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ABSTRACT

C∗-algebra-valued kernels could pave the way for the next generation of kernel
machines. To further our fundamental understanding of learning with C∗-algebraic
kernels, we propose a new class of positive definite kernels based on the spectral
truncation. We focus on kernels whose inputs and outputs are vectors or functions
and generalize typical kernels by introducing the noncommutativity of the products
appearing in the kernels. The noncommutativity induces interactions along the
data function domain. We show that it is a governing factor leading to performance
enhancement: we can balance the representation power and the model complexity.
We also propose a deep learning perspective to increase the representation capacity
of spectral truncation kernels. The flexibility of the proposed class of kernels allows
us to go beyond previous separable and commutative kernels, addressing two of
the foremost issues regarding learning in vector-valued RKHSs, namely the choice
of the kernel and the computational cost.

1 INTRODUCTION

Kernel methods have been one of the most fundamental tools in machine learning (Schölkopf & Smola,
2001; Gretton et al., 2007; Hofmann et al., 2008; Muandet et al., 2017). They have been applied,
for example, to ridge regression, principal component analysis, and support vector machine. Kernel
methods are characterized by reproducing kernel Hilbert spaces (RKHSs), which are constructed by
positive definite kernels. Typical positive definite kernels include the polynomial kernel, Gaussian
kernel, and Laplacian kernel. Product kernels, which are constructed by the product of multiple
kernels, have also been considered (Schölkopf & Smola, 2001; Thomas, 2008).

Standard positive definite kernels are scalar-valued, and are well-suited to learn scalar-valued func-
tions. Kernel methods for vector- and function-valued outputs have also been investigated (Álvarez
et al., 2012; Kadri et al., 2016). The kernels, in these cases, are instead operator-valued, and the asso-
ciated feature space is vector-valued RKHSs (vvRKHSs) (Kadri et al., 2012; 2016; Minh et al., 2016).
There are at least two challenges for vvRKHS methods: the computational cost and choice of kernels.
A typical kernel is the separable kernel, which is defined by the product of a scalar-valued kernel and
a positive semi-definite operator (Álvarez et al., 2012). Another typical kernel is the commutative
kernel, which is defined only with the pointwise calculation of functions or vectors (Hashimoto et al.,
2021). Although applying the separable and commutative kernels is computationally efficient, there
is a crucial shortcoming for each kernel. Separable kernels identify dependencies between input
and output variables separately, and cannot reflect information of input variables properly to output
variables. The output is determined only by the global information of the input. On the other hand,
commutative kernels only identify the pointwise (completely local) dependencies. Indeed, they are
two extreme cases regarding the dependencies between input and output variables. Several attempts
have been made to construct kernels that go beyond separable and commutative kernels. A typical
nonseparable kernel is the transformable kernels, which is characterized by a map that can incorporate
the information of input variables with the output variables. Huusari & Kadri (2021) proposed
entangled kernels based on concepts from quantum computing, such as partial trace and entanglement.
Hashimoto et al. (2023a) proposed to use the product of circulant matrices and general squared
matrices to construct kernels. Using this kernel, one can generalize the convolution and capture
the effect of interactions of different Fourier components. However, if we need an m-dimensional
vector-valued outputs with these kernels, then we have to construct an mN by mN Gram matrix,
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Table 1: Summary of the existing and the proposed kernels
Type of kernels Computational cost

(ridge regression)
Extraction of local

information
Extraction of global

information
Separable O(mN3) × ✓

Commutative O(mN3) ✓ ×
Transformable O(m3N3) ✓ ✓

Proposed (with RKHM) O(mn2N2 +mN3) ✓ ✓

where N is the sample size, and the computational cost is O(m3N3) in general. Thus, with vvRKHSs,
to go beyond separable and commutative kernels, the computational cost is significant.

In this work, we address the two challenges of the computational cost and the choice of kernels
by introducing a new class of kernels based on the framework of reproducing kernel Hilbert C∗-
module (RKHM) (Hashimoto et al., 2021). RKHM is a generalization of RKHS by means of
C∗-algebra. C∗-algebra is a generalization of the space of complex values and has structures of the
norm, product, and involution (Murphy, 1990; Lance, 1995). It unifies operators and functions. In this
framework, kernels are generalized to C∗-algebra-valued kernel functions and allow us to consider
function-valued kernels, leading to function-valued Gram matrices. By evaluating the values of the
function-valued Gram matrix at m different points, we obtain m scalar-valued Gram matrices. This
allows us to obtain an m-dimensional vector-valued outputs with the computational cost of O(mN3),
which alleviates the dependency on m from cubic to linear compared to the case of vvRKHSs with
nonseparable kernels such as transformable kernels. We summarize the difference between the
proposed and existing kernels in Table 1.

To obtain kernels going beyond the separable and commutative kernels with low computational cost,
we propose a new class of C∗-algebra-valued positive definite kernels based on the spectral truncation,
which has been discussed in the fields of noncommutative geometry and C∗-algebra (D’Andrea et al.,
2014; van Suijlekom, 2021; Connes & van Suijlekom, 2021). The proposed kernels are parameterized
by a natural number n corresponding to the dimension of the truncated space. They can be applied to
both vector and functional inputs. For vector inputs, we regard the elements of them as the values of
functions. We approximate the input functions on the n-dimensional truncated space and obtain n by
n Toeplitz matrices, whose (i, j)-entry depends only on i− j. Thus, n describes the resolution of
the discretization, and we call it the truncation parameter. Indeed, n plays an important role from
at least two perspectives. First, n describes the noncommutativity of the kernel. Indeed, we show
that the proposed kernels converge to the commutative kernels as n goes to infinity. On the other
hand, if n = 1, then the proposed kernels are separable kernel. Thus, we can control local and global
dependencies through n. Second, the parameter n controls the tradeoff between the representation
power and the model complexity. We show that if n is small, then the representation power is low, and
the model complexity is small. On the other hand, if n is large, then the representation power is high,
and the model complexity is large. By introducing the parameter n and setting n to balance them, we
obtain higher performance compared to the separable and commutative kernels. In the sense of these
two perspective, in the setting of functional data (Jim Ramsay, 2005; Wang et al., 2016; Hashimoto
et al., 2021), the proposed truncation kernels shed light on the good effects of discretization (setting
n as a finite number) on the learning process.

Our contributions are summarized as follows:
• We propose spectral truncation kernels, a new class of function-valued positive definite kernels that

go beyond separable and commutative kernels with low computational cost. The proposed kernels
are based on the spectral truncation and are indexed by a truncation parameter, which adjusts the
global and local interactions along the data function domain by introducing the noncommutativity
into the learning process. (see Definition 3.2 and Subsection 3.1)

• We derive a generalization bound for the learning problem in the RKHMs associated with the
proposed kernels. The bound implies that the parameter n controls the tradeoff between the
representation power and the model complexity. (see Section 4)

• We propose a deep approach to gain the representation power. (see Section 6)

2 PRELIMINARIES

2.1 C∗-ALGEBRA AND REPRODUCING KERNEL HILBERT C∗-MODULE

C∗-algebra is a Banach space equipped with a product and an involution satisfying the C∗ identity
(condition 3 below). It is a natural generalization of the space of complex numbers.
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Definition 2.1 (C∗-algebra) A set A is called a C∗-algebra if it satisfies the following conditions:

1. A is an algebra over C and equipped with a bijection (·)∗ : A → A that satisfies the following
conditions for α, β ∈ C and a, b ∈ A:

• (αa+ βb)∗ = αa∗ + βb∗, • (ab)∗ = b∗a∗, • (a∗)∗ = a.

2. A is a normed space endowed with a norm ∥ · ∥A, and for a, b ∈ A, ∥ab∥A ≤ ∥a∥A∥b∥A holds.
In addition, A is complete with respect to ∥ · ∥A.

3. For a ∈ A, the C∗ identity ∥a∗a∥A = ∥a∥2A holds.

If there exists a ∈ A such that ab = b = ba for any b ∈ A, a is called the unit and denoted by 1A.

In this paper, we focus on the C∗-algebra of continuous functions.

Example 2.2 Let T = R/2πZ be the torus and C(T) be the space of continuous functions on
T. Then, A := C(T) is a C∗-algebra by means of the product: (cd)(z) = c(z)d(z), involution:
c∗(z) = c(z), and norm: ∥c∥A = supz∈T |c(z)| for c, d ∈ A. The unit is the constant function
1A ≡ 1.

We now review basic notions regarding C∗-algebra. In the following, let A be a C∗-algbra.

Definition 2.3 (Positive) An element a of A is called positive if there exists b ∈ A such that a = b∗b
holds. For a, b ∈ A, we write a ≤A b if b− a is positive.

Definition 2.4 (Infimum and minimum) For a subset S of A, a ∈ A is said to be a lower bound
with respect to the order ≤A, if a ≤A b for any b ∈ S. Then, a lower bound c ∈ A is said to be an
infimum of S, if a ≤A c for any lower bound a of S. If c ∈ S, then c is said to be a minimum of S.

We now define RKHM. Let X be a non-empty set for data. To construct an RKHM, we first introduce
A-valued positive definite kernel.

Definition 2.5 (A-valued positive definite kernel) An A-valued map k : X × X → A is called a
positive definite kernel if it satisfies the following conditions:
• k(x, y) = k(y, x)∗ for x, y ∈ X ,
•
∑N

i,j=1 c
∗
i k(xi, xj)cj is positive semi-definite for n ∈ N, ci ∈ A, xi ∈ X .

Let ϕ : X → AX be the feature map associated with k, defined as ϕ(x) = k(·, x) for x ∈ X and let
Mk,0 = {

∑N
i=1 ϕ(xi)ci| N ∈ N, ci ∈ A, xi ∈ X (i = 1, . . . , N)}. We can define an A-valued

map
〈
·, ·
〉
k
: Mk,0 ×Mk,0 → A as〈 N∑

i=1

ϕ(xi)ci,

M∑
j=1

ϕ(yj)dj

〉
k

=

N∑
i=1

M∑
j=1

c∗i k(xi, yj)dj ,

which enjoys the reproducing property ⟨ϕ(x), f⟩k = f(x) for f ∈ Mk,0 and x ∈ X .

The norm in Mk,0 is defined as ∥f∥2k = ∥ ⟨f, f⟩k ∥A, and we can also define the A-valued absolute
value | · |k as |f |2k = ⟨f, f⟩k. The reproducing kernel Hilbert A-module (RKHM) Mk associated with
k is defined as the completion of Mk,0 with respect to ∥ · ∥k. See, for example, the references (Lance,
1995; Murphy, 1990; Hashimoto et al., 2021) for more details about C∗-algebra and RKHM.

2.2 SPECTRAL TRUNCATION ON THE TORUS

The product in C(T) is commutative. However, by approximating the multiplication of a function
x ∈ C(T) by a matrix, we can obtain a noncommutative product structure. Let ej be the Fourier
function defined as ej(z) = eijz for j ∈ Z and z ∈ T and Mx be the multiplication operator
defined on L2(T) with respect to x. Here, i is the imaginary unit, and L2(T) is the space of square-
integrable functions on T. Let Pn be the orthogonal projection onto the n-dimensional subspace

3
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Span{e1, . . . , en}. We approximate Mx by PnMxPn, i.e., by truncating the spectrum. Then, the
(j, l)-entry of the representation matrix Rn(x) ∈ Cn×n of PnMxPn is written as

Rn(x)j,l = ⟨ej ,Mxel⟩L2(T) =

∫
T
x(t)e−i(j−l)tdt.

Since the (j, l)-entry of Rn(x) depends only on j − l, Rn(x) is a Toeplitz matrix (Gray, 2006). It
is characterized only by a vector rn(x) ∈ C2n−1, where the (j − l)th element of rn(x) is Rn(x)j,l.
Note that Rn(x)j,l is regarded as the (j − l)th Fourier component of x, and the vector rn(x) is the
coordinate of the function x projected on the space Span{e−(n−1), . . . , en−1}.

For a matrix A ∈ Cn×n, let Sn(A) ∈ C(T) be the function defined as Sn(A)(z) =

(1/n)
∑n−1

j,l=0 Aj,le
i(j−l)z , where Aj,l is the (j, l)-entry of A. The map Sn takes the representa-

tion matrix Rn(x) back to a function that approximates the original function x. Indeed, we have

Sn(Rn(x))(z) =

∫
T
x(t)

1

n

n−1∑
j,l=0

e−i(j−l)tei(j−l)zdt =

∫
T
x(t)

1

n

n−1∑
j=0

j∑
l=−j

eil(z−t)dt = x ∗ Fn(z),

where Fn(t) = (1/n)
∑n−1

j=0

∑j
l=−j e

ilt is the Fejér kernel and ∗ represents the convolution. If
n = 1, then Fn(z) = 1, and as n goes to infinity, Fn goes to the delta function. More precisely, the
following proposition holds (Brandolini & Travaglini, 1997; van Suijlekom, 2021), which implies
that for each z ∈ T, Sn(Rn(x))(z) converges to x(z) as n → ∞.

Proposition 2.6 For each z ∈ T, x ∗ Fn(z) → x(z) as n → ∞.

A generalization of the Fejér kernel on T to that on Tq with respect to the sum over a polyhedron
has been theoretically investigated (Travaglini, 1994; Brandolini & Travaglini, 1997). Let P be a
polyhedron and jP = {jz | z ∈ P} for j ∈ Z. For t ∈ Tq , the Fejér kernel on Tq is defined as

F q,P
n (t) =

1

n

n−1∑
j=1

∑
r∈jP

⋂
Zq

eir·t. (1)

3 C∗-ALGEBRA-VALUED POSITIVE DEFINITE KERNEL WITH SPECTRAL
TRUNCATION

In the following, we set the C∗-algebra A as C(T). To obtain vector- or functional-valued outputs,
applying vvRKHSs has been investigated. However, as we stated in Section 1, to go beyond the
separable kernel and reach higher performance, the computational cost scales as O(m3N3) for
m-dimensional outputs with N samples. For more detailed explanation of the shortcomings of
existing kernels with the framework of vvRKHSs, see Appendix A. To go beyond the separable and
commutative kernels with lower computational cost, we consider function-valued (A-valued) kernels
and RKHMs. As we will discuss in the last part of Section 5, the computational cost depends on
mN3 if we use an A-valued kernel. Hashimoto et al. (2021) proposed to use the A-valued kernel k
where k(·, ·)(z) is a complex-valued positive definite kernel for all z ∈ T. Combining it with typical
existing kernels (Hashimoto et al., 2023a; Schölkopf & Smola, 2001; Kadri et al., 2012; Álvarez
et al., 2012), we obtain the following three kinds of A-valued kernels. Here, we consider the case
where the set X for data is X ⊆ Ad.

Example 3.1 For x = [x1, . . . , xd], y = [y1, . . . , yd] ∈ Ad and z ∈ T,

1. polynomial kernel kpoly,q(x, y)(z) =
∑d

i=1 αi(xi(z)yi(z))
q ,

2. product kernel kprod,q(x, y)(z) =
∏q

j=1 k̃1,j(x(z), y(z))k̃2,j(x(z), y(z)),

3. separable kernel ksep,q(x, y) = k̃(x, y)
∏q

j=1(a
∗
j )

qaqj .

Here, q ∈ N is the degree of the products in the kernel, αi ≥ 0 is the parameter of kpoly,q, and for
i = 1, 2 and j = 1, . . . , q, k̃i,j : C× C → C and k̃ : Ad ×Ad → C are complex-valued continuous
positive definite kernels. In addition, aj ∈ A is the parameter of ksep,q .
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We propose new A-valued positive definite kernels by generalizing the typical kernels in Example 3.1.
The kernels in Example 3.1 involve the product of functions in A. For x, y ∈ A, the product of x and
y is commutative and is just the pointwise product defined as (xy)(z) = x(z)y(z) (See Example 2.2).
Thus, the kernels defined in Examples 3.1.1 and 3.1.2 do not induce the interactions along z ∈ T, that
is, k(x, y)(z) is determined only by the values x(z) and y(z) at z. We call the kernel whose output
at z is determined only with x(z) and y(z) a commutative kernel. If the values x(z1) and x(z2), or
x(z1) and y(z2) for different z1 and z2 are related, then the construction of the kernels only with
this commutative product cannot extract that relationship. On the other hand, if we introduce the
truncation parameter n and transform x and y into Toeplitz matrices using the map Rn defined in
Subsection 2.2, then the product of Rn(x) and Rn(y) is noncommutative. Focusing on this feature,
we define A-valued kernels based on Example 3.1, but they have interactions along z ∈ T.

Definition 3.2 With the notations in Example 3.1, for x = [x1, . . . , xd], y = [y1, . . . , yd] ∈ Ad, let

kpoly,qn (x, y) = Sn

( d∑
i=1

αi(Rn(xi)
∗)qRn(yi)

q

)
,

kprod,qn (x, y) = Sn

( q∏
j=1

Rn(k̃1,j(x, y))
∗

q∏
j=1

Rn(k̃2,j(x, y))

)
,

ksep,qn (x, y) = k̃(Sn(Rn(x)), Sn(Rn(y)))Sn

( q∏
j=1

Rn(aj)
∗

q∏
j=1

Rn(aj)

)
.

Here, A∗ for a matrix A is the adjoint, and we denote by k̃i,j(x, y) the map z 7→ k̃i,j(x(z), y(z)).

Remark 3.3 Although the inputs of the kernels in Example 3.1 and Definition 3.2 are functions, we
can also deal with vector inputs. For vector inputs, we can regard them as values of functions, and
approximate the integral by the discrete sum.

In Definition 3.2, to construct the kernels, we first project functions in A onto the space
Span{e−(n−1), . . . , en−1} using the map Rn and obtain Toeplitz matrices. Then, we consider the
product of the Toeplitz matrices. Note that the product of two Toeplitz matrices is not always a Toeplitz
matrix. Finally, we apply Sn to the matrix and take it back to the space Span{e−(n−1), . . . , en−1}
and obtain the output function of the kernel. Figure 3 in Appendix C schematically shows the
construction of the kernel defined in Definition 3.2.

By the definitions of Sn and Rn, we can show the following identity for x1, . . . , xq, y1, . . . , yq ∈
A (see the proof of Theorem 3.4 in Appendix E):

Sn

( q∏
j=1

Rn(xj)
∗

q∏
j=1

Rn(y)

)
(z) =

∫
T2q

x1(t1) · · ·xq(tq)y1(tq+1) · · · yq(t2q)F 2q,P
n (z1− t)dt, (2)

where t = [t1, . . . , t2q], 1 = [1, . . . , 1], P = {[r1, . . . , r2q] ∈ R2q | |
∑m

i=l ri| ≤
1, l ≤ m}, and F q,P

n is the Fejér kernel on Tq defined in Eq. (1). Eq. (2) im-
plies that the value of Sn

(∏q
j=1 Rn(xj)

∗ ∏q
j=1 Rn(yj)

)
at z is determined not only by

x1(z), . . . , xq(z), y1(z), . . . , yq(z), but also by x1(t1), . . . , xq(tq), y1(tq+1), . . . , yq(t2q) with dif-
ferent values t1, . . . , t2q from z. Note that F q,P

n (t) is a real-valued function since for r ∈ P , we
have −r ∈ P . Thus, if a kernel in Example 3.1 is real-valued, then the corresponding kernel in
Definition 3.2 is also real-valued.

3.1 CONVERGENCE AND INTERACTIONS

We first show that kpoly,qn , kprod,qn , and ksep,qn defined in Definition 3.2 converge to kpoly,q, kprod,q,
and ksep,q defined in Example 3.1 as n goes to infinity, respectively. In this sense, the kernels kpoly,qn ,
kprod,qn , and ksep,qn are generalizations of typical kernels. In addition, note that if n = 1, then Rn is
just the averaging operation, and the output of the kernels are constant with respect to z. Thus, the
proposed kernels are separable if n = 1 and are commutative if n = ∞. See Appendix B for more
details. In this sense, the proposed kernels fill a gap between the separable and commutative kernels.
In the following, all the proofs of theoretical statements are documented in Appendix E.
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Theorem 3.4 For x, y ∈ Ad and z ∈ T, kpoly,qn (x, y)(z) → kpoly,q(x, y)(z), kprod,qn (x, y)(z) →
kprod,q(x, y)(z) as n → ∞. If x and y are differentiable, then ksep,qn (x, y)(z) → ksep,q(x, y)(z).

As we can see in Eq. (2), if the kernel involves q products of Toeplitz matrices generated by Rn, it is
represented by a Fejér kernel on Tq . To show Theorem 3.4, we apply the following lemmas.

Lemma 3.5 For m ∈ N and j = 0, . . . 2q, let Qm
j = {r′ = [r′1, . . . , r

′
2q] ∈ R2q | r′i = ri −

ri−1 (i = 1, . . . , 2q), 0 ≤ ri ≤ m (i = 0, . . . , 2q), rj = m} and P = {r = [r1, . . . , r2q] ∈ R2q |
|
∑k

i=l ri| ≤ 1, l ≤ k}. Then, we have mP =
⋃2q

j=0 Q
m
j .

Lemma 3.6 Let P be a convex polyhedron. Let F q,P
n be the Fejér kernel on Tq defined as Eq. (1).

Then, for any g ∈ C(Tq) and any z ∈ Tq , g ∗ F q,P
n (z) → g(z) as n → ∞.

Since the product of Toeplitz matrices in kpoly,qn , kprod,qn , and ksep,qn are represented by the sum
over the indices in

⋃2q
j=0 Q

m
j , Lemma 3.5 explains why the Fejér kernel with the polyhedron P =

{r ∈ R2q | |
∑k

i=l ri| ≤ 1, l ≤ k} appears in Eq. (2). Lemma 3.6 generalizes the convergence
of the Fejér kernel on T to that on Tq, which is by Brandolini & Travaglini (1997). We set g(z) =
x1(z1) · · ·xq(zq)y1(zq+1) · · · yq(z2q) for z = [z1, . . . , z2q], based on Eq. (2), and apply Lemmas 3.5
and 3.6 to show Theorem 3.4. See Appendix E for more details. Theorem 3.4 implies that the
interactions along z ∈ T in the kernels become small as n grows. This is because as n goes to infinity,
F 2q,P
n goes to the delta function and by taking the convolution with the input function, it focuses

more on local relationships between input and output functions as n grows.

3.2 POSITIVE DEFINITENESS

To construct an RKHM, which is introduced in Subsection 2.1, the kernel k has to be positive definite.
Thus, we investigate the positive definiteness of the proposed kernels. Regarding kpoly,qn (x, y), we
can show the positive definiteness since xi and yi are separated by the product. Regarding ksepn (x, y),
since x and y depend only on k̃, we can use the positive definiteness of k̃.

Proposition 3.7 The kernels kpoly,qn and ksep,qn are positive definite.

As for kprod,qn (x, y), it depends on x and y through k̃i,j , and we cannot separate x and y as products.
Thus, we cannot show its positive definiteness. However, we can modify the kernel to become positive
definite as follows.

Proposition 3.8 Let βn ≥ −minz∈Tq F 2q,P
n (z). Then, k̂prod,qn defined below is positive definite.

k̂prod,qn (x, y) = kprod,qn (x, y) + βn

∫
T2q

q∏
j=1

k̃1,j(x(tj), y(tj))k̃2,j(x(tq+j), y(tq+j))dt.

To set the value of the parameter βn, we have the following bound.

Lemma 3.9 The Féjer kernel F q,P
n is bounded as |F q,P

n (z)| ≤ nq .

Remark 3.10 We can set βn in k̂prod,qn as nq to guarantee the positive definiteness. However, even
if we set a smaller βn, k̂prod,qn may become positive definite. In addition, considering non-positive
kernels has also been investigated (Ong et al., 2004; Canu et al., 2005). Indeed, in practical
computations in Subsection 7, the algorithms can work even if we set βn < n2q. Deriving a tighter
bound of βn or developing the theory for non-positive kernels for RKHMs is future work.

4 GENERALIZATION BOUND

We now focus on what impact the truncation parameter n has on generalization. We provide a
generalization bound allowing us to observe the tradeoff between the representation power and the
model complexity associated with the proposed kernels. According to Lemma 4.2 in Mohri et al.
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(2012), the generalization bound is described by the Rademacher complexity. We apply this lemma
and derive a generalization bound.

Let Ω be a probability space with a probability measure µ. Let X1, . . . , XN and Y1, . . . , YN be
samples from a distributions of Ad

0-valued random variable X and A1-valued random variable Y
on Ω, respectively (i.e., for z ∈ T, Xi(z) is a sample from the distribution of X(z)). Here, A0

and A1 are subsets of A. Let E be the Bochner integral on Ω with respect to µ. Let B > 0 and
F = {f ∈ Mk | ∥f∥k ≤ B}. Let g : R × R → R+ be an error function. Assume there exists
L > 0 such that for y ∈ A1 and z ∈ T, x 7→ g(x, y(z)) is L-Lipschitz continuous. We derive the
following generalization bound for the kernels defined in Section 3 based on Mohri et al. (2012);
Hashimoto et al. (2023a) Here, to adapt to the generalization bound analysis, we assume the kernels
are real-valued.

Theorem 4.1 Assume kpoly,qn , kprod,qn , and ksep,qn are real-valued. Let D(kpoly,qn , x) =∑d
j=1 αj∥Rn(xj)∥2qop, D(k̂prod,qn , x) =

∏q
j=1(∥Rn(k̃1,j(x, x))∥op∥Rn(k̃2,j(x, x))∥op)+βnC, and

D(ksep,qn , x) = k̃(x, x)
∏q

j=1 ∥Rn(aj)∥2op for x ∈ Ad
0, where ∥ · ∥op is the operator norm and

C =
∏q

j=1

∫
T k̃1,j(x(t), x(t))dt

∫
T k̃2,j(x(t), x(t))dt. Assume βn ≤ βn+1 for k̂prod,qn . For

kn = kpoly,qn , k̂prod,qn , ksep,qn and for any δ ∈ (0, 1), with probability at least 1− δ, we have

E[g(f(X), Y )] ≤A
1

N

N∑
i=1

g(f(Xi), Yi) + 2L
B

N

( N∑
i=1

D(kn, Xi)

)1/2

1A + 3

√
log 1/δ

N
1A (3)

for any f ∈ F . In addition, we have D(kn, x) ≤ D(kn+1, x).

The first term of the right-hand side of (3) is the empirical loss, and the second term represents
the model complexity of the RKHM Mkn

. There is a tradeoff between these terms. If n is larger,
then since the approximation space Span{e−(n−1), . . . , en−1} in A is larger, the outputs of kn can
represent more functions, which enables us to describe the dependency of outputs on inputs more.
Indeed, if n = 1, then the output of kn is always a constant function, where the situation is the same
as the existing separable kernel discussed in Section 1. Thus, the empirical loss (the first term) can
become small if n is large. On the other hand, according to Theorem 4.1, the complexity of Mkn

(the second term) is larger if n is larger. An advantage of introducing the parameter n to construct
the new kernels based on the typical kernels in Example 3.1 is that we can control the empirical loss
and the complexity through n. By setting a proper n, we can balance the two terms and make the
expected loss E[g(f(X), Y )], the left-hand side of Eq. (3), small.

5 APPLICATION TO KERNEL RIDGE REGRESSION

We illustrate the effect of the proposed kernels by applying them to kernel ridge regression. Let
x1, . . . , xN ∈ Ad be input training samples and y1, . . . , yN ∈ A be output training samples. We
consider the case where we need the values of the output function evaluated at different m points.
We consider the RKHM Mk associated with k = kpoly,qn , k = kprod,qn , or k = ksep,qn . Consider the
typical minimization problem for regression, which is also considered by Hashimoto et al. (2023a):

min
f∈Mk

( N∑
i=1

|f(xi)− yi|2A + λ|f |2k
)
, (4)

where λ ≥ 0 is the regularization parameter. We apply the approximation version of the representer
theorem for RKHMs over general C∗-algebras (see Appendix G). Then, the solution of the problem (4)
is approximated by a vector having the form of

∑N
i=1 ϕi(xi)ci. The problem is reduced to

min
cj∈A

( N∑
i=1

∣∣∣∣ N∑
j=1

k(xi, xj)cj − yi

∣∣∣∣2
A
+ λ

∣∣∣∣ N∑
j=1

ϕ(xj)cj

∣∣∣∣2
k

)
= min

cj∈A
(c∗G2c− c∗Gy − y∗Gc+ λc∗Gc), (5)

where G is the AN×N -valued Gram matrix whose (i, j)-entry is defined as k(xi, xj)∈ A, c =
[c1, . . . , cN ]T ∈ AN , y = [y1, . . . , yN ]T ∈ AN . Then, the solution c of the problem (5) satisfies
y = (G+ λI)c, which means y(z) = (G(z) + λI)c(z). Therefore, for each z ∈ T, we obtain c(z)
by computing (G(z) + λI)−1y(z).

7
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Computational cost The computational cost for the product of two n by n Toeplitz matrices is
O(n2), and computing Sn(A)(z) for an n by n matrix A and z ∈ T costs O(n2). Thus, the cost
for constructing G(z1), . . . ,G(zm) for different m points z1, . . . , zm ∈ T with kpoly,qn or k̂prod,qn
is O((qn2 +mn2)N2). As for the computation of c(z), we need to compute (G(z) + λI)−1y(z),
which costs O(N3). Thus, the total computational cost for obtaining c(z1), . . . , c(zm) is O((q +
m)n2N2 +mN3). Note that the cost is linear with respect to m. This is by virtue of considering
function-valued kernels and RKHMs. The situation is different if we use vvRKHSs. For vvRKHSs,
to obtain m values as an output, we typically apply a CO(m)×O(m)-valued kernel. Then, the Gram
matrix should be mN by mN . Specifically, if the kernel is transformable, the computational cost
is O(m3N3). Thus, if (q + m)n2 < m3N , then the proposed kernels are more computationally
efficient than the transformable kernels. See Appendices A and B for more details. For the proposed
kernel, we can reduce the cost with respect to N , e.g., by applying Nyström method (Drineas &
Mahoney, 2005) to each G(z1), . . . ,G(zm). Regarding n and q, one approach to reducing the cost
with respect to them is investigating the method to approximate the Fejér kernel. However, the main
contribution of this paper is to show the advantage of introducing the noncommutivity in kernels, and
investigating computationally effective methods is future work.

6 DEEP MODEL WITH THE SPECTRAL TRUNCATION KERNELS

As we discussed in Section 4, there is a tradeoff between the representation power and the model
complexity. In fact, there are two directions of the representation power: one is about the dependency
of the outputs on the inputs discussed in Section 4, and the other is about the interactions along the
data function domain. One shortcoming of the spectral truncation kernel is that to obtain a model with
a high representation power in the sense of the dependency of the outputs on the inputs, the truncation
parameter n have to be large, which results in making the interactions along the data function domain
weak. To gain the two types of representation powers at the same time, we consider the following
deep model f with L spectral truncation kernels k1n, . . . , k

L
n and learnable parameters c1i , . . . , c

L
i ∈A:

f(x) =

L∏
j=1

( N∑
i=1

kjn(x, xi)c
j
i

)
. (6)

We consider the case where cji in Eq. (6) is represented as a finite sum of functions in A. In the
following case, the representation power of this model grows exponentially.

Proposition 6.1 Let kjn(x, xi) =
∑n−1

l=−(n−1) d̃
j
i,le

ilz with d̃ji,l ∈ C. Assume cji is parameterized as

cji (z) =
∑n−1

l=−(n−1) d
j
i,leτj ,l with dji,l ∈ C and τj ∈ R. Here, eτj ,l ∈ C(T) satisfies eτj ,l(z) = eiτj lz

for z ∈ S for a subset S of T. Then, for z ∈ S, f in Eq. (6) is represented as

n−1∑
l1,...,lL=−(n−1)

n−1∑
m1,...,mL=−(n−1)

N∑
i=1

d̃1i,l1 · · · d̃
L
i,lLd

1
i,l1 · · · d

L
i,lLe

i(l1+···+lL+τ1m1+···τLmL)z.

Let Vn,L = Span{z 7→ ei(l1+···+lL)zeτ1,m1
(z) · · · eτL,mL

(z) | l1, . . . , lL,m1, . . . ,mL ∈ {−(n −
1), . . . , n − 1}}. If {τ1, . . . , τL} is linearly independent over Z, then Vn,L is described by 2n +
1 + (2n+ 1)L oscillating functions. In this sense, the representation power of the model f grows
exponentially with respect to the number of layers L.

Remark 6.2 The exponential growth of the representation power is also observed for neural net-
works (Hanin & Rolnick, 2019). Deep learning with kernels has also been proposed (Laforgue et al.,
2019; Hasimoto et al., 2023). Whereas the growth is obtained by the composition for these existing
frameworks, it is obtained by the product for our case. Unlike the case of the existing frameworks,
the representation power regarding A does not become high by the composition of functions.

Remark 6.3 The function f is in the RKHM associated with the kernel
∏L

j=1 k
j . Since the

Rademacher complexity bound depends on the norm of the kernel, it can also grow exponentially
with respect to L. Thus, for the deep setting, in the same manner as Theorem 4.1, we still have the
tradeoff between the representation power and the model complexity. In this case, it is controlled by
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both n and L. The exponential growth of the Rademacher complexity bound (thus, the generalization
bound) with respect to the number of layers is also observed for neural networks (Neyshabur et al.,
2015; Bartlett et al., 2017; Golowich et al., 2018). Investigating how we can take advantage of the
deep setting in the sense of the generalization is future work.

7 NUMERICAL RESULTS

We show numerical results that illustrate the effects of the noncommutativity on the learning process.

7.1 EXPERIMENT WITH SYNTHETIC DATA

We first observed the behavior of the proposed kernels kpoly,qn , k̂prod,qn , and ksep,qn with different
values of n to observe the tradeoff between the representation power and model complexity discussed
in Section 4 and compare them to the commutative kernels kpoly,q , kprod,q , and ksep,q . We considered
a regression task with synthetic data. For i = 1, . . . , N , we generated input training samples as
xi(z) = [sin(0.01iz) + 0.01ξz,i, cos(0.01iz) + 0.01ηz,i]. We set the target function f as f(x)(z) =
3(sin(cos(

∫z+∆

z−∆
x1(t)dt +

∫z+∆

z−∆
x2(t)dt))), where ∆ = 2π/30, and generated training output

samples yi(z) = f(x)(z) + 0.001ξz,i. Here, ξz,i and ηz,i were sampled independently from the
Gaussian distribution with mean 0 and standard deviation 1. We set the sample size N as 1000.
For the kernel kpoly,qn , we set q = 1 and α1 = 1. Note that kpoly,q is the linear kernel in this case.
For the kernel k̂prod,qn , we set q = 1, k̃1,1(x, y) = k̃2,1(x, y) = 2πe−|x−y|2 . We set βn = 1 for

n < ∞ and β∞ = 0. For the kernel ksep,qn , we set k̃(x, y) = e
−0.1·2π2(∥x1−y1∥2

L2(T)+∥x2−y2∥2
L2(T)),

q = 2, and a1(z) = a2(z) = 2πesin z . We estimated f using kernel ridge regression. We applied the
cross-validation grid search to find an optimal regularization parameter λ. Figure 1 (a-c) illustrates
the test error. We can see that for kpoly,qn , the test error is the smallest when n = 32. It becomes
large if n is larger or smaller than 32. This is because when n = 32, the empirical error and
the complexity in Eq. 3 are balanced, and the best possible expected error is obtained. We can
see that even for the simplest kernel kpoly,1n , the proposed kernel (n is finite) goes beyond the
typical commutative kernel (n = ∞). We have similar results for the other two kernels. Note that
k̂prod,q∞ (x, y)(z) = k̂prod,q(x, y)(z) only depends on x(z) and y(z). However, f(x)(z) depends on
x(t) for t ∈ [z−∆, z+∆]. Thus, the test error becomes large when n = ∞. In addition, as discussed
in Remark 3.10, k̂prod,qn may not be positive definite. However, although we set βn as a small value,
all the eigenvalues of the Gram matrix are positive in this case. See Appendix I.1 for more details.

We also compared the performance and the computational time with the proposed kernels to the exist-
ing operator-valued kernel with same setting as above to show the advantage of the proposed kernel
in the sense of the computational efficiency and performance. For the vvRKHS, we used the nonsepa-
rable kernel k(x, y) = k̃(x, y)[e−|xi−yj |2 ]i,j , where we replaced Sn(

∏q
j=1 Rn(aj)

∗ ∏q
j=1 Rn(aj))

with the nonseparable matrix [e−|xi−yj |2 ]i,j . This kernel is the combination of the separable and
transformable kernels and proposed by Lim et al. (2015). Table 2 shows the result. We can see that
the proposed kernels outperform the existing typical nonseparable kernel, and the computational
time with the proposed kernel is smaller than that with the existing kernel. Note that we have
already confirmed the proposed kernels outperform the existing separable kernel ksep,q∞ in the above
experiment (See Figure 1 (c)).

Finally, we observed the behavior of the deep model to show its high the representation power. We
generated data in the same manner as above, but we set N = 300. We used the kernel kprod,qn and set
L = 1, 2, 3, τ1 =

√
2, τ2 =

√
3, and τ3 =

√
5/2. We set n so that the numbers of parameters are the

same for all values of L. We used the loss function ∥
∑N

i=1 |f(xi)− yi|k∥L2(T) +0.1∥|f |k∥L2(T) for
the deep model f defined in Eq. (6). Figure 1 (d) shows the result. We can see as the number of layers
increases, we can obtain a higher performance model even with the same number of parameters.

7.2 EXPERIMENT WITH MNIST

To check the performance of the proposed kernels for practical applications, we consider an image
recovering task with MNIST (LeCun et al., 1998). For i = 1, . . . , N , we generated input training

9
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(a) k = kpoly,q
n (b) k = k̂prod,q

n (c) k = ksep,q
n (d) Deep approach

n = 30 n = 40 n = 50 n = 60 n = 70 n = 80 n = ∞
(e) Output images

Figure 1: (a-c) Test error of the regression task with different values of n. (Box plot of results of five
independent runs with different values of noises ξz,i and ηz,i in xi(z) and yi(z).) (d) Test error of
the regression task with deep approach with different n and L. The parameters n and L are chosen
so that the numbers of parameters are the same for all the cases. (e) Output images of the image
recovering task with different values of n.

Table 2: Test error and CPU time of the regression task with RKHM and vvRKHS
Test Error CPU Time (s)

RKHM, k = kprod,q
n (n = 9) 0.0113±1.63×10−5 149.3±2.392

RKHM, k = ksep,q
n (n = 10) 0.0385±5.04388×10−5 22.79± 0.5742

vvRKHS (combination of transformable & separable kernels) 0.0774±7.86 10−5 570.4±14.87

samples by setting all the 8× 8 pixels in the middle of the images as 0. We set the output samples
as the original images. We flatten the 2-dimensional 28× 28 image to a vector in R784 and regard
it as a discretized function on the space of pixels. We tried to estimate a function that transforms
an image with the missing part into the original image. We applied kernel ridge regression with the
regularization parameter λ = 0.01. We set the sample size N as 200, and used the kernel kprod,qn

with q = 1 and k̃1,1(x, y) = k̃2,1(x, y) = 2πe−0.1|x−y|2 . We set βn = 0.01 for n < ∞ and β∞ = 0.
Figure 1 (e) shows the output images with different values of n. When n = ∞, i.e., the commutative
kernel, we cannot recover the missing part since each pixel of the output is determined only with the
corresponding pixel of the input, and we cannot obtain information of other pixels to estimate what is
written in the image. When n = 70, we can recover the image the clearest.

8 CONCLUSION AND LIMITATION

In this paper, we proposed a new class of positive definite kernels for vector- or function-valued
outputs based on the spectral truncation. The proposed kernels with the framework of RKHMs
resolve two shortcomings of the framework of vvRKHSs for vector- or function-valued outputs at
the same time: computational cost and choice of kernels. By considering function-valued positive
definite kernels, not operator-valued ones, we can alleviate the computational cost. At the same time,
we can introduce noncommutativity into the learning process and can induce interactions along the
data function domain. We also showed that we can control the tradeoff between the representation
power and the model complexity associated with the proposed kernels. In addition, we proposed a
deep approach to obtain models with higher representation powers.

In the current setting, we focus on the C∗-algebra of continuous functions on the torus. Although
this setting includes many important examples, e.g., periodic time-series data, continuous functions
defined on a compact set in R, finite-dimensional vectors, investigations for more general C∗-algebras
allow us to apply the proposed kernel more general settings. As we discuss in Appendix H, we can
generalize this setting and define positive definite kernels for more general inputs and outputs. In
addition, as we discuss in Appendix D, there are many potential applications of the proposed kernel.
However, theoretical and empirical investigations for these generalized settings and applications
remain to be investigated in future work.
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APPENDIX

A REVIEW OF EXISTING OPERATOR-VALUED KERNELS

We review existing operator-valued kernels and discuss their advantages and shortcomings in this
section. We especially focus on the case X = Ad and the application of kernel ridge regression
in this paper. For more details about the operator-valued kernels, see, for example, (Álvarez et al.,
2012).

Typical existing kernels are summirized as follows: Let k̃ : X̃ × X̃ → C and p : T × T → C be
complex-valued positive definite kernels and let S : T×X → X̃ . Consider a kernel k : X × X →
B(L2(T)) defined as

k(x, y)v(z) =

∫
T
k̃(S(z, x), S(t, y))p(z, t)v(t)dt. (7)

In general, we have to construct a Gram matrix whose elements are operators. Typically, if we need
an output function evaluated at m points, then we discretize the operator on O(m)-dimensional
space and obtain an O(mN) by O(mN) Gram matrix. Then, the computational cost for the kernel
regression task for obtaining an output function evaluated at m points is O(N3m3). Therefore, the
computational cost is significant. As a special case of the kernel (7), the following two kernels are
efficient in the sense of the computational cost.

Separable kernel If we set X̃ = X and S(t, x) = x, then the kernel k defined in Eq. (7) is called a
separable kernel. In other words, let A ∈ B(L2(T)) be a Hermitian positive semi-definite operator
defined as Av(z) =

∫
T p(z, t)v(t)dt. The kernel k : X × X → B(L2(T)) defined as

k(x, y)v(z) = k̃(x, y)Av(z)

is called a separable kernel.

For separable kernels, the computation is reduced to the computation of the Gram matrix of k̃. Thus,
the computational cost for the kernel regression task for obtaining an output function evaluated at
m points is O(N3m), where N is the sample size. However, as we can see from the definition, it
identifies dependencies between input and output variables separately and cannot reflect information
of input variables to output variables. In the framework of vvRKHSs, the output function with an
input x is in the form of

∑N
i=1 k(x, xi)vi for given samples x1, . . . , xN ∈ X , and some v1, . . . , vN ∈

L2(T). Thus, with separable kernels, we cannot specify the relationship between the value of the
output function at z and the value x(z) of the input x at z although they have strong connection in
many cases. For example, if we have a time-series input [x1, . . . , xd] ∈ Ad as explanatory variables
and try to obtain an output function as a response variable, the values of x1(z), . . . , xd(z) at time z is
strongly related to the value of the output at time z. In this case, the separable kernels are not suitable
for extracting the relationship between x1(z), . . . , xd(z) and the values of the output at z.

Commutative kernel If we set X̃ = C, S(t, x) = x(t), and p(z, t) = 1 (z = t), p(z, t) = 0 (z ̸=
t), then we have

k(x, y)v(z) = k̃(x(z), y(z))v(z).

We call this kernel the commutative kernel.

For commutative kernels, the computation is reduced to the computation at each z. Thus, the
computational cost for the kernel regression task for obtaining an output function evaluated at m
points is O(N3m). However, as we can see from the definition, it only identifies completely local
relationship between the input function and the output function. The value of the output function at z
is determined only with the value of the input function at z. In the same example as separable kernels,
the values of x1(z), . . . , xd(z) at time z is strongly related to the value of the output at time z, but
may also be related to y(z + t) for t ∈ [−T, T ] for a small number T . In this case, the commutative
kernels are not suitable for extracting the relationship between x1(z), . . . , xd(z) and the values of
the output around z, not only exactly at z.
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As we have seen, although the separable and commutative kernels are computationally efficient,
they are two extreme cases regarding the description of the relationship between the input and
output functions; the separable kernels identify dependencies between input and output variables
separately (only with global information) and the commutative kernels only identify the commutative
(completely local) dependencies. The following existing kernels fill a gap between the above two
kernels, but computationally expensive.

Transformable kernel If we set p(z, t) = 1, then the kernel k defined in Eq. (7) is called the
transformable kernel. In this case, the kernels can identify the dependency between input and output
variables through the map S. However, the computational cost for the kernel regression task for
obtaining an output function evaluated at m points is O(N3m3) as we discussed at the beginning of
this section. In addition, we have to determine the map S, but it is not easy to interpret in general.

Combination of separable and transformable kernels Considering the sum of separable and
transformable kernels and the product of these kernels have also been proposed. However, we have
the same shortcomings of separable and transformable kernels.

B CONNECTION BETWEEN THE PROPOSED KERNEL AND EXISTING KERNELS

The proposed function-valued kernels combined with the framework of RKHMs fill a gap between
separable and commutative kernels with lower computational cost than transformable kernels. Indeed,
we have the following observation:

The case of n = 1 The proposed kernels kpoly,qn , kprod,qn , and ksep,qn are equivalent to separable
kernels:

kpoly,q1 (x, y)(z) =

d∑
i=1

αi

( ∫
T
xi(t)dt

)q( ∫
T
yi(t)dt

)q

,

kprod,q1 (x, y)(z) =

q∏
j=1

∫
T
k̃1,j(x(t), y(t))dt

q∏
j=1

∫
T
k̃2,j(x(t), y(t))dt,

ksep,q1 (x, y)(z) = k̃

( ∫
T
x(t)dt,

∫
T
y(t)dt

) q∏
j=1

∫
T
aj(t)dt

q∏
j=1

∫
T
aj(t)dt.

We can see that the output of the kernel does not depend on the variable z. The output function with
an input x of the kernel ridge regression is in the form of

∑N
i=1 k(x, xi)(z)ci(z) for given samples

x1, . . . , xN ∈ X and some c1, . . . , cN ∈ C(T). Thus, the kernels identify dependencies between
input and output functions separately. We can only capture global information of the input x for
obtaining the output.

The case of n = ∞ The proposed kernels kpoly,qn , kprod,qn are equivalent to commutative kernels:

kpoly,q∞ (x, y)(z) =

d∑
i=1

αi(xi(z)yi(z))
q,

kprod,q∞ (x, y)(z) =

q∏
j=1

k̃1,j(x(z), y(z))k̃2,j(x(z), y(z)).

The value of the output of the kernels at z are determined only by x(z) and y(z). The kernels identify
completely local dependencies between input and output functions.

The case of 1 < n < ∞ If n is small, then we focus more on global information, and if n is large,
we focus more on local information. Indeed, as we discussed in Eq. (2), we have

kpoly,qn (x, y)(z) =

∫
T2q

x1(t1) · · ·xq(tq)y1(tq+1) · · · yq(t2q)F 2q,P
n (z1− t)dt,

14
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Figure 2: Féjer kernel F 2,P
n for n = 5, 10, 15

kprod,qn (x, y)(z) =

∫
T2q

q∏
j=1

k̃1,j(x(tj), y(tj)k̃2,j(x(tq+j), y(tq+j))F
2q,P
n (z1− t)dt,

where we assume d = 1 for simplify the notation. The proposed kernels are described by the
convolution of the input function and the Féjer kernel F 2q,P

n . If n = 1, then F 2q,P
n (z) = 1, and as n

goes to infinity, F 2q,P
n goes to the delta function. This means that if n is small, then the convolution

with F 2q,P
n extract global information more than local information. On the other hand, if n is large,

then the convolution with F 2q,P
n extract local information more than global information. We illustrate

how F 2,P
n changes along n in Figure 2.

Remark B.1 We can determine optimal n in the sense of the dependencies by observing the Féjer
function F 2q,P

n . Since the proposed kernel is defined by the convolution of the input function
with the Féjer kernel, the volume of the region where the value of the Féjer kernel is sufficiently
large corresponds to the range of local dependencies. Thus, if we have a information of the local
dependencies, then we can choose n based on the values of F 2q,P

n .

Remark B.2 The proposed kernels are composed of complex-valued kernels k̃i,j and k̃ in Defini-
tion 3.2. We can choose any kernel for k̃i,j and k̃, and the properties of the proposed kernels depend
also on that choice. If we choose a kernel with parameters as k̃i,j or k̃ (such as a weighted sum of
multiple kernels), then by optimizing the parameters, we can obtain a better kernel for given data or
tasks. In addition, for function-valued kernels, in the same manner as the complex-valued kernels, the
weighted sum of positive definite kernels and product of positive definite kernels are also a positive
definite kernel. Thus, we can consider multiple proposed kernels and combine them with weight
parameters. In that case, we can also optimize the parameters to obtain a better kernel for given data
or tasks.

Computational cost As we discussed in the last paragraph of Section 5, the computational cost for
the kernel regression task for obtaining an output function evaluated at m points with the proposed
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Figure 3: Overview of the construction of the simplest kernel kpoly,1n (x, y) = Sn(Rn(x)
∗Rn(y))

kernel kpoly,qn or kprod,qn is O((q+m)n2N2+mN3). Thus, if (q+m)n2 < m3N , then the proposed
kernels are more computationally efficient than nonseparable and noncommutative kernels, such as
the transformable kernels.

C CONSTRUCTION OF THE PROPOSED KERNEL

In Definition 3.2, to construct the kernels, we first project functions in A onto the space
Span{e−(n−1), . . . , en−1} using the map Rn and obtain Toeplitz matrices. Then, we consider the
product of the Toeplitz matrices. Note that the product of two Toeplitz matrices is not always a Toeplitz
matrix. Finally, we apply Sn to the matrix and take it back to the space Span{e−(n−1), . . . , en−1}
and obtain the output function of the kernel.

Figure 3 schematically shows the construction of the simplest kernel kpoly,1n (x, y) =
Sn(Rn(x)

∗Rn(y)) defined in Definition 3.2.

D APPLICATIONS: EXTRACTING LOCAL AND GLOBAL DEPENDENCIES OF
FUNCTIONS

In Subsection 7.2, we considered applying the proposed kernel to an image recovering task. The
application to image data is just an example, and there are more applications, which involves functions.
We list two examples here.

Time-series data analysis We can regard a time-series as a function on a time space. In many
cases, a state at a certain time z is influenced strongly by another state at the same time z, but also by
the state around the time z. Since commutative kernels focus only on local information, we cannot
describe these two states with commutative kernels. On the other hand, since separable kernels focus
only on global information, we cannot describe the relationship of these two states at each time z.
By applying the proposed kernels, we can extract global information, but also can focus on local
information.

Operator learning In the framework of operator learning, we obtain a solution of a partial dif-
ferential equation as an output from an input function (such as initial condition or parameter of the
equation). Thus, we construct a model where both of the input and output are functions. Applying
kernel methods to operator learning has been proposed (Batlle et al., 2024). We can construct the
model by solving a kernel ridge regression task. Another well-known operator learning method is
neural operator. In the framework of neural operators, we apply integral operators to extract global
information and apply local linear operators and local activation functions to extract local information.
The proposed kernel enables us to do similar procedures for the operator learning with kernels. By
considering the product of multiple proposed kernels with different values of n or deep model with
the proposed kernels with different values of n, we can extract both global and local information; we
can extract global information using the kernel with small n and extract local information using the
one with large n in the model.
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Figure 4: The true solution w(·, 1) and the predicted function v of the Burgers’ equation.

Figure 5: Pointwise error v − w(·, 1) of the true solution w(·, 1) and the predicted function v of the
Burgers’ equation.

D.1 NUMERICAL RESULTS

To show the availability of the proposed kernels to operator learning, we conducted an experiment.
Consider the following Burgers’ equation on (0, 1]× (0, 1].

∂w

∂t
+ w

∂w

∂x
= ν

∂2w

∂x2
x ∈ (0, 1)× (0, 1],

w(x, 0) = u(x) x ∈ (0, 1),

where ν = 0.1. We learned the operator mapping the initial condition u to w(·, 1), the solution at
time t = 1, by kernel ridge regression explained in Section 5. The training data and test data are
generated by sampling the initial condition u from the Gaussian distribution with mean 0 and the
covariance 625(−∆+25I)−2. We used equally spaced 128 points for computing the integral related
to the input functions. The number of training samples is 1000 and that of test samples is 200. This
problem is also considered by Batlle et al. (2024). We used the same k̂prod,qn kernel as Subsection 7.1
with n = 5. We set the regularization parameter λ as 0.01.

Figure 4 shows the true solution w(·, 1) and the predicted function v by using the proposed kernel for
the same test input function u (initial condition). Figure 5 shows the error v − w(·, 1) of these two
functions. The mean value of the pointwise error 1/128

∑128
i=1 |v(xi) − w(xi, 1)| over all the test

samples is 0.00157± 7.079× 1e−6 (average ± standard deviation over five independent runs). We
can see that the proposed kernel combined with kernel ridge regression properly predict the solution
of the problem, and compared to the results in Subsection 4.3.1 by Batlle et al. (2024), the proposed
kernel outperforms these existing results.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E PROOFS

We provide the proofs of theorems, propositions, and lemmas stated in the main text.

Theorem 3.4 For x, y ∈ Ad and z ∈ T, kpoly,qn (x, y)(z) → kpoly,q(x, y)(z), kprod,qn (x, y)(z) →
kprod,q(x, y)(z) as n → ∞. If x and y are differentiable, then ksep,qn (x, y)(z) → ksep,q(x, y)(z).

Proof We show kpoly,qn (x, y)(z) → kpoly,q(x, y)(z). The proofs for kprod,qn (x, y) and ksep,qn (x, y)
are similar. We have

kpoly,qn (x, y)(z) = Sn

( d∑
i=1

αi(Rn(xi)
∗)qRn(yi)

q

)
(z)

=
1

n

d∑
i=1

αi

n−1∑
j,l=0

n−1∑
r1,...,r2q=0

Rn(xi)
∗
j,r1 · · ·Rn(xi)

∗
rq−1,rqRn(yi)rq,rq+1

· · ·Rn(yi)r2q−1,le
i(j−l)z

=
1

n

d∑
i=1

αi

n−1∑
j,l=0

n−1∑
r1,...,r2q−1=0

∫
T
· · ·

∫
T
xi(t1) · · ·xi(tq)yi(tq+1) · · · yi(t2q)

· ei(r1−j)t1 · · · ei(rq−rq−1)tqei(rq+1−rq)tq+1 · · · ei(l−r2q−1)t2qdt1 · · · dt2qei(j−l)z

=
1

n

d∑
i=1

αi

n−1∑
j,l=0

n−1∑
r1,...,r2q−1=0

∫
T
· · ·

∫
T
xi(t1) · · ·xi(tq)yi(tq+1) · · · yi(t2q)

· ei(r1−j)(t1−z) · · · ei(rq−rq−1)(tq−z)ei(rq+1−rq)(tq+1−z) · · · ei(l−r2q−1)(t2q−z)dt1 · · · dt2q

=
1

n

d∑
i=1

αi

n−1∑
m=0

( m∑
j,l,r1,...,r2q−1=0

−
m−1∑

j,l,r1,...,r2q−1=0

) ∫
T
· · ·

∫
T
xi(t1) · · ·xi(tq)yi(tq+1) · · · yi(t2q)

· ei(r1−j)(t1−z) · · · ei(rq−rq−1)(tq−z)ei(rq+1−rq)(tq+1−z) · · · ei(l−r2q−1)(t2q−z)dt1 · · · dt2q

=
1

n

d∑
i=1

αi

n−1∑
m=0

∑
j∨l∨r1∨...∨r2q−1=m
0≤j,l,r1,...,r2q−1≤m

∫
T
· · ·

∫
T
xi(t1) · · ·xi(tq)yi(tq+1) · · · yi(t2q)

· ei(r1−j)(t1−z) · · · ei(rq−rq−1)(tq−z)ei(rq+1−rq)(tq+1−z) · · · ei(l−r2q−1)(t2q−z)dt1 · · · dt2q

=
1

n

d∑
i=1

αi

n−1∑
j=0

∑
r∈jP

⋂
Z2q

∫
T
· · ·

∫
T
xi(t1) · · ·xi(tq)yi(tq+1) · · · yi(t2q)

· eir1(z−t1) · · · eirq(z−tq)eirq+1(z−tq+1) · · · eir2q(z−t2q)dt1 · · · dt2q

=

d∑
i=1

αigi ∗ F 2q,P
n (z),

where the sum
∑−1

j,l,r1,...,r2q−1=0 is set as 0, gi(t) = xi(t1) · · ·xi(tq)yi(tq+1) · · · yi(t2q) for t =

[t1, . . . , t2q] ∈ T2q, and P = {r = [r1, . . . , r2q] ∈ R2q | |
∑m

i=l ri| ≤ 1, l ≤ m}. In addition, we
set j = r0 and j = rq. The second to the last equality is derived by Lemma 3.5 below. Since P is a
convex polyhedron, gi ∗ F 2q,P

n (z) → gi(z) as n → ∞ by Lemma 3.6. For ksep,qn , we additionally
use the fact limn→∞ k̃(Sn(Rn(x)), Sn(Rn(y))) = k̃(limn→∞ Sn(Rn(x)), limn→∞ Sn(Rn(y))),
which follows from the continuity of k̃, and the fact Sn(Rn(x)) → x uniformly as n → ∞ if x and
y are differentiable (van Suijlekom, 2021, Lemma 10). □

Lemma 3.5 For m ∈ N and j = 0, . . . 2q, let Qm
j = {r′ = [r′1, . . . , r

′
2q] ∈ R2q | r′i =

ri − ri−1 (i = 1, . . . , 2q), 0 ≤ ri ≤ m (i = 0, . . . , 2q), rj = m} and P = {r = [r1, . . . , r2q] ∈
R2q | |

∑k
i=l ri| ≤ 1, l ≤ k}. Then, we have mP =

⋃2q
j=0 Q

m
j .
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Proof Let r′ ∈ Qm
j . For i > j, we have ri = r′i+ri−1 = r′i+(r′i−1+ri−2) = · · · = r′i+· · ·+r′j+1+

m, and for i < j, we have −ri = r′i+1 − ri+1 = r′i+1 +(r′i+2 − ri+2) = · · · = r′i+1 + · · ·+ r′j −m.
Therefore, we have

2q⋃
j=0

Qm
j

=

2q⋃
j=0

{
r ∈ R2q

∣∣∣∣ ri = i∑
l=j+1

r′l +m (j < i ≤ 2q), ri = −
j∑

l=i+1

r′l +m (0 ≤ i < j),

0 ≤ ri ≤ m (i = 0, . . . , j − 1, j + 1, . . . 2q)}

=

2q⋃
j=0

{
r′ ∈ R2q

∣∣∣∣ −m ≤
i∑

l=j+1

r′l ≤ 0 (j < i ≤ 2q), 0 ≤
j∑

l=i+1

r′l ≤ m (0 ≤ i < j)

}

=

{
r ∈ R2q

∣∣∣∣ ∣∣∣∣ k∑
i=l

ri

∣∣∣∣ ≤ 1, l ≤ k

}
,

which completes the proof of the lemma. □

Proposition 3.7 The kernels kpoly,qn and ksep,qn are positive definite.

Proof Let x1, . . . , xN ∈ Ad and d1, . . . , dN ∈ A. Then, we have( N∑
j,l=1

d∗jk
poly,q
n (xj , xl)dl

)
(z)

=

N∑
j,l=1

dj(z)

n∑
j′,l′=1

d∑
i=1

αi

n∑
m=1

(
(Rn(xi,j)

∗)q
)
j′,m

(
Rn(xi,l)

q
)
m,l′

ei(j
′−l′)zdl(z)

=

d∑
i=1

αi

n∑
m=1

∣∣∣∣ N∑
j=1

n∑
j′=1

dj(z)
(
(Rn(xi,j))

q
)
m,j′

e−ij′z

∣∣∣∣2 ≥ 0

for z ∈ T. In addition, let x̃n,j = Sn(Rn(xj)). Then, we have( N∑
j,l=1

d∗jk
sep,q
n (xj , xl)dl

)
(z)

=

N∑
j,l=1

dj(z)k̃(x̃n,j , x̃n,l)dl(z)

n∑
j′,l′=1

n∑
m1,...,m2q−1=1(

(Rn(a)
∗)
)
j′,m1

(
(Rn(a)

∗)
)
m1,m2

· · ·
(
(Rn(a)

∗)
)
mq−1,mq

(
Rn(a)

)
mq,mq+1

· · ·
(
Rn(a)

)
m2q−1,l′

ei(j
′−l′)z

=

N∑
j,l=1

dj(z)k̃(x̃n,j , x̃n,l)dl(z)

n∑
mq=1

∣∣∣∣ n∑
j′=1

n∑
m1,...,mq−1=1

(
Rn(a)

)
mq,m1

· · ·
(
Rn(a)

)
mq−2,mq−1

(
Rn(a)

)
mq−1,j′

e−ij′z

∣∣∣∣2
≥ 0.

Thus, kpoly,qn and ksep,qn are positive definite. □
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1038
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Proposition 3.8 Let βn ≥ −minz∈Tq F 2q,P
n (z). Then, k̂prod,qn defined below is positive definite.

k̂prod,qn (x, y) = kprod,qn (x, y) + βn

∫
T2q

q∏
j=1

k̃1,j(x(tj), y(tj))k̃2,j(x(tq+j), y(tq+j))dt.

Proof Let x1, . . . , xN ∈ Ad and d1, . . . , dN ∈ A. Then, we have( N∑
j,l=1

d∗j k̂
prod,q
n (xj , xl)dl

)
(z)

=

N∑
m,l=1

∫
T2q

dm(z)

( q∏
j=1

k̃1,j(xm(tj), xl(tj))k̃2,j(xm(tq+j), xl(tq+j))

)
dl(z)F

2q,P
n (z1− t)dt

+ βn

N∑
m,l=1

∫
T2q

dm(z)

( q∏
j=1

k̃1,j(xm(tj), xl(tj))k̃2,j(xm(tq+j), xl(tq+j))

)
dl(z)dt

=

N∑
m,l=1

∫
T2q

dm(z)

( q∏
j=1

k̃1,j(xm(tj), xl(tj))k̃2,j(xm(tq+j), xl(tq+j))

)
dl(z)(F

2q,P
n (z1− t) + βn)dt

≥ 0

for z ∈ T. The last inequality is derived since the map ([x1, . . . , x2q], [y1, . . . , y2q]) 7→∏q
j=1 k̃1,j(x2j−1, y2j−1)k̃2,j(x2j , y2j) is positive definite and F 2q,P

n (z1− t) + βn ≥ 0. □

Lemma 3.9 We have |F q,P
n (z)| ≤ nq .

Proof The number of terms in F q,P
n is equal to the number of terms in

∑n−1
m,l=0(T1 · · ·T2q)m,l,

where T1, . . . , T2q are Toeplitz matrices. Thus, we have

|F q,P
n (z)| ≤ 1

n
nq+1 = nq.

□

Let Ω be a probability space with a probability measure µ. Let X1, . . . , XN and Y1, . . . , YN be
samples from a distributions of Ad

0-valued random variable X and A1-valued random variable Y on
Ω, respectively (i.e., for z ∈ T, Xi(z) is a sample from the distribution of X(z)). Here, A0 and A1

are subsets of A.

Theorem 4.1 Assume kpoly,qn , kprod,qn , and ksep q
n are real-valued. Let D(kpoly,qn , x) =∑d

j=1 αj∥Rn(xj)∥2qop, D(k̂prod,qn , x) =
∏q

j=1(∥Rn(k̃1,j(x, x))∥op∥Rn(k̃2,j(x, x))∥op)+βnC, and
D(ksep,qn , x) = k̃(x, x)

∏q
j=1 ∥Rn(aj)∥2op for x ∈ Ad

0, where ∥ · ∥op is the operator norm and

C =
∏q

j=1

∫
T k̃1,j(x(t), x(t))dt

∫
T k̃2,j(x(t), x(t))dt. Assume βn ≤ βn+1 for k̂prod,qn . For

kn = kpoly,qn , k̂prod,qn , ksep,qn and for any δ ∈ (0, 1), with probability at least 1− δ, we have

E[g(f(X), Y )] ≤A
1

N

N∑
i=1

g(f(Xi), Yi) + 2L
B

N

( N∑
i=1

D(kn, Xi)

)1/2

1A + 3

√
log 1/δ

N
1A

for any f ∈ F . In addition, we have D(kn, x) ≤ D(kn+1, x).

To show Theorem 4.1, we use the A-valued Rademacher complexity defined by Hashimoto et al.
(2023a). Let σ1, . . . , σN be i.i.d. Rademacher variables, which take their values on {−1, 1}. For a
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real-valued function class F and x = [x1, . . . , xN ] ∈ (Ad)N , the empirical Rademacher complexity
R̂N (x,F) is defined by R̂N (x,F) = E[supf∈F

∑N
i=1 f(xi)σi]/N . Here, E is the integration on Ω

with respect to µ. Similar to the case of the standard Rademacher complexity, an A-valued version
of the Rademacher complexity is defined as R̂A,N (x,F) = E[supAf∈F

∑N
i=1 |f(xi)

∗σi|A]/N for an
A-valued function class F . Here, |a|A = (a∗a)1/2 for a ∈ A, supA is the supremum in the sense of
the order in A (see Definition 2.4), and the integral E means the Bochner integral in this case.

Indeed, in our case, the A-valued Rademacher complexity is represented by the standard Rademacher
complexity, and the argument is reduced to evaluate the standard Rademacher complexity. In the
following, we denote by A+ the subset of A composed of all positive elements in A.

Proposition E.1 Let F be an A-valued function class. Assume for any x ∈ Ad
0 and z ∈ T, f(x)(z) ∈

R. Then, we have R̂N (x,F(z)) = R̂A,N (x,F)(z), where F(z) = {x 7→ (f(x))(z) | f ∈ F}.

Proof We first show (supAa∈S a)(z) = supa∈S a(z) for S ⊆ A+ for any z ∈ T. Let a ∈ S. Since
a(z) ≤ supa∈S a(z) for any z ∈ T, we have a ≤A b, where b ∈ A is defined as b(z) = supa∈S a(z).
Thus, b is an upper bound of S, and we have supAa∈S a ≤A b, which means (supAa∈S a)(z) ≤
supa∈S a(z) for any z ∈ T. Conversely, since a ≤A supAa∈S a for a ∈ S, we have a(z) ≤
(supAa∈S a)(z) for any z ∈ T. Thus, we have supa∈S a(z) ≤ (supAa∈S a)(z).

Therefore, we have

R̂A,N (x,F)(z) =
1

N
E

[
sup
f∈F

A
∣∣∣∣ N∑
i=1

f(xi)
∗σi

∣∣∣∣
A

]
(z) =

1

N
E

[(
sup
f∈F

A
∣∣∣∣ N∑
i=1

f(xi)
∗σi

∣∣∣∣
A

)
(z)

]

=
1

N
E

[
sup

f∈F(z)

∣∣∣∣ N∑
i=1

f(xi)σi

∣∣∣∣] =
1

N
E

[
sup

f∈F(z)

∣∣∣∣ N∑
i=1

f(xi)σi

∣∣∣∣] = R̂N (x,F(z)),

where the third equality is given by the identity |a|A(z) = |a(z)|, and the forth equality is satisfied
since σi is real-valued. □

We obtain the following lemma directly by Lemma 4.2 in Mohri et al. (2012).

Lemma E.2 Let F be an A-valued function class. Let g : R×R → R+ be an error function. Assume
there exists L > 0 such that for y ∈ A1 and z ∈ T, x 7→ g(x, y(z)) is L-Lipschitz continuous.
Assume also for any x ∈ Ad

0 and z ∈ T, f(x)(z) ∈ R. Then, we have

1

N
E

[
sup
f∈F

N∑
i=1

g(f(xi)(z), yi(z))σi

]
=

1

N
E

[
sup

f∈F(z)

N∑
i=1

g(f(xi), yi(z))σi

]
≤ LR̂N (x,F(z)).

We apply the following lemma to obtain the inequality (3).

Lemma E.3 Let F be an A-valued function class. Let g be the same map defined in Lemma E.2. For
any f ∈ F and any δ ∈ (0, 1), with probability at least 1− δ, we have

E[g(f(X), Y )](z) ≤ 1

N

N∑
i=1

g(f(Xi), Yi)(z) +
2

N
Eσi

[
sup
f∈F

N∑
i=1

g(f(Xi)(z), Yi(z))σi

]
+ 3

√
log 1/δ

N
.

Here, Eσi
[supf∈F

∑N
i=1 g(f(Xi)(z), Yi(z))σi] =

∫
Ω
supf∈F

∑N
i=1 g(f(Xi)(z), Yi(z))σi(ω)dµ(ω).

Proof With probability at least 1− δ, we have

E[g(f(X), Y )](z) = E[g(f(X)(z), Y (z))]

≤ 1

N

N∑
i=1

g(f(Xi)(z), Yi(z)) +
2

N
Eσi

[
sup
f∈F

N∑
i=1

g(f(Xi)(z), Yi(z))σi

]
+ 3

√
log 1/δ

N
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=
1

N

N∑
i=1

g(f(Xi), Yi)(z) +
2

N
Eσi

[
sup
f∈F

N∑
i=1

g(f(Xi)(z), Yi(z))σi

]
+ 3

√
log 1/δ

N
.

The inequality follows by Theorem 3.1 in Mohri et al. (2012). □

According to Hashimoto et al. (2023a), the A-valued Rademacher complexity for the RKHM
associated with an A-valued kernel k is upperbounded by ∥k(xi, xi)∥A as follows.

Lemma E.4 Let B > 0 and F = {f ∈ Mk | ∥f∥k ≤ B}. Then, we have

R̂A,N (x,F) ≤A
B

N

( N∑
i=1

∥k(xi, xi)∥A
)1/2

1A.

Combining these results with the following lemma completes the proof of Theorem 4.1.

Lemma E.5 Let kn be kpoly,qn , k̂prod,qn , or ksep,qn defined in Section 3. Then, for x ∈ Ad
0, D(kn, x) ≤

D(kn+1, x).

Proof We evaluate ∥kn(x, x)∥A. For kpoly,qn , we have

∥kpoly,qn (x, x)∥ =

∥∥∥∥Sn

( d∑
i=1

αi(Rn(xi)
∗)qRn(xi)

q

)∥∥∥∥
A
≤

∥∥∥∥ d∑
i=1

αi(Rn(xi)
∗)qRn(xi)

q

∥∥∥∥
op

≤
d∑

i=1

αi∥Rn(xi)∥2qop.

The first inequality is derived by the following inequalities for A ∈ Cn×n:

|Sn(A)(z)| =
∣∣∣∣ 1n

n−1∑
j,l=0

Aj,le
i(j−l)z

∣∣∣∣
=

∣∣∣∣ tr( 1

n
1diag(e0, . . . , ei(n−1))Adiag(e0z, . . . , ei(n−1)z)

)∣∣∣∣
≤ 1

n
∥1∥1∥ diag(e0, . . . , ei(n−1))A diag(e0z, . . . , ei(n−1)z)∥op ≤ ∥A∥op

for any z ∈ T. Here, tr(A) is the trace of a matrix A, diag(a1, . . . , an) for a1, . . . , an ∈ C is the
diagonal matrix whose diagonal elements are a1, . . . , an, 1 ∈ Cn×n is the matrix whose elements
are all 1, and ∥A∥1 for A ∈ Cn×n is the trace norm defined as ∥A∥1 = tr((A∗A)1/2). We used the
inequality | tr(AB)| ≤ ∥A∥1∥B∥op for A,B ∈ Cn×n (Conway, 2007, Chapter IX, Section 2).

In addition, there exists v ∈ Cn×n such that ∥Rn(x)∥op = ∥Rn(x)v∥ and ∥v∥ = 1. Thus, we have

∥Rn(x)∥op = ∥Rn(x)v∥ = ∥Q∗
nMxQnv∥ =

∥∥∥∥Q∗
nMxQn+1

[
v
0

] ∥∥∥∥ ≤
∥∥∥∥Q∗

n+1MxQn+1

[
v
0

] ∥∥∥∥
≤ ∥Q∗

n+1MxQn+1∥op = ∥Rn+1(x)∥op,

where Qn = [e1, . . . , en] and ej(z) = eijz is the Fourier function. □

F RELATIONSHIP BETWEEN q AND THE INTERACTIONS

Theorem 3.4 implies that the interactions along z ∈ T in the kernels become small as n grows. On
the other hand, we also have the parameter q that describes how many Toeplitz matrices created by
Rn are involved in the kernel. Regarding the relationship between q and the interactions, we have the
following remark.
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Remark F.1 We expect that the convergence in Theorem 3.4 becomes slower as q becomes larger,
and the interaction along z ∈ T becomes larger. This is based on the observation that the value
related to the Fejér kernel on Tq is described by the corresponding value related to the Fejér kernel
on Tq−1, especially in the case of q = 2.

To understand the relationship between q and the interactions, we observe the convergence shown in
Lemma 3.6 from the perspective of q. The following lemma is by Brandlini and Travaglini Brandolini
& Travaglini (1997).

Lemma F.2 Let Hq,P
n (t) = nq

∫1
0

∫
Rq χjP (r)e

inr·tdrdj for t ∈ Tq, where χS is the characteristic
function with respect to a set S. Then, we have F q,P

n (t) =
∑

m∈Zq Hq,P
n (t+ 2πm).

Proof Let uj,t(r) = χjP (r)e
ir·t. Then, we have

F q,P
n (t) =

1

n

n−1∑
j=1

∑
r∈jP

⋂
Zq

eir·t =
1

n

∫n
0

∑
r∈Zq

χjP (r)e
ir·tdj =

1

n

∫n
0

∑
r∈Zq

uj,t(r)dj

=
1

n

∫n
0

∑
m∈Zq

ûj,t(m)dj =
∑
m∈Zq

1

n

∫n
0

∫
Rq

χjP (r)e
ir·te2πir·mdrdj

=
∑
m∈Zq

∫1
0

∫
Rq

χjnP (r)e
ir·te2πir·mdrdj =

∑
m∈Zq

∫1
0

∫
Rq

χjP

(
r

n

)
eir·te2πir·mdrdj

= nq
∑
m∈Zq

∫1
0

∫
Rq

χjP (r)e
inr·te2πinr·mdrdj,

where ·̂ is the Fourier transform, and the forth equality is by the Poisson summation formula. □

To understand the convergence, we split F q,P
n (t) =

∑
m∈Zq Hq,P

n (t+ 2πm) into two parts: Hq,P
n (t)

and H̃q,P
n (t) :=

∑
m ̸=0 H

q,P
n (t+2πm). In the convergence discussed in Lemma 3.6, the convolution

g ∗Hq,P
n (z) goes to g(z). On the other hand, g ∗ H̃q,P

n (z) goes to 0 (Brandolini & Travaglini, 1997,
Theorem 1). Regarding the convergence of g ∗Hq,P

n (z) we can evaluate it as follows, especially for
q = 2.

Lemma F.3 For z ∈ T, we have

lim
n→∞

g ∗Hq,P
n (z)− g(z) =

∫1
0

lim
n→∞

( ∫
t∈Tq

∫
jnP

eir·(z−t)g(t)drdt− g(z)

)
dj.

Moreover, let hP
s (z) =

∫
t∈Tq

∫
sP

eir·(z−t)g(t)drdt− g(z). Let q = 2, Q = {(r1,−r2) | (r1, r2) ∈
P}, P ′

1 = [−1, 1], and P2 = {(r1, r2) | |r1| ≤ 1, |r2| ≤ 1, |r1 + r2| ≤ 1, |r1 − r2| ≤ 1}. Let
g(z) = x1(z1)x2(z2)y1(z3)y4(z4) for z = [z1, z2, z3, z4]. Then, for z ∈ T2, there exists C(z) ≥ 0
such that we have

1

2
|hP

jn(z) + hQ
jn(z)| ≤

1

2
C(z)

2∑
j=1

∣∣∣∣ ∫
t∈T

∫
jnP ′

1

eir(z1−t)xj(tj)drdt− xj(zj)

∣∣∣∣
+

1

2

∣∣∣∣ ∫
T2

∫
jnP2

eir·(z−t)g(t)drdt1 − g(z)

∣∣∣∣. (8)

Proof We have

nq

∫
t∈Tq

∫1
0

∫
jP

einr·(z−t)g(t)drdjdt− g(z) =

∫1
0

∫
t∈Tq

∫
jnP

eir·(z−t)g(t)drdt− g(z)dj.

Let hP
s (z) =

∫
t∈T

∫
sP

eir·(z−t)g(t)drdt − g(z). Then, hP
0 (z) = 0, and since lims→∞ hP

s (z) = 0,
there exists D(z) > 0 such that |hP

s (z)| ≤ D(z) for any s > 0. Thus, |hP
jn(z)| ≤ D(z) for any
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n ∈ N and 0 < j ≤ 1. Thus, by the bounded convergence theorem, we have

lim
n→∞

∫1
0

∫
t∈Tq

∫
jnP

eir·(z−t)g(t)drdt− g(z)dj =

∫1
0

lim
n→∞

∫
t∈Tq

∫
jnP

eir·(z−t)g(t)drdt− g(z)dj.

In addition, let P1 = [−1, 1]2 and P2 = {(r1, r2) | |r1| ≤ 1, |r2| ≤ 1, |r1+r2| ≤ 1, |r1−r2| ≤ 1}.
Then, we have

hP
jn(z) + hQ

jn(z) = hP1
jn(z) + hP2

jn(z).

For hP1
jn(z), we have

|hP1
jn(z)| =

∣∣∣∣ ∫
T

∫ jn
−jn

eir(z1−t)x1(t)drdt

∫
T

∫ jn
−jn

eir(z2−t)x2(t)drdt− g(z)

∣∣∣∣
≤

∣∣∣∣ ∫
T

∫ jn
−jn

eir(z1−t)x1(t)drdt

( ∫
T

∫ jn
−jn

eir(z2−t)x2(t)drdt− x2(z2)

)∣∣∣∣
+

∣∣∣∣x2(z2)

( ∫
T

∫ jn
−jn

eir(z1−t)x1(t)drdt− x1(z1)

)∣∣∣∣.
In the same manner as hP

s (z), there exists C̃(z) > 0 such that |
∫
T
∫jn
−jn

eir(z1−t)x1(t)drdt| ≤ C̃(z).

By setting C(z) = max{C̃(z), |x2(z2)|}, we obtain the result. □

The left hand side is the average of hP
jn(z) and hQ

jn(z), where P and Q are symmetric with respect
to the second coordinate r2. The first term in the right hand side of Eq. (8) is described by the
convergence of h[−1,1]

jn (z), which corresponds to the one-dimensional ((q − 1)-dimensional) Fejér
kernel. Since we have an additional term 1/2|

∫
T2

∫
jnP2

eir·(z−t)g(t)drdt − g(z)|, if C(z) > 1,

the convergence of hP
jn(z) is expected to be slower than its one-dimensional counterpart h[−1,1]

jn (z).
Based on this observation, we expect that the convergence in Theorem 3.4 becomes slower as q
becomes larger, and the interaction along z ∈ T becomes larger.

G REPRESENTER THEOREM FOR RKHMS OVER GENERAL C∗-ALGEBRAS

Hashimoto et al. (Hashimoto et al., 2023b, Proposition 4.5) showed an approximate representer
theorem for RKHMs over von Neumann-algebras. Since C(T) is not a von Neumann-algebra, we
generalize the theorem to that for general C∗-algebras as follows.

Proposition G.1 Let x1, . . . , xN ∈ Ad. Let g : AN → A+ be a continuous map, let h : A+ → A+

satisfy h(c) ≤A h(d) for c, d ∈ A+ with c ≤A d. Let L(f) = g(f(x1), . . . , f(xN )) + h(|f |k) for
f ∈ Mk. If there exists a solution f0 of the minimization problem minf∈Mk

L(f), then for any
ϵ > 0, there exists f̃ that admits the representation of f̃ =

∑N
i=1 ϕ(xi)ci and ∥L(f̃)− L(f0)∥ ≤ ϵ.

Proof For f1, f2 ∈ Mk, let θf1,f2 : Mk → Mk defined as θf1,f2(v) = f1 ⟨f2, v⟩k for
v ∈ Mk. Let Nk be the submodule generated algebraically by {ϕ(x1), . . . , ϕ(xN )}, let B0 =
Span{θf1,f2 | f1, f2 ∈ Nk}, and let B = B0. In addition, let L(Mk) be the (unital) C∗-algebra
of adjointable A-linear operators on Mk (see (Lance, 1995, p8)). Since B is a C∗-subalgebra
of L(Mk) (Note θf1,f2θf3,f4 = θf1,f4⟨f3,f2⟩ and θ∗f1,f2 = θf2,f1), B0 has a net {bi}i such that
0 ≤L(Mk) bi ≤L(Mk) 1 and limi θf1,f2bi = limi biθf1,f2 = θf1,f2 for any f1, f2 ∈ Nk (Davidson,
1996, Theorem I.4.8). For each v ∈ Nk, we have

∥v − biv∥2k = ∥ ⟨(1− bi)v, (1− bi)v⟩k ∥A = ∥θ(1−bi)v,(1−bi)v∥L(Mk)

= ∥(1− bi)θv,v(1− bi)
∗∥L(Mk) = ∥(1− bi)θv,v(1− bi)∥L(Mk).

Thus, we have limi biv = v. Since g is continuous, we have

lim
i

g(⟨ϕk(x1), bif0⟩k , . . . , ⟨ϕk(xN ), bif0⟩k) = lim
i

g(⟨b∗iϕk(x1), f0⟩k , . . . , ⟨b
∗
iϕk(xN ), f0⟩k)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 6: Eigenvalues of the Gram matrix G(0) indexed as the descending order for the regression
task. (Average value of results of five different runs. The error bar represents the standard deviation.)

= lim
i

g(⟨biϕk(x1), f0⟩k , . . . , ⟨biϕk(xN ), f0⟩k) = g(⟨ϕk(x1), f0⟩k , . . . , ⟨ϕk(xN ), f0⟩k).

Therefore, for ϵ > 0, there exists i such that

∥g((bif0)(x1), . . . , (bif0)(xN ))− g(f0(x1), . . . , f0(xN ))∥A ≤ ϵ.

Since bi ≥L(Mk) 0, there exists c ≥L(Mk) 0 such that bi = c2. Thus, bi − b2i = c2 − c4 =

c(1 − c2)c = c∗(1 − bi)c ≥L(Mk) 0. Thus, 0 ≤L(Mk) b2i ≤L(Mk) bi ≤L(Mk) 1, and we have
|bif0|2k =

〈
f0, b

2
i f0

〉
k
≤A ⟨f0, f0⟩k = |f0|k. As a result, we obtain

0 ≤A L(bif0)− L(f0)

= g((bif0)(x1), . . . , (bif0)(xN )) + h(|bif0|k)− g(f0(x1), . . . , f0(xN ))− h(|f0|k)
≤A g((bif0)(x1), . . . , (bif0)(xN ))− g(f0(x1), . . . , f0(xN )).

Since bif0 ∈ Nk, setting f̃ = bif0 completes the proof of the proposition. □

H GENERALIZATION TO OTHER C∗-ALGEBRAS

Setting Rn and Sn for more general C∗-algebras has been investigated. Using these results and
replacing Rn and Sn in Definition 3.2, we can define positive definite kernels for the Ad-valued
inputs and A-valued output for a more general C∗-algebra A.

Continuous functions on high-dimensional torus (Leimbach & van Suijlekom, 2024) For
A = C(Tm), let ej(z) = eij·z for j ∈ Zm and Bn = {j ∈ Zm | ∥j∥ ≤ n}, and consider
the space Span{ej | j ∈ Bn}. Here, ∥ · ∥ is the Euclidean norm. We consider generalized
matrices whose elements are indexed by Zm, and set Rn(x) = (

∫
Tm x(t)e−i(j−l)·tdt)j,l∈Bn

and
Sn(A)(z) = (1/|Bn|)

∑
j,l∈Bn

Aj,le
i(j−l)z .

Continuous functions on the sphere (Rieffel, 2004) For A = C(S2), let ρn be the n-dimensional
irreducible group representation of SU(2) (special unitary group of degree 2) and let Vn be the repre-
sentation space. Let P ∈ B(Vn) be a projection, where B(Vn) is the space of bounded linear operators
on Vn. We set Rn(x) = n

∫
SU(2)

x(g)ρn(g)
∗Pρn(g)dg and Sn(A)(g) = tr(Aρn(g)

∗Pρn(g)).

I EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

We provide experimental details below. All the experiments in this paper were executed with Python
3.9 on an Intel(R) Core(TM) i9-10885H 2.4GHz processor with the Windows 10 operating system.

I.1 EXPERIMENT WITH SYNTHETIC DATA

We estimated f using kernel ridge regression with the regularization parameter λ = 0.01. We
generated 1000 input test samples in the same manner as the input training samples, and evaluated
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Figure 7: Test error of the regression task with deep approach with different n and L.

(a) (b)

Figure 8: (a) Test error of the image recovering task with different values of n and the kernel
k = k̂prod,qn . (Box plot of results of five independent runs with different training and test data.) (b)
Eigenvalues of the Gram matrix G(0) indexed as the descending order for the image recovering task.
(Average value of results of five different runs. The error bar represents the standard deviation.)

the test error 1/N
∑N

i=1 ∥f̂(x̃i)− ỹi∥L2(T), where f̂ is the estimation of f and x̃i and ỹi are input
and output test samples, respectively. For xi, yi, x̃i, and a, we discretized each function with 30
equally spaced points on T. In addition, to investigate the positive definiteness of k̂prod,qn discussed
in Remark 3.10, we computed the eigenvalues of the Gram matrix G(0) at 0. Figure 6 shows the
result. The index i is determined in the descendent order with respect to the value of λi. Thus, we
can see that although we set βn as a small value, all the eigenvalues of G(0) are positive in this case.

We also show additional results regarding the deep approach in Figure 7. The result is the average ±
the standard deviation of three independent runs. We set different values of n with the same deep
setting considered in Subsection 7.1.

I.2 EXPERIMENT WITH MNIST

We generated 200 input test samples in the same manner as the input training samples, and evaluated
the test error 1/N

∑N
i=1 ∥f̂(x̃i)− ỹi∥L2(T), where f̂ is the estimated map that maps the image with

the missing part to its original image, and x̃i and ỹi are input and output test samples, respectively.
Figure 8 (a) shows the test error. We can see that the test error becomes the smallest when n = 70,
but it becomes large when n is smaller or larger than 70. In addition, to investigate the positive
definiteness of k̂prod,qn , we computed the eigenvalues of the Gram matrix G(0) at 0. Figure 8 (b)
shows the result. The index i is determined in the descendent order with respect to the value of λi.
Thus, we can see that although we set βn as a small value, all the eigenvalues of G(0) are positive in
this case.
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