarked dataset D′

T in WaterDrum-Ax and
WaterDrum-TOFU instead.

The watermarking step P1 contributes to performance gains in D1 separability/AUROC across metrics
such as ROUGE as well, especially for the exact and semantic duplicate settings, as it makes data
less similar by injecting different watermarks unique to each data owner. ROUGE does exhibit
some improvement for D1 separability for the semantic and exact duplicate settings due to the
de-duplication done with watermarking (Table 7). However, D2 alone is not sufficient as the κ
threshold for separating forget from retain set would be unknown in practice. D1 is needed. We
observe in Table 8 that unlike WaterDrum, the other metrics still result in low R2 and fail to satisfy
D2 calibration. Specifically, the other metrics are not 0 when the forget set is not used to retrain the
LLM and are not indicative of the extent of unlearning.

To summarize, using watermarked data (P1) may contribute to some performance gains on D1
separability for some metrics. However, P3 and our WaterDrum metric are essential to satisfy D2
under D3 (i.e., all proposed desiderata).

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 QUANTITATIVE EVIDENCE THAT WATERMARKING WITH WATERFALL DOES NOT
DEGRADE LLM PERFORMANCE

WaterDrum lays out watermarking desiderata for compatible watermarking methods (Sec. 4),
including fidelity W0. We chose to use Waterfall (Lau et al., 2024) as their work already
presented extensive empirical results showing that its watermarking process has minimal degradation
on LLM performance (see App. H.3 of (Lau et al., 2024)).

Nonetheless, we evaluate Waterfall’s fidelity by comparing the fine-tuned LLM’s performance
when trained on watermarked vs. unwatermarked data using Truth Ratio (Maini et al., 2024)
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Table 9: Semantic similarity of qf and qs from the WaterDrum-Ax dataset. For reference, the STS
score of text data from the same category is 0.67.

Similarity of query STS score of query output

Exact Duplicate 0.96
Semantic Duplicate 0.87

(App. E.3), which computes each LLM’s probability of generating the correct answer compared to a
set of wrong answers perturbed from the correct answer.

Our results show that the fine-tuned LLM’s mean Truth Ratio on the WaterDrum-TOFU dataset
when trained on watermarked data vs. unwatermarked data are very similar at 0.5121 and 0.5192,
respectively.

G.2 SIMILARITY OF TEXT OUTPUTS IN RETRAINED LLM

Following the setup discussed in Sec. 5 (specifically, under ‘Robustness to similar data D4’), under
the setting where the retain set (Ds

R = Ds

⋃
DR) contains some data points that are similar to the

forget set (Ds ≃ DF ) belonging to data owner(s) s, we verify that the text outputs of the LLM
φ̃s fine-tuned on the retain set Ds

R are similar for the duplicate queries φ̃s(qd) ≃ φ̃s(qdf
) where

d ∈ Ds, df ∈ DF , d ≃ df .

We empirically verify the similarity by evaluating the STS scores between the text outputs to the
forget query qdf

and the retain query qd. As shown in Table 9, the mean STS scores are 0.96 and
0.87 for exact and semantic duplicates, respectively. For comparison, the STS score of query outputs
from the same academic subject category in WaterDrum-Ax (i.e., outputs to queries from the same
academic subject category in arXiv such as math.PR) only have a mean STS score of 0.67. This
shows that the query outputs from the duplicate queries are very similar, much more so than queries
from the same subject.

G.3 SIMILAR AGGREGATE METRIC VALUES ACROSS DATA

We verify that data points from Ds and Df with similar semantics will have similar aggregate
metric values (Md∈Ds

(φR(qd), s) ≃ Md∈DF (φR(qd),F)). We use our WaterDrum to measure
the metric values on data points from Ds and Df for the WaterDrum-Ax dataset when unlearning 1
category. Fig. 11 shows a histogram plot of the metric values for the two different subsets with similar
semantics. This verifies that the distributions of metric values from the two subsets are similar.

G.4 VERIFICATION PERFORMANCE OF WATERFALL WITH DIFFERENT GENERATION LENGTHS

In Sec. 5, we generated up to 200 tokens for each query when evaluating each metric (App. E.2).
This token length roughly translates to around 5 sentences.

The work of Lau et al. (2024) has shown that the verification of Waterfall improves with more
tokens in longer text. To verify this claim, we consider the LLM fine-tuned on WaterDrum-Ax.
With a false positive rate of 1%, the true positive rate reaches 50% at 13 tokens generated, 90% at 59
tokens generated.

H ADDITIONAL EXPERIMENTAL RESULTS ON LLM UNLEARNING
EVALUATION

In this section, we provide additional experimental results to evaluate WaterDrum and the baseline
unlearning metrics on both WaterDrum-Ax and WaterDrum-TOFU datasets using the same
experimental setup described in Sec. 5 (unless stated otherwise), as well as benchmark unlearning
algorithms for the cases with multiple data owners and different levels of data similarity on the new
WaterDrum-Ax dataset.
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Figure 11: Count of data with different WaterDrum value measured on Df and Ds (with similar
semantics) for the WaterDrum-Ax dataset when unlearning 1 category. The result shows that
metric values from the two sets have a similar distribution.

H.1 LLM UNLEARNING EVALUATION ON WATERDRUM-AX DATASET

H.1.1 RELAXATION OF FEASIBILITY DESIDERATUM D3

In Sec. 5 (specifically, under ‘Calibration desideratum D2’ and Fig. 3), we demonstrate whether the
unlearning metrics are calibrated well or poorly without referencing the retrained LLM φR. Here, we
relax the feasibility constraint and allow the baseline unlearning metrics (i.e., ROUGE, KnowMem,
and MIA) to reference φR although doing so infeasibly requires retraining for every forget set being
considered.

Specifically, we reference the retrained LLM φR (i.e., achieved by perfect unlearning) by subtracting
its aggregate metric value from that on the unlearned model φ̃ to yield an ‘offset’ aggregate metric
M−

d∈DF
(φ̃(qd),F) := Md∈DF (φ̃(qd),F)−Md∈DF (φR(qd),F).

Fig. 12 and Table 10 show, respectively, the calibration curves for the various unlearning metrics
(using the ‘offset’ aggregate metric values) and the R2 values for the corresponding best-fit lines
under different levels of data similarity for the WaterDrum-Ax dataset. The results show that,
under the relaxed feasibility constraint by referencing φR, the baseline metrics are generally better
calibrated. Notably, ROUGE achieves a good calibration across different levels of data similarity even
though it underperforms in the ‘exact duplicate’ setting. In contrast, our WaterDrum consistently
demonstrates strong calibration with high R2 values across all settings. Nonetheless, it is important
to emphasize that the retrained LLMs are not available in practical scenarios and their availability
would eliminate the need to perform unlearning in the first place.

Table 10: R2 for the best-fit lines (dotted in Fig. 12) of various unlearning metrics (using the ‘offset’
aggregate metric values) under different levels of data similarity for the WaterDrum-Ax dataset.

Similarity ROUGE KnowMem MIA WaterDrum

Exact Duplicate 0.923 -0.331 0.273 0.994
Semantic Duplicate 0.997 0.101 -0.011 0.995

No Duplicate 0.998 0.006 0.990 0.957

H.2 LLM UNLEARNING EVALUATION ON WATERDRUM-TOFU DATASET

As a supplement to the main experiments, we present additional experimental results here for the
WaterDrum-TOFU dataset. As described in Sec. 5 (specifically, under ‘Robustness to similar
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Figure 12: Calibration curves for various unlearning metrics (using the ‘offset’ aggregate metric
values M−

d∈DF
(φ̃(qd),F)) w.r.t. proportion k/|DF | of the forget set influencing the retrained LLM

(solid) and their best-fit lines (see associated R2 in Table 10) through the origin (dotted) under
different levels of data similarity for the WaterDrum-Ax dataset. The ‘offset’ aggregate metric
values are offset by referencing the retrained LLMs and scaled by referencing the original LLMs
such that the values are 0.0 and 1.0 when the proportions are 0.0 and 1.0 respectively.

data D4’), we consider the ‘exact duplicate’, ‘semantic duplicate’, and ‘no duplicate’ settings,
and fine-tune the LLMs on the WaterDrum-TOFU dataset. While Sec. 5 (specifically, under
‘Separability desideratum D1’) discusses results on the separability desideratum D1 under different
levels of data similarity, we report below the results to evaluate WaterDrum and the baseline
unlearning metrics in the calibration desideratum D2 and the relaxed feasibility desideratum D3 under
different levels of data similarity.

H.2.1 CALIBRATION DESIDERATUM D2

Fig. 13 and Table 11 show, respectively, the calibration curves for the various unlearning
metrics and the R2 values for the corresponding best-fit lines under different levels of data
similarity for the WaterDrum-TOFU dataset. Similar to the results in Sec. 5 (specifically, under
‘Calibration desideratum D2’), our WaterDrum outperforms the baseline metrics by ensuring
M ′

d∈DF
(φR(qd),F) to be close to 0 at k = 0 and maintaining strong calibration with high R2 values

without referencing retrained LLMs across all settings.

Table 11: R2 values for the best-fit lines (dotted in Fig. 13) of various unlearning metrics under
different levels of data similarity for the WaterDrum-TOFU dataset. WaterDrum achieves the
highest R2 values that are closest to 1 and is hence a well-calibrated metric.

Similarity ROUGE Truth Ratio MIA WaterDrum

Exact Duplicate -30.085 -6444.874 -3.480 0.889
Semantic Duplicate -24.386 -1416.284 -41.15 0.947

No Duplicate -2.744 -11.741 -0.838 0.923
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Figure 13: Calibration curves for various unlearning metrics w.r.t. proportion k/|DF | of the forget set
influencing the retrained LLM (solid) and their best-fit lines (see associated R2 in Table 11) through
the origin (dotted) under different levels of data similarity for the WaterDrum-TOFU dataset. Only
WaterDrum is well-calibrated and satisfies D2 with its best-fit lines closely following its aggregate
metric values.

H.2.2 RELAXATION OF FEASIBILITY DESIDERATUM D3

Similar to App. H.1.1, we relax the feasibility constraint here and allow the baseline unlearning
metrics (i.e., ROUGE, Truth Ratio, and MIA) to reference the retrained LLM φR although doing so
infeasibly requires retraining for every forget set being considered.

Fig. 14 and Table 12 show, respectively, the calibration curves for the various unlearning metrics (using
the ‘offset’ aggregate metric values defined in App. H.1.1) and the R2 values for the corresponding
best-fit lines under different levels of data similarity for the WaterDrum-Ax dataset. The results are
similar to that in App. H.1.1 and show that, under the relaxed feasibility constraint by referencing φR,
the baseline metrics are generally better calibrated. Unlike Truth Ratio and MIA, our WaterDrum
and ROUGE consistently demonstrate strong calibration with high R2 values across all settings.
Nonetheless, it is important to emphasize again that the retrained LLMs are not available in practical
scenarios and their availability would eliminate the need to perform unlearning in the first place.

Table 12: R2 for the best-fit lines (dotted in Fig. 14) of various unlearning metrics (using the ‘offset’
aggregate metric values) under different levels of data similarity for the WaterDrum-TOFU dataset.

Similarity ROUGE Truth Ratio MIA WaterDrum

Exact Duplicate 0.991 -0.586 -0.018 0.997
Semantic Duplicate 0.998 0.854 -0.417 0.996

No Duplicate 0.999 0.995 0.608 0.997

H.3 BENCHMARKING UNLEARNING ALGORITHMS ON NEW WATERDRUM-AX DATASET FOR
MULTIPLE DATA OWNERS AND DIFFERENT LEVELS OF DATA SIMILARITY

In addition to the experimental results in Sec. 5.1, Figs. 15 and 16 illustrate the use of WaterDrum
in benchmarking the unlearning algorithms under the respective ‘no duplicate’ and ‘exact duplicate’
settings of data similarity (i.e., previously described in Sec. 5, specifically, under ‘Robustness to

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of forget set influencing retrained LLM

0.0

0.2

0.4

0.6

0.8

1.0
ROUGE

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of forget set influencing retrained LLM

20

15

10

5

0

1 - Truth Ratio

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of forget set influencing retrained LLM

4

3

2

1

0

1

2
MIA

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of forget set influencing retrained LLM

0.0

0.2

0.4

0.6

0.8

1.0
WaterDrum

Ag
g.

 m
et

ric
 v

al
ue

Ag
g.

 m
et

ric
 v

al
ue

No Duplicate Exact Duplicate Semantic Duplicate

Figure 14: Calibration curves for various unlearning metrics (using the ‘offset’ aggregate metric
values) w.r.t. proportion k/|DF | of the forget set influencing the retrained LLM (solid), scaled by
referencing the retrained and original LLMs, and their best-fit lines (see associated R2 in Table 12)
through the origin (dotted) under different levels of data similarity for the WaterDrum-TOFU
dataset.

similar data D4’) for the WaterDrum-Ax dataset where the forget set consists of data from 1, 3,
and 5 data owners (out of a total of 20 data owners) with 1 category of paper abstracts per owner
(App. C.3).

Similar to the results in Sec. 5.1, it can be observed from Fig. 15 (Fig. 16) that the unlearning
algorithms achieve aggregate WaterDrum values still far from that achieved by retraining: KL
and TV generally produce unlearned models that unlearn the forget set DF very well but cannot
preserve the influence of DR (or Ds) much, the latter of which compromises their overall utility.
GD and SCRUB tend to produce unlearned models that preserve some influence of DR (or Ds)
but do not unlearn the forget set DF well. However, both GD and SCRUB require fine-tuning on
the (augmented) retain set (Ds

R = Ds

⋃
DR), which incurs a significant amount of computational

resources as the (augmented) retain set is likely to be significantly larger than the forget set and almost
similar in size to the full dataset. Typically, LLM fine-tuning only involves very few epochs (Touvron
et al., 2023). The computational cost of fine-tuning the LLM for a few epochs on the (augmented)
retain set can be almost as expensive as that of retraining.

It can also be observed from Fig. 15 (Fig. 16) that when the forget set consists of data from 5 data
owners, the aggregate WaterDrum value of the watermarked retain set DR in WaterDrum-Ax on
the retrained LLM (only on the (augmented) retain set) increases slightly beyond 1.0. We hypothesize
that this is due to the forget set constituting a larger proportion of the entire dataset (i.e., 5 out of a
total of 20 data owners). As a result, the (augmented) retain set used for retraining becomes smaller
in proportion relative to the full dataset DT , which can result in the retrained LLM becoming more
specialized in this smaller (augmented) retain set and in turn a larger aggregate WaterDrum value.
The same reasoning applies to explain why the aggregate WaterDrum value of Ds on the retrained
LLM (only on the (augmented) retain set) also increases slightly beyond 1.0 in Fig. 16.

I OTHER QUESTIONS AND LIMITATIONS

1. What is the difference with existing watermark-based unlearning metric? Existing
watermark-based unlearning metrics are mostly for image-based classification model, as
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Figure 15: Benchmarking the unlearning algorithms with WaterDrum under the ‘no duplicate’
setting of data similarity for the WaterDrum-Ax dataset where the forget set consists of data from
1, 3, and 5 data owners with 1 category of paper abstracts per owner (App. C.3).
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Figure 16: Benchmarking the unlearning algorithms with WaterDrum under the ‘exact duplicate’
setting of data similarity (i.e., previously described in Sec. 5, specifically, under ‘Robustness to
similar data D4’) for the WaterDrum-Ax dataset where the forget set consists of data from 1, 3,
and 5 data owners with 1 category of paper abstracts per owner (App. C.3).

opposed to our metric for text-based generative LLMs. See discussion on watermark-based
metrics in App. A for details.

2. Existing works (Liu et al., 2025; Lynch et al., 2024) have already identified similar
limitations about existing unlearning metrics. What is the novelty of the work? We
formally define clear desiderata and propose a non-retraining-based metric that works despite
greater similarity between the forget and retain set and the generalization ability of LLMs.
See more discussion in App. A.

3. Why do we only run experiments on TOFU and WaterDrum-Ax instead of other
datasets such as WMDP? TOFU and WaterDrum-Ax cover both LLM question
answering and generation tasks, which are representative of LLM tasks. WMDP is different

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

from TOFU and WaterDrum-Ax in nature because it is specifically for knowledge editing
and only contains test data instead of training data. As our work considers a data-centric view
of unlearning, we are concerned with the unlearning of specific data owners’ contribution
(with potential similar overlapping data across data owners), rather than indiscriminately
unlearning certain (harmful) knowledge.

4. Can our conclusion be generalized to other datasets or other LLMs? Results on Phi-1.5
(see App. F.3) show that the conclusions can be generalized to other LLMs as well. The
two LLMs considered in our paper are representative of recent LLMs, different in terms of
model architectural details, and span different model scales. These two LLMs are also the
only LLMs considered in (Maini et al., 2024; Wang et al., 2025).

5. Beyond unlearning effectiveness, can our watermark metric be used to measure utility
preservation/retention? As shown in Sec. 5.1, our metric can be used to verify that the
metric on the retain set in the unlearned LLM is similar to that in the original LLM. Hence,
by verifying the retain watermark, our metric can also quantify the extent of undesirable
removal of the retain set’s influence and evaluate the effects of catastrophic forgetting.

6. Practical significance of unlearning from fine-tuning data vs pre-training data. In
real-life applications, LLM fine-tuning is performed to enhance the LLM in specific
downstream tasks, which is more likely to make use of task-specific datasets. These
datasets are more concerned with privacy/safety issues, and are hence more significant for
unlearning than public datasets.

7. What are the limitations of WaterDrum and this work? The limitations are that (a)
the desiderata may not be exhaustive, (b) the WaterDrum value (via the watermark’s
verification score in Eq. (3)) may not exhaustively capture all possible ways of measuring
unlearning effectiveness, and (c) WaterDrum requires the training data to be watermarked
unlike existing metrics.
We believe that for now, (a) and (b) are acceptable as our work is an important first step
towards designing and developing more effective and practical unlearning metrics and
algorithms, and deriving theoretical results for them. Future work can conduct a more
comprehensive and systematic evaluation of existing LLM unlearning algorithms and adapt
theoretical insights from the watermarking community to analyze the LLM unlearning
metrics based on the new connection that we have established in this work.
In remark 1 and App. D, we explain why watermarking is lightweight, easy to use and
would be a more common practice in the future. Thus, the applicability of WaterDrum
would increase and the limitation (c) would diminish over time. Moreover, limitation
(c) is reasonable as the benefits, such as satisfying our desiderata, outweigh the slight
inconvenience and cost.

8. What new insights can be gained from the proposed metric WaterDrum? (a) We
showed that existing metrics fail on our necessary desiderata (Sec. 3), prompting caution on
metrics design. (b) Using WaterDrum to benchmark LLM unlearning algorithms (Sec. 5.1)
shows that they perform poorly on unlearning and retaining performance. WaterDrum can
serve as an optimization criterion for future LLM unlearning algorithms. (c) By emphasizing
practical conditions, WaterDrum encourages future LLM unlearning algorithms to consider
realistic constraints.

9. Why do we not consider other desiderata? Our work focuses on the most essential
desiderata (effectiveness desiderata) and more practical/realistic settings. These desiderata
are those that we find to be most relevant necessary criteria for effective unlearning metrics,
though they are not meant to be exhaustive nor by themselves sufficient to guarantee
unlearning. We see our work as complementary to other compatible frameworks.
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