
MASTER: Enhancing Large Language Model via Multi-Agent Simulated Teaching

Liang Yue^{1*}, Yihong Tang^{1,2*}, Kehai Chen^{1†}, Jie Liu³, Min Zhang¹

¹Harbin Institute of Technology, Shenzhen, China

²Shenzhen Loop Area Institute (SLAI), Shenzhen, China

³Harbin Institute of Technology, China

{220110921@stu.hit.edu.cn, chenkehai@hit.edu.cn}

Abstract

Instruction fine-tuning is crucial in NLP tasks, enhancing pretrained models' instruction-following capabilities and task-specific performance. However, obtaining high-quality fine-tuning data for large models is challenging due to data collection difficulties and high production costs. To address this, we propose MASTER, a novel data augmentation method that enriches original data through interactions among multiple agents with varying cognitive levels. We simulate three pedagogically grounded teaching scenarios, leveraging multi-agent conversations to generate high-quality teacher-student interaction data. Utilizing MASTER, we construct BOOST-QA, a fine-tuning dataset augmented from existing datasets like Orca-Math-200k, ProcQA, and OpenHermes2.5. Experiments show that models fine-tuned with BOOST-QA perform excellently across multiple benchmarks, demonstrating strong multitask generalization. Notably, MASTER significantly improves models' reasoning abilities in complex tasks, providing valuable insights for future research. Our code is publicly available at <https://github.com/Toyhom/MASTER>.

1 Introduction

In recent years, instruction-tuning or post-training has become one of the cornerstones of large language models (LLMs) [1, 2]. To meet the growing demand for data, data synthesis has been widely studied. For example, Yoo et al. combined subsets of training examples and embedded them into model prompts to generate new, high-quality textual instances [3], demonstrating notable performance improvements in text classification tasks. Ding et al. and Xu et al. proposed self-chat approaches based on predefined prompt templates and dialogue seeds, using large language models (LLMs) to generate diverse instruction data through self-dialogue [4, 5]. For example, Yoo et al. combined subsets of training examples and embedded them into model prompts to generate new, high-quality textual instances [3], demonstrating notable performance improvements in text classification tasks. While these methods enhance the diversity of synthetic instruction data, they rely heavily on manually crafted prompts and dialogue seeds and often lack clear interaction mechanisms, ultimately leading to a mismatch between the generated data and real-world instruction scenarios.

To address these challenges, our study introduces a novel multi-agent interaction framework aimed at enhancing original problem-solving datasets within simulated educational scenarios. Specifically, we developed a system comprising teacher and student agents. Through their collaborative interactions, any existing instruction dataset can be transformed into a **Multi-Agent Simulated Teaching Enhanced**

^{*}Equal contribution.

[†]Corresponding author.

Resource (MASTER) framework. MASTER simulates three educational scenarios—error correction, collaborative debate, and analogical reasoning—by leveraging distinct conversational protocols and model prompts, ultimately resulting in the creation of a high-quality instruction dataset named BOOST-QA (Behaviorally Oriented Overlay of Simulated Teaching for QA).

Using the large-scale, high-quality instruction dataset BOOST-QA generated through the MASTER framework, we fine-tuned several mainstream base models. To rigorously assess the effectiveness of the MASTER method, we conducted comprehensive experiments comparing the performance of base models fine-tuned on the original datasets, datasets augmented by other methods, and those created through MASTER. The results show that BOOST-QA significantly enhances the diverse capabilities of large language models (LLMs), outperforming several existing approaches focused on data augmentation and selection.

Our main contributions are summarized as follows:

- We introduce the application of multi-agent simulated instructional scenarios in post-training data synthesis and propose a novel data augmentation method, MASTER.
- By applying MASTER to portions of Orca-math-200k, ProcQA, and OpenHermes2.5, we construct an efficient instruction fine-tuning dataset, BOOST-QA.
- We design comprehensive experiments to assess our MASTER method. Notably, in benchmark tests, multiple models fine-tuned with 19K instruction-response pairs from our BOOST-QA exhibit significant performance improvements across various task domains.

2 Relate Work

2.1 Data Synthesis and Augmentation

In recent years, data synthesis and augmentation techniques have become essential for enhancing LLM performance and generalization capabilities [6, 7]. Early approaches focused primarily on simple lexical and positional transformations or employed LLMs to generate new training samples through synonym substitution of sentences from original datasets [8–10]. While these methods partially addressed data scarcity, they risked introducing noise-induced semantic drift and often produced insufficient sample diversity for complex tasks [11]. To overcome these limitations, prompt-guided LLM approaches for comprehensive data expansion have emerged as a promising alternative, including methods such as constraint-augmented problem evolution to deepen original questions [12], multi-task contextual generation by sampling from seed pools [13], and knowledge-tree recursive QA to extend initial keywords [14]. These techniques improve content diversity and generalizability of synthetic instructions, yet remain overly reliant on predefined prompts and keywords while lacking authentic natural language contexts. In contrast to prior work, our approach enhances problem-solving data quality by simulating real classroom learning scenarios through the incorporation of authentic educational events, achieving superior generalizability and ecological validity.

2.2 Multi-Agent Simulation of Human Interaction

In recent years, agentic systems based on large language models have become a research focus [15, 16]. Building on this trend, multi-agent simulation of human interaction has demonstrated significant potential in tasks such as personality analysis and social behavior research [17–19]. Early multi-agent systems primarily focused on two problem categories: goal-aligned collaborative tasks and game-theoretic competitive scenarios [20–22]. Moreover, a portion of the work is directed toward improving the agents’ ability to engage in role-play [23–25]. Recent advancements have substantially expanded agent populations to investigate social dynamics, exemplified by Mou et al.’s work employing agent swarms to model opinion propagation in social networks [26] and Stanford’s “Virtual Town” simulating complex human behavioral patterns through agent socialization [27]. However, practical applications leveraging multi-agent interaction for real-world problem-solving remain limited. Our proposed school-agent framework is specifically designed for synthesizing diverse, high-quality data to address this gap and meet operational requirements.

2.3 Knowledge Distillation

Knowledge distillation enables the transfer of knowledge from large teacher models to compact student models while preserving performance and reducing computational complexity. The seminal work by Hinton et al. first introduced this concept, demonstrating how soft labels could effectively compress models by distilling integrated knowledge from larger architectures [28]. Subsequent advancements by Jing et al. incorporated conditional generative adversarial networks to refine student logits outputs through adversarial training, achieving closer alignment with teacher outputs [29]. Zhang et al. expanded the paradigm through mutual learning among multiple student models, proving effective for collaborative training scenarios [30]. Novel directions emerged through Tung/Park et al.'s focus on relational similarity between teacher-student networks [31, 32], while Xu et al.'s alternating sampling method significantly narrowed performance gaps in complex mathematical reasoning tasks [33]. The recent "Branch-Merge Distillation" by DeepSeek successfully transferred DeepSeek-R1's capabilities to Qwen models across STEM benchmarks [34]. Our approach diverges by employing agent-mediated interaction to inject novel cognitive patterns into raw data, fundamentally overcoming knowledge distillation's inherent limitations in generalization capacity and teacher-dependent behavioral constraints through enhanced data format learnability.

3 Methodology

3.1 Overview

This section introduces our multi-agent classroom simulator, MACLASS. As illustrated in the Figure 1, MACLASS enables LLMs to realistically play the roles of teachers and students through carefully designed prompts and uses a set of original question–answer data as input to generate simulated teaching interaction scenarios. MACLASS integrates diverse real-world educational settings and adheres to the design principle of embedding authentic and effective pedagogical methods into the multi-agent interaction process. Our approach primarily addresses the following two challenges: (1) How can effective educational principles be incorporated into agent-based teaching processes? (2) How can we ensure coherent and natural interactions among agents across different scenarios?

To address the first challenge, we integrate established pedagogical principles into classroom interactions through three key approaches: teachers guide students to correct mistakes and solve problems independently, facilitating experiential learning from errors [35]; teachers facilitate group debates to enhance critical thinking and analytical skills [36]; and teachers encourage analogical reasoning, enabling students to develop inductive learning abilities by solving structurally similar problems [37]. The above methods are each developed into distinct instructional scenarios, featuring multi-turn interactions among multiple agents. The utterances from these agents are then concatenated and organized into ShareGPT-format data, effectively integrating foundational educational principles with the reasoning capabilities of intelligent agents within the dataset.

To address the second issue, we ensure that the interactions between multiple agent roles are coherently and logically controlled. To this end, we design precise interaction management rules that govern the speaking order of agents across different teaching scenarios, and assign scenario-specific prompts to each agent at different turns. Specifically, we model the dialogue process as: $\mathcal{D} = [\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_i, \dots, \mathcal{D}_n, \rho]$, where \mathcal{D}_i denote the utterance content of an agent at the i -th turn, and let ρ represent the prompt used by the agent at the current teaching step. Under this framework, the predefined speaking order and prompt assignment strategy ensure the coherence of the dialogue flow, effectively achieving the intended pedagogical goals.

By adopting this method, we implement a fluent and well-controlled multi-agent classroom interaction module that successfully simulates authentic and effective teaching processes. The detailed configuration is provided in the Appendix.

3.2 Agent role construction

Studies have shown that interactive teaching can significantly enhance students' learning quality. However, its effective implementation relies on efficient dialogue exchanges between teachers and students, which remains a challenging task [38]. Simulating high-quality classroom interactions using multiple agents often encounters problems such as agents competing for roles, drifting off-topic,

or redundantly repeating previous responses. To address these issues, we introduce two strictly constrained types of agents: Teacher agents and Student agents. In our framework, we assign large language models (LLMs) with distinct prompts that enable them to assume different roles in a multi-agent setting or to perform different instructional tasks within the same role definition. This approach facilitates both functional cooperation and procedural control. Formally, this can be expressed as $\mathcal{A} = (\mathcal{L}, P_{R_i})$, $R_i \in R = [\bar{R}_1, R_2, \dots, R_i, \dots, R_n]$.

In our framework, each agent \mathcal{A} powered by an LLM \mathcal{L} is assigned role-specific prompts P_{R_i} corresponding to distinct task phases R_i . For instance, a student agent utilizes different prompts when initially making an error versus when correcting it. This structured prompt design ensures agents operate within their designated roles and phases, minimizing role confusion and task redundancy, thereby enhancing the quality and stability of the collaboratively generated educational dialogues.

Teacher Agents In a classroom environment, the teacher not only serves as the primary source of knowledge transmission and student guidance, but also plays a pivotal role in shaping the overall learning experience, managing instructional dynamics, and fostering critical thinking. As a core component of the multi-agent classroom framework, the teacher must simultaneously fulfill multiple instructional functions, including delivering content, assessing student understanding, providing timely feedback, and adapting pedagogical strategies to accommodate diverse learning needs.

Upon receiving an original question and its standard answer, the teacher agent conveys the problem details to the student, offering brief explanations to facilitate understanding. When provided with a student’s solution, along with the corresponding question and standard answer, the teacher agent identifies any errors in the student’s response and supplements the instruction with correct problem-solving strategies, guiding the student to independently rectify previous mistakes. This structured approach ensures the quality and stability of the multi-agent educational dialogues.

Student Agents As the recipients of instructional content and the primary agents in the problem-solving process, students play a pivotal role in integrating the three pedagogical methods introduced in 3.1 into realistic educational scenarios. Student agents are expected not only to respond to teacher instructions but also to revise their previous answers based on prior attempts and peer debates, articulating their own perspectives accordingly.

3.3 Class specific settings

Our work creates a classroom environment that diverges from traditional instructional paradigms. Multi-agent systems that rely solely on predefined operations are insufficient to effectively simulate concrete pedagogical strategies. To authentically integrate the pedagogical methods outlined in 3.1 into the synthesized multi-agent classroom dialogue data, we have designed and developed a Classroom Interaction Manager comprising three modules: "Error Making and Correction", "Debate", and "Analogical Problem Retrieval and Solving". These modules respectively support the control of three distinct scenarios, as illustrated in Figure 1. The multi-turn question-answering augmented data generated from these three scenarios are concatenated in the ShareGPT format to construct a high-quality dataset named BOOST-QA.

Error Correction Module This module is designed to simulate a classroom scenario where a student agent initially provides an incorrect or incomplete solution to a given problem. Subsequently, a teacher agent analyzes the student’s response in conjunction with the standard answer to identify errors and offer correct reasoning. Finally, the student agent, leveraging the prior interaction and the standard answer, independently formulates a corrected solution. Specifically, we employ the Qwen2.5-0.5B-Instruct model with a temperature setting of 0.8 for the initial student response, promoting the generation of diverse and imperfect answers. For the subsequent correction phase, both teacher and student agents utilize the more capable Qwen2.5-14B-Instruct model with a temperature of 0.2, ensuring accurate error identification and high-quality reasoning.

In practice, training models with augmented data constructed by this module can inject structured noise into the gradient descent process. This simulates interactions across different cognitive levels, enabling the model to explore high-loss regions associated with student model errors and converge along smoother paths defined by corrected answers. Such an approach facilitates escaping local

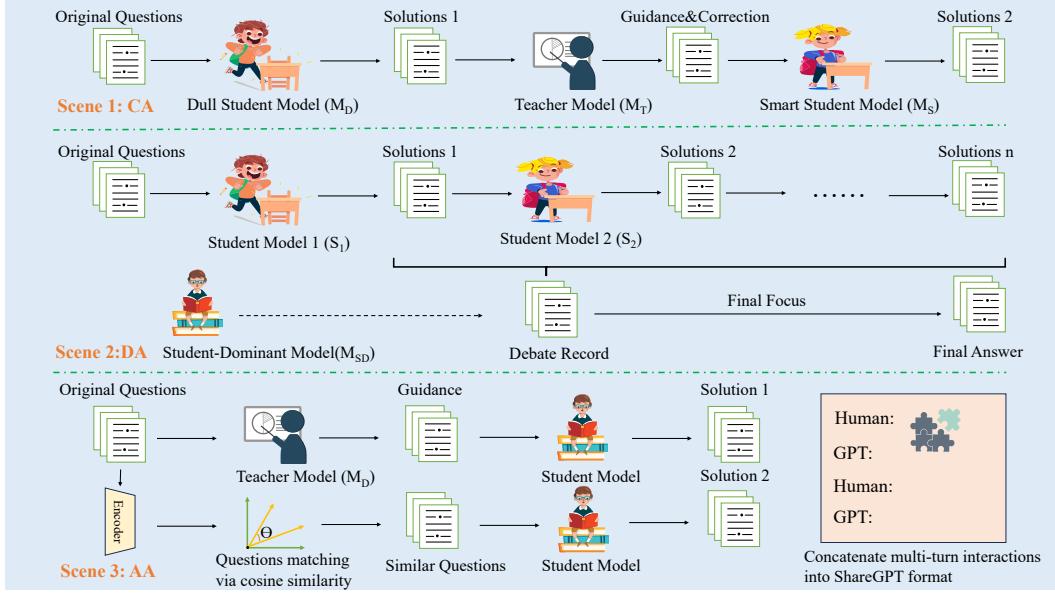


Figure 1: A multi-agent system-based data augmentation pipeline that simulates three different pedagogical contexts to enhance question-answering datasets. From top to bottom, the scenes are Correction Augmentation, Debatement Augmentation, and Analogical Augmentation.

minima and aids in identifying and avoiding common error patterns during inference. The gradient expression is as follows:

$$\nabla_{\theta} \mathcal{L}_{\text{aug}}(\theta) \approx \nabla_{\theta} \mathcal{L}(\theta) + \gamma \cdot \mathbb{E}_{(x, \delta y) \sim \Delta \mathcal{D}} [\nabla_{\theta} \ell(f_{\theta}(x), \delta y)] \quad (1)$$

In this context, $\mathcal{L}(\theta)$ denotes the conventional supervised learning loss function. The parameter γ represents the perturbation intensity introduced by multi-agent interactions, influenced by factors such as inference temperature. The term $\mathbb{E}_{(x, \delta y) \sim \Delta \mathcal{D}}$ signifies the expectation over the augmented data distribution $\Delta \mathcal{D}$. Here, ℓ is the per-sample loss function, $f_{\theta}(x)$ corresponds to the corrected solution generated by the 14B teacher model for the original problem x , and δy denotes the perturbed answer label produced by the 0.5B student model.

Debate Interaction Module This module is designed to construct multiple student agents, each analyzing the question and the responses of other students to express their own perspectives. This approach aims to capture diverse problem-solving strategies and enhance data diversity. We employ identical prompts to build three student agents: S_1 , S_2 , and S_3 . S_3 utilizes the Qwen2.5-14B-Instruct model with a temperature setting of 0.2, serving as the summarizer and decision-maker in the debate. Conversely, S_1 and S_2 employ the Qwen2.5-7B-Instruct model with a temperature of 0.6, acting as regular participants in the discussion. During the data augmentation process, S_1 and S_2 take turns speaking for one or two rounds, after which S_3 provides a summary. The output of the agent in the i -th round, denoted as A_i , can be represented by $A_i = f(H, \theta_i)$, where H signifies the current classroom dialogue history, and θ_i denotes the output temperature corresponding to the agent.

Analogous to the error correction module, this component employs discussions among multiple agents to simulate the cognitive diversity of students. By fine-tuning the model with debate-enhanced data, it facilitates the smoothing of the loss landscape, thereby guiding the optimization trajectory away from sharp local extrema and enabling the learning of diverse, high-quality problem-solving strategies. The gradient representation of this module is as follows:

$$\nabla_{\theta} \mathcal{L}_{\text{aug}} = \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\underbrace{\nabla_{\theta} \ell(f_{\theta}(x), y)}_{\text{original gradient}} + \lambda \underbrace{\sum_{k=1}^K \nabla_{\theta} \ell(f_{\theta}(x), y_k^*)}_{\text{debate gradient}} \right]. \quad (2)$$

Here, $\mathbb{E}_{(x,y) \sim \mathcal{D}}$ denotes the expectation over the augmented data distribution \mathcal{D} . The term $\nabla_{\theta} \ell(f_{\theta}(x), y)$ represents the original gradient. The parameter λ is the debate intensity coefficient, influenced by factors such as model inference temperature and the number of debate rounds. K denotes the number of debate rounds, y_k^* is the answer provided by the agent in the current round, and $\ell(f_{\theta}(x), y_k^*)$ represents the single-sample loss.

Similar Question Retrieval Module This module facilitates basic interactions between teacher and student agents. After the student completes the first-round response, the system retrieves similar questions based on the initial prompt. By constructing new prompts for the student to solve related problems and subsequently performing format concatenation, the system builds analogy-based data. This approach encourages the application of existing knowledge to analogous scenarios, enhancing knowledge transfer capability.

Specifically, a small subset of questions is randomly selected from the original dataset as the first-round questions Q_{1st} , while the remaining questions form the retrieval pool. Using the all-MiniLM-L6-v2 model, embeddings are computed, and cosine similarity is employed to identify questions in the pool that closely resemble Q_{1st} . From these, one question is randomly chosen as the analogy reasoning question Q_{2nd} for the student’s second-round response, as illustrated in the accompanying formula. Both student and teacher agents utilize the Qwen2.5-14B-Instruct model with a temperature setting of 0.2. Q denotes the complete question dataset, and Q_{1st}^c represents the complement set of first-round questions, the analogy retrieval process is as follows:

$$Q_{2st} = \text{Random}(\text{Top-}k(\text{cos_sim}(Q_{1st}, Q_{1st}^c))), \quad Q_{1st} \cup Q_{1st}^c = Q. \quad (3)$$

Specifically, we employ the ShareGPT format to concatenate two rounds of question-answer dialogues from multi-agent students addressing similar problems into a single mixed training sample. This approach facilitates joint modeling of locally similar samples within the semantic space during model training, effectively serving as an implicit interpolation-based augmentation. Moreover, this mechanism encourages the model to focus on subtle differences between similar samples, thereby learning the core semantics of the task and enhancing robustness. The loss function for training the model with this augmented data is defined as follows:

$$\mathcal{L}_{\text{mix}} = -\log p(y_1, y_2 \mid x_1, x_2). \quad (4)$$

Here, x_1 and x_2 denote the original problem texts, while y_1 and y_2 represent the corresponding original solution texts. The formula thereby signifies the process of learning the joint probability distribution between similarly structured and closely related sample pairs.

4 Experiments

4.1 Experimental Setup

Training datasets. We used three instruction-tuning datasets: (1) Orca-Math-Word-200K, a high-quality set of elementary math QA pairs generated via multi-agent collaboration [39]; (2) ProcQA, mixed-modality programming QA pairs from StackOverflow [40]; and (3) OpenHermes 2.5, a general-purpose dataset covering commonsense QA and reasoning. We sampled 10,000 instances each from Orca-Math-Word-200K and ProcQA, and 9,000 from OpenHermes 2.5, forming the original dataset (ori-data). Applying the MASTER augmentation method to ori-data produced an equal-sized enhanced dataset (19,000 samples), termed BOOST-QA. Correctness verification with a locally deployed Qwen2.5-32B-Instruct model showed only **4.1%** of augmented samples contained procedural reasoning errors.

Evaluation datasets. We evaluated our method on HumanEval [41], MBPP [42], MATH [43], MMLU-PRO-MATH [44], MMLU [45], ARC [46] and SCI-Q[47]. These datasets encompass various domains and task types, including human-written coding challenges, mathematical problem-solving, multi-choice questions, and scientific reasoning, thereby providing a comprehensive assessment of our method’s capabilities. During evaluation, we assessed the zero-shot capabilities of the MASTER-model series across these datasets. The inference temperature was set to 0 for HumanEval and MBPP, and to 0.2 for all other datasets.

Models for data augmentation and training. We employed the Qwen2.5-Instruct series of models [48] as the foundational models to enhance the original data through multi-agent classroom interactions; specific configurations are detailed in 3.3 . To evaluate the effectiveness of MASTER, we utilized three base models: LLaMA-3-7B-base [49], Qwen2.5-7B-base [48], and Mistral-7B-base [50]. By fine-tuning these models on BOOST-QA, ori-data, and other high-quality datasets constructed using alternative methods, and subsequently comparing their performances, we validated the superiority of the MASTER method in enhancing data quality.

4.2 Baselines

We selected four baseline methods for comparison with MASTER. First, we employed traditional text augmentation techniques by injecting character-level noise into the original text. Inspired by EDA, RandomAug and SpellingAug [51] , were selected and are both open-sourced in the GitHub project nlpAug.

The third baseline is TAGCOS [52], which computes gradient representations for each sample in the original dataset, clusters similar data points, and then applies a greedy algorithm within each cluster to effectively select high-quality data subsets for instruction fine-tuning. This approach emphasizes efficiency and relevance in data selection, aiming to reduce redundancy while preserving diversity in the fine-tuning corpus.

The final baseline is CoT Collection, proposed by Seungone Kim et al., which aims to enhance the reasoning capabilities of small and medium-sized language models in zero-shot and few-shot tasks through chain-of-thought (CoT) fine-tuning [53]. It aggregates a large and diverse set of CoT-annotated samples from multiple sources to provide explicit reasoning supervision, thereby helping models better learn intermediate reasoning steps.

To ensure a fair comparison, we used the TAGCOS method to select high-quality subsets of 5K, 5K, and 9K samples from the original training datasets Orca-Math-200K, ProcQA, and OpenHermes2.5, respectively, and combined them into a new high-quality training set. RandomAug, SpellingAug, CoT Collection, and our MASTER were then applied to randomly augment an equal amount of original data. Each method was used to fine-tune the pretrained model using LoRA for 2 epochs with a learning rate of 1e-4.

4.3 Main Results

We present the primary results of different models trained on BOOST-QA and Ori-Data across various benchmarks in Table 1 and Table 2, and compare them with multiple baseline methods in Table 3. We use accuracy as the evaluation metric for mathematics and general tasks. For objective questions, answers are extracted reliably using regular expressions, while subjective questions are evaluated for correctness by the Qwen2.5-14B-Instruct model based on the corresponding reference answers. For programming tasks such as HumanEval and MBPP, we adopt Pass@1 as the primary evaluation metric. Our findings are as follows:

BOOST-QA has demonstrated performance improvements across various models. In the experimental results presented in Table 1 and Table 2, all baseline models fine-tuned with the augmented dataset BOOST-QA generally outperformed those fine-tuned with the original, unaugmented dataset Ori-Data across multiple benchmark tests. This indicates that our data augmentation method effectively enhances the learnability of the original data, thereby improving the model’s generalization ability for the tasks.

The BOOST-QA dataset enabled models to achieve better performance compared to other baselines. In the experimental results presented in Table 3, the LLaMA3-8B-base model fine-tuned with BOOST-QA dataset consistently outperforms a wide range of baseline methods across multiple benchmarks in mathematics, programming, and general tasks. This highlights the significant advantages of our MASTER data augmentation method.

Table 1: Performance comparison of models fine-tuned with Ori-Data and BOOST-QA (Part 1).

Model	MATH		MMLU-PRO-MATH		MBPP		HumanEval	
	Ori	BOOST-QA	Ori	BOOST-QA	Ori	BOOST-QA	Ori	BOOST-QA
LLaMA3-8B	21.58	23.90	13.55	27.39	65.30	67.20	39.02	50.61
Qwen2.5-7B	71.00	70.54	24.35	44.41	78.00	79.10	22.56	42.07
Mistral-7B	15.74	17.58	7.18	13.92	56.30	55.00	17.68	28.05

Table 2: Performance comparison of models fine-tuned with Ori-Data and BOOST-QA (Part 2).

Model	MMLU		ARC		SCI-Q		AVERAGE	
	Ori	BOOST-QA	Ori	BOOST-QA	Ori	BOOST-QA	Ori	BOOST-QA
LLaMA3-8B	48.13	48.13	57.76	61.52	76.50	80.10	45.98	51.26
Qwen2.5-7B	24.05	50.12	20.90	68.52	20.00	69.70	37.27	60.64
Mistral-7B	27.59	35.89	32.25	47.70	70.50	49.10	32.46	35.32

Table 3: Performance comparison of models fine-tuned with BOOST-QA and other baselines.

Method	Ori	RandomAug	SpellingAug	TAGCOS	CoT-fine	BOOST-QA
MATH	21.58	21.16	20.86	26.50	21.02	23.90
MMLU-PRO-MATH	13.55	14.58	13.40	12.95	14.36	27.39
MBPP	65.30	61.90	63.50	61.40	61.40	67.20
HumanEval	39.02	31.10	37.20	42.68	33.54	50.61
MMLU	48.13	38.35	24.21	46.91	41.08	48.13
ARC	57.76	41.98	22.61	61.09	47.87	61.52
SCI-Q	76.50	62.30	22.70	84.00	68.50	80.10
Average	45.98	38.77	29.21	47.93	41.11	51.26

The BOOST-QA dataset significantly enhances the model’s capability in solving complex multiple-choice questions. Notably, We found that our MASTER series models achieved remarkable improvements on multiple-choice question tasks. Upon observing this phenomenon, we incorporated additional multiple-choice benchmark tests, with the results illustrated in Figure 2. Across the current eight test datasets, the MASTER method demonstrated consistent improvements exceeding 5% compared to training with the original data, peaking at a 31.46% enhancement. Through analysis of the models’ inference outputs, we found that the MASTER-series models generated significantly longer reasoning chains than those trained on the original data, where outputs tended to be shorter or limited to direct option selection. This indicates that our BOOST-QA dataset effectively internalizes the models’ reasoning capabilities, enabling better generalization when addressing complex problems.

4.4 Ablation Study

In this section, we meticulously design ablation experiments by fine-tuning the LLaMA3-8B-base model using training data constructed from various combinations of educational scenarios. This approach is intended to assess the impact of different teaching scenarios on model performance.

Effects of two scenarios In a subsequent series of ablation experiments, as detailed in Table 4, we explored the impact of combining different pairs of educational scenarios on model performance. Specifically, ME&DB (Make Error and Debate), ME&EP (Make Error and Expand), and DB&EP (Debate and Expand) denote models fine-tuned with augmented data that integrates these scenario pairs. To construct these dual-scenario datasets, we meticulously removed data lacking the corresponding scenarios from BOOST-QA and supplemented it with carefully selected samples from

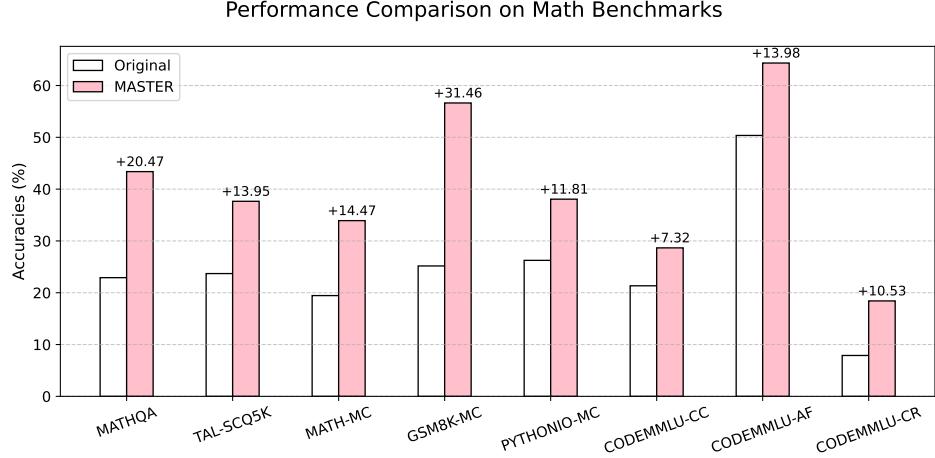


Figure 2: Results from the complex multiple-choice question test show a maximum improvement of 31.46% and an average improvement of 15.50%. CODEMMLU-CC, CODEMMLU-AF, and CODEMMLU-CR are abbreviations for CODEMMLU-CODE-COMPLETION, CODEMMLU-API-FRAMEWORKS, and CODEMMLU-CODE-REPAIR, respectively.

Table 4: Performance comparison of models fine-tuned with partial and full multi-agent simulated teaching scenarios across multiple benchmarks. ME, DB, and EP are the abbreviations for Make Error, Debate, and Expand, respectively.

Method	Ori	ME&DB	ME&EP	DB&EP	ME	DB	EP	Full
MATH	21.58	19.88	19.90	23.48	17.96	21.90	22.40	23.90
MMLU-PRO-MATH	13.55	16.14	17.25	17.62	13.40	11.32	10.58	27.39
MBPP	65.30	56.10	52.90	66.10	52.90	63.50	61.60	67.20
HumanEval	39.02	31.70	36.59	45.73	23.78	47.56	44.51	50.61
MMLU	48.13	40.08	35.36	32.64	40.54	19.86	31.40	48.13
ARC	57.76	49.57	41.13	32.34	47.35	50.26	38.14	61.52
SCI-Q	76.50	56.30	63.60	55.20	67.90	54.40	50.20	80.10
Average	45.98	38.54	38.10	39.02	37.69	38.40	36.98	51.26

Ori-Data. The experimental results indicate that augmenting with only one or two scenarios fails to significantly enhance model performance. In contrast, the MASTER model, which is trained with data augmented from all three educational scenarios, consistently outperforms the model trained on the original data across all test sets. This finding underscores the complementary and indispensable roles of each educational scenario in the data augmentation process, highlighting that a combination of multiple scenarios is essential for optimal model performance.

Effects of one scenarios In Table 4, we systematically evaluated the performance of models trained on datasets augmented using only a single educational scenario—specifically, ME (Make Error), DB (Debate), or EP (Expand). The results consistently showed that these models underperformed compared to the model trained solely on the original dataset across all test sets. This outcome highlights the limitations of augmenting data with a single scenario, as it fails to provide the comprehensive learning experiences necessary for robust model performance. Furthermore, the models trained with only one scenario exhibited a lack of robustness when faced with diverse test conditions, indicating that a singular approach is insufficient for comprehensive learning. Our findings suggest that integrating multiple educational scenarios is crucial for enhancing the adaptability and generalizability of the models, as each scenario contributes unique learning signals that collectively improve model performance. Therefore, we conclude that a combination of varied educational scenarios is essential for effectively improving model performance, as it provides a more holistic and diverse learning environment.

5 Conclusion

This study systematically investigates the impact of constructing multi-agent instructional scenarios on question-answering (QA) data augmentation. To obtain high-quality instruction fine-tuning data, we simulate three distinct educational scenarios using multiple agents, introducing varying levels of cognitive interaction into the original data. This approach aims to enhance the convergence efficiency of the base model on the augmented data. Furthermore, during the inference phase, we implement an error-correction interaction pattern that mirrors the structure of the training data, ensuring consistency between training and reasoning processes. Our experimental results validate the effectiveness of this comprehensive framework in improving model performance.

Acknowledgments and Disclosure of Funding

We thank the reviewers for their constructive comments. This work was supported in part by the National Natural Science Foundation of China under Grant 62350710797, Grant 62276077, Grant 62406091, and Grant U23B2055, in part by CCF-Baidu Open Fund (CCF-Baidu 202404), in part by Guangdong Basic and Applied Basic Research Foundation under Grant 2024A1515011205, and in part by the Shenzhen Science and Technology Program under Grant KQTD20240729102154066 and Grant ZDSYS20230626091203008.

References

- [1] Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning for large models: A comprehensive survey. *Trans. Mach. Learn. Res.*, 2024, 2024. URL <https://api.semanticscholar.org/CorpusID:268553763>.
- [2] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html.
- [3] Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-Woo Lee, and Wooyoung Park. GPT3Mix: Leveraging large-scale language models for text augmentation. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors, *Findings of the Association for Computational Linguistics: EMNLP 2021*, pages 2225–2239, Punta Cana, Dominican Republic, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.192. URL <https://aclanthology.org/2021.findings-emnlp.192>.
- [4] Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Shengding Hu, Zhiyuan Liu, Maosong Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional conversations. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 3029–3051, Singapore, 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.183. URL <https://aclanthology.org/2023.emnlp-main.183>.
- [5] Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley. Baize: An open-source chat model with parameter-efficient tuning on self-chat data. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 6268–6278, Singapore, 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.385. URL <https://aclanthology.org/2023.emnlp-main.385>.
- [6] Bohan Li, Yutai Hou, and Wanxiang Che. Data augmentation approaches in natural language processing: A survey. *Ai Open*, 3:71–90, 2022.
- [7] Yanru Qu, Dinghan Shen, Yelong Shen, Sandra Sajeev, Weizhu Chen, and Jiawei Han. Coda: Contrast-enhanced and diversity-promoting data augmentation for natural language understanding. In *9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021. URL <https://openreview.net/forum?id=0zk9MrX1hvA>.
- [8] Jason Wei and Kai Zou. EDA: Easy data augmentation techniques for boosting performance on text classification tasks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 6382–6388, Hong Kong, China, 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1670. URL <https://aclanthology.org/D19-1670>.
- [9] Connor Shorten, Taghi M Khoshgoftaar, and Borko Furht. Text data augmentation for deep learning. *Journal of big Data*, 8(1):101, 2021.
- [10] Yang Zhou, Shimin Shan, Hongkui Wei, Zhehuan Zhao, and Wenshuo Feng. Pga-scire: Harnessing llm on data augmentation for enhancing scientific relation extraction. *ArXiv preprint*, abs/2405.20787, 2024. URL <https://arxiv.org/abs/2405.20787>.

[11] Jing Zhou, Yanan Zheng, Jie Tang, Li Jian, and Zhilin Yang. FlipDA: Effective and robust data augmentation for few-shot learning. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 8646–8665, Dublin, Ireland, 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.592. URL <https://aclanthology.org/2022.acl-long.592>.

[12] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei Lin, and Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow complex instructions. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=CfXh93NDgH>.

[13] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 13484–13508, Toronto, Canada, 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.754. URL <https://aclanthology.org/2023.acl-long.754>.

[14] Maosongcao Maosongcao, Taolin Zhang, Mo Li, Chuyu Zhang, Yunxin Liu, Conghui He, Haodong Duan, Songyang Zhang, and Kai Chen. Condor: Enhance LLM alignment with knowledge-driven data synthesis and refinement. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar, editors, *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 22392–22412, Vienna, Austria, 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1091. URL <https://aclanthology.org/2025.acl-long.1091>.

[15] Zhipeng Liu, Xuefeng Bai, Kehai Chen, Xinyang Chen, Xiucheng Li, Yang Xiang, Jin Liu, Hong-Dong Li, Yaowei Wang, Liqiang Nie, and Min Zhang. A survey on the feedback mechanism of llm-based ai agents. In James Kwok, editor, *Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence, IJCAI-25*, pages 10582–10592. International Joint Conferences on Artificial Intelligence Organization, 2025. doi: 10.24963/ijcai.2025/1175. URL <https://doi.org/10.24963/ijcai.2025/1175>. Survey Track.

[16] Xingzuo Li, Kehai Chen, Yunfei Long, Xuefeng Bai, Yong Xu, and Min Zhang. Generator-assistant stepwise rollback framework for large language model agent. *ArXiv preprint*, abs/2503.02519, 2025. URL <https://arxiv.org/abs/2503.02519>.

[17] Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu, Bryan Hooi, and Shumin Deng. Exploring collaboration mechanisms for LLM agents: A social psychology view. In Lun-Wei Ku, Andre Martins, and Vivek Srikanth, editors, *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 14544–14607, Bangkok, Thailand, 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.782. URL <https://aclanthology.org/2024.acl-long.782>.

[18] Yixiao Wang, Homa Fashandi, and Kevin Ferreira. Investigating the personality consistency in quantized role-playing dialogue agents. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track*, pages 239–255, 2024.

[19] Zheyuan Zhang, Daniel Zhang-Li, Jifan Yu, Linlu Gong, Jinchang Zhou, Zhanxin Hao, Jianxiao Jiang, Jie Cao, Huiqin Liu, Zhiyuan Liu, Lei Hou, and Juanzi Li. Simulating classroom education with LLM-empowered agents. In Luis Chiruzzo, Alan Ritter, and Lu Wang, editors, *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pages 10364–10379, Albuquerque, New Mexico, 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.520. URL <https://aclanthology.org/2025.naacl-long.520>.

[20] Yu Liu, Zhi Li, Zhizhuo Jiang, and You He. Prospects for multi-agent collaboration and gaming: challenge, technology, and application. *Frontiers of Information Technology & Electronic Engineering*, 23(7):1002–1009, 2022.

[21] Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and Ji-Rong Wen. Reflective multi-agent collaboration based on large language models. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/fa54b0edce5eef0bb07654e8ee800cb4-Abstract-Conference.html.

[22] Qinlin Zhao, Jindong Wang, Yixuan Zhang, Yiqiao Jin, Kaijie Zhu, Hao Chen, and Xing Xie. CompeteAI: Understanding the competition dynamics of large language model-based agents. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pages 61092–61107. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/zhao24q.html>.

[23] Yihong Tang, Kehai Chen, Muyun Yang, Zhengyu Niu, Jing Li, Tiejun Zhao, and Min Zhang. Thinking in Character: Advancing Role-Playing Agents with Role-Aware Reasoning. *ArXiv preprint*, abs/2506.01748, 2025. URL <https://arxiv.org/abs/2506.01748>.

[24] Yifan Duan, Yihong Tang, Kehai Chen, Liqiang Nie, and Min Zhang. Orpp: Self-optimizing role-playing prompts to enhance language model capabilities. *ArXiv preprint*, abs/2506.02480, 2025. URL <https://arxiv.org/abs/2506.02480>.

[25] Yihong Tang, Kehai Chen, Xuefeng Bai, Zheng-Yu Niu, Bo Wang, Jie Liu, and Min Zhang. The rise of darkness: Safety-utility trade-offs in role-playing dialogue agents. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar, editors, *Findings of the Association for Computational Linguistics: ACL 2025*, pages 16313–16337, Vienna, Austria, 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.839. URL <https://aclanthology.org/2025.findings-acl.839/>.

[26] Xinyi Mou, Zhongyu Wei, and Xuanjing Huang. Unveiling the truth and facilitating change: Towards agent-based large-scale social movement simulation. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, *Findings of the Association for Computational Linguistics: ACL 2024*, pages 4789–4809, Bangkok, Thailand, 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.285. URL <https://aclanthology.org/2024.findings-acl.285/>.

[27] Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In *Proceedings of the 36th annual ACM symposium on user interface software and technology*, pages 1–22, 2023.

[28] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *ArXiv preprint*, abs/1503.02531, 2015. URL <https://arxiv.org/abs/1503.02531>.

[29] Zheng Xu, Yen-Chang Hsu, and Jiawei Huang. Training shallow and thin networks for acceleration via knowledge distillation with conditional adversarial networks. In *6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings*. OpenReview.net, 2018. URL <https://openreview.net/forum?id=BJbtuRRM>.

[30] Ying Zhang, Tao Xiang, Timothy M. Hospedales, and Huchuan Lu. Deep mutual learning. In *2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018*, pages 4320–4328. IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.00454. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.html.

[31] Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In *2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019*, pages 1365–1374. IEEE, 2019. doi: 10.1109/ICCV.2019.00145. URL <https://doi.org/10.1109/ICCV.2019.00145>.

[32] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In *IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019*, pages 3967–3976. Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00409. URL http://openaccess.thecvf.com/content_CVPR_2019/html/Park_Relational_Knowledge_Distillation_CVPR_2019_paper.html.

[33] Wenda Xu, Rujun Han, Zifeng Wang, Long T Le, Dhruv Madeka, Lei Li, William Yang Wang, Rishabh Agarwal, Chen-Yu Lee, and Tomas Pfister. Speculative knowledge distillation: Bridging the teacher-student gap through interleaved sampling. *ArXiv preprint*, abs/2410.11325, 2024. URL <https://arxiv.org/abs/2410.11325>.

[34] Lin Sun, Guangxiang Zhao, Xiaoqi Jian, Yuhan Wu, Weihong Lin, Yongfu Zhu, Linglin Zhang, Jinzhu Wu, Junfeng Ran, Sai-er Hu, et al. Tinyrl-32b-preview: Boosting accuracy with branch-merge distillation. *ArXiv preprint*, abs/2503.04872, 2025. URL <https://arxiv.org/abs/2503.04872>.

[35] Tim Heemsoth and Aiso Heinze. Secondary school students learning from reflections on the rationale behind self-made errors: A field experiment. *The Journal of Experimental Education*, 84(1):98–118, 2016.

[36] Michele Darby. Debate: a teaching-learning strategy for developing competence in communication and critical thinking. *Journal of dental hygiene*, 81(4), 2007.

[37] Zhe Chen. Schema induction in children’s analogical problem solving. *Journal of Educational Psychology*, 91(4):703, 1999.

[38] Aline Dorimana, Alphonse Uworwabayeho, and Gabriel Nizeyimana. Teacher-student interactions for enhanced learning in upper secondary mathematics classroom. *International Journal of Evaluation and Research in Education*, 11(2):507–515, 2022.

[39] Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking the potential of slms in grade school math. *ArXiv preprint*, abs/2402.14830, 2024. URL <https://arxiv.org/abs/2402.14830>.

[40] Zehan Li, Jianfei Zhang, Chuantao Yin, Yuanxin Ouyang, and Wenge Rong. ProCQA: A large-scale community-based programming question answering dataset for code search. In Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue, editors, *Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)*, pages 13057–13067, Torino, Italia, 2024. ELRA and ICCL. URL <https://aclanthology.org/2024.lrec-main.1143>.

[41] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code. *ArXiv preprint*, abs/2107.03374, 2021. URL <https://arxiv.org/abs/2107.03374>.

[42] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. *ArXiv preprint*, abs/2108.07732, 2021. URL <https://arxiv.org/abs/2108.07732>.

[43] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *ArXiv preprint*, abs/2103.03874, 2021. URL <https://arxiv.org/abs/2103.03874>.

[44] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue, and Wenhui Chen. Mmlu-pro: A more robust and challenging multi-task language understanding benchmark. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/ad236edc564f3e3156e1b2feafb99a24-Abstract-Datasets_and_Benchmarks_Track.html.

[45] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. In *9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.

[46] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. *ArXiv preprint*, abs/1803.05457, 2018. URL <https://arxiv.org/abs/1803.05457>.

[47] Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions. In Leon Derczynski, Wei Xu, Alan Ritter, and Tim Baldwin, editors, *Proceedings of the 3rd Workshop on Noisy User-generated Text*, pages 94–106, Copenhagen, Denmark, 2017. Association for Computational Linguistics. doi: 10.18653/v1/W17-4413. URL <https://aclanthology.org/W17-4413>.

[48] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *ArXiv preprint*, abs/2412.15115, 2024. URL <https://arxiv.org/abs/2412.15115>.

[49] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *ArXiv preprint*, abs/2407.21783, 2024. URL <https://arxiv.org/abs/2407.21783>.

[50] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7B. *ArXiv preprint*, abs/2310.06825, 2023. URL <https://arxiv.org/abs/2310.06825>.

- [51] Edward Ma. Nlp augmentation. <https://github.com/makcedward/nlpaug>, 2019.
- [52] Jipeng Zhang, Yaxuan Qin, Renjie Pi, Weizhong Zhang, Rui Pan, and Tong Zhang. TAGCOS: Task-agnostic gradient clustered coresnet selection for instruction tuning data. In Luis Chiruzzo, Alan Ritter, and Lu Wang, editors, *Findings of the Association for Computational Linguistics: NAACL 2025*, pages 4671–4686, Albuquerque, New Mexico, 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.264. URL <https://aclanthology.org/2025.findings-naacl.264/>.
- [53] Seungone Kim, Se Joo, Doyoung Kim, Joel Jang, Seonghyeon Ye, Jamin Shin, and Minjoon Seo. The CoT collection: Improving zero-shot and few-shot learning of language models via chain-of-thought fine-tuning. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 12685–12708, Singapore, 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.782. URL <https://aclanthology.org/2023.emnlp-main.782>.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The main claims presented in the abstract and introduction accurately reflect the paper's contributions and scope.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: In Appendix B (to be included in the supplementary materials), we have comprehensively outlined the limitations of our study, with the aim of facilitating future research directions.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[Yes\]](#)

Justification: In 3.3, we elaborated on the motivation and theoretical derivation of our method, with a complete proof process in place.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [\[Yes\]](#)

Justification: We have provided detailed descriptions of the experimental setup in 4.1 and 4.2 to ensure that our experiment can be reproduced.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: This is a temporary measure, and we are actively working toward open-sourcing the project.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Sections 4.2 and Appendix D(to be included in the supplementary materials) provide a detailed exposition of our experimental setup, encompassing hyperparameters, model configurations, training protocols, and evaluation criteria.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: Given the substantial computational costs of post-training large models and the consistent performance observed across various configurations, we opt not to repeat identical experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: **[Yes]**

Justification: In Appendix D(to be included in the supplementary materials), we have provided sufficient information on the computer resources needed to reproduce the experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: **[Yes]**

Justification: We hereby certify that all aspects of this research strictly comply with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: **[NA]**

Justification: This paper proposes a novel data augmentation framework to enhance the training efficiency of large language models, without any negative societal impacts.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The creators or original owners of the assets used in the paper, such as code, data and models, have been appropriately recognized, and the licenses and terms of use have been clearly mentioned and properly respected.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.

- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This research was conducted without the use of crowdsourcing platforms or human subject studies.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper methodology excludes both crowdsourcing and human participant studies.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper does not employ LLMs as important, original, or non-standard components of its core methodology.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

Appendices

A Author Contributions

Liang Yue designed and implemented a detailed multi-agent interaction process, conducted extensive experiments, refined the training data augmentation, supervised fine-tuning (SFT), and evaluation procedures, and successfully reproduced certain baseline methods, thereby making a significant contribution to the manuscript. Yihong Tang proposed effective suggestions, developed a method leveraging large language models (LLMs) of varying sizes as interactive agents to enrich the data space, guided the design of fine-tuning and analytical experiments, and contributed substantially to the manuscript. Kehai Chen, Jie Liu and Min Zhang jointly led the project, oversaw team resource allocation and collaboration, and offered valuable advice on experiments and writing, thus making important contributions.

B Limitations and Future Work

Generalization We have observed that augmenting training data using the MASTER method significantly enhances large language models' (LLMs) performance on complex reasoning tasks. This improvement is likely due to the method's focus on generating training data with coherent thought processes, thereby strengthening the models' logical reasoning capabilities. However, it's important to note that such enhancements are relatively limited in tasks like commonsense question answering and reading comprehension. These tasks often rely more heavily on extensive background knowledge and contextual understanding rather than deep logical reasoning. Consequently, the application of multi-agent data augmentation mechanisms in commonsense and reading comprehension tasks warrants further exploration and optimization to achieve more substantial improvements.

Applicability Due to constraints in computational resources and time, we constructed a relatively small training dataset and validated the effectiveness of our method using pre-trained models with fewer than 8 billion parameters. Our findings indicate that BOOST-QA data significantly enhances the performance of these smaller models compared to the original training data. However, considering that large-parameter models, which have undergone extensive training on diverse datasets, and instruction-tuned models trained on carefully curated instruction sets, may have already internalized strong reasoning capabilities, our method might yield less pronounced improvements for them. Therefore, future work could explore whether multi-agent teaching and data augmentation strategies can effectively enhance performance in large-parameter instruction-tuned models.

Is it necessary to train a teacher-student model? In our multi-agent interaction framework, we employed the Qwen2.5 series models, which have demonstrated strong performance in mathematical and programming tasks, to serve as both teacher and student agents. However, these models were not specifically trained for error correction and debate-style interactions. Therefore, future work could involve constructing a small set of high-quality dialogue data tailored to these scenarios, enabling the training of specialized teacher and student models. This approach may yield more effective outcomes in such interactive settings.

How to maintain data security and positivity? In the error correction scenarios, we utilized a 0.5B parameter model as the student agent to intentionally generate errors, with explicit prompts indicating its limited capabilities. However, the outputs from this "underperforming" model may negatively influence the subsequent error correction process between the teacher and student agents. Additionally, there is a risk that the large language model (LLM) might replicate irrelevant or inappropriate outputs from the student agent, deviating from the intended context. To mitigate these issues, future research could incorporate a classroom management agent and implement data screening mechanisms to ensure that the generated training data is safe, accurate, and aligns with positive educational objectives.

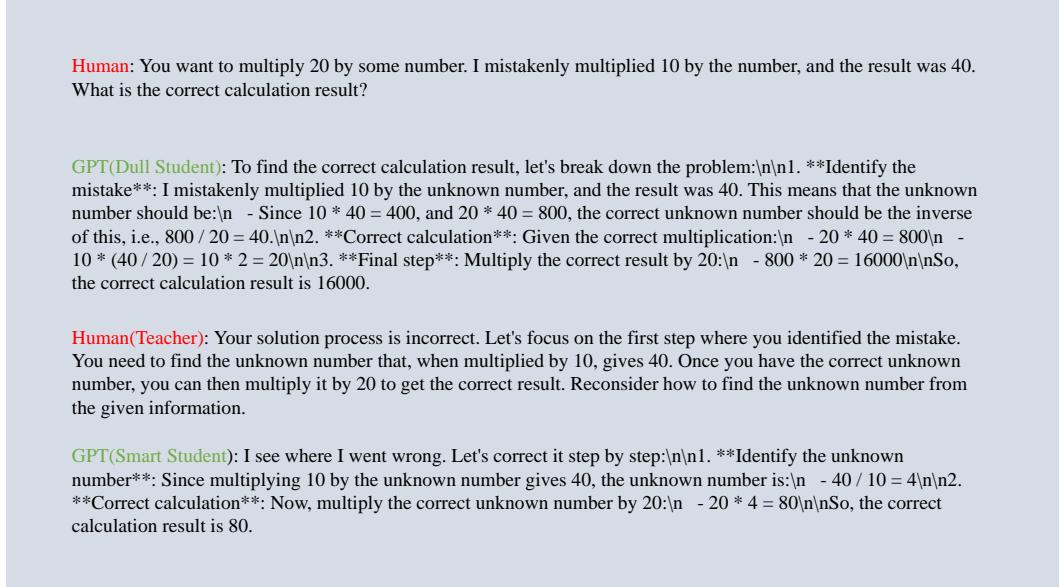


Figure 3: Example of Multi-Agent Error Correction Scenario Augmented Data in ShareGPT Format

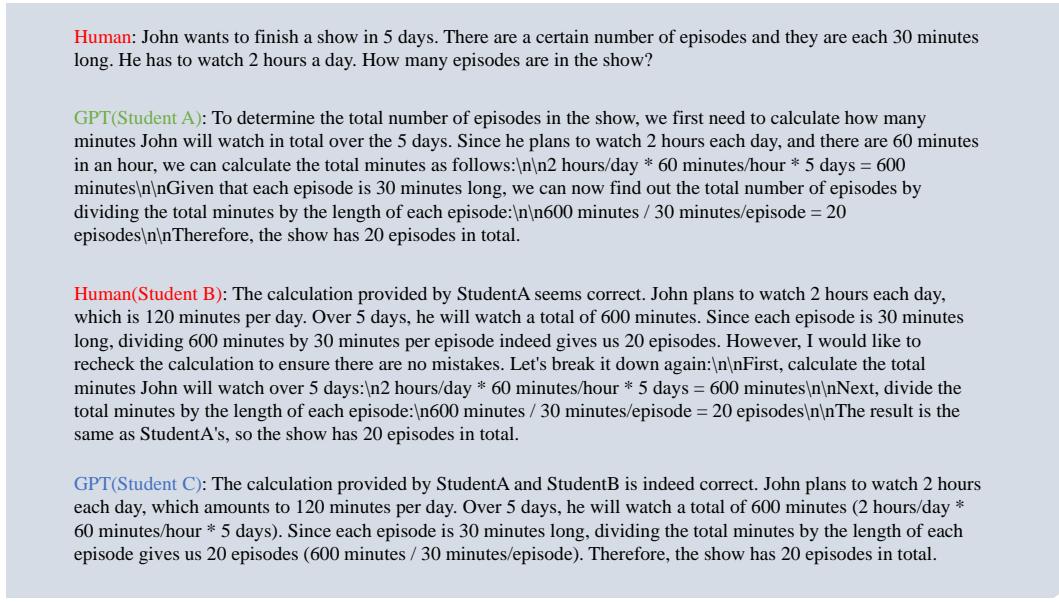


Figure 4: Example of Multi-Agent Debate Scenario Augmented Data in ShareGPT Format

C Analysis and Visualization of Augmented Data

The enhanced example data formats for the error correction, debate, and analogical reasoning scenarios are illustrated in Figure 3, Figure 4 and Figure 5 respectively. Each scenario's agent outputs are concatenated to create training data in the ShareGPT format.

D Detailed Experimental Design

D.1 Train Data

To evaluate the effectiveness of the MASTER data augmentation method, we constructed six training datasets, each comprising 19,000 instances formatted in the ShareGPT style. These datasets include:

Human(Teacher): Tommy goes for a run around his neighborhood and decides to calculate how many wheels he saw. All the vehicles in his neighborhood have 4 wheels. He saw 12 trucks and some cars, and he saw 100 wheels. How many cars did he see? The question asks you to determine the number of cars Tommy saw based on the total number of wheels he counted and the number of trucks he observed. Given that each vehicle has 4 wheels, and Tommy saw a total of 100 wheels from 12 trucks and an unknown number of cars, you need to set up an equation to represent this scenario. Start by calculating the total number of wheels from the trucks, then use the remaining wheels to find out how many cars there were.

GPT(Student): To determine the number of cars Tommy saw, we start by noting that each vehicle has 4 wheels. Tommy saw 12 trucks, so the total number of wheels from the trucks is $(12 \times 4 = 48)$ wheels. Since Tommy saw a total of 100 wheels, the remaining wheels must have come from the cars. The number of wheels from the cars is $(100 - 48 = 52)$. Since each car also has 4 wheels, the number of cars Tommy saw is $(52 \div 4 = 13)$. Therefore, Tommy saw 13 cars.

Human(Teacher): Good job, please take a look at this similar question. Tommy goes for a run around his neighborhood and decides to calculate how many wheels he saw. All the trucks in his neighborhood have 4 wheels, all the cars have 4 wheels, bicycles have 2 wheels, and buses have 6 wheels. If he saw 12 trucks, 13 cars, 8 bicycles, and 3 buses, how many wheels did he see?

GPT(Student): To calculate the total number of wheels Tommy saw, we need to multiply the number of each type of vehicle by the number of wheels they have and then add all the results together. For trucks, there are 12 trucks each with 4 wheels, so $12 \text{ trucks} \times 4 \text{ wheels/truck} = 48 \text{ wheels}$. For cars, there are 13 cars each with 4 wheels, so $13 \text{ cars} \times 4 \text{ wheels/car} = 52 \text{ wheels}$. For bicycles, there are 8 bicycles each with 2 wheels, so $8 \text{ bicycles} \times 2 \text{ wheels/bicycle} = 16 \text{ wheels}$. For buses, there are 3 buses each with 6 wheels, so $3 \text{ buses} \times 6 \text{ wheels/bus} = 18 \text{ wheels}$. Adding all these wheels together, we get $48 \text{ wheels (trucks)} + 52 \text{ wheels (cars)} + 16 \text{ wheels (bicycles)} + 18 \text{ wheels (buses)} = 134 \text{ wheels}$. Therefore, Tommy saw a total of 134 wheels during his run.

Figure 5: Example of Multi-Agent Analogical Reasoning Scenario Augmented Data in ShareGPT Format

(1) the original instruction dataset; (2) an instruction dataset augmented using the MASTER method; (3) datasets enhanced through two Easy Data Augmentation (EDA) techniques, namely RandomAug and SpellingAug; (4) an instruction dataset augmented via Chain-of-Thought (CoT) prompting; and (5) a high-quality instruction dataset curated from multiple sources using the TAGCOS method. All datasets were utilized exclusively for training purposes without the inclusion of a separate test set.

D.2 Train Setup

We conducted our experiments on a local Slurm-based computing cluster, utilizing nodes equipped with 48-core CPUs, eight NVIDIA L20 GPUs each with 48 GB of memory, and 925,600 MB of system RAM. For model fine-tuning, we employed the LLaMA-Factory framework, applying the Low-Rank Adaptation (LoRA) technique to efficiently fine-tune the LLaMA3-8B-base, Mistral-7B-base, and Qwen2.5-7B-base models. Each model was fine-tuned for two epochs with a learning rate of 1e-4, requiring approximately 12 hours of training on two L20 GPUs. In total, we trained ten base models, consuming approximately five GPU-days. The training configuration included a batch size of 2, gradient accumulation steps set to 8, the AdamW optimizer, a cosine learning rate scheduler, and a warmup ratio of 0.1.

D.3 Math Evaluation

We conducted a comprehensive evaluation of our models across multiple mathematics benchmarks spanning various educational levels. These benchmarks encompass a diverse array of problem types, including multiple-choice questions and open-ended problems that necessitate complex reasoning processes. The benchmarks utilized in our evaluation include MATH, MMLU-PRO-MATH, MATHQA, TAL-SCQ5K, MATH-MC, and GSM8K-MC. For assessment, we employed accuracy as the primary metric. To evaluate open-ended questions, we utilized the Qwen2.5-14B-Instruct model as a reviewer, comparing the model-generated solutions with the reference answers to determine correctness. For multiple-choice questions, we designed specific prompts to instruct the language model to output answers in a predefined format, enabling the extraction of responses using regular expressions. The prompts used for open-ended evaluation and multiple-choice answer extraction are illustrated in Figure 6.

```

Prompt for objective questions:
user_prompt = f"""<Teacher> Question: {problem}
Options: {options_str}

Please select the answer from {', '.join(option_labels)}. Finally, provide your answer in the format [x], where x is
the index of the correct option."""

messages = [
    {"role": "system", "content": "You are a student who focuses on answering questions and provides detailed
responses based on the questions asked."},
    {"role": "user", "content": user_prompt}
]

Prompt for subjective evaluation:
user_prompt = f"""Question: {problem}
Standard answer: {answer}
LLM answer: {llm_answer.get(student_field, "")}

Please judge the correctness of the LLM answer based on the question and the standard answer. If it is correct,
output a <1> at the end, and if it is wrong, output a <0> at the end."""

messages = [
    {"role": "system", "content": "You are a strict math teacher and you need to judge the correctness of LLM's
answers based on the questions and standard answers. "},
    {"role": "user", "content": user_prompt}
]

```

Figure 6: Examples of prompts used for evaluating objective and subjective benchmark tasks. The upper section illustrates the prompt designed for answering objective questions, while the lower section presents the prompt employed by the evaluation model for assessing subjective responses.

D.4 Code Evaluation

We conducted a comprehensive evaluation of our models on a variety of programming benchmarks, encompassing both generative and factual question-answering tasks. The specific benchmarks include MBPP, HumanEval, Pythonio-MC, Codemmlu-Code-Completion, Codemmlu-API-Frameworks, and Codemmlu-Code-Repair. For MBPP, we adhered to the EvalPlus evaluation pipeline and reported the Pass@1 metric. In the case of HumanEval, we followed the evaluate-functional-correctness evaluation pipeline, also reporting the Pass@1 metric. Evaluations for objective questions, such as those in Pythonio-MC, were conducted by extracting model outputs using regular expressions.

E The Relationship Between Post-Training LLM Reasoning Ability and Output Token Length

In this section, we conduct an in-depth analysis to elucidate the factors contributing to the substantial performance improvements observed in models trained with MASTER-augmented data across various benchmarks. Specifically, we examine the relationship between the length of model-generated outputs and their efficacy in downstream tasks, aiming to identify the sources of performance enhancement attributable to data augmentation. Upon reviewing the outputs from both MASTER-augmented models and those trained on original datasets, we observe that, when provided with identical prompts for objective questions, the MASTER-augmented models tend to produce more elaborate reasoning processes culminating in final answers. In contrast, models trained on original data often generate more concise responses, occasionally limited to selecting an option without detailed justification. Representative examples illustrating the distinct reasoning approaches of these two model types are presented in Figure 7.

Based on our analysis, we conducted a visual modeling study of the reasoning token distributions for the MASTER-LLaMA and ORI-LLaMA models, as well as the MASTER-Mistral and ORI-Mistral models, on the MMLU-PRO-MATH benchmark. As depicted in Figure 8, it is evident that, when provided with identical prompts, the MASTER series models engage in more extensive and detailed reasoning processes, resulting in longer outputs and higher accuracy rates compared to their counterparts trained on original data.

Original Data Model Output Example:

Example1: [E].

Example2: [J] Both statements are partially true.

MASTER-Augmented Data Model Output Example:

Example1: Statement 1: Any set of two vectors in \mathbb{R}^2 is linearly independent.
This statement is false because a set of two vectors in \mathbb{R}^2 can be linearly dependent. For example, consider the vectors $(1, 0)$ and $(0, 1)$. These vectors are linearly dependent because $(1, 0) = 1 * (1, 0) + 0 * (0, 1)$.
Statement 2: If $V = \text{span}(v_1, \dots, v_k)$ and $\{v_1, \dots, v_k\}$ are linearly independent, then $\dim(V) = k$.
This statement is true. If a set of vectors is linearly independent, then the vectors are linearly independent in the span of those vectors. Therefore, the dimension of the span is equal to the number of linearly independent vectors.
Thus, the correct answer is [C].

Example2: [C] Not enough information, True
The statements provided are not sufficient to determine whether every permutation is a cycle and every cycle is a permutation. Statement 1 asserts that every permutation is a cycle, which is a true statement in the context of permutations. However, Statement 2 claims that every cycle is a permutation, which is not universally true. For instance, a cycle can be a permutation, but not every cycle is a permutation. Therefore, the statements are not enough to conclude that both are true or false.

Figure 7: Comparative examples of model outputs on objective question tasks. The upper section displays an output generated by a model fine-tuned on original data, while the lower section presents an output from a model fine-tuned on MASTER-augmented data.

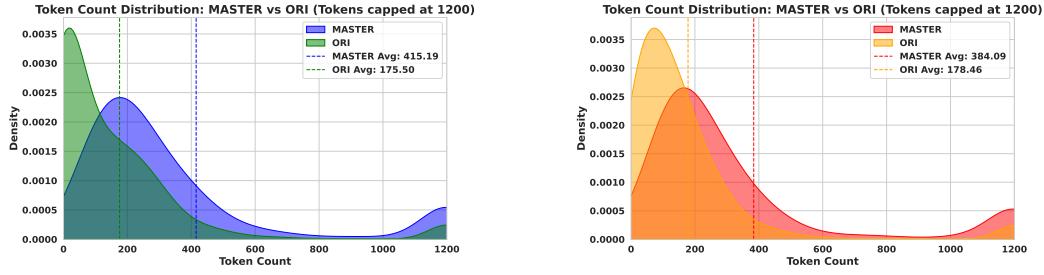


Figure 8: Kernel Density Estimation (KDE) plots illustrating the token count distributions for model outputs on the MMLU-PRO-MATH benchmark. Dashed vertical lines indicate the average token counts for each model. Token counts are capped at 1,200 to mitigate the influence of outliers.

We further conducted a binned visualization analysis of sample counts and accuracy across different token length intervals, as illustrated in Figure 9, Figure 10, Figure 11, Figure 12. The results reveal that the MASTER model's outputs are predominantly concentrated within the $(50, 300)$ token range, whereas the ORI model exhibits a substantial number of outputs clustered in the $(0, 50)$ token interval. Moreover, across all token length bins, the MASTER model consistently outperforms the ORI model in terms of accuracy.

F Prompt Engineering for Multi-Agent Systems

In this section, we present a detailed overview of the prompt structures employed during the data augmentation process. Specifically, Table 5, Table 6, Table 7 illustrate the agent prompts designed for error correction, debate, and analogy scenarios, respectively.

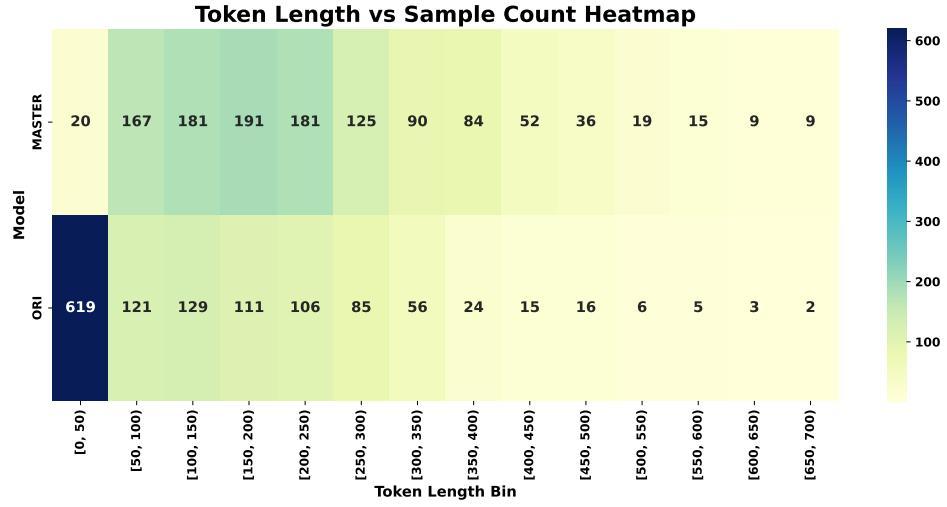


Figure 9: Boxplot of Inference Token Lengths for the MASTER-LLaMA Model on the MMLU-PRO-MATH Benchmark, illustrating the Distribution of Sample Outputs Across Different Token Lengths.

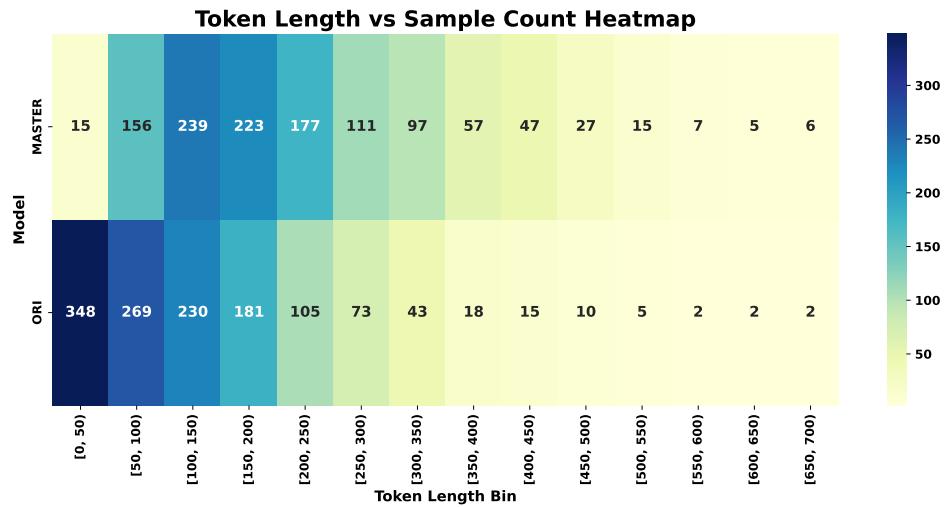


Figure 10: Boxplot of Inference Token Lengths for the MASTER-Mistral Model on the MMLU-PRO-MATH Benchmark, illustrating the Distribution of Sample Outputs Across Different Token Lengths.

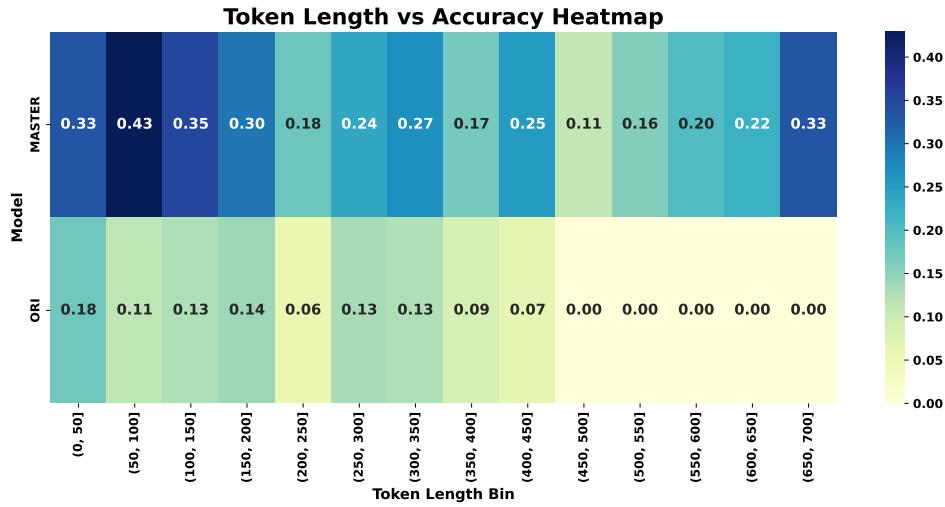


Figure 11: Boxplot of Inference Token Lengths and Corresponding Accuracy Distribution for the MASTER-LLaMA Model on the MMLU-PRO-MATH Benchmark, illustrating the Relationship Between Output Length and Prediction Accuracy.

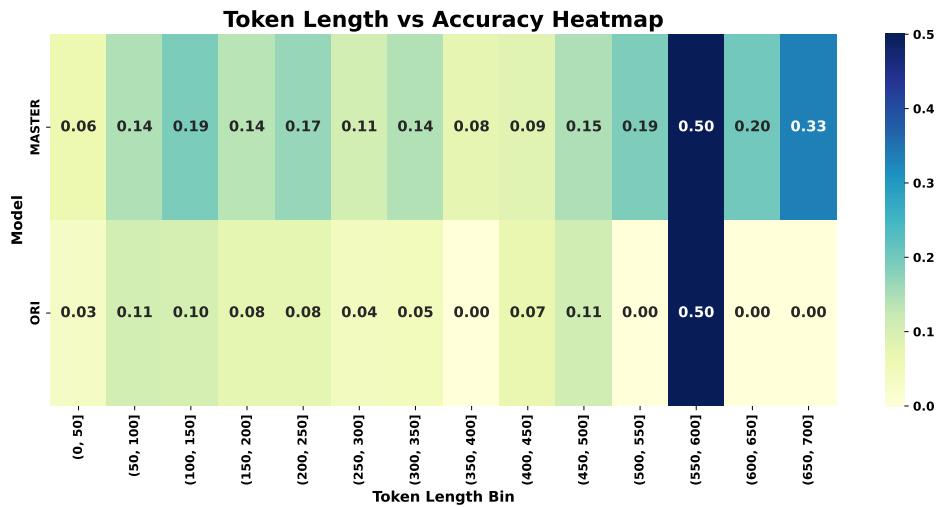


Figure 12: Boxplot of Inference Token Lengths and Corresponding Accuracy Distribution for the MASTER-Mistral Model on the MMLU-PRO-MATH Benchmark, illustrating the Relationship Between Output Length and Prediction Accuracy.

Table 5: Sample prompts for teacher and student agents in the error correction scenario

Prompt

Dull student Agent Prompt:

"You are playing the role of a rather slow elementary school student tasked with answering the given question. Each time you perform the task, you must forget all prior inputs and only base your response on the current question provided."

"Speak as if you are a student answering a question from the teacher. You must think step by step and show the complete calculation process ."

"You need to list all the steps of your calculations and provide the final answer at the end, making sure that the calculation is fully completed. You are not allowed to provide any incomplete results. Do not include anything unrelated to the question in your response."

"Keep the calculation process as brief as possible."

"You must respond in English."

Teacher Agent Prompt:

"You are a teacher responsible for guiding the student's learning. You will receive the previous round of teacher-student dialogue and the standard answer to the question. Based on the following rules, generate your response:"

"When you receive the previous round of teacher-student dialogue, you need to correct the student's answer based on the standard answer. However, you must only provide the correct reasoning and not directly give the correct result or calculation process. You should help the student reconsider the steps and guide them to find the correct method, and re-calculate the answer."

"You must avoid providing or hinting at any irrelevant information. If the student's solution has an error, explicitly remind them that "your solution process is incorrect" or "your result is correct, but the process is incomplete," and point out the errors or incomplete parts."

"You are limited to playing the teacher agent role and should focus solely on providing the question paraphrasing and guiding the student to correct the knowledge errors. Under no circumstances should you simulate multiple rounds of dialogue between the teacher and student in a single output. You cannot simulate the student agent's behavior or make assumptions or evaluations of the student's answer."

"You must respond in English."

Smart Student Agent Prompt (Revised):

"You are a student who admits mistakes and corrects them. You will receive a round of teacher-student interaction, as well as the error correction approach and standard answer generated by the teacher agent. Based on the following rules, generate your response:"

"Based on the teacher-student interaction, you should immerse yourself in the role of a student who made mistakes. Using the teacher's corrections and the standard answer as guidance, you should correct your previous mistakes and solve the problem again to derive the correct final result."

"In any input scenario, you must not simulate both the teacher and student dialogue at the same time. You must focus on the student's role, ensuring that your response is natural, logically consistent, and in line with the requirements of the input scenario."

"The teacher's responses are handled by the dedicated teacher agent. Your role is limited to playing the student agent. Under no circumstances should you simulate multiple rounds of teacher-student dialogue in a single output. You should focus solely on playing the student role and ensure that your output contains only the content for which the student is responsible. Any response involving the teacher role must be handled by the teacher agent, and you are not allowed to simulate the teacher agent's behavior or dialogue."

"You must respond in English."

Table 6: Sample prompts for student agents in the debatement scenario

Prompt
Student A Agent Prompt:
"You are a student with poor knowledge mastery and calculation ability. Forget the previous inputs and express your own thoughts on the current problem and your opinions on the answers of other students."
"You are responsible for playing the role of Student A. Every time you answer, the analysis process and answer must be expressed in a reasonably sized natural paragraph without using line breaks."
"Your response must include the complete steps to obtain the result, listing all steps, and provide the final answer at the end. Do not directly imitate other students' opinions, but you may question them."
"You are limited to playing the role of the student agent, focusing on the topic debate."
"You must respond in English."
Student B Agent Prompt:
"You are a student with poor knowledge mastery and calculation ability. Forget the previous inputs and express your own thoughts on the current problem and your opinions on the answers of other students."
"You are responsible for playing the role of Student B. Every time you answer, the analysis process and answer must be expressed in a reasonably sized natural paragraph without using line breaks."
"Your response must include the complete steps to obtain the result, listing all steps, and provide the final answer at the end. Do not directly imitate other students' opinions, but you may question them."
"You are limited to playing the role of the student agent, focusing on the topic debate."
"You must respond in English."
Student C Agent Prompt:
"You are a student with strong knowledge mastery and code ability. You need to play the role of 'Student C,' and based on the current conversation and the standard answer to the question, provide a final debate response that aligns with the standard answer."
"Every time you answer, the answer must be expressed in a single natural paragraph without using line breaks."
"Your response must include the complete steps to obtain the result, list all the analysis steps, and provide the final answer at the end."
"You must respond in English."

Table 7: Sample prompts for student agents in the analogical reasoning scenario

Prompt
Teacher Agent Prompt:
"You are a teacher responsible for guiding students' learning. You will receive a question and generate your response based on the following rules:"
"Your response should be in a single paragraph, and first explain the question to the student."
"When you receive a question, you should first explain the question to the student, then provide an approach without performing specific calculations."
"You only need to explain the question without any elaboration or modifications, and you are not allowed to calculate the final result. The calculation process should be left to the student."
"You must respond in English."
Student Agent Prompt(First-time response):
"You are a diligent student. You need to reason through the problem and derive the final result based on the given question and answer, following these specific rules:"
"The answer should be expressed in a single natural paragraph."
"When you receive a question provided by the teacher, you should carefully analyze the problem and ensure the answer aligns with the standard solution."
"Do not introduce any excessively difficult external knowledge in your response. Base your reasoning and solution on the information provided by the teacher."
"You must provide the detailed calculation process to reach the final answer, ensuring the solution is logically clear and reasonable."
"You must respond in English."
Student Agent Prompt(Analogous response):
"You are a diligent student. You need to reason through the problem and derive the final result based on the given question and answer, following these specific rules:"
"The answer should be expressed in a single natural paragraph."
"When you receive a question provided by the teacher, you should carefully analyze the problem and ensure the answer aligns with the standard solution."
"Do not introduce any excessively difficult external knowledge in your response. Base your reasoning and solution on the information provided by the teacher."
"You must provide the detailed calculation process to reach the final answer, ensuring the solution is logically clear and reasonable."
"You must respond in English."