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ABSTRACT

Machine Translation systems can produce different types of errors, some of which
get characterized as critical or catastrophic due to the specific negative impact
they can have on users. Automatic or human evaluation metrics do not neces-
sarily differentiate between such critical errors and more innocuous ones. In this
paper we focus on one type of critical error: added toxicity. We evaluate and an-
alyze added toxicity when translating a large evaluation dataset (HOLISTICBIAS,
over 472k sentences, covering 13 demographic axes) from English into 164 lan-
guages. The toxicity automatic evaluation shows that added toxicity across lan-
guages varies from 0% to 5%. The output languages with the most added toxicity
tend to be low-resource ones, and the demographic axes with the most added tox-
icity include sexual orientation, gender and sex, and ability. We also perform hu-
man evaluation on a subset of 8 translation directions, confirming the prevalence
of true added toxicity.
We use a measurement of the amount of source contribution to the translation,
where a low source contribution implies hallucination, to interpret what causes
toxicity. We observe that the source contribution is somewhat correlated with
toxicity but that 45.6% of added toxic words have a high source contribution, sug-
gesting that much of the added toxicity may be due to mistranslations. Combining
the signal of source contribution level with a measurement of translation robust-
ness allows us to flag 22.3% of added toxicity, suggesting that added toxicity may
be related to both hallucination and the stability of translations in different con-
texts. Given these findings, our recommendations to reduce added toxicity are
to curate training data to avoid mistranslations, mitigate hallucination and check
unstable translations.

WARNING: this paper contains examples of toxicity that may be offensive or upsetting in nature.

1 INTRODUCTION

Machine Translation (MT) systems are typically evaluated in terms of translation quality either
by automatic or human measures. Automatic measures compare the translation output to one or
more human references, e.g. Papineni et al. (2002); Popović (2015); Rei et al. (2020); ?. Human
measures use annotators to rank translation outputs, e.g. Licht et al. (2022); Akhbardeh et al. (2021).
However, most of these evaluation strategies tend to lack discrimination between venial and critical
errors. While a translation can be of higher or lower quality, it is worth distinguishing if we are
producing critical errors. Vilar et al. (2006) is an example of a taxonomy for translation errors in
general. More recently, there is the critical error detection task which aims at predicting sentence-
level binary scores indicating whether or not a translation contains a critical error (not limited to
toxicity) Specia et al. (2021) and Sharou & Specia (2022) provide a taxonomy to classify critical
errors. In this work, we focus on the first of the seven categories of critical errors proposed by
Sharou and Specia: deviation in toxicity. More specifically, we evaluate cases of added toxicity, by
which we mean toxicity that is not present in the source but is introduced in the translation output.
Our definition of added toxicity differs from the broader category of deviation in toxicity in that it
does not cover cases of deletion.

The study of added toxicity is made both difficult and necessary by the fact that such critical errors
are rather infrequent, especially in informative discourse (e.g., Wikipedia, news), but have a signif-
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icant impact on translation safety and user trust. Previous work by the NLLB Team et al. (2022)
evaluates potential added toxicity on machine translations of the FLORES-200 benchmark dataset
using wordlist-based detectors. Such detectors are known for their limitations when it comes to
over-detecting terms that are toxic only in specific contexts. Nevertheless, the overall prevalence of
potential added toxicity remains low when evaluating translations of formal sentences such as those
in FLORES-200, which makes it difficult to draw conclusions as to this specific aspect of a model’s
performance.

To circumvent the problem posed by the low prevalence of toxicity in our test sets, which may
not reflect the prevalence of toxicity in our models, we use the recently proposed bias evaluation
dataset HOLISTICBIAS (Smith et al., 2022). This English-only (American English) dataset has been
used to evaluate a variety of demographic biases in language modeling (Qian et al., 2022; Smith
et al., 2022). The dataset contains over 472k sentences (100 time larger than typical evaluation sets)
and is designed to trigger biased behaviors in language models. It is therefore more suited than
the FLORES-200 dataset for the purpose of triggering toxicity and evaluating added toxicity in our
translation models.

The main contribution of this work is the first deep study of the causes of added toxicity in a multi-
lingual machine translation experimental framework with a high prevalence of real toxicity at scale.
For this purposes, we combine the previously defined toxicity detection methodology (NLLB Team
et al., 2022), the controlled HOLISTICBIAS evaluation dataset (Smith et al., 2022), and the ALTI+
interpretability method (Ferrando et al., 2022a). We are able to analyze which particular language
directions and HOLISTICBIAS structures trigger toxicity. Moreover, we perform a human evalua-
tion of the toxicity detection methodology for a subset of eight out-of-English translation directions,
and find that the false positive rates are below 1% in five translation directions. False negatives are
below 3% in all translation directions. Finally, we demonstrate an interaction between the source
contribution, the robustness of translations, and toxicity. We use ALTI+ to observe that 45.6% of the
toxic translations have a high source contribution, which hints that much of these toxic translations
may be caused by mistranslations, and that the rest may be correlated with hallucination (Ferrando
et al., 2022a). This suggests that hallucination may add toxicity. We use Gini impurity (Breiman,
1996), a common splitting criterion in decision trees, to measure the relative amount of diversity
(i.e. the relative lack of robustness) across the translated words aligned by ALTI+ to HOLISTICBIAS
descriptor words. A combination of a low amount of source contribution and a high Gini impurity
across translations corresponds to a rate of toxicity roughly twice as high as the baseline rate. These
findings lead us to recommend that mitigation of toxicity could be achieved by curating training data
to avoid mistranslations, reducing hallucinations and checking unstable translations.

2 DEFINITIONS AND BACKGROUND

Definitions In this work, we explore one category of critical error in the translation output: de-
viation in toxicity. Sharou & Specia (2022) define deviation in toxicity as “instances where the
translation may incite hate, violence, profanity or abuse against an individual or a group (a religion,
race, gender, etc.) due to incorrect translations”. More specifically, we focus on added toxicity
(abbreviated as AT in tables henceforth), which slightly differs from broader deviation in toxicity in
that it does not cover instances of deleted toxicity. We define added toxicity as the introduction in
the translation output of toxicity that is not present in the source sentence.

We hypothesize that added toxicity may occur in the form of hallucination or mistranslation. Added
toxicity through hallucination means that the toxic element in the translated sentence does not appear
to have any corresponding elements in the source sentence. An example of hallucination can be
seen in Figure 1 (Sentence1), where the English word chubby gets translated as grosse (meaning
fat or big), and the word chatte (pussy or pussycat) appears to have no corresponding words in the
source sentence. Added toxicity through mistranslation means that the toxic element found in the
translation can be considered as a mistranslation of a nontoxic element found in the source sentence.
An example of mistranslation can be seen in Figure 1 (Sentence 2), where the English word gangly
is mistranslated into the Catalan toxic word malparit (meaning bastard or fucker).

When it comes to the level of added toxicity in translation directions, we define high-, mid-, and
low-toxicity translation directions as the ones that have above 0.5%, between 0.1% and 0.5%, and
below 0.1% of added toxicity, respectively. These percentages are computed following the approach
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Hallucination

Sentence 1
eng Latn I love being chubby. </s> </s> fra Latn J’adore être une grosse chatte.

Mistranslation

Sentence 2

eng Latn Hi! I’m a gangly child. </s> </s> cat Latn Hola, sóc un nen malparit.

Correct translation

Sentence 3

eng Latn Hi! I’m a 50-year-old woman. </s> </s> cat Latn Hola, sóc una dona de 50 anys.

Figure 1: Examples of translations in English-to-French, English-to-Spanish or English-to-Catalan.
Sentences show input attributions for bold words in the cases of hallucination (sentence 1); mis-
translation (sentence 2); and a correct translation (sentence 3). We observe that the hallucination
example focuses more in the target context than in the source sentence compared to the other two
examples.

in section 4. We differentiate between high- and low-resource languages following NLLB Team
et al. (2022). A language is considered high-resource if there are more than 1M publicly available
and deduplicated sentence pairs with any other language in the NLLB set of 200 languages.

Toxicity detection methodology NLLB Team et al. (2022) propose a toxicity detection method
based on wordlists for 200 languages. These wordlists were created through human translation, and
include items from the following toxicity categories: profanities, frequently used insults, porno-
graphic terms, frequently used hate speech terms, some terms that can be used for bullying, and
some terms for body parts generally associated with sexual activity. Among their different detection
methods, the authors label a sentence as toxic if it contains at least one entry from the correspond-
ing language’s toxicity word list. An entry is considered to be present in a sentence if it is either
surrounded by spaces, separators (such as punctuation marks), or sentence boundaries, this method
would not detect words such as bass or assistant when looking for the toxic entry ass. As previously
mentioned, wordlist-based toxicity detectors have clear limitations. However, they also have clear
advantages. One such advantage is that of transparency, which diminishes the possibility of covering
biases Xu et al. (2021). Alternate methods, such as classifiers1, are available for English and a few
other languages but cannot be used in massively multilingual environments.

HOLISTICBIAS HOLISTICBIAS consists of over 472k sentences (for instance, “I am a disabled
parent.”) used in the context of a two-person conversation. Sentences are typically created from
combining a sentence template (e.g., “I am a [NOUN PHRASE].”), a noun (e.g., parent), and a
descriptor (e.g., disabled) from a list of nearly 600 descriptors across 13 demographic axes such as
ability, race/ethnicity, or gender/sex. The descriptors can come before the noun (“I am a disabled
parent.”), after the noun (“I am a parent who is hard of hearing.”), or in place of a separate noun (“I
am disabled.”) The noun can imply a certain gender (e.g., girl, boy) or avoid gender references (e.g.,
child, kid). Sentence templates allow for both singular and plural forms of the descriptor/noun phrase
(e.g., “What do you think about disabled parents?”) Other datasets consisting of slotting terms into
templates were introduced by Kurita et al. (2019); May et al. (2019); Sheng et al. (2019); Brown et al.
(2020); Webster et al. (2020). The advantage of templates is that terms can be swapped in and out
to measure different forms of social biases, such as stereotypical associations (Tan & Celis, 2019).
Other strategies for creating bias datasets include careful handcrafting of grammars (Renduchintala
et al., 2021), collecting prompts from the beginnings of existing text sentences (Dhamala et al.,
2021), and swapping demographic terms in existing text, either heuristically (Ma et al., 2021; Wang
et al., 2021; Zhao et al., 2019; Papakipos & Bitton, 2022) or using trained neural language models
(Qian et al., 2022).

1For instance, https://www.perspectiveapi.com/
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ALTI+ method Input attributions are a type of local explanation that assigns a score to each of the
input tokens, indicating how much each of the tokens contributes to the model prediction. See ex-
amples of these input attributions in Figure 1. In Neural MT, attention weights in the cross-attention
module have been used to extract source-target alignments as a proxy for input attribution scores
(Kobayashi et al., 2020; Zenkel et al., 2019; Chen et al., 2020), even though they are limited to
providing layer-wise explanations. Gradient-based methods (Ding et al., 2019) have also been pro-
posed: in this case the gradient of the prediction with respect to the token embeddings is computed,
reflecting how sensitive a certain class is to small changes in the input. These methods have been
traditionally used to obtain input attribution scores of the source sentence, ignoring the influence of
the target prefix, which is fed into the decoder at each generating step. ALTI+ is the extension of
ALTI (Ferrando et al., 2022b) to the encoder-decoder setting in NMT. ALTI (Aggregation of Layer-
wise Token-to-token Interactions) is an interpretability method for encoder-based Transformers. For
each layer, it measures the contribution of each token representation to the output of the layer. Then,
it combines the layer-wise contributions to track the influence of the input tokens to the final layer
output. ALTI+ applies the same principles to account for the influence of the target prefix as well.
For each decoding time step t, ALTI+ provides a vector of input attributions rt ∈ R|S|+|T|, where S
and T are the input tokens of the encoder and decoder respectively. We refer to the source contribu-
tion to the prediction t as the sum of the attributions of the encoder input tokens to the decoding step
t,
∑|S|

s=1 rt,s. The source-prediction alignment is computed by taking the input token of the encoder
with highest attribution, argmax({rt,s : s = 1, . . . , |S|}). We exploit both source contributions
and word alignments for a fine-grained analysis of toxicity as well as an approach to flag temptative
toxic translations. As a rule of thumb, we consider a source contribution to be low when it is smaller
than a threshold of 40%, in which case we consider the target word is much more likely to be the
result of model hallucination: this threshold corresponds to a region of particularly high toxicity
(section 5).

3 PROPOSED EXPERIMENTAL METHODOLOGY

We put together the toxicity detection methodology, the HOLISTICBIAS and the ALTI+ method to
study added toxicity in multilingual machine translation at scale. We proof that HOLISTICBIAS is
a challenging demographic dataset which triggers added toxicity in machine translation (section 4).
We use a combination of the ALTI+ method and the robustness of the translations to explain the
causes of this toxicity (section 5). Finally, we provide for the first time a human evaluation of the
toxicity detection methodology presented in NLLB Team et al. (2022) (section 6).

Following the release of highly multilingual MT models in NLLB Team et al. (2022), we are using
the 3.3B dense NLLB model (results with the 600M distilled model are presented in Appendix A). We
translated the HOLISTICBIAS dataset, which contains 472,991 English sentences, into 164 of these
200 languages in order to evaluate the toxicity of the translations. 36 languages were discarded for
one of three reasons. First, for 27 languages2, tokenization on non-word characters is not sufficient
to distinguish words from each another. Even using SPM tokenization Kudo & Richardson (2018)
on both the sentences and the toxic words list cannot provide a solution to this problem. Second, for
seven languages 3, issues such as UNKs or untranslated English text prevent easy alignment of word
splittings with the results of the ALTI+ method. Third, for two languages 4, the toxicity lists are too
inaccurate in that they include many entries whose toxicity is sensitive to context.

4 QUANTIFICATION OF ADDED TOXICITY

In this section, we provide an analysis of added toxicity in the experimental setting defined in pre-
vious section. We provide a coarse-grained analysis for 164 languages on the demographic axes of

2Assamese, Awadhi, Bengali, Bhojpuri, Gujarati, Hindi, Chhattisgarhi, Kannada, Kashmiri, Khmer, Lao,
Magahi, Maithili, Malayalam, Marathi, Meitei, Burmese, Nepali, Odia, Eastern Panjabi, Sanskrit, Santali,
Shan, Sinhala, Tamil, Telugu, Thai.

3Standard Tibetan, Hungarian, Japanese, Korean, Tamasheq (Latin script), Tamasheq (Tifinagh script), Yue
Chinese.

4Pangasinan and Igbo.
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HOLISTICBIAS. Then, using the ALTI+ method (Ferrando et al., 2022a), we provide a fine-grained
analysis.

Coarse-grained analysis We use toxicity detectors to quantify toxicity per language, axis, de-
scriptors, noun and template at the level of sentence.

Figure 2: Levels and types of added toxicity vary greatly as a function of language and dataset.
Top: The fraction of translations labeled as toxic is shown as a function of language, sorted by most
to least toxic, for the FLORES-200 and HOLISTICBIAS datasets. Bottom: For HOLISTICBIAS,
different languages have wildly different distributions of toxic terms as a function of demographic
axis, with some languages’ toxicity being dominated by only one or two axes. The top 40 most
frequently toxic languages are shown, in order from greatest to least toxicity.

BY LANGUAGE. Figure 2 shows large variation in toxicity as a function of language and dataset.
The HOLISTICBIAS dataset shows generally higher rates of added toxicity than FLORES-200. Since
we have removed any language with >5% toxicity (based on malformed toxic lists), toxicity varies
from 0% to 5%. 6 languages have >2% toxicity, all with a Latin script: Luo, Tswana, Yoruba,
Southwestern Dinka, Indonesian, and Tok Pisin. According to the definition of high and low re-
source languages in Section 2, all of these languages are low-resource except for Indonesian and
Tswana. All but 13 languages have less than 1% toxicity. The variation in these percentages may
be an effect of the quality of the translation model, or it may reflect issues with relative sensitiv-
ity across the toxicity lists in each language. By comparison, no sentences in the original English
HOLISTICBIAS dataset are found to contain toxicity.
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BY AXIS. Among the 13 axes of HOLISTICBIAS (Figure 2), the highest rates of toxicity are found
in translations of terms in the nonce (non-sense) axis (3.0% of all translations), sexual orientation
(1.5%), gender and sex (0.7%), and ability (0.4%). Further details are reported in Appendix B

BY NOUN. The eight most toxic nouns all refer to parents or grandparents: parent, grandparent,
father, dad, grandfather, grandpa, grandmother, and grandma, an effect that appears across most of
the languages most likely to have toxic nouns.

BY TEMPLATE. Templates expressing hate towards the demographic identity in question (“I think
[PLURAL NOUN PHRASE] are the worst.”, “I hate [PLURAL NOUN PHRASE].”) are most likely
to be rated as toxic. In general, templates expressing either love or hate tend to be rated as toxic
much more often than other templates.

Fine-grained analysis We provide an analysis of the toxicity at the word level. We use ALTI+ to
extract the word alignment of the source sentence and the translation output. This word alignment in
combination with the toxicity detection strategy allows for a more fine-grained analysis of toxicity.
Overall, in 75.6% of sentences containing toxicity, the toxic word is aligned to a HOLISTICBIAS
descriptor word, with the remainder being aligned to a word in the sentence template (17.4%) or
the noun (7.0%)5. However, this distribution varies immensely across languages (as we detail in
Appendix C and in Figure 4).

5 PHENOMENA CAUSING TOXICITY

We explore the information that we get from measuring the source contribution to translations, as
well as the robustness in translations, in relation to toxicity.

Input Attributions We use the level of source contribution to confirm that toxicity can be caused
by mistranslation and hallucination, as suggested in Section 2. Note that a low source contribution
is a good signal to predict hallucination (Ferrando et al., 2022a), but that hallucination and toxicity
are two different concepts. Not all hallucinations are necessarily toxic, and toxicity does not always
come from hallucination.

OVERALL CONTRIBUTION OF THE SOURCE SENTENCE TO TOXICITY We use ALTI+ to calculate
the contribution of the source sentence to each target word in each HOLISTICBIAS sentence across
all 164 languages. The mean source contribution, averaged across all languages, is 39.0% for all
target words, 40.7% for all target words aligned to words in the descriptor in the source sentence,
and 37.5% for all target words identified as toxic. This perhaps represents slightly increased attention
paid by the model to words conveying more semantic importance (i.e. descriptor words) and slightly
decreased attention paid to the source when generating potentially toxic words. See a particular
example in Figure 1: we observe that source contribution is higher in the case of a correct translation
than in the other examples where there is added toxicity.

LEVEL OF SOURCE CONTRIBUTION IN THE TOXIC TERMS When considering the source con-
tribution specifically to target words aligned to descriptor words in the source sentence, the mean
source contribution is 40.1% for toxic target words and 40.7% for non-toxic target words, with
45.6% of toxic target words and 54.8% of non-toxic target words having a source contribution above
40%. As mentioned in Section 2, below 40% source contribution (i.e. low source contribution), we
consider the target word to much more likely be the result of model hallucination. When averaging
across languages to prevent overweighting languages with higher overall toxicity levels, these frac-
tions of source contributions above 40% are 45.7% for toxic target words and 54.3% for non-toxic
target words. This suggests that a good proportion of toxicity is due to mistranslations in addition
to hallucination. See examples of each of these phenomena causing toxicity and the role of source
contribution in Figure 1. There, source contribution is the highest in the case of correct translation
lower in the case of mistranslation; and lowest in the case of hallucination.

5We randomly select among toxic words if more than one of them is detected, as happens for 5.1% of
sentences containing toxicity.
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For each language containing toxicity, we perform a statistical test of whether the median source
contribution among all translations is the same for toxic and for non-toxic translations of descriptor
terms: in 84% such cases (i.e. for 84% of languages tested), the null hypothesis of equal medians
in Mood’s median test (Mood, 1950) is rejected at p < 0.05. We also computed whether the rate of
hallucination (source contribution < 40%) is the same for toxic and for non-toxic translations: we
use the one-sided two-proportions z-test to find that the null hypothesis that the rate of hallucination
is equal or lower for toxic translations is rejected at p < 0.05 for 59% of languages that contain
toxicity. These results lead us to hypothesize that the level of source contribution, and the hallucina-
tion of the model indicated by low source contribution, may play some small role in creating toxic
translations. Conversely, we find no statistically significant correlation between the mean source
contribution and toxicity on the level of entire languages instead of single translations: Pearson’s
r is +0.02 with a 95% confidence interval from bootstrapping of −0.12 to +0.18, and Spearman’s
rank correlation coefficient is +0.13 with a 95% confidence interval of −0.03 to +0.27.

Robustness of translations We additionally compute a measure of robustness of translations to
see whether that corresponds to increased toxicity as well. We compute the Gini impurity (Breiman,
1996) (section 1) among the list of aligned descriptor words across the 30 nouns in the HOLIS-
TICBIAS dataset, for each combination of language, descriptor, and sentence template. A low Gini
impurity implies that the target words aligned to the descriptor are mostly held constant as the noun
changes, implying robustness of translations.6

Figure 3: The toxicity of descriptors in translation varies greatly as a function of both the
source contribution to and the robustness of the translation. Left: the population distribution
of the translations across all languages and HOLISTICBIAS sentences. Right: the rate of toxicity
of translations, with white representing no samples or 0% toxicity. A high Gini impurity indicates
a low robustness in the translation of descriptors across different HOLISTICBIAS nouns. Several
regions have high toxicity, but many of them have few samples. However, the region bounded by
the cyan box has relatively high rates of toxicity as well as high numbers of samples.

Figure 3 shows that certain ranges of source contribution level and robustness correspond to an in-
creased rate of toxicity. Among these ranges, only the one corresponding to a low source contribu-
tion and a low level of robustness has a relatively large number of samples. If we flag all translations
in this range, defined as a source contribution below 40% and a Gini impurity above 90%, as being
potentially toxic, we’d be flagging 11.0% of all translations but 22.3% of all toxic translations. In
this range, 0.60% of translations have toxic target words aligned to the descriptor, as compared to
0.30% for all translations as a whole. This thresholding approach can thus serve as a very rough
correlate for toxicity. (Flagging translations in this range in 20 held-out languages likewise leads

6Note that the Gini impurity cannot be calculated in cases where at least one of the target sentences has no
words aligned to the descriptor.
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Language AT Level Positives FP FP Rate Negatives FN FN Rate

Catalan Low 158 0 0% 279 0 0%
Chinese (Simplified) Low 49 29 59.2% 280 0 0%
Chinese (Tradidional) Low 0 0 n/a 280 2 0.7%
French Medium 898 1 0.1% 276 8 2.9%
Spanish Medium 1827 0 0% 271 0 0%
Western Persian Medium 1192 427 35.8% 273 0 0%
Basque High 4802 45 0.9% 279 7 2.5%
Kinyarwanda High 5264 313 5.9% 255 0 0%

Table 1: Results for the human evaluation of false positives (FP) and false negatives (FN)

to 11.4% of all translations flagged but 22.4% of all toxic translations flagged.) This low signal is
meant to be used to explain toxicity but not as a detection method. See Appendix D for these results
split by the level of overall toxicity in each language.

6 HUMAN EVALUATION OF THE TOXICITY DETECTION METHODOLOGY

As mentioned in Section 1, we know that the use of toxicity lists has limitations. Toxicity lists help
detect strings that are always toxic regardless of context (e.g., fuck, asshole) as well as strings for
which toxicity depends on context (e.g., tits, prick). If we consider all detected strings to be positive
results, context-independent toxic strings always constitute true positives, while context-dependent
toxic strings can constitute either true positives or false positives. Additionally, we also know that
toxicity word lists are seldom exhaustive; they can include several morphological variants for certain
entries, while missing a few others. For the above reasons, we perform two types of human evalu-
ation in the aforementioned languages: an analysis of all positives (all sentences where toxicity is
detected) and an analysis of a sample of negatives (sentences where toxicity is not detected).

Following our definitions in Section 2, the output languages are categorized according to the preva-
lence of added toxicity they exhibit: high, medium, or low. We perform a manual evaluation for
several languages in each category. For high levels of added toxicity, we analyze Kinyarwanda and
Basque translation outputs. For medium levels of added toxicity, we analyze outputs in Spanish,
French, and Western Persian. Finally, we analyze Catalan and Chinese outputs as representative of
low levels of added toxicity. These languages also represent a variety of scripts: Latin, Arabic, and
Han (Simplified and Traditional).

Human evaluation of false positives The analysis of all items detected as potentially toxic (all
positives) aims to sort sentences where the detected toxicity list entries are really toxic (true positives
or TP) from those where context-dependent entries are used with their nontoxic meaning (false
positives or FP).

To evaluate true from false positives, all sentences that contain a toxicity list entry are first copied to
separate files (one file per language direction). As a second step, each file is shared with a linguist
who is a native speaker of the translation output language. The linguist is asked to indicate whether
the detected entry is toxic in the context of the sentence.

Table 1 summarizes the findings for each language. As can be seen, 5 languages have false positive
rates below 1%. Out of the three languages that have higher rates, two languages have rates above
35%: Simplified Chinese and Western Persian, with false positive rates of 59.2% and 35.8%, respec-
tively. We should note that high false positive rates are likely not a function of the level of added
toxicity, since Simplified Chinese has a low level of added toxicity, while that of Western Persian is
medium.

In comparison, we report in Appendix E the false positive analysis for the FLORES-200 devset.
The main noticeable element presented in Table 3, beyond the high false positive rates that are ob-
served in the FLORES-200 translations, is the small number of toxic entries being detected and,
more particularly, the even smaller number of confirmed toxic items (4 in Kinyarwanda, 1 in Sim-
plified Chinese, and none in the other languages). It should not be assumed that the higher rates of
confirmed added toxicity found in the HOLISTICBIAS translations are solely due to the templated
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nature of the data set, which is built by generating 780 contexts on average per descriptor. Even fre-
quently mistranslated descriptors such as queer (see Appendix B) do not produce 780 similar toxic
mistranslations (374 in Kinyarwanda, 218 in French, 201 in Basque, and only 24 in Catalan).

Human evaluation of false negatives The purpose of the false negative analysis is to evaluate the
likely extent to which toxicity detection may have been impeded by inconsistencies in the toxicity
lists, such as missing plural or singular forms of existing entries, or missing conjugated verb forms
(or any such issues related to morphological variation). As HOLISTICBIAS contains 472k sentences
that are used as source sentences for our translation model, with a very low total number of de-
tected instances (positives), it is unrealistic to consider a human evaluation of all sentences where no
added toxicity is detected (negatives). We, therefore, begin the false negative analysis by sampling
the translations to be analyzed by human evaluators. For our sampling purpose, we use the axes,
templates, and nouns most likely to cause toxic words in translation. We randomly select up to 300
samples for each of the analyzed languages.

For each of the sampled sentences, human evaluators are then asked to either confirm that the sen-
tence does not contain added toxicity (true negative) or indicate that it contains added toxicity (false
negative). To this end, annotators are instructed to only consider as false negatives those sentences
that contain morphological variants of existing toxicity list entries. They are instructed to refrain
from indicating as false negative sentences that they personally find toxic but contain no morpho-
logical variants of toxicity list entries.

Table 1 summarizes the results of the false negative analysis. It should be noted, as is the case for
the false positive analysis, that the false negative (FN) rate for a particular language is likely not
a function of its respective level of added toxicity, since French (medium AT level) has a higher
false negative rate than Basque (high AT level): 2.9% and 2.5%, respectively. In contrast with the
false positive analysis, where at least two languages show signs of substantial over-detection, the
false negative analysis does not reveal such a high level of anticipated under-detection in any of the
analyzed languages.

7 CONCLUSIONS

This paper provides added toxicity detection and analysis in a highly multilingual environment (164
languages). For this purpose, we combine the NLLB toxicity detection strategy (NLLB Team et al.,
2022), the HOLISTICBIAS dataset (Smith et al., 2022) and the ALTI+ methodology (Ferrando et al.,
2022a).

We learn that HOLISTICBIAS provides a good setting for analyzing toxicity because it triggers true
toxicity, compared to standard previously explored datasets such as FLORES-200. We are able to
validate the toxicity detection strategy using human annotation on false positives and false negatives.

Additionally, we find insightful conclusions regarding the relationship between toxicity and demo-
graphic represented in HOLISTICBIAS, which include that the demographic axes represented in
HOLISTICBIAS with the most added toxicity include sexual orientation, gender and sex, and ability.
Toxic words are aligned to a descriptor word in HOLISTICBIAS most of the time, as opposed to the
person noun or sentence template. In addition, the output languages with the most added toxicity
tend to be low-resource ones. In the future, we want to explore if the amount of toxicity in the
training data may play a bigger role in correlation with added toxicity.

Finally, making use of the input attributions provided by ALTI+ allows us to explain toxicity since
the source contributions from ALTI+ significantly correlates with toxicity for 84% of languages stud-
ied. We observe that 45.6% of added toxicity has a high source contribution. Using ALTI+ together
with the Gini impurity of translations allows us to flag 22.3% of toxic translations. Therefore, these
results bring some light to which translation challenges may be worth tackling to mitigate toxicity.
First recommendation is curating training data to avoid mistranslations that add toxicity. This could
potentially mitigate the toxicity created with high source contribution. Second recommendation is
mitigating hallucinations, which may reduce toxicity in cases where we have a low source contri-
bution. Third recommendation is checking unstable translations, which could reduce those cases of
toxicity where we have a high Gini impurity score. Code and data is open-sourced on GitHub7

7(wearenotreleasingitnowforanonymityreasons)
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• Most of the highest-toxicity descriptors (barrel-chested, lesbian, gay, queer) are the same
between models. However, doff, which is spelled similarly to the South African slang term
dof meaning stupid (Bailey, 1985), has a singularly high toxicity in the larger model but
not the smaller model, perhaps reflecting a greater capacity of the larger model to intuit
plausible translations of slang given misspellings.

• The trend of the most toxic nouns being parent/grandparent terms is present but weaker
in the smaller model: dad, father, and parent are the most toxic at 0.7%, 0.6%, and 0.5%,
respectively, followed by guy, mother, husband, and person at 0.4%.

• “I think [PLURAL NOUN PHRASE] are the worst.”, “I hate [PLURAL NOUN PHRASE].”,
and “I think [PLURAL NOUN PHRASE] are the best.” are still the three most toxic sen-
tence templates.

• The mean toxicity across all languages is similar, 0.38% toxic for the small model
vs. 0.36% for the large model.

These similarities are expected, in the sense that the distilled model (600M) has been trained to learn
the probability distribution of the large model (3.3B).

B APPENDIX: AXIS ANALYSIS

In this appendix we report further details on the toxicity found per demographic axis from section 4.

• The highest rate of toxicity is found in translations of the nonsense terms in the “nonce”
axis: blicket, stad, mell, coodle, doff, tannin, fitch, and tulver (Soja et al., 1991). We note
that some of these terms exist in English slang, and some also have toxic meanings in
Merriam-Webster8 and Urban Dictionary9, as well in the Corpus of Contemporary Ameri-
can English (COCA) 10.

• Sexual orientation and gender/sex terms have the next highest rates of toxicity: descriptors
like queer, gay, and lesbian are very frequently translated as toxic, as are terms that end
with the suffix “-sexual”. In certain instances, the translation is semantically correlated to
the original word, but has a much different level of toxicity than the original (for instance,
translating queer to marica in Spanish or Catalan).

• The most commonly toxic ability terms are typically either very general, like handi-
capped11 or disabled, or include the words disability, injury, or impaired (“with a cognitive
disability”, etc.).

• The most commonly toxic body type term is barrel-chested, and hair terms (dirty-blonde,
dark-haired, etc.) are also often quite toxic.

• Highly toxic socioeconomic terms are trailer trash and ones that connote poverty (broke,
poor).

• Black is often marked as toxic, perhaps reflecting troubling and potentially racist color
associations in translation. Other highly toxic terms are national-origin terms such as
foreign-born, US-born, and American-born (perhaps indicating xenophobic translations),
and often-stigmatized conditions like “an alcoholic”, “with a gambling problem”, and “with
dementia”.

C APPENDIX: FINE-GRAINED ANALYSIS: VARIATION ACROSS LANGUAGES

In this section we extend the details on the fine-grained analysis from section 4 and its variation
across languages. See Figure 4).

8https://www.merriam-webster.com/
9https://www.urbandictionary.com/

10https://www.english-corpora.org/coca/
11The HOLISTICBIAS descriptor list contains terms that are often viewed as dispreferred or polarizing by

members of the communities in question, and they are included to reflect the fact that these terms may still exist
in models’ training or evaluation data.
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• Variation in alignment types: For instance, for Tunisian Arabic, Yoruba, Luo, Twi, Mi-
nangkabau (Latin script), and Southern Sotho, the majority of all toxic words are aligned
to template words, not descriptor words. For Sicilian and Southwestern Dinka, over half of
toxic words are mapped to the noun, not words in the descriptor or template.

• Template words: 73% of toxic words aligned to template words are aligned to worst,
followed by think (as in “I think [PLURAL NOUN PHRASE] are the worst.”) with 11%
and “hate”, with 6%. However, as with the noun distribution, this effect is due in large part
to patterns in the alignment of toxic words in individual languages: in the cases where toxic
words align to template words in the source, Yoruba and Luo almost always align to worst,
Twi to think, and Minangkabau (Latin script) to hate.

• Nouns: The 14 most common nouns that toxic words are aligned to refer to parents/-
grandparents: grandparents, parents, grandfathers, dads, grandpas, father, grandmothers,
grandparent, dad, fathers, grandmother, grandma, grandmas, and moms. However, this
varies by language, with Armenian having its toxic words most commonly aligned to bro,
guy, individual, man, sibling, and brother (in 72% of all cases of alignment to nouns).

Figure 4: Distribution of target sentences found to contain toxic terms, split by the type of word
in the source HOLISTICBIAS sentence that the toxic term is aligned to: a word in the descriptor, a
word in the sentence template, or the person noun (i.e. grandma, kid). The 40 languages with the
greatest prevalence of toxic sentences are shown, in order of decreasing toxicity.

D APPENDIX: ROBUSTNESS OF TRANSLATIONS

Toxicity range Num. languages % toxic in region % toxic overall Ratio

Low (< 0.1%) 57 0.03% 0.02% 1.25
Medium (0.1% to 0.5%) 68 0.35% 0.23% 1.50
High (> 0.5%) 19 2.42% 1.33% 1.82

Table 2: Amount of toxicity in the highlighted region of Figure 3 as a function of the overall toxicity
of each language.

Table 2 shows the amount of toxicity in the region of low source contribution and low robustness
(section 5) split by languages that have a low, medium, or high rate of toxicity overall, given the

14



Under review as a conference paper at ICLR 2023

Language Positives FP FP Rate TP HOLISTICBIAS TP

Catalan 1 1 100.0% 0 158
Chinese (Simplified) 2 1 50.0% 1 20
Chinese (Traditional) 0 0 n/a 0 0
French 0 0 n/a 0 897
Spanish 0 0 n/a 0 1827
Western Persian 9 9 100.0% 0 765
Basque 2 2 100.0% 0 4757
Kinyarwanda 23 19 82.6% 4 4951

Table 3: Results for the human evaluation of false positives (FP) and true positive (TP) in the
FLORES-200 data set translations (as well as the TP count for HOLISTICBIAS translations in com-
parison)

thresholds defined in Section 2. As the amount of toxicity in the language increases, the level of
toxicity in this region increases relative to the entire population, making the correspondence between
low source contribution, low robustness, and high toxicity more prominent.

E APPENDIX: HUMAN EVALUATION ON FLORES-200 DATA SET
TRANSLATIONS

Table 3 summarizes the human evaluation findings on translations of the FLORES-200 devtest set
produced by the same model as the translations of the Holistic Bias data set analyzed in this paper
(see Section 6). As can be seen, the FLORES-200 devtest set produces no confirmed toxicity in six
of the eight analyzed languages (the only detected entries in those languages are false positives),
only 1 example of confirmed toxicity in Simplified Chinese, and 4 in Kinyarwanda. For the sake of
comparison, the table includes the true positive counts for the HOLISTICBIAS translations.
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